|
|
"""
|
|
|
Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
|
|
|
===============================================================
|
|
|
|
|
|
A complete implementation of Aurora's ternary logic architecture featuring:
|
|
|
- Trigate operations with O(1) LUT-based inference, learning, and deduction
|
|
|
- Fractal Tensor structures with hierarchical 3-9-27 organization
|
|
|
- Knowledge Base with multiverse logical space management
|
|
|
- Armonizador for coherence validation and harmonization
|
|
|
- Extender for fractal reconstruction and pattern extension
|
|
|
- Transcender for hierarchical synthesis operations
|
|
|
|
|
|
Author: Aurora Alliance
|
|
|
License: Apache-2.0 + CC-BY-4.0
|
|
|
Version: 1.0.0
|
|
|
"""
|
|
|
|
|
|
from typing import List, Dict, Any, Tuple, Optional, Union
|
|
|
import hashlib
|
|
|
import random
|
|
|
import itertools
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHI = 0.6180339887
|
|
|
Vector = List[Optional[int]]
|
|
|
|
|
|
|
|
|
logger = logging.getLogger("aurora.trinity")
|
|
|
if not logger.hasHandlers():
|
|
|
handler = logging.StreamHandler()
|
|
|
formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
|
|
|
handler.setFormatter(formatter)
|
|
|
logger.addHandler(handler)
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TernaryLogic:
|
|
|
"""Ternary logic with NULL handling for computational honesty."""
|
|
|
NULL = None
|
|
|
|
|
|
@staticmethod
|
|
|
def ternary_xor(a, b):
|
|
|
"""XOR with NULL propagation."""
|
|
|
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
|
|
return TernaryLogic.NULL
|
|
|
return a ^ b
|
|
|
|
|
|
@staticmethod
|
|
|
def ternary_xnor(a, b):
|
|
|
"""XNOR with NULL propagation."""
|
|
|
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
|
|
return TernaryLogic.NULL
|
|
|
return 1 - (a ^ b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Trigate:
|
|
|
"""
|
|
|
Fundamental Aurora logic module implementing ternary operations.
|
|
|
|
|
|
Supports three operational modes:
|
|
|
1. Inference: A + B + M -> R (given inputs and control, compute result)
|
|
|
2. Learning: A + B + R -> M (given inputs and result, learn control)
|
|
|
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
|
|
|
|
|
|
All operations are O(1) using precomputed lookup tables (LUTs).
|
|
|
"""
|
|
|
|
|
|
_LUT_INFER: Dict[Tuple, int] = {}
|
|
|
_LUT_LEARN: Dict[Tuple, int] = {}
|
|
|
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
|
|
|
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
|
|
|
_initialized = False
|
|
|
|
|
|
def __init__(self):
|
|
|
"""Initialize Trigate and ensure LUTs are computed."""
|
|
|
if not Trigate._initialized:
|
|
|
Trigate._initialize_luts()
|
|
|
|
|
|
@classmethod
|
|
|
def _initialize_luts(cls):
|
|
|
"""Initialize all lookup tables for O(1) operations."""
|
|
|
print("Initializing Trigate LUTs...")
|
|
|
states = [0, 1, TernaryLogic.NULL]
|
|
|
|
|
|
|
|
|
for a in states:
|
|
|
for b in states:
|
|
|
for m in states:
|
|
|
|
|
|
if TernaryLogic.NULL in (a, b, m):
|
|
|
r = TernaryLogic.NULL
|
|
|
else:
|
|
|
r = a ^ b if m == 1 else 1 - (a ^ b)
|
|
|
cls._LUT_INFER[(a, b, m)] = r
|
|
|
|
|
|
for r in states:
|
|
|
|
|
|
if TernaryLogic.NULL in (a, b, r):
|
|
|
m = TernaryLogic.NULL
|
|
|
else:
|
|
|
m = 1 if (a ^ b) == r else 0
|
|
|
cls._LUT_LEARN[(a, b, r)] = m
|
|
|
|
|
|
|
|
|
if TernaryLogic.NULL in (m, r, b):
|
|
|
a_result = TernaryLogic.NULL
|
|
|
else:
|
|
|
a_result = b ^ r if m == 1 else 1 - (b ^ r)
|
|
|
cls._LUT_DEDUCE_A[(m, r, b)] = a_result
|
|
|
|
|
|
|
|
|
if TernaryLogic.NULL in (m, r, a):
|
|
|
b_result = TernaryLogic.NULL
|
|
|
else:
|
|
|
b_result = a ^ r if m == 1 else 1 - (a ^ r)
|
|
|
cls._LUT_DEDUCE_B[(m, r, a)] = b_result
|
|
|
|
|
|
cls._initialized = True
|
|
|
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
|
|
|
|
|
|
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""Inference mode: Compute R given A, B, M."""
|
|
|
if not (len(A) == len(B) == len(M) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
|
|
|
|
|
|
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""Learning mode: Learn M given A, B, R."""
|
|
|
if not (len(A) == len(B) == len(R) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
|
|
|
|
|
|
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""Deduction mode: Deduce A given M, R, B."""
|
|
|
if not (len(M) == len(R) == len(B) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
|
|
|
|
|
|
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""Deduction mode: Deduce B given M, R, A."""
|
|
|
if not (len(M) == len(R) == len(A) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
|
|
|
|
|
|
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
|
|
|
"""Aurora synthesis: Generate M (logic) and S (form) from A and B."""
|
|
|
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
|
|
|
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
|
|
|
return M, S
|
|
|
|
|
|
def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
|
|
|
"""Sequentially reduce a list of ternary vectors."""
|
|
|
if len(vectors) < 2:
|
|
|
raise ValueError("At least 2 vectors required")
|
|
|
|
|
|
history: List[List[Optional[int]]] = []
|
|
|
current = vectors[0]
|
|
|
|
|
|
for nxt in vectors[1:]:
|
|
|
current, _ = self.synthesize(current, nxt)
|
|
|
history.append(current)
|
|
|
|
|
|
return current, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FractalTensor:
|
|
|
"""
|
|
|
Aurora's fundamental data structure with hierarchical 3-9-27 organization.
|
|
|
Supports fractal scaling and semantic coherence validation.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, nivel_3=None):
|
|
|
"""Initialize fractal tensor with 3-level hierarchy."""
|
|
|
self.nivel_3 = nivel_3 or [[0, 0, 0]]
|
|
|
self.metadata = {}
|
|
|
|
|
|
|
|
|
self._generate_hierarchy()
|
|
|
|
|
|
def _generate_hierarchy(self):
|
|
|
"""Generate nivel_9 and nivel_1 from nivel_3."""
|
|
|
|
|
|
if len(self.nivel_3) >= 3:
|
|
|
self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
|
|
|
else:
|
|
|
self.nivel_9 = [self.nivel_3]
|
|
|
|
|
|
|
|
|
if self.nivel_3:
|
|
|
self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
|
|
|
else:
|
|
|
self.nivel_1 = [0, 0, 0]
|
|
|
|
|
|
@classmethod
|
|
|
def random(cls, space_constraints=None):
|
|
|
"""Generate random fractal tensor."""
|
|
|
nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
|
|
|
tensor = cls(nivel_3=nivel_3)
|
|
|
if space_constraints:
|
|
|
tensor.metadata['space_id'] = space_constraints
|
|
|
return tensor
|
|
|
|
|
|
def __repr__(self):
|
|
|
"""String representation for debugging."""
|
|
|
return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _SingleUniverseKB:
|
|
|
"""Knowledge base for a single logical space."""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.storage = {}
|
|
|
self.name_index = {}
|
|
|
self.ss_index = {}
|
|
|
|
|
|
def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
|
|
|
"""Add archetype to this universe."""
|
|
|
key = tuple(Ss)
|
|
|
self.storage[key] = archetype_tensor
|
|
|
self.ss_index[key] = archetype_tensor
|
|
|
|
|
|
if name:
|
|
|
self.name_index[name] = archetype_tensor
|
|
|
|
|
|
return True
|
|
|
|
|
|
def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
|
|
|
"""Find archetype by name."""
|
|
|
return self.name_index.get(name)
|
|
|
|
|
|
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
|
|
|
"""Find archetypes by Ss vector."""
|
|
|
key = tuple(Ss_query)
|
|
|
result = self.ss_index.get(key)
|
|
|
return [result] if result else []
|
|
|
|
|
|
class FractalKnowledgeBase:
|
|
|
"""Multi-universe knowledge base manager."""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.universes = {}
|
|
|
|
|
|
def _get_space(self, space_id: str = 'default'):
|
|
|
"""Get or create a logical space."""
|
|
|
if space_id not in self.universes:
|
|
|
self.universes[space_id] = _SingleUniverseKB()
|
|
|
return self.universes[space_id]
|
|
|
|
|
|
def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
|
|
|
"""Add archetype to specified logical space."""
|
|
|
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
|
|
|
|
|
|
def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
|
|
|
"""Get archetype by space_id and name."""
|
|
|
return self._get_space(space_id).find_archetype_by_name(name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transcender:
|
|
|
"""
|
|
|
Componente de síntesis que implementa la síntesis jerárquica
|
|
|
de Tensores Fractales completos.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, fractal_vector: Optional[List[int]] = None):
|
|
|
self.trigate = Trigate()
|
|
|
self.seed_vector = fractal_vector
|
|
|
|
|
|
def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
|
|
|
"""
|
|
|
Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
|
|
|
"""
|
|
|
if len(A) != len(B):
|
|
|
return [0, 0, 0]
|
|
|
diff_vector = []
|
|
|
for i in range(len(A)):
|
|
|
a_val = A[i] if A[i] is not None else 0
|
|
|
b_val = B[i] if B[i] is not None else 0
|
|
|
diff = b_val - a_val
|
|
|
|
|
|
if diff > 0:
|
|
|
diff_vector.append(1)
|
|
|
elif diff == 0:
|
|
|
diff_vector.append(0)
|
|
|
else:
|
|
|
diff_vector.append(None)
|
|
|
|
|
|
|
|
|
if context and 'prev' in context and 'next' in context:
|
|
|
v_prev = context['prev']
|
|
|
v_next = context['next']
|
|
|
rel_cross = []
|
|
|
for vp, vn in zip(v_prev, v_next):
|
|
|
vp_val = vp if vp is not None else 0
|
|
|
vn_val = vn if vn is not None else 0
|
|
|
diff_cross = vp_val - vn_val
|
|
|
if diff_cross > 0:
|
|
|
rel_cross.append(1)
|
|
|
elif diff_cross == 0:
|
|
|
rel_cross.append(0)
|
|
|
else:
|
|
|
rel_cross.append(None)
|
|
|
|
|
|
return list(diff_vector) + list(rel_cross) + list(A) + list(B)
|
|
|
return diff_vector
|
|
|
|
|
|
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
|
|
|
"""Procesa un trío de vectores simples (operación base)."""
|
|
|
M_AB, _ = self.trigate.synthesize(A, B)
|
|
|
M_BC, _ = self.trigate.synthesize(B, C)
|
|
|
M_CA, _ = self.trigate.synthesize(C, A)
|
|
|
M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
|
|
|
M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
|
|
|
MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
|
|
|
return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM}
|
|
|
|
|
|
def deep_learning(
|
|
|
self,
|
|
|
A: List[int],
|
|
|
B: List[int],
|
|
|
C: List[int],
|
|
|
M_emergent: Optional[List[int]] = None
|
|
|
) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
|
|
|
Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
|
|
|
"""
|
|
|
trio = self.compute_vector_trio(A, B, C)
|
|
|
|
|
|
|
|
|
if M_emergent is None:
|
|
|
M_emergent = trio["M_emergent"]
|
|
|
|
|
|
R_hipotesis = self.trigate.infer(A, B, M_emergent)
|
|
|
|
|
|
return {
|
|
|
"M_emergent": M_emergent,
|
|
|
"MetaM": trio["MetaM"],
|
|
|
"R_hipotesis": R_hipotesis,
|
|
|
}
|
|
|
|
|
|
def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
|
|
|
"""
|
|
|
Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
|
|
|
Prioriza una raíz de entrada válida por encima de la síntesis.
|
|
|
"""
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
|
out = FractalTensor(nivel_3=[[0, 0, 0]])
|
|
|
|
|
|
|
|
|
if not hasattr(A, 'nivel_3') or not A.nivel_3:
|
|
|
A.nivel_3 = [[0, 0, 0]]
|
|
|
if not hasattr(B, 'nivel_3') or not B.nivel_3:
|
|
|
B.nivel_3 = [[0, 0, 0]]
|
|
|
if not hasattr(C, 'nivel_3') or not C.nivel_3:
|
|
|
C.nivel_3 = [[0, 0, 0]]
|
|
|
|
|
|
def synthesize_trio(vectors: list) -> list:
|
|
|
|
|
|
while len(vectors) < 3:
|
|
|
vectors.append([0, 0, 0])
|
|
|
trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
|
|
|
r = self.compute_vector_trio(*trimmed)
|
|
|
m_emergent = r.get('M_emergent', [0, 0, 0])
|
|
|
return [bit if bit is not None else 0 for bit in m_emergent[:3]]
|
|
|
|
|
|
|
|
|
A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0]
|
|
|
B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0]
|
|
|
C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0]
|
|
|
|
|
|
|
|
|
result = self.compute_vector_trio(A_vec, B_vec, C_vec)
|
|
|
|
|
|
|
|
|
out.nivel_3 = [result["M_emergent"]]
|
|
|
out.Ms = result["M_emergent"]
|
|
|
out.Ss = result.get("Ss", result["MetaM"])
|
|
|
out.MetaM = result["MetaM"]
|
|
|
|
|
|
return out
|
|
|
|
|
|
class Evolver:
|
|
|
"""
|
|
|
Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
|
|
|
"""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.base_transcender = Transcender()
|
|
|
|
|
|
def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor:
|
|
|
"""
|
|
|
Motor de síntesis fractal: reduce una lista de tensores a uno solo.
|
|
|
"""
|
|
|
if not tensors:
|
|
|
return FractalTensor(nivel_3=[[0, 0, 0]])
|
|
|
|
|
|
current_level_tensors = list(tensors)
|
|
|
while len(current_level_tensors) > 1:
|
|
|
next_level_tensors = []
|
|
|
for i in range(0, len(current_level_tensors), 3):
|
|
|
trio = current_level_tensors[i:i+3]
|
|
|
while len(trio) < 3:
|
|
|
trio.append(FractalTensor(nivel_3=[[0, 0, 0]]))
|
|
|
synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
|
|
|
next_level_tensors.append(synthesized_tensor)
|
|
|
current_level_tensors = next_level_tensors
|
|
|
|
|
|
return current_level_tensors[0]
|
|
|
|
|
|
def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
|
|
|
"""Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
|
|
|
if len(tensor_family) < 2:
|
|
|
import warnings
|
|
|
warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
|
|
|
return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0]
|
|
|
return self._perform_full_tensor_synthesis(tensor_family)
|
|
|
|
|
|
class Extender:
|
|
|
"""
|
|
|
Orquestador Aurora refactorizado con expertos como métodos internos para
|
|
|
simplificar el alcance y la gestión de estado.
|
|
|
|
|
|
Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
|
|
|
a partir de consultas simples y contexto, utilizando expertos para validar,
|
|
|
utiliza trigate de form inversa al transcender.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, knowledge_base: FractalKnowledgeBase):
|
|
|
self.kb = knowledge_base
|
|
|
self.transcender = Transcender()
|
|
|
self._lut_tables = {}
|
|
|
self.armonizador = Armonizador(knowledge_base=self.kb)
|
|
|
|
|
|
def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
|
|
"""Experto Arquetipo como método."""
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
|
|
|
logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
|
|
|
|
|
|
|
|
|
archi_ss = universe.find_archetype_by_ss(list(ss_key))
|
|
|
if archi_ss:
|
|
|
logger.debug(f"Found archetype by Ss: {archi_ss}")
|
|
|
return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss
|
|
|
|
|
|
|
|
|
for name in universe.name_index.keys():
|
|
|
if str(ss_key) in name:
|
|
|
archetype = universe.find_archetype_by_name(name)
|
|
|
if archetype:
|
|
|
logger.debug(f"Found archetype by name pattern: {archetype}")
|
|
|
return True, archetype
|
|
|
|
|
|
logger.debug("No archetype found")
|
|
|
return False, None
|
|
|
|
|
|
def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
|
|
"""Experto Dinámica como método."""
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
best, best_sim = None, -1.0
|
|
|
|
|
|
|
|
|
for key, archetype in universe.storage.items():
|
|
|
if hasattr(archetype, 'nivel_3') and archetype.nivel_3:
|
|
|
archetype_ss = archetype.nivel_3[0]
|
|
|
sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query)
|
|
|
if sim > best_sim:
|
|
|
best_sim, best = sim, archetype
|
|
|
|
|
|
if best and best_sim > 0.7:
|
|
|
return True, best
|
|
|
return False, None
|
|
|
|
|
|
def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
|
|
"""Experto Relator como método."""
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
if not universe.storage:
|
|
|
logger.debug("No archetypes in universe")
|
|
|
return False, None
|
|
|
|
|
|
best, best_score = None, float('-inf')
|
|
|
for key, archetype in universe.storage.items():
|
|
|
if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3:
|
|
|
continue
|
|
|
|
|
|
archetype_ss = archetype.nivel_3[0]
|
|
|
rel = self.transcender.relate_vectors(ss_query, archetype_ss)
|
|
|
score = sum(1 for bit in rel if bit == 0)
|
|
|
if score > best_score:
|
|
|
best_score, best = score, archetype
|
|
|
|
|
|
if best:
|
|
|
|
|
|
from copy import deepcopy
|
|
|
result = deepcopy(best)
|
|
|
result.nivel_3[0] = list(ss_query[:3])
|
|
|
logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
|
|
|
return True, result
|
|
|
|
|
|
logger.debug("No relational match found")
|
|
|
return False, None
|
|
|
|
|
|
def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]:
|
|
|
"""Lookup in LUT tables."""
|
|
|
lut_key = f"{space_id}:{tuple(ss_query)}"
|
|
|
return self._lut_tables.get(lut_key)
|
|
|
|
|
|
def extend_fractal(self, input_ss, contexto: dict) -> dict:
|
|
|
"""Orquestador Principal."""
|
|
|
log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
|
|
|
|
|
|
|
|
|
if hasattr(input_ss, 'nivel_3'):
|
|
|
ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0]
|
|
|
else:
|
|
|
ss_query = input_ss
|
|
|
|
|
|
|
|
|
if not isinstance(ss_query, (list, tuple)):
|
|
|
log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
|
|
|
ss_query = [0, 0, 0]
|
|
|
else:
|
|
|
ss_query = [
|
|
|
None if x is None else int(x) if x in (0, 1) else 0
|
|
|
for x in list(ss_query)[:3]
|
|
|
] + [0] * (3 - len(ss_query))
|
|
|
|
|
|
space_id = contexto.get('space_id', 'default')
|
|
|
|
|
|
STEPS = [
|
|
|
lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
|
|
|
self._validate_archetype,
|
|
|
self._project_dynamics,
|
|
|
self._contextualize_relations
|
|
|
]
|
|
|
METHODS = [
|
|
|
"reconstrucción por LUT",
|
|
|
"reconstrucción por arquetipo (axioma)",
|
|
|
"proyección por dinámica (raíz preservada)",
|
|
|
"contextualización por relator (raíz preservada)"
|
|
|
]
|
|
|
|
|
|
for step, method in zip(STEPS, METHODS):
|
|
|
ok, tensor = step(ss_query, space_id)
|
|
|
if ok and tensor is not None:
|
|
|
log.append(f"✅ {method}.")
|
|
|
|
|
|
|
|
|
if isinstance(tensor, list):
|
|
|
tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query])
|
|
|
|
|
|
|
|
|
if method.startswith("proyección") or method.startswith("contextualización"):
|
|
|
from copy import deepcopy
|
|
|
result = deepcopy(tensor)
|
|
|
result.nivel_3[0] = ss_query
|
|
|
root_vector = result.nivel_3[0]
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
result.nivel_3[0] = harm["output"]
|
|
|
return {
|
|
|
"reconstructed_tensor": result,
|
|
|
"reconstruction_method": method + " + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
|
|
|
from copy import deepcopy
|
|
|
tensor_c = deepcopy(tensor)
|
|
|
root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
tensor_c.nivel_3[0] = harm["output"]
|
|
|
return {
|
|
|
"reconstructed_tensor": tensor_c,
|
|
|
"reconstruction_method": method + " + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
|
|
|
|
|
|
log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
|
|
|
tensor_n = FractalTensor(nivel_3=[ss_query])
|
|
|
root_vector = tensor_n.nivel_3[0]
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
tensor_n.nivel_3[0] = harm["output"]
|
|
|
|
|
|
return {
|
|
|
"reconstructed_tensor": tensor_n,
|
|
|
"reconstruction_method": "fallback neutro + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
|
|
|
class Armonizador:
|
|
|
"""Coherence validator and harmonization engine."""
|
|
|
|
|
|
def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
|
|
|
self.kb = knowledge_base
|
|
|
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
|
|
|
|
|
|
def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
|
|
|
"""Harmonize vector for coherence."""
|
|
|
result_vector = self._microshift(tensor, archetype or [0, 0, 0])
|
|
|
|
|
|
return {
|
|
|
"output": result_vector,
|
|
|
"score": 0,
|
|
|
"adjustments": ["microshift"]
|
|
|
}
|
|
|
|
|
|
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
|
|
|
"""Apply micro-adjustments to vector."""
|
|
|
logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
|
|
|
return vec
|
|
|
|
|
|
class TensorPoolManager:
|
|
|
"""Pool manager for tensor collections."""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.tensors = []
|
|
|
|
|
|
def add_tensor(self, tensor: FractalTensor):
|
|
|
"""Add tensor to pool."""
|
|
|
self.tensors.append(tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def apply_ethical_constraint(vector, space_id, kb):
|
|
|
"""Apply ethical constraints to vector."""
|
|
|
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
|
|
|
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
|
|
|
|
|
|
def compute_ethical_signature(cluster):
|
|
|
"""Compute ethical signature for cluster."""
|
|
|
base = str([t.nivel_3[0] for t in cluster]).encode()
|
|
|
return hashlib.sha256(base).hexdigest()
|
|
|
|
|
|
def golden_ratio_select(N, seed):
|
|
|
"""Select indices using golden ratio stepping."""
|
|
|
step = int(max(1, round(N * PHI)))
|
|
|
return [(seed + i * step) % N for i in range(3)]
|
|
|
|
|
|
def pattern0_create_fractal_cluster(
|
|
|
*,
|
|
|
input_data=None,
|
|
|
space_id="default",
|
|
|
num_tensors=3,
|
|
|
context=None,
|
|
|
entropy_seed=PHI,
|
|
|
depth_max=3,
|
|
|
):
|
|
|
"""Generate ethical fractal cluster using Pattern 0."""
|
|
|
random.seed(int(entropy_seed * 1e9))
|
|
|
kb = FractalKnowledgeBase()
|
|
|
armonizador = Armonizador(knowledge_base=kb)
|
|
|
pool = TensorPoolManager()
|
|
|
|
|
|
|
|
|
tensors = []
|
|
|
for i in range(num_tensors):
|
|
|
if input_data and i < len(input_data):
|
|
|
vec = apply_ethical_constraint(input_data[i], space_id, kb)
|
|
|
tensor = FractalTensor(nivel_3=[vec])
|
|
|
else:
|
|
|
try:
|
|
|
tensor = FractalTensor.random(space_constraints=space_id)
|
|
|
except TypeError:
|
|
|
tensor = FractalTensor.random()
|
|
|
|
|
|
|
|
|
tensor.metadata.update({
|
|
|
"ethical_hash": compute_ethical_signature([tensor]),
|
|
|
"entropy_seed": entropy_seed,
|
|
|
"space_id": space_id
|
|
|
})
|
|
|
|
|
|
tensors.append(tensor)
|
|
|
pool.add_tensor(tensor)
|
|
|
|
|
|
|
|
|
for tensor in tensors:
|
|
|
harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
|
|
|
tensor.nivel_3[0] = harmonized["output"]
|
|
|
|
|
|
return tensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
'FractalTensor',
|
|
|
'Trigate',
|
|
|
'TernaryLogic',
|
|
|
'Evolver',
|
|
|
'Extender',
|
|
|
'FractalKnowledgeBase',
|
|
|
'Armonizador',
|
|
|
'TensorPoolManager',
|
|
|
'Transcender',
|
|
|
'pattern0_create_fractal_cluster'
|
|
|
]
|
|
|
|
|
|
|
|
|
KnowledgeBase = FractalKnowledgeBase
|
|
|
|