File size: 50,178 Bytes
3f40093 cdfd7db 75468c3 3f40093 40df63a 4d9e33f 3f40093 4d9e33f 40df63a fc77069 01b09b7 e80a71a 40df63a fc77069 b00c890 fc77069 40df63a 4d9e33f 36f4434 4d9e33f 40df63a 4d9e33f fc77069 0949437 fc77069 40df63a 4d9e33f e80a71a 4d9e33f e80a71a 11ca2e9 40df63a 938b38e 3f40093 0841a6c 3f40093 a1d497d 3f40093 a1d497d 938b38e a1d497d 0949437 938b38e 40df63a e80a71a a1d497d a9ee753 3f40093 e80a71a 4d9e33f 40df63a 938b38e 4d9e33f e80a71a 4d9e33f c7c8764 4d9e33f e80a71a 4d9e33f e80a71a c7c8764 e80a71a c7c8764 e80a71a c7c8764 e80a71a c7c8764 938b38e 40df63a 3f40093 aeef384 e80a71a aeef384 e80a71a aeef384 e80a71a aeef384 e80a71a aeef384 e80a71a aeef384 e80a71a aeef384 e80a71a a2fbee5 aeef384 a2fbee5 e80a71a 15e66ee 13973a3 15e66ee 5f6e97e a2fbee5 e80a71a f9b6e6a 5f6e97e 23f9bc4 a2fbee5 0841a6c 23f9bc4 5f6e97e c366261 15e66ee f9b6e6a 5f6e97e 23f9bc4 5f6e97e 23f9bc4 15e66ee 4d9e33f f9b6e6a 5f6e97e 13973a3 5f6e97e 938b38e 5f6e97e 13973a3 5f6e97e 13973a3 f9b6e6a a2fbee5 13973a3 a2fbee5 13973a3 c366261 5f6e97e 15e66ee 23f9bc4 e80a71a 36f4434 aeef384 5f6e97e aeef384 9a7633c aeef384 a2fbee5 2c36d34 5f6e97e 9a7633c aeef384 5f6e97e 23f9bc4 e80a71a aeef384 e80a71a 1ca98b0 b00c890 23f9bc4 1ca98b0 a2fbee5 5f6e97e 23f9bc4 5f6e97e 40df63a 5f6e97e 1ca98b0 5f6e97e 938b38e 5f6e97e c366261 40df63a 5f6e97e 40df63a 5f6e97e e80a71a 40df63a e80a71a 40df63a 23f9bc4 c366261 40df63a c366261 40df63a 5f6e97e 40df63a 5f6e97e 23f9bc4 aeef384 23f9bc4 40df63a 5f6e97e aeef384 5f6e97e aeef384 23f9bc4 40df63a 5f6e97e 23f9bc4 40df63a c366261 23f9bc4 5f6e97e a2fbee5 f9b6e6a 40df63a a2fbee5 40df63a f9b6e6a 40df63a f9b6e6a c366261 40df63a a2fbee5 c366261 a2fbee5 c366261 40df63a a2fbee5 c366261 a2fbee5 a1d497d 4d9e33f a2fbee5 1ca98b0 f9b6e6a a1d497d 40df63a e80a71a 4d9e33f 3f40093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 |
import torch
import torch.nn as nn
import random
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional, List
from PIL import Image
from dataclasses import dataclass
from tokenizers import Tokenizer
from .config import MoondreamConfig
from .image_crops import reconstruct_from_crops
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
from .text import build_text_model, text_encoder, lm_head, text_decoder
from .region import (
decode_coordinate,
encode_coordinate,
decode_size,
encode_size,
encode_spatial_refs,
SpatialRefs,
)
from .layers import QuantizedLinear
from .lora import variant_state_dict
from .utils import remove_outlier_points
from .region import decode_coordinate, encode_coordinate, decode_size, encode_size
from .text import text_encoder, lm_head
from typing import Optional, List, Union
from .lora import variant_state_dict
from .layers import mlp
ImageEncodingSettings = TypedDict(
"ImageEncodingSettings",
{"variant": str},
total=False,
)
TextSamplingSettings = TypedDict(
"TextSamplingSettings",
{
"max_tokens": int,
"temperature": float,
"top_p": float,
"variant": str,
},
total=False,
)
ObjectSamplingSettings = TypedDict(
"ObjectSamplingSettings",
{"max_objects": int, "variant": str},
total=False,
)
DEFAULT_MAX_TOKENS = 768
DEFAULT_TEMPERATURE = 0.5
DEFAULT_TOP_P = 0.3
DEFAULT_MAX_OBJECTS = 50
@dataclass(frozen=True)
class EncodedImage:
pos: int
caches: List[Tuple[torch.Tensor, torch.Tensor]]
class KVCache(nn.Module):
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
super().__init__()
head_dim = dim // n_heads
shape = (1, n_kv_heads, max_context, head_dim)
self.register_buffer("k_cache", torch.zeros(*shape, device=device, dtype=dtype))
self.register_buffer("v_cache", torch.zeros(*shape, device=device, dtype=dtype))
def update(self, pos_ids, k, v):
# k,v: (B, n_kv_heads, q_len, head_dim)
kout, vout = self.k_cache, self.v_cache
if not torch.is_tensor(pos_ids):
pos_ids = torch.tensor(pos_ids, device=k.device, dtype=torch.long)
else:
pos_ids = pos_ids.to(device=k.device, dtype=torch.long)
if k.dim() != 4 or v.dim() != 4:
raise RuntimeError(f"KV update expects k,v 4D. Got k={tuple(k.shape)} v={tuple(v.shape)}")
B, Hkv, q_len, D = k.shape
# expand caches from B=1 -> B if needed
if kout.size(0) != B:
if kout.size(0) == 1:
self.k_cache = kout.expand(B, -1, -1, -1).clone()
self.v_cache = vout.expand(B, -1, -1, -1).clone()
kout, vout = self.k_cache, self.v_cache
else:
raise RuntimeError(f"KV cache batch mismatch: cache.B={kout.size(0)} vs k.B={B}")
# prefill: pos_ids = (q_len,)
if pos_ids.dim() == 1 and pos_ids.numel() == q_len:
for i in range(B):
kout[i, :, pos_ids, :] = k[i]
vout[i, :, pos_ids, :] = v[i]
return kout, vout
# one step: q_len==1 & pos_ids per row
if q_len == 1 and pos_ids.numel() == B:
pos_ids = pos_ids.view(B)
for i in range(B):
pi = int(pos_ids[i].item())
kout[i, :, pi, :] = k[i, :, 0, :]
vout[i, :, pi, :] = v[i, :, 0, :]
return kout, vout
# scalar for everyone & q_len==1
if pos_ids.dim() == 0 and q_len == 1:
pi = int(pos_ids.item())
kout[:, :, pi, :] = k[:, :, 0, :]
vout[:, :, pi, :] = v[:, :, 0, :]
return kout, vout
raise RuntimeError(f"Unsupported KV update combo: k={tuple(k.shape)}, pos_ids={tuple(pos_ids.shape)}")
class MoondreamModel(nn.Module):
def __init__(
self, config: MoondreamConfig, dtype=torch.bfloat16, setup_caches=True
):
super().__init__()
self.config = config
self.tokenizer = Tokenizer.from_pretrained("moondream/starmie-v1")
self.vision = build_vision_model(config.vision, dtype)
self.text = build_text_model(config.text, dtype)
# Region Model
linear_cls = (
QuantizedLinear if config.region.group_size is not None else nn.Linear
)
self.region = nn.ModuleDict(
{
"coord_encoder": linear_cls(
config.region.coord_feat_dim, config.region.dim, dtype=dtype
),
"coord_decoder": nn.ModuleDict(
{
"fc1": linear_cls(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": linear_cls(
config.region.inner_dim,
config.region.coord_out_dim,
dtype=dtype,
),
}
),
"size_encoder": linear_cls(
config.region.size_feat_dim, config.region.dim, dtype=dtype
),
"size_decoder": nn.ModuleDict(
{
"fc1": linear_cls(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": linear_cls(
config.region.inner_dim,
config.region.size_out_dim,
dtype=dtype,
),
}
),
}
)
self.region.coord_features = nn.Parameter(
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
)
self.region.size_features = nn.Parameter(
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
)
attn_mask = torch.tril(
torch.ones(
1, 1, config.text.max_context, config.text.max_context, dtype=torch.bool
)
)
patch_w = config.vision.crop_size // config.vision.enc_patch_size
prefix_attn_len = 1 + patch_w**2
attn_mask[..., :prefix_attn_len, :prefix_attn_len] = 1
self.register_buffer("attn_mask", attn_mask, persistent=False)
# Initialize KV caches.
if setup_caches:
self._setup_caches()
def _reset_kv_caches(self, batch_size: int = 1):
c = self.config.text
head_dim = c.dim // c.n_heads
for blk in self.text.blocks:
device = blk.kv_cache.k_cache.device
dtype = blk.kv_cache.k_cache.dtype
shape = (batch_size, c.n_kv_heads, c.max_context, head_dim)
blk.kv_cache.k_cache = torch.zeros(shape, device=device, dtype=dtype)
blk.kv_cache.v_cache = torch.zeros(shape, device=device, dtype=dtype)
def _setup_caches(self):
c = self.config.text
for b in self.text.blocks:
b.kv_cache = KVCache(
c.n_heads,
c.n_kv_heads,
c.max_context,
c.dim,
device=self.device,
dtype=self.vision.pos_emb.dtype,
)
@property
def device(self):
return self.vision.pos_emb.device
def _vis_enc(self, x: torch.Tensor):
return vision_encoder(x, self.vision, self.config.vision)
def _vis_proj(self, g: torch.Tensor, r: torch.Tensor):
return vision_projection(g, r, self.vision, self.config.vision)
def _prefill(
self,
x: torch.Tensor,
attn_mask: torch.Tensor,
pos_ids: torch.Tensor,
lora: Optional[torch.Tensor],
):
return text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
def _decode_one_tok(
self,
x: torch.Tensor,
attn_mask: torch.Tensor,
pos_ids: torch.Tensor,
lora: Optional[torch.Tensor],
):
hidden = text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
logits = lm_head(hidden, self.text)
return logits, hidden
def compile(self):
for module in self.modules():
if isinstance(module, QuantizedLinear):
module.unpack()
# TODO: vision_projection is not being compiled
self._vis_enc = torch.compile(self._vis_enc, fullgraph=True)
self._prefill = torch.compile(self._prefill, fullgraph=True)
self._decode_one_tok = torch.compile(
self._decode_one_tok, fullgraph=True, mode="reduce-overhead"
)
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
torch._dynamo.mark_dynamic(all_crops, 0)
outputs = self._vis_enc(all_crops)
global_features = outputs[0]
local_features = outputs[1:].view(
-1,
self.config.vision.enc_n_layers,
self.config.vision.enc_n_layers,
self.config.vision.enc_dim,
)
reconstructed = reconstruct_from_crops(
local_features,
tiling,
patch_size=1,
overlap_margin=self.config.vision.overlap_margin,
)
return self._vis_proj(global_features, reconstructed)
def _apply_top_p(self, probs: torch.Tensor, top_p: float):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > top_p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_probs = torch.zeros_like(probs)
next_probs.scatter_(dim=-1, index=probs_idx, src=probs_sort)
return next_probs
def _prefill_prompt(
self,
prompt_tokens: torch.Tensor,
pos: int,
temperature: float,
top_p: float,
spatial_refs: Optional[SpatialRefs] = None,
attn_mask: Optional[torch.Tensor] = None,
lora: Optional[dict] = None,
):
with torch.inference_mode():
prompt_emb = text_encoder(prompt_tokens, self.text)
if spatial_refs:
encoded_refs = encode_spatial_refs(spatial_refs, self.region)
prompt_emb[prompt_tokens == self.config.tokenizer.coord_id] = (
encoded_refs["coords"]
)
if encoded_refs["sizes"] is not None:
prompt_emb[prompt_tokens == self.config.tokenizer.size_id] = (
encoded_refs["sizes"]
)
torch._dynamo.mark_dynamic(prompt_emb, 1)
if attn_mask is None:
attn_mask = self.attn_mask
mask = attn_mask[:, :, pos : pos + prompt_emb.size(1), :]
pos_ids = torch.arange(pos, pos + prompt_emb.size(1), dtype=torch.long)
hidden_BC = self._prefill(prompt_emb, mask, pos_ids, lora)
logits_BV = lm_head(hidden_BC, self.text)
if temperature == 0:
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1)
else:
probs = torch.softmax(logits_BV / temperature, dim=-1)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1)
pos = pos + prompt_emb.size(1)
return logits_BV, hidden_BC, next_token, pos
def _generate_reasoning(
self,
prompt_tokens,
pos,
settings: Optional[TextSamplingSettings] = None,
spatial_refs: Optional[SpatialRefs] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> Tuple[int, str, List[dict]]:
max_tokens = (
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
if settings
else DEFAULT_MAX_TOKENS
)
temperature = (
settings.get("temperature", DEFAULT_TEMPERATURE)
if settings
else DEFAULT_TEMPERATURE
)
lora = (
variant_state_dict(settings["variant"], device=self.device)
if settings is not None and "variant" in settings
else None
)
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
eos_id = self.config.tokenizer.answer_id
_, last_hidden_BC, next_token, pos = self._prefill_prompt(
prompt_tokens,
pos,
temperature,
top_p,
spatial_refs,
attn_mask=attn_mask,
lora=lora,
)
text_token_chunks = [[]]
grounding_chunks = [[]]
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
mask[:, :, :pos] = 1
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
generated_tokens = 0
while (
next_token_id := next_token.item()
) != eos_id and generated_tokens < max_tokens:
if (
next_token_id == self.config.tokenizer.start_ground_points_id
or next_token_id == self.config.tokenizer.end_ground_id
):
text_token_chunks.append([])
grounding_chunks.append([])
text_token_chunks[-1].append(next_token_id)
with torch.inference_mode():
if next_token_id == self.config.tokenizer.coord_id:
coord_logits = decode_coordinate(last_hidden_BC, self.region)
coord = torch.argmax(coord_logits, dim=-1) / coord_logits.size(-1)
grounding_chunks[-1].append(coord.item())
next_emb = encode_coordinate(
coord.to(dtype=coord_logits.dtype), self.region
).unsqueeze(0)
else:
next_emb = text_encoder(next_token, self.text)
mask[:, :, pos], pos_ids[0] = 1, pos
logits_BV, last_hidden_BC = self._decode_one_tok(
next_emb, mask, pos_ids, lora
)
logits_BV[:, self.config.tokenizer.eos_id] = float("-inf")
logits_BV[:, self.config.tokenizer.size_id] = float("-inf")
pos += 1
if temperature == 0:
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1) # (1, 1)
else:
probs = torch.softmax(logits_BV / temperature, dim=-1) # (1, V)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1) # (1, 1)
generated_tokens += 1
text_chunks = [
self.tokenizer.decode(chunk_tokens) for chunk_tokens in text_token_chunks
]
text = "".join(text_chunks)
start_idx = 0
grounding = []
for text_chunk, grounding_chunk in zip(text_chunks, grounding_chunks):
if len(grounding_chunk) > 1:
points = []
for i in range(0, len(grounding_chunk) - (len(grounding_chunk) % 2), 2):
points.append((grounding_chunk[i], grounding_chunk[i + 1]))
grounding.append(
{
"start_idx": start_idx,
"end_idx": start_idx + len(text_chunk),
"points": points,
}
)
start_idx += len(text_chunk)
return pos, text, grounding
def _generate_answer(
self,
prompt_tokens: torch.Tensor,
pos: int,
settings: Optional[TextSamplingSettings] = None,
spatial_refs: Optional[SpatialRefs] = None,
eos_id: Optional[int] = None,
attn_mask: Optional[torch.Tensor] = None,
):
max_tokens = (
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
if settings
else DEFAULT_MAX_TOKENS
)
temperature = (
settings.get("temperature", DEFAULT_TEMPERATURE)
if settings
else DEFAULT_TEMPERATURE
)
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
eos_id = eos_id if eos_id is not None else self.config.tokenizer.eos_id
lora = (
variant_state_dict(settings["variant"], device=self.device)
if settings is not None and "variant" in settings
else None
)
_, _, next_token, pos = self._prefill_prompt(
prompt_tokens,
pos,
temperature,
top_p,
spatial_refs,
attn_mask=attn_mask,
lora=lora,
)
def generator(next_token, pos):
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
mask[:, :, :pos] = 1
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
generated_tokens = 0
# For properly handling token streaming with Unicode
token_cache = []
print_len = 0
while (
next_token_id := next_token.item()
) != eos_id and generated_tokens < max_tokens:
# Add token to our cache
token_cache.append(next_token_id)
# Decode all tokens collected so far
text = self.tokenizer.decode(token_cache)
# After a newline, we flush the cache completely
if text.endswith("\n"):
printable_text = text[print_len:]
token_cache = []
print_len = 0
if printable_text:
yield printable_text
# If the last token is a CJK character, we can safely print it
elif len(text) > 0 and _is_cjk_char(ord(text[-1])):
printable_text = text[print_len:]
print_len += len(printable_text)
if printable_text:
yield printable_text
# Otherwise, only yield up to the last space to avoid cutting words
else:
last_space_idx = text.rfind(" ", print_len)
if last_space_idx >= print_len:
printable_text = text[print_len : last_space_idx + 1]
print_len += len(printable_text)
if printable_text:
yield printable_text
with torch.inference_mode():
next_emb = text_encoder(next_token, self.text)
mask[:, :, pos], pos_ids[0] = 1, pos
logits_BV, _ = self._decode_one_tok(next_emb, mask, pos_ids, lora)
logits_BV[:, self.config.tokenizer.answer_id] = float("-inf")
pos += 1
if temperature == 0:
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(
1
) # (1, 1)
else:
probs = torch.softmax(logits_BV / temperature, dim=-1) # (1, V)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1) # (1, 1)
generated_tokens += 1
# Flush any remaining text in the cache
if token_cache:
text = self.tokenizer.decode(token_cache)
printable_text = text[print_len:]
if printable_text:
yield printable_text
return generator(next_token, pos)
def encode_image(self, image, settings=None) -> EncodedImage:
# start clean: recreate caches as B=1 every time
self._setup_caches()
if isinstance(image, EncodedImage):
return image
if not isinstance(image, Image.Image):
raise ValueError("image must be a PIL Image or EncodedImage")
# hard-trim to B=1 in case something changed it
for blk in self.text.blocks:
if blk.kv_cache.k_cache.size(0) != 1:
blk.kv_cache.k_cache = blk.kv_cache.k_cache[:1].contiguous()
blk.kv_cache.v_cache = blk.kv_cache.v_cache[:1].contiguous()
lora = variant_state_dict(settings["variant"], device=self.device) if settings and "variant" in settings else None
with torch.inference_mode():
img_emb = self._run_vision_encoder(image) # (T_img, C)
bos = torch.tensor([[self.config.tokenizer.bos_id]], device=self.device)
bos_emb = text_encoder(bos, self.text) # (1,1,C)
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1) # (1,T0,C)
mask = self.attn_mask[:, :, :inputs_embeds.size(1), :] # (1,1,T0,K)
pos_ids = torch.arange(inputs_embeds.size(1), device=self.device, dtype=torch.long) # (T0,)
self._prefill(inputs_embeds, mask, pos_ids, lora)
T0 = inputs_embeds.size(1)
return EncodedImage(
pos=T0,
caches=[
(b.kv_cache.k_cache[:, :, :T0, :].clone(),
b.kv_cache.v_cache[:, :, :T0, :].clone())
for b in self.text.blocks
],
)
def query(
self,
image: Optional[Union[Image.Image, EncodedImage]] = None,
question: str = None,
reasoning: bool = False,
spatial_refs: Optional[SpatialRefs] = None,
stream: bool = False,
settings: Optional[TextSamplingSettings] = None,
):
if self.config.tokenizer.templates["query"] is None:
raise NotImplementedError("Model does not support querying.")
if question is None:
raise ValueError("question must be provided.")
if spatial_refs and image is None:
raise ValueError("spatial_refs can only be used with an image.")
attn_mask = self.attn_mask
if image is not None:
image = self.encode_image(image, settings)
self.load_encoded_image(image)
pos = image.pos
prompt_toks = self.config.tokenizer.templates["query"]["prefix"]
else:
self._setup_caches()
pos = 0
prompt_toks = [
self.config.tokenizer.bos_id
] + self.config.tokenizer.templates["query"]["prefix"]
max_context = self.config.text.max_context
attn_mask = torch.tril(
torch.ones(1, 1, max_context, max_context, dtype=torch.bool)
).to(self.device)
spatial_toks = []
if spatial_refs:
for ref in spatial_refs:
coord_id = self.config.tokenizer.coord_id
size_id = self.config.tokenizer.size_id
if len(ref) == 2:
spatial_toks.extend([coord_id, coord_id])
else:
spatial_toks.extend([coord_id, coord_id, size_id])
prompt_tokens = [
prompt_toks
+ spatial_toks
+ self.tokenizer.encode(question).ids
+ self.config.tokenizer.templates["query"]["suffix"]
]
if reasoning:
prompt_tokens[0] += [self.config.tokenizer.thinking_id]
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
pos, reasoning_text, reasoning_grounding = self._generate_reasoning(
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
)
prompt_tokens = [self.config.tokenizer.templates["query"]["suffix"]]
reasoning_dict = {
"reasoning": {"text": reasoning_text, "grounding": reasoning_grounding}
}
else:
prompt_tokens[0] += self.config.tokenizer.templates["query"]["suffix"]
reasoning_dict = {}
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
def generator():
for token in self._generate_answer(
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
):
yield token
if stream:
return {**reasoning_dict, "answer": generator()}
else:
return {**reasoning_dict, "answer": "".join(list(generator()))}
def load_encoded_image(self, encoded_image: EncodedImage):
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
b.kv_cache.k_cache[:, :, : k.size(2), :] = k
b.kv_cache.v_cache[:, :, : v.size(2), :] = v
def caption(
self,
image: Union[Image.Image, EncodedImage],
length: Literal["normal", "short", "long"] = "normal",
stream: bool = False,
settings: Optional[TextSamplingSettings] = None,
):
if self.config.tokenizer.templates["caption"] is None:
raise NotImplementedError("Model does not support captioning.")
if length not in self.config.tokenizer.templates["caption"]:
raise ValueError(f"Model does not support caption length '{length}'.")
image = self.encode_image(image, settings)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[self.config.tokenizer.templates["caption"][length]], device=self.device
)
def generator():
for token in self._generate_answer(prompt_tokens, image.pos, settings):
yield token
if stream:
return {"caption": generator()}
else:
return {"caption": "".join(list(generator()))}
def _generate_points(
self,
hidden: torch.Tensor,
next_token: torch.Tensor,
pos: int,
include_size: bool = True,
max_objects: int = DEFAULT_MAX_OBJECTS,
lora: Optional[dict] = None,
):
out = []
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
mask[:, :, :pos] = 1
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
with torch.inference_mode():
while (
next_token.item() != self.config.tokenizer.eos_id
and len(out) < max_objects
):
x_logits = decode_coordinate(hidden, self.region)
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
next_emb = encode_coordinate(
x_center.to(dtype=x_logits.dtype), self.region
).unsqueeze(0)
# Decode y-coordinate
mask[:, :, pos], pos_ids[0] = 1, pos
_, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
pos += 1
y_logits = decode_coordinate(hidden, self.region)
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
next_emb = encode_coordinate(
y_center.to(dtype=y_logits.dtype), self.region
).unsqueeze(0)
# Decode size
if include_size:
mask[:, :, pos], pos_ids[0] = 1, pos
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
pos += 1
size_logits = decode_size(hidden, self.region)
# Get bin indices from the logits
w_bin = torch.argmax(size_logits[0], dim=-1)
h_bin = torch.argmax(size_logits[1], dim=-1)
# Convert from bin indices to actual size values using the inverse of the log-scale mapping
# Formula: size = 2^((bin / 1023.0) * 10.0 - 10.0)
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0)
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0)
next_emb = (
encode_size(
torch.tensor(
[w, h], device=self.device, dtype=size_logits.dtype
),
self.region,
)
.unsqueeze(0)
.unsqueeze(0)
)
# Add object
out.append(
{
"x_min": x_center.item() - w.item() / 2,
"y_min": y_center.item() - h.item() / 2,
"x_max": x_center.item() + w.item() / 2,
"y_max": y_center.item() + h.item() / 2,
}
)
else:
out.append({"x": x_center.item(), "y": y_center.item()})
# Decode next token (x-coordinate, or eos)
mask[:, :, pos], pos_ids[0] = 1, pos
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
pos += 1
next_token = torch.argmax(logits, dim=-1)
return out
def detect(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[ObjectSamplingSettings] = None,
):
if self.config.tokenizer.templates["detect"] is None:
raise NotImplementedError("Model does not support object detection.")
image = self.encode_image(image, settings)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["detect"]["prefix"]
+ self.tokenizer.encode(" " + object).ids
+ self.config.tokenizer.templates["detect"]["suffix"]
],
device=self.device,
)
lora = (
variant_state_dict(settings["variant"], device=self.device)
if settings is not None and "variant" in settings
else None
)
_, hidden, next_token, pos = self._prefill_prompt(
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
)
hidden = hidden[:, -1:, :]
max_objects = (
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
if settings
else DEFAULT_MAX_OBJECTS
)
objects = self._generate_points(
hidden,
next_token,
pos,
include_size=True,
max_objects=max_objects,
lora=lora,
)
return {"objects": objects}
def point(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[ObjectSamplingSettings] = None,
):
if self.config.tokenizer.templates["point"] is None:
raise NotImplementedError("Model does not support pointing.")
image = self.encode_image(image, settings)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["point"]["prefix"]
+ self.tokenizer.encode(" " + object).ids
+ self.config.tokenizer.templates["point"]["suffix"]
],
device=self.device,
)
lora = (
variant_state_dict(settings["variant"], device=self.device)
if settings is not None and "variant" in settings
else None
)
_, hidden, next_token, pos = self._prefill_prompt(
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
)
hidden = hidden[:, -1:, :]
max_objects = (
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
if settings
else DEFAULT_MAX_OBJECTS
)
objects = self._generate_points(
hidden,
next_token,
pos,
include_size=False,
max_objects=max_objects,
lora=lora,
)
return {"points": objects}
# moondream.py
def _norm_size_logits(self, size_ret: torch.Tensor | tuple, B: int):
"""
Accepts any of:
• tuple/list: (w_logits, h_logits)
• Tensor (..., 2, C) # from batch-safe region.decode_size
• Tensor (B, 2*C) # fallback
• Tensor (2, C) when B == 1
Returns (w_logits, h_logits) each shaped (B, C).
"""
if isinstance(size_ret, (tuple, list)):
w_logits, h_logits = size_ret
else:
t = size_ret
# if we got (..., 2, C), squeeze a single seq dim if present
if t.dim() >= 3 and t.shape[-2] == 2:
# bring to (B, 2, C)
while t.dim() > 3:
t = t.squeeze(1)
if t.dim() != 3 or t.shape[0] not in (1, B):
raise RuntimeError(f"Unexpected batched size logits shape {tuple(size_ret.shape)}")
# expand B if needed
if t.shape[0] == 1 and B > 1:
t = t.expand(B, -1, -1).contiguous()
w_logits, h_logits = t[:, 0, :], t[:, 1, :]
elif t.dim() == 2:
# (2, C) (B==1) or (B, 2*C)
if t.shape[0] == 2 and B == 1:
w_logits, h_logits = t[0].unsqueeze(0), t[1].unsqueeze(0)
else:
C2 = t.shape[1]
if C2 % 2 != 0:
raise RuntimeError(f"Cannot split last dim {C2} into (w,h)")
C = C2 // 2
w_logits, h_logits = t[:, :C], t[:, C:]
else:
raise RuntimeError(f"Unexpected decode_size shape {tuple(t.shape)}")
# final sanity: make sure they’re (B, C)
if w_logits.dim() == 3: w_logits = w_logits.squeeze(1)
if h_logits.dim() == 3: h_logits = h_logits.squeeze(1)
if w_logits.shape[0] != B or h_logits.shape[0] != B:
raise RuntimeError(f"Batched size logits mismatch: got {w_logits.shape[0]} vs B={B}")
return w_logits.contiguous(), h_logits.contiguous()
def _load_encoded_image_batched(self, encoded_image, batch_size: int):
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
T = k.size(2)
if b.kv_cache.k_cache.size(0) != batch_size:
new_k = b.kv_cache.k_cache.new_zeros((batch_size,) + b.kv_cache.k_cache.shape[1:])
new_v = b.kv_cache.v_cache.new_zeros((batch_size,) + b.kv_cache.v_cache.shape[1:])
b.kv_cache.k_cache = new_k
b.kv_cache.v_cache = new_v
b.kv_cache.k_cache[:, :, :T, :] = k.expand(batch_size, -1, -1, -1)
b.kv_cache.v_cache[:, :, :T, :] = v.expand(batch_size, -1, -1, -1)
def _prefill_prompt_batched(
self,
labels,
pos: int,
lora=None,
temperature: float = 0.0,
top_p: float = 0.0,
):
"""
Batch prefill for multiple detection labels.
- Right-pads each row with its *last* embedding so the true last token for
each row is still at index (len-1). We then take that per-row index.
- Advances KV to a common end position (pos + T) for all rows.
"""
tpl = self.config.tokenizer.templates["detect"]
if tpl is None:
raise NotImplementedError("Model does not support object detection.")
# Tokenize rows (variable lengths Li)
rows_ids, lens = [], []
for lab in labels:
ids = tpl["prefix"] + self.tokenizer.encode(" " + lab).ids + tpl["suffix"]
t = torch.tensor(ids, device=self.device, dtype=torch.long)
rows_ids.append(t)
lens.append(int(t.numel()))
B = len(rows_ids)
T = max(lens)
# Embed, then RIGHT-pad by repeating the last real token embedding
embs = [text_encoder(t.unsqueeze(0), self.text)[0] for t in rows_ids] # (Li, C)
padded = []
for e, L in zip(embs, lens):
pad = T - L
if pad > 0:
e = torch.cat([e, e[-1:].repeat(pad, 1)], dim=0) # (T, C)
padded.append(e)
prompt_emb = torch.stack(padded, dim=0) # (B, T, C)
torch._dynamo.mark_dynamic(prompt_emb, 1)
# Shared mask over the image prefix; broadcast to B
base = self.attn_mask[:, :, pos : pos + T, :] # (1,1,T,K)
attn_mask = base.expand(B, -1, -1, -1).contiguous() # (B,1,T,K)
pos_ids = torch.arange(pos, pos + T, device=self.device, dtype=torch.long) # (T,)
# Prefill
hidden_BTC = self._prefill(prompt_emb, attn_mask, pos_ids, lora) # (B,T,C)
logits_BTV = lm_head(hidden_BTC, self.text) # (B,T,V)
# For each row, pick its *true* last token (Li-1), not a padded index
last_idx = torch.tensor([L - 1 for L in lens], device=self.device, dtype=torch.long) # (B,)
last_hidden = hidden_BTC[torch.arange(B, device=self.device), last_idx][:, None, :] # (B,1,C)
last_logits = logits_BTV[torch.arange(B, device=self.device), last_idx] # (B,V)
if temperature == 0.0:
next_token = last_logits.argmax(dim=-1, keepdim=True) # (B,1)
else:
probs = torch.softmax(last_logits / temperature, dim=-1)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1) # (B,1)
# We advanced KV for T steps for everyone; decoding starts after that slot.
pos_end = int(pos + T)
return last_hidden, next_token, pos_end
def _generate_points_batched(
self,
hidden, # (B,1,C) last token hidden per row
next_token, # (B,1)
pos, # int: first free KV slot (after prefill)
include_size: bool = True,
max_objects: int = 50,
lora=None,
use_soft_argmax: bool = True,
):
B = hidden.size(0)
device = self.device
out = [[] for _ in range(B)]
eos_id = self.config.tokenizer.eos_id
max_ctx = self.config.text.max_context
# Per-row decoding mask & pos pointer
attn = torch.zeros(B, 1, 1, max_ctx, device=device, dtype=torch.bool) # (B,1,1,K)
if pos > 0:
attn[:, :, :, :pos] = True
pos_ids = torch.full((B, 1), pos, device=device, dtype=torch.long)
def _argmax01(logits: torch.Tensor) -> torch.Tensor:
# returns normalized [0,1] bin position
if logits.dim() == 3:
logits = logits.squeeze(1) # (B, bins)
if use_soft_argmax:
probs = torch.softmax(logits, dim=-1)
bins = torch.arange(probs.size(-1), device=logits.device, dtype=torch.float32)
return (probs * bins).sum(dim=-1) / float(probs.size(-1) - 1)
idx = logits.argmax(dim=-1).to(torch.float32)
return idx / float(logits.size(-1) - 1)
alive = torch.ones(B, dtype=torch.bool, device=device)
counts = torch.zeros(B, dtype=torch.int32, device=device)
with torch.inference_mode():
while alive.any() and (counts < max_objects).any():
idx = alive.nonzero(as_tuple=False).squeeze(1)
# ---- x ----
x_logits = decode_coordinate(hidden, self.region)
x_center = _argmax01(x_logits)
x_emb = encode_coordinate(x_center.to(dtype=x_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1)
attn[idx, 0, 0, pos_ids[idx, 0]] = True
logits, hidden = self._decode_one_tok(x_emb, attn, pos_ids, lora)
pos_ids[idx, 0] += 1
# ---- y ----
y_logits = decode_coordinate(hidden, self.region)
y_center = _argmax01(y_logits)
y_emb = encode_coordinate(y_center.to(dtype=y_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1)
attn[idx, 0, 0, pos_ids[idx, 0]] = True
logits, hidden = self._decode_one_tok(y_emb, attn, pos_ids, lora)
pos_ids[idx, 0] += 1
if include_size:
# ---- (w,h) ----
size_ret = decode_size(hidden, self.region) # (...,2,bins)
w_logits, h_logits = self._norm_size_logits(size_ret, B)
if use_soft_argmax:
bins = torch.arange(w_logits.size(-1), device=device, dtype=torch.float32)
w_bin = (torch.softmax(w_logits, dim=-1) * bins).sum(dim=-1)
h_bin = (torch.softmax(h_logits, dim=-1) * bins).sum(dim=-1)
else:
w_bin = w_logits.argmax(dim=-1).to(torch.float32)
h_bin = h_logits.argmax(dim=-1).to(torch.float32)
# inverse log scale (md2)
w = torch.pow(2.0, (w_bin / 1023.0) * 10.0 - 10.0)
h = torch.pow(2.0, (h_bin / 1023.0) * 10.0 - 10.0)
size_emb = encode_size(torch.stack([w, h], dim=1).to(dtype=w_logits.dtype), self.region).unsqueeze(1)
for i in idx.tolist():
xl = (x_center[i] - w[i] / 2).item()
xr = (x_center[i] + w[i] / 2).item()
yt = (y_center[i] - h[i] / 2).item()
yb = (y_center[i] + h[i] / 2).item()
out[i].append({
"x_min": max(0.0, min(1.0, xl)),
"y_min": max(0.0, min(1.0, yt)),
"x_max": max(0.0, min(1.0, xr)),
"y_max": max(0.0, min(1.0, yb)),
})
attn[idx, 0, 0, pos_ids[idx, 0]] = True
logits, hidden = self._decode_one_tok(size_emb, attn, pos_ids, lora)
pos_ids[idx, 0] += 1
next_tok = logits.argmax(dim=-1)
if next_tok.dim() == 3: next_tok = next_tok.squeeze(-1).squeeze(-1)
if next_tok.dim() == 2: next_tok = next_tok.squeeze(1)
else:
for i in idx.tolist():
out[i].append({"x": x_center[i].item(), "y": y_center[i].item()})
attn[idx, 0, 0, pos_ids[idx, 0]] = True
logits, hidden = self._decode_one_tok(y_emb, attn, pos_ids, lora)
pos_ids[idx, 0] += 1
next_tok = logits.argmax(dim=-1)
if next_tok.dim() == 3: next_tok = next_tok.squeeze(-1).squeeze(-1)
if next_tok.dim() == 2: next_tok = next_tok.squeeze(1)
counts[alive] += 1
finished_now = (next_tok == eos_id) | (counts >= max_objects)
alive &= ~finished_now
return out
def detect_multi(self, image, objects, settings=None):
if self.config.tokenizer.templates["detect"] is None:
raise NotImplementedError("Model does not support object detection.")
settings = settings or {}
enc = self.encode_image(image, settings)
B = len(objects)
self._load_encoded_image_batched(enc, B)
lora = variant_state_dict(settings["variant"], device=self.device) if "variant" in settings else None
last_hidden, next_token, pos_vec = self._prefill_prompt_batched(
objects, enc.pos, lora=lora, temperature=0.0, top_p=0.0
)
det_lists = self._generate_points_batched(
last_hidden, next_token, pos_vec,
include_size=True,
max_objects=settings.get("max_objects", 50),
lora=lora,
)
res = {}
for lab, lst in zip(objects, det_lists):
for d in lst:
d["label"] = lab
res[lab] = lst
self._reset_kv_caches(1) # restore B=1
return {"objects": res}
def _detect_gaze(
self,
image: EncodedImage,
source: Tuple[float, float],
force_detect: bool = False,
):
with torch.inference_mode():
before_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
),
self.text,
)
after_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
),
self.text,
)
x_emb = encode_coordinate(
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.bfloat16),
self.region,
)
y_emb = encode_coordinate(
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.bfloat16),
self.region,
)
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
self.load_encoded_image(image)
mask = self.attn_mask[:, :, image.pos : image.pos + prompt_emb.size(1), :]
pos_ids = torch.arange(
image.pos, image.pos + prompt_emb.size(1), dtype=torch.long
)
hidden = self._prefill(prompt_emb, mask, pos_ids, lora=None)
logits = lm_head(hidden, self.text)
next_token = torch.argmax(logits, dim=-1)
pos = image.pos + prompt_emb.size(1)
hidden = hidden[:, -1:, :]
if force_detect:
next_token = torch.tensor([[0]], device=self.device)
if next_token.item() == self.config.tokenizer.eos_id:
return None
gaze = self._generate_points(
hidden, next_token, pos, include_size=False, max_objects=1
)
return gaze[0]
def detect_gaze(
self,
image: Union[Image.Image, EncodedImage],
eye: Optional[Tuple[float, float]] = None,
face: Optional[Dict[str, float]] = None,
unstable_settings: Dict[str, Any] = {},
):
if "force_detect" in unstable_settings:
force_detect = unstable_settings["force_detect"]
else:
force_detect = False
if "prioritize_accuracy" in unstable_settings:
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
else:
prioritize_accuracy = False
if not prioritize_accuracy:
if eye is None:
raise ValueError("eye must be provided when prioritize_accuracy=False")
image = self.encode_image(image)
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
else:
if (
not isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
raise ValueError(
"image must be a PIL Image when prioritize_accuracy=True, "
"or flip_enc_img must be provided"
)
if face is None:
raise ValueError("face must be provided when prioritize_accuracy=True")
encoded_image = self.encode_image(image)
if (
isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
flipped_pil = image.copy()
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
encoded_flipped_image = self.encode_image(flipped_pil)
else:
encoded_flipped_image = unstable_settings["flip_enc_img"]
N = 10
detections = [
self._detect_gaze(
encoded_image,
(
random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections = [
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
]
flipped_detections = [
self._detect_gaze(
encoded_flipped_image,
(
1 - random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections.extend(
[
(1 - gaze["x"], gaze["y"])
for gaze in flipped_detections
if gaze is not None
]
)
if len(detections) < N:
return {"gaze": None}
detections = remove_outlier_points(detections)
mean_gaze = (
sum(gaze[0] for gaze in detections) / len(detections),
sum(gaze[1] for gaze in detections) / len(detections),
)
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}
def _is_cjk_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF)
or (cp >= 0x2F800 and cp <= 0x2FA1F)
):
return True
return False
|