task_path
stringlengths 3
199
⌀ | dataset
stringlengths 1
128
⌀ | model_name
stringlengths 1
223
⌀ | paper_url
stringlengths 21
601
⌀ | metric_name
stringlengths 1
50
⌀ | metric_value
stringlengths 1
9.22k
⌀ |
|---|---|---|---|---|---|
Deblurring
|
HIDE (trained on GOPRO)
|
DeblurDiNAT-L
|
https://arxiv.org/abs/2403.13163v5
|
Params (M)
|
16.1
|
Deblurring
|
HIDE (trained on GOPRO)
|
Restormer
|
https://arxiv.org/abs/2111.09881v2
|
PSNR (sRGB)
|
31.22
|
Deblurring
|
HIDE (trained on GOPRO)
|
Restormer
|
https://arxiv.org/abs/2111.09881v2
|
SSIM (sRGB)
|
0.942
|
Deblurring
|
HIDE (trained on GOPRO)
|
Restormer
|
https://arxiv.org/abs/2111.09881v2
|
Params (M)
|
26.13
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet-TLC
|
https://arxiv.org/abs/2112.04491v4
|
PSNR (sRGB)
|
31.19
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet-TLC
|
https://arxiv.org/abs/2112.04491v4
|
SSIM (sRGB)
|
0.942
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet-TLC
|
https://arxiv.org/abs/2112.04491v4
|
Params (M)
|
20.1
|
Deblurring
|
HIDE (trained on GOPRO)
|
Stripformer
|
https://arxiv.org/abs/2204.04627v2
|
PSNR (sRGB)
|
31.03
|
Deblurring
|
HIDE (trained on GOPRO)
|
Stripformer
|
https://arxiv.org/abs/2204.04627v2
|
SSIM (sRGB)
|
0.94
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet
|
https://arxiv.org/abs/2102.02808v2
|
PSNR (sRGB)
|
30.96
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet
|
https://arxiv.org/abs/2102.02808v2
|
SSIM (sRGB)
|
0.939
|
Deblurring
|
HIDE (trained on GOPRO)
|
MPRNet
|
https://arxiv.org/abs/2102.02808v2
|
Params (M)
|
20.1
|
Deblurring
|
HIDE (trained on GOPRO)
|
Uformer-B
|
https://arxiv.org/abs/2106.03106v2
|
PSNR (sRGB)
|
30.83
|
Deblurring
|
HIDE (trained on GOPRO)
|
Uformer-B
|
https://arxiv.org/abs/2106.03106v2
|
SSIM (sRGB)
|
0.952
|
Deblurring
|
HIDE (trained on GOPRO)
|
Uformer-B
|
https://arxiv.org/abs/2106.03106v2
|
Params (M)
|
50.88
|
Deblurring
|
HIDE (trained on GOPRO)
|
BANet
|
https://arxiv.org/abs/2101.07518v4
|
PSNR (sRGB)
|
30.16
|
Deblurring
|
HIDE (trained on GOPRO)
|
BANet
|
https://arxiv.org/abs/2101.07518v4
|
SSIM (sRGB)
|
0.93
|
Deblurring
|
HIDE (trained on GOPRO)
|
Suin et al
| null |
PSNR (sRGB)
|
29.98
|
Deblurring
|
HIDE (trained on GOPRO)
|
Suin et al
| null |
SSIM (sRGB)
|
0.930
|
Deblurring
|
HIDE (trained on GOPRO)
|
MT-RNN
|
https://arxiv.org/abs/1911.07410v1
|
PSNR (sRGB)
|
29.15
|
Deblurring
|
HIDE (trained on GOPRO)
|
MT-RNN
|
https://arxiv.org/abs/1911.07410v1
|
SSIM (sRGB)
|
0.918
|
Deblurring
|
HIDE (trained on GOPRO)
|
MT-RNN
|
https://arxiv.org/abs/1911.07410v1
|
Params (M)
|
2.6
|
Deblurring
|
HIDE (trained on GOPRO)
|
Gao et al
| null |
PSNR (sRGB)
|
29.11
|
Deblurring
|
HIDE (trained on GOPRO)
|
Gao et al
| null |
SSIM (sRGB)
|
0.913
|
Deblurring
|
HIDE (trained on GOPRO)
|
DMPHN
|
http://arxiv.org/abs/1904.03468v1
|
PSNR (sRGB)
|
29.09
|
Deblurring
|
HIDE (trained on GOPRO)
|
DMPHN
|
http://arxiv.org/abs/1904.03468v1
|
SSIM (sRGB)
|
0.924
|
Deblurring
|
HIDE (trained on GOPRO)
|
DMPHN
|
http://arxiv.org/abs/1904.03468v1
|
Params (M)
|
7.23
|
Deblurring
|
HIDE (trained on GOPRO)
|
DBGAN
|
https://arxiv.org/abs/2004.01860v2
|
PSNR (sRGB)
|
28.94
|
Deblurring
|
HIDE (trained on GOPRO)
|
DBGAN
|
https://arxiv.org/abs/2004.01860v2
|
SSIM (sRGB)
|
0.915
|
Deblurring
|
HIDE (trained on GOPRO)
|
SRN
|
http://arxiv.org/abs/1802.01770v1
|
PSNR (sRGB)
|
28.36
|
Deblurring
|
HIDE (trained on GOPRO)
|
SRN
|
http://arxiv.org/abs/1802.01770v1
|
SSIM (sRGB)
|
0.915
|
Deblurring
|
HIDE (trained on GOPRO)
|
SRN
|
http://arxiv.org/abs/1802.01770v1
|
Params (M)
|
8.06
|
Deblurring
|
HIDE (trained on GOPRO)
|
Nah et al
|
http://arxiv.org/abs/1612.02177v2
|
PSNR (sRGB)
|
25.73
|
Deblurring
|
RSBlur
|
MLWNet
|
https://arxiv.org/abs/2401.00027v2
|
Average PSNR
|
34.94
|
Deblurring
|
RSBlur
|
MLWNet
|
https://arxiv.org/abs/2401.00027v2
|
SSIM
|
0.880
|
Deblurring
|
RSBlur
|
SegDeblur
|
https://arxiv.org/abs/2404.12168v1
|
Average PSNR
|
34.63
|
Deblurring
|
RSBlur
|
SFNet
|
https://openreview.net/forum?id=tyZ1ChGZIKO
|
Average PSNR
|
34.35
|
Deblurring
|
RSBlur
|
FSNet
|
https://ieeexplore.ieee.org/document/10310164
|
Average PSNR
|
34.31
|
Deblurring
|
RSBlur
|
IRNext
|
https://openreview.net/forum?id=MZkbgahv4a
|
Average PSNR
|
34.08
|
Deblurring
|
RSBlur
|
ConvIR
|
https://ieeexplore.ieee.org/abstract/document/10571568
|
Average PSNR
|
34.06
|
Deblurring
|
RSBlur
|
Uformer-B
|
https://arxiv.org/abs/2106.03106v2
|
Average PSNR
|
33.98
|
Deblurring
|
RSBlur
|
Restormer
|
https://arxiv.org/abs/2111.09881v2
|
Average PSNR
|
33.69
|
Deblurring
|
RSBlur
|
MPRNet
|
https://arxiv.org/abs/2102.02808v2
|
Average PSNR
|
33.61
|
Deblurring
|
RSBlur
|
MIMO-UNet+
|
https://arxiv.org/abs/2108.05054v2
|
Average PSNR
|
33.37
|
Deblurring
|
RSBlur
|
MIMO-UNet
|
https://arxiv.org/abs/2108.05054v2
|
Average PSNR
|
32.73
|
Deblurring
|
RSBlur
|
SRN-Deblur
|
http://arxiv.org/abs/1802.01770v1
|
Average PSNR
|
32.53
|
Deblurring
|
RSBlur (trained on synthetic)
|
MIMO-UNet + Realistic blur
|
https://arxiv.org/abs/2202.08771v3
|
Average PSNR
|
32.08
|
Deblurring
|
RSBlur (trained on synthetic)
|
SRN-Deblur + Realistic blur
|
https://arxiv.org/abs/2202.08771v3
|
Average PSNR
|
32.06
|
Structured Prediction
|
MNIST
|
CVAE
|
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
|
Negative CLL
|
71.8
|
Trajectory Prediction
|
ETH
|
Social-Implicit
|
https://arxiv.org/abs/2203.03057v2
|
Avg AMD/AMV 8/12
|
0.90
|
Trajectory Prediction
|
ETH
|
Trajectron++
|
https://arxiv.org/abs/2001.03093v5
|
Avg AMD/AMV 8/12
|
1.01
|
Trajectory Prediction
|
ETH
|
Social-STGCNN
|
https://arxiv.org/abs/2002.11927v3
|
Avg AMD/AMV 8/12
|
1.26
|
Trajectory Prediction
|
ETH
|
Social-GAN
|
http://arxiv.org/abs/1803.10892v1
|
Avg AMD/AMV 8/12
|
1.42
|
Trajectory Prediction
|
ETH
|
ExpertTraj
|
http://openaccess.thecvf.com//content/ICCV2021/html/Zhao_Where_Are_You_Heading_Dynamic_Trajectory_Prediction_With_Expert_Goal_ICCV_2021_paper.html
|
Avg AMD/AMV 8/12
|
19.20
|
Trajectory Prediction
|
Hotel BIWI Walking Pedestrians dataset
|
Social Ways
|
http://arxiv.org/abs/1904.09507v2
|
ADE-8/12
|
0.39
|
Trajectory Prediction
|
JAAD
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
MSE(0.5)
|
82
|
Trajectory Prediction
|
JAAD
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
MSE(1.0)
|
328
|
Trajectory Prediction
|
JAAD
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
MSE(1.5)
|
1049
|
Trajectory Prediction
|
JAAD
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
C_MSE(1.5)
|
996
|
Trajectory Prediction
|
JAAD
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
CF_MSE(1.5)
|
4076
|
Trajectory Prediction
|
JAAD
|
BiTrap-D
|
https://arxiv.org/abs/2007.14558v2
|
MSE(0.5)
|
93
|
Trajectory Prediction
|
JAAD
|
BiTrap-D
|
https://arxiv.org/abs/2007.14558v2
|
MSE(1.0)
|
378
|
Trajectory Prediction
|
JAAD
|
BiTrap-D
|
https://arxiv.org/abs/2007.14558v2
|
MSE(1.5)
|
1206
|
Trajectory Prediction
|
JAAD
|
BiTrap-D
|
https://arxiv.org/abs/2007.14558v2
|
C_MSE(1.5)
|
1105
|
Trajectory Prediction
|
JAAD
|
BiTrap-D
|
https://arxiv.org/abs/2007.14558v2
|
CF_MSE(1.5)
|
4565
|
Trajectory Prediction
|
JAAD
|
PIE_traj
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.html
|
MSE(0.5)
|
110
|
Trajectory Prediction
|
JAAD
|
PIE_traj
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.html
|
MSE(1.0)
|
399
|
Trajectory Prediction
|
JAAD
|
PIE_traj
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.html
|
MSE(1.5)
|
1280
|
Trajectory Prediction
|
JAAD
|
PIE_traj
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.html
|
C_MSE(1.5)
|
1183
|
Trajectory Prediction
|
JAAD
|
PIE_traj
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.html
|
CF_MSE(1.5)
|
4780
|
Trajectory Prediction
|
JAAD
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
MSE(0.5)
|
147
|
Trajectory Prediction
|
JAAD
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
MSE(1.0)
|
484
|
Trajectory Prediction
|
JAAD
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
MSE(1.5)
|
1374
|
Trajectory Prediction
|
JAAD
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
C_MSE(1.5)
|
1290
|
Trajectory Prediction
|
JAAD
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
CF_MSE(1.5)
|
4924
|
Trajectory Prediction
|
JAAD
|
Bayesian-LSTM
|
http://arxiv.org/abs/1711.09026v2
|
MSE(0.5)
|
159
|
Trajectory Prediction
|
JAAD
|
Bayesian-LSTM
|
http://arxiv.org/abs/1711.09026v2
|
MSE(1.0)
|
539
|
Trajectory Prediction
|
JAAD
|
Bayesian-LSTM
|
http://arxiv.org/abs/1711.09026v2
|
MSE(1.5)
|
1535
|
Trajectory Prediction
|
JAAD
|
Bayesian-LSTM
|
http://arxiv.org/abs/1711.09026v2
|
C_MSE(1.5)
|
1447
|
Trajectory Prediction
|
JAAD
|
Bayesian-LSTM
|
http://arxiv.org/abs/1711.09026v2
|
CF_MSE(1.5)
|
5615
|
Trajectory Prediction
|
Argoverse2
|
HeteroGCN
|
https://arxiv.org/abs/2303.04364v1
|
minADE (K=6)
|
0.69
|
Trajectory Prediction
|
Argoverse2
|
HeteroGCN
|
https://arxiv.org/abs/2303.04364v1
|
minFDE (K=6)
|
1.34
|
Trajectory Prediction
|
Argoverse2
|
HeteroGCN
|
https://arxiv.org/abs/2303.04364v1
|
MR (K=6)
|
0.18
|
Trajectory Prediction
|
Argoverse2
|
HeteroGCN
|
https://arxiv.org/abs/2303.04364v1
|
brier-minFDE (K=6)
|
1.90
|
Trajectory Prediction
|
STATS SportVu NBA [ATK]
|
DAG-Net
|
https://arxiv.org/abs/2005.12661v2
|
ADE
|
9.18
|
Trajectory Prediction
|
STATS SportVu NBA [ATK]
|
DAG-Net
|
https://arxiv.org/abs/2005.12661v2
|
FDE
|
13.54
|
Trajectory Prediction
|
Apolloscape Trajectory
|
Trafficpredict
|
http://arxiv.org/abs/1811.02146v5
|
ADE
|
8.5881
|
Trajectory Prediction
|
HEV-I
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
ADE(0.5)
|
6.28
|
Trajectory Prediction
|
HEV-I
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
ADE(1.0)
|
11.35
|
Trajectory Prediction
|
HEV-I
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
ADE(1.5)
|
18.27
|
Trajectory Prediction
|
HEV-I
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
FDE(1.5)
|
39.86
|
Trajectory Prediction
|
HEV-I
|
SGNet
|
https://arxiv.org/abs/2103.14107v3
|
FIOU(1.5)
|
0.63
|
Trajectory Prediction
|
HEV-I
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
ADE(0.5)
|
6.70
|
Trajectory Prediction
|
HEV-I
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
ADE(1.0)
|
12.60
|
Trajectory Prediction
|
HEV-I
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
ADE(1.5)
|
20.40
|
Trajectory Prediction
|
HEV-I
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
FDE(1.5)
|
44.10
|
Trajectory Prediction
|
HEV-I
|
FOL-X
|
https://arxiv.org/abs/1903.00618v4
|
FIOU(1.5)
|
0.61
|
Trajectory Prediction
|
ApolloScape
|
SpectralCows
|
https://arxiv.org/abs/1912.01118v1
|
ADE
|
0.005
|
Trajectory Prediction
|
ApolloScape
|
rule-based
|
https://arxiv.org/abs/2010.12007v2
|
FDE
|
5.992
|
Trajectory Prediction
|
NGSIM
|
Pishgu
|
https://arxiv.org/abs/2210.08057v3
|
ADE
|
0.88
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.