|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: google/gemma-2-12b-it |
|
|
tags: |
|
|
- verilog |
|
|
- code-generation |
|
|
- instruction-tuned |
|
|
- vericoder |
|
|
--- |
|
|
|
|
|
# Gemma-3-12B-IT (VeriCoder Dataset Ablation) |
|
|
|
|
|
This is a fine-tuned version of Gemma-3-12B-IT model trained on VeriCoder dataset. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
- **Base Model**: Gemma-3-12B-IT |
|
|
- **Training Dataset**: VeriCoder dataset (126k samples) |
|
|
- **Model Architecture**: Gemma3ForCausalLM |
|
|
- **Parameters**: ~11.7B |
|
|
- **Context Length**: 131,072 tokens |
|
|
- **Sliding Window**: 1024 |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "LLM4Code/VeriCoder_Gemma12b" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
# Example usage |
|
|
inputs = tokenizer("Your prompt here", return_tensors="pt") |
|
|
outputs = model.generate(**inputs, max_length=512) |
|
|
print(tokenizer.decode(outputs[0])) |
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
|
|
- **Dataset**: VeriCoder dataset ablation (126k samples) |
|
|
- **Commit**: ae17392c |
|
|
|
|
|
## Files |
|
|
|
|
|
The model includes: |
|
|
- Model weights in SafeTensors format (5 shards) |
|
|
- Tokenizer files (tokenizer.json, tokenizer.model, tokenizer_config.json) |
|
|
- Model configuration (config.json) |
|
|
- Generation configuration (generation_config.json) |
|
|
- Chat template (chat_template.jinja) |
|
|
|
|
|
|