|
|
--- |
|
|
task_categories: |
|
|
- translation |
|
|
language: |
|
|
- en |
|
|
--- |
|
|
# Information |
|
|
* Language: English |
|
|
* The dataset contains both RGB (frontal and side view) and keypoints (only frontal view) data. However, the translation text is only available for frontal-view RGB data. Therefore, this repo only support this type of data. |
|
|
* Gloss is not currently available. |
|
|
* Storage |
|
|
* RGB |
|
|
* Train: 30.7 GB |
|
|
* Validation: 1.65 GB |
|
|
* Test: 2.24 GB |
|
|
|
|
|
# Structure |
|
|
Each sample will have a structure as follows: |
|
|
``` |
|
|
{ |
|
|
'VIDEO_ID': Value(dtype='string', id=None), |
|
|
'VIDEO_NAME': Value(dtype='string', id=None), |
|
|
'SENTENCE_ID': Value(dtype='string', id=None), |
|
|
'SENTENCE_NAME': Value(dtype='string', id=None), |
|
|
'START_REALIGNED': Value(dtype='float64', id=None), |
|
|
'END_REALIGNED': Value(dtype='float64', id=None), |
|
|
'SENTENCE': Value(dtype='string', id=None), |
|
|
'VIDEO': Value(dtype='large_binary', id=None) |
|
|
} |
|
|
|
|
|
{ |
|
|
'VIDEO_ID': '--7E2sU6zP4', |
|
|
'VIDEO_NAME': '--7E2sU6zP4-5-rgb_front', |
|
|
'SENTENCE_ID': '--7E2sU6zP4_10', |
|
|
'SENTENCE_NAME': '--7E2sU6zP4_10-5-rgb_front', |
|
|
'START_REALIGNED': 129.06, |
|
|
'END_REALIGNED': 142.48, |
|
|
'SENTENCE': "And I call them decorative elements because basically all they're meant to do is to enrich and color the page.", |
|
|
'VIDEO': <video-bytes> |
|
|
} |
|
|
``` |
|
|
|
|
|
# How To Use |
|
|
Because the returned video will be in bytes, here is a way to extract frames and fps: |
|
|
```python |
|
|
# pip install av |
|
|
|
|
|
import av |
|
|
import io |
|
|
import numpy as np |
|
|
import os |
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
def extract_frames(video_bytes): |
|
|
# Create a memory-mapped file from the bytes |
|
|
container = av.open(io.BytesIO(video_bytes)) |
|
|
|
|
|
# Find the video stream |
|
|
visual_stream = next(iter(container.streams.video), None) |
|
|
|
|
|
# Extract video properties |
|
|
video_fps = visual_stream.average_rate |
|
|
|
|
|
# Initialize arrays to store frames |
|
|
frames_array = [] |
|
|
|
|
|
# Extract frames |
|
|
for packet in container.demux([visual_stream]): |
|
|
for frame in packet.decode(): |
|
|
img_array = np.array(frame.to_image()) |
|
|
frames_array.append(img_array) |
|
|
|
|
|
return frames_array, video_fps |
|
|
|
|
|
|
|
|
dataset = load_dataset("VieSignLang/how2sign-clips", split="test", streaming=True) |
|
|
sample = next(iter(dataset))["video"] |
|
|
frames, video_fps = extract_frames(sample) |
|
|
print(f"Number of frames: {frames.shape[0]}") |
|
|
print(f"Video FPS: {video_fps}") |
|
|
``` |