|
|
--- |
|
|
license: apache-2.0 |
|
|
pipeline_tag: audio-text-to-text |
|
|
library_name: transformers |
|
|
tags: |
|
|
- audio-reasoning |
|
|
- chain-of-thought |
|
|
- multi-modal |
|
|
- step-audio-r1 |
|
|
--- |
|
|
|
|
|
## Overview of Step-Audio-R1.1 |
|
|
|
|
|
<a href="https://www.stepfun.com/studio/audio?tab=conversation"><img src="https://img.shields.io/static/v1?label=Space%20Playground&message=Studio&color=yellow"></a> <a href="https://huggingface.co/spaces/stepfun-ai/Step-Audio-R1"><img src="https://img.shields.io/static/v1?label=Space&message=Web&color=green"></a>   |
|
|
|
|
|
### Introduction |
|
|
Step-Audio R1.1 (Realtime) is a major upgrade to Step-Audio-R1, designed for interactive spoken dialogue with both **real-time responsiveness** and **strong reasoning capability**. |
|
|
|
|
|
Unlike conventional streaming speech models that trade intelligence for latency, R1.1 enables *thinking while speaking*, achieving high intelligence without sacrificing speed. |
|
|
|
|
|
### Mind-Paced Speaking (Low Latency) |
|
|
Based on the research [*Mind-Paced Speaking*](MPS.pdf), the Realtime variant adopts a **Dual-Brain Architecture**: |
|
|
- A **Formulation Brain** responsible for high-level reasoning |
|
|
- An **Articulation Brain** dedicated to speech generation |
|
|
|
|
|
This decoupling allows the model to perform **Chain-of-Thought reasoning during speech output**, maintaining ultra-low latency while handling complex tasks in real time. |
|
|
|
|
|
### Acoustic-Grounded Reasoning (High Intelligence) |
|
|
To address the *inverted scaling* issue鈥攚here reasoning over transcripts can degrade performance鈥擲tep-Audio R1.1 grounds its reasoning directly in acoustic representations rather than text alone. |
|
|
|
|
|
Through iterative self-distillation, extended deliberation becomes a strength instead of a liability. This enables effective test-time compute scaling and leads to **state-of-the-art performance**, including top-ranking results on the AA benchmark. |
|
|
|
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
## Model Usage |
|
|
### 馃摐 Requirements |
|
|
- **GPU**: NVIDIA GPUs with CUDA support (tested on 4脳L40S/H100/H800/H20). |
|
|
- **Operating System**: Linux. |
|
|
- **Python**: >= 3.10.0. |
|
|
|
|
|
### 猬囷笍 Download Model |
|
|
First, you need to download the Step-Audio-R1 model weights. |
|
|
|
|
|
**Method A 路 Git LFS** |
|
|
```bash |
|
|
git lfs install |
|
|
git clone https://huggingface.co/stepfun-ai/Step-Audio-R1.1 |
|
|
``` |
|
|
|
|
|
**Method B 路 Hugging Face CLI** |
|
|
```bash |
|
|
hf download stepfun-ai/Step-Audio-R1.1 --local-dir ./Step-Audio-R1.1 |
|
|
``` |
|
|
|
|
|
### 馃殌 Deployment and Execution |
|
|
We provide two ways to serve the model: Docker (recommended) or compiling the customized vLLM backend. |
|
|
|
|
|
#### 馃惓 Method 1 路 Run with Docker (Recommended) |
|
|
|
|
|
A customized vLLM image is required. |
|
|
|
|
|
1. **Pull the image**: |
|
|
```bash |
|
|
docker pull stepfun2025/vllm:step-audio-2-v20250909 |
|
|
``` |
|
|
2. **Start the service**: |
|
|
Assuming the model is downloaded in the `Step-Audio-R1` folder in the current directory. |
|
|
|
|
|
```bash |
|
|
docker run --rm -ti --gpus all \ |
|
|
-v $(pwd)/Step-Audio-R1.1:/Step-Audio-R1.1 \ |
|
|
-p 9999:9999 \ |
|
|
stepfun2025/vllm:step-audio-2-v20250909 \ |
|
|
-- vllm serve /Step-Audio-R1.1 \ |
|
|
--served-model-name Step-Audio-R1.1 \ |
|
|
--port 9999 \ |
|
|
--max-model-len 16384 \ |
|
|
--max-num-seqs 32 \ |
|
|
--tensor-parallel-size 4 \ |
|
|
--chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}' \ |
|
|
--enable-log-requests \ |
|
|
--interleave-mm-strings \ |
|
|
--trust-remote-code |
|
|
``` |
|
|
After the service starts, it will listen on `localhost:9999`. |
|
|
|
|
|
#### 馃惓 Method 2 路 Run from Source (Compile vLLM) |
|
|
Step-Audio-R1 requires a customized vLLM backend. |
|
|
|
|
|
1. **Download Source Code**: |
|
|
```bash |
|
|
git clone https://github.com/stepfun-ai/vllm.git |
|
|
cd vllm |
|
|
``` |
|
|
|
|
|
2. **Prepare Environment**: |
|
|
```bash |
|
|
python3 -m venv .venv |
|
|
source .venv/bin/activate |
|
|
``` |
|
|
|
|
|
3. **Install and Compile**: |
|
|
vLLM contains both C++ and Python code. We mainly modified the Python code, so the C++ part can use the pre-compiled version to speed up the process. |
|
|
|
|
|
```bash |
|
|
# Use pre-compiled C++ extensions (Recommended) |
|
|
VLLM_USE_PRECOMPILED=1 pip install -e . |
|
|
``` |
|
|
|
|
|
4. **Switch Branch**: |
|
|
After compilation, switch to the branch that supports Step-Audio. |
|
|
```bash |
|
|
git checkout feat/step-audio-support |
|
|
``` |
|
|
|
|
|
5. **Start the Service**: |
|
|
```bash |
|
|
# Ensure you are in the vllm directory and the virtual environment is activated |
|
|
source .venv/bin/activate |
|
|
|
|
|
python3 -m vllm.entrypoints.openai.api_server \ |
|
|
--model ../Step-Audio-R1.1 \ |
|
|
--served-model-name Step-Audio-R1.1 \ |
|
|
--port 9999 \ |
|
|
--host 0.0.0.0 \ |
|
|
--max-model-len 65536 \ |
|
|
--max-num-seqs 128 \ |
|
|
--tensor-parallel-size 4 \ |
|
|
--gpu-memory-utilization 0.85 \ |
|
|
--trust-remote-code \ |
|
|
--enable-log-requests \ |
|
|
--interleave-mm-strings \ |
|
|
--chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}' |
|
|
``` |
|
|
|
|
|
After the service starts, it will listen on `localhost:9999`. |