code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Any = DPTConfig() if "large" in checkpoint_url: A_ : Dict = 1_0_2_4 A_ : Any = 4_0_9_6 A_ : Any = 2_4 A_ : Optional[int] = 1_6 A_ : Dict = [5, 1_1, 1_7, 2_3] A_ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A_ : Optional[int] = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A_ : List[str] = True A_ : Any = 1_5_0 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """ade20k-id2label.json""" A_ : List[str] = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase ,_lowerCAmelCase ,repo_type="""dataset""" ) ) ,"""r""" ) ) A_ : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A_ : Dict = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Any = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A_ : Optional[int] = name.replace("""pretrained.model""" ,"""dpt.encoder""" ) if "pretrained.model" in name: A_ : str = name.replace("""pretrained.model""" ,"""dpt.embeddings""" ) if "patch_embed" in name: A_ : Any = name.replace("""patch_embed""" ,"""patch_embeddings""" ) if "pos_embed" in name: A_ : int = name.replace("""pos_embed""" ,"""position_embeddings""" ) if "attn.proj" in name: A_ : str = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "proj" in name and "project" not in name: A_ : Union[str, Any] = name.replace("""proj""" ,"""projection""" ) if "blocks" in name: A_ : List[str] = name.replace("""blocks""" ,"""layer""" ) if "mlp.fc1" in name: A_ : str = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: A_ : Union[str, Any] = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "norm1" in name: A_ : Dict = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: A_ : Optional[int] = name.replace("""norm2""" ,"""layernorm_after""" ) if "scratch.output_conv" in name: A_ : List[Any] = name.replace("""scratch.output_conv""" ,"""head""" ) if "scratch" in name: A_ : List[Any] = name.replace("""scratch""" ,"""neck""" ) if "layer1_rn" in name: A_ : Tuple = name.replace("""layer1_rn""" ,"""convs.0""" ) if "layer2_rn" in name: A_ : Optional[Any] = name.replace("""layer2_rn""" ,"""convs.1""" ) if "layer3_rn" in name: A_ : Optional[Any] = name.replace("""layer3_rn""" ,"""convs.2""" ) if "layer4_rn" in name: A_ : Dict = name.replace("""layer4_rn""" ,"""convs.3""" ) if "refinenet" in name: A_ : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A_ : int = name.replace(f"""refinenet{layer_idx}""" ,f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: A_ : Tuple = name.replace("""out_conv""" ,"""projection""" ) if "resConfUnit1" in name: A_ : Dict = name.replace("""resConfUnit1""" ,"""residual_layer1""" ) if "resConfUnit2" in name: A_ : Tuple = name.replace("""resConfUnit2""" ,"""residual_layer2""" ) if "conv1" in name: A_ : List[str] = name.replace("""conv1""" ,"""convolution1""" ) if "conv2" in name: A_ : Tuple = name.replace("""conv2""" ,"""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A_ : Optional[int] = name.replace("""pretrained.act_postprocess1.0.project.0""" ,"""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A_ : int = name.replace("""pretrained.act_postprocess2.0.project.0""" ,"""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A_ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" ,"""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A_ : Dict = name.replace("""pretrained.act_postprocess4.0.project.0""" ,"""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A_ : Optional[Any] = name.replace("""pretrained.act_postprocess1.3""" ,"""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A_ : Any = name.replace("""pretrained.act_postprocess1.4""" ,"""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A_ : Dict = name.replace("""pretrained.act_postprocess2.3""" ,"""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A_ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.4""" ,"""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A_ : List[str] = name.replace("""pretrained.act_postprocess3.3""" ,"""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A_ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" ,"""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A_ : int = name.replace("""pretrained.act_postprocess4.4""" ,"""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A_ : Any = name.replace("""pretrained""" ,"""dpt""" ) if "bn" in name: A_ : Any = name.replace("""bn""" ,"""batch_norm""" ) if "head" in name: A_ : List[Any] = name.replace("""head""" ,"""head.head""" ) if "encoder.norm" in name: A_ : Optional[int] = name.replace("""encoder.norm""" ,"""layernorm""" ) if "auxlayer" in name: A_ : Optional[int] = name.replace("""auxlayer""" ,"""auxiliary_head.head""" ) return name def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) A_ : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : Tuple = in_proj_weight[: config.hidden_size, :] A_ : Tuple = in_proj_bias[: config.hidden_size] A_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : List[str] = in_proj_weight[ -config.hidden_size :, : ] A_ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ): '''simple docstring''' A_ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : str = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ , A_ : Union[str, Any] = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL A_ : List[str] = torch.hub.load_state_dict_from_url(_lowerCAmelCase ,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): A_ : Tuple = state_dict.pop(_lowerCAmelCase ) A_ : List[str] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model A_ : Dict = DPTForSemanticSegmentation(_lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image A_ : Union[str, Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A_ : Optional[int] = DPTImageProcessor(size=_lowerCAmelCase ) A_ : int = prepare_img() A_ : Dict = image_processor(_lowerCAmelCase ,return_tensors="""pt""" ) # forward pass A_ : List[Any] = model(**_lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth # Assert logits A_ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A_ : Union[str, Any] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,_lowerCAmelCase ,atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,_lowerCAmelCase ) ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=_lowerCAmelCase ,) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=_lowerCAmelCase ,) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _lowerCAmelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
569
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = StableDiffusionSAGPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = False def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : Optional[int] = CLIPTextModel(a__ ) A_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCamelCase ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): A_ : Union[str, Any] = torch.manual_seed(a__ ) else: A_ : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : List[Any] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): A_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) A_ : Tuple = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = """.""" A_ : Optional[Any] = torch.manual_seed(0 ) A_ : str = sag_pipe( [prompt] , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) A_ : Tuple = output.images A_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : List[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowerCamelCase ( self ): A_ : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : List[str] = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : List[str] = """.""" A_ : List[Any] = torch.manual_seed(0 ) A_ : List[str] = sag_pipe( [prompt] , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) A_ : Union[str, Any] = output.images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : str = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowerCamelCase ( self ): A_ : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : Tuple = sag_pipe.to(a__ ) sag_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = """.""" A_ : Any = torch.manual_seed(0 ) A_ : Optional[int] = sag_pipe( [prompt] , width=768 , height=512 , generator=a__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) A_ : Optional[int] = output.images assert image.shape == (1, 512, 768, 3)
569
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowerCAmelCase ( lowerCAmelCase): _a = '''fnet''' def __init__( self: str , _lowerCAmelCase: Any=3_20_00 , _lowerCAmelCase: Tuple=7_68 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Dict=30_72 , _lowerCAmelCase: Union[str, Any]="gelu_new" , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: str=5_12 , _lowerCAmelCase: Optional[Any]=4 , _lowerCAmelCase: Dict=0.02 , _lowerCAmelCase: Tuple=1e-1_2 , _lowerCAmelCase: Union[str, Any]=False , _lowerCAmelCase: Optional[int]=5_12 , _lowerCAmelCase: List[Any]=3 , _lowerCAmelCase: Optional[int]=1 , _lowerCAmelCase: List[str]=2 , **_lowerCAmelCase: Any , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :List[str] = vocab_size lowercase :str = max_position_embeddings lowercase :int = hidden_size lowercase :Tuple = num_hidden_layers lowercase :str = intermediate_size lowercase :Optional[int] = hidden_act lowercase :Optional[int] = hidden_dropout_prob lowercase :Optional[Any] = initializer_range lowercase :List[str] = type_vocab_size lowercase :List[Any] = layer_norm_eps lowercase :Union[str, Any] = use_tpu_fourier_optimizations lowercase :Union[str, Any] = tpu_short_seq_length
453
def UpperCAmelCase__ ( lowerCamelCase ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowercase :str = 1 lowercase :Tuple = 1 while repunit: lowercase :Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase__ ( lowerCamelCase = 1000000 ): lowercase :List[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
453
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class a__ ( _lowercase ): def __init__(self : int, *__UpperCAmelCase : List[str], **__UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" super().__init__(*__UpperCAmelCase, **__UpperCAmelCase ) self.check_model_type(__UpperCAmelCase ) def lowercase__ (self : Any, __UpperCAmelCase : Optional[int]=None, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : str=None, **__UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = {}, {} if padding is not None: SCREAMING_SNAKE_CASE : Optional[int] = padding if truncation is not None: SCREAMING_SNAKE_CASE : List[Any] = truncation if top_k is not None: SCREAMING_SNAKE_CASE : str = top_k return preprocess_params, {}, postprocess_params def __call__(self : str, __UpperCAmelCase : Union["Image.Image", str], __UpperCAmelCase : str = None, **__UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" if isinstance(__UpperCAmelCase, (Image.Image, str) ) and isinstance(__UpperCAmelCase, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : Tuple = {'''image''': image, '''question''': question} else: SCREAMING_SNAKE_CASE : str = image SCREAMING_SNAKE_CASE : List[str] = super().__call__(__UpperCAmelCase, **__UpperCAmelCase ) return results def lowercase__ (self : int, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : str=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = load_image(inputs['''image'''] ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer( inputs['''question'''], return_tensors=self.framework, padding=__UpperCAmelCase, truncation=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=__UpperCAmelCase, return_tensors=self.framework ) model_inputs.update(__UpperCAmelCase ) return model_inputs def lowercase__ (self : str, __UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model(**__UpperCAmelCase ) return model_outputs def lowercase__ (self : List[Any], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : int=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE : List[str] = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs.logits.sigmoid()[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = probs.topk(__UpperCAmelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE : Tuple = scores.tolist() SCREAMING_SNAKE_CASE : str = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase, __UpperCAmelCase )]
507
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__ ( nn.Module ): def __init__(self : Union[str, Any], __UpperCAmelCase : int = 16, __UpperCAmelCase : int = 88, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : int = 1, __UpperCAmelCase : float = 0.0, __UpperCAmelCase : int = 32, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : bool = False, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : str = "geglu", __UpperCAmelCase : Optional[int] = None, ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Any = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCAmelCase, attention_head_dim=__UpperCAmelCase, in_channels=__UpperCAmelCase, num_layers=__UpperCAmelCase, dropout=__UpperCAmelCase, norm_num_groups=__UpperCAmelCase, cross_attention_dim=__UpperCAmelCase, attention_bias=__UpperCAmelCase, sample_size=__UpperCAmelCase, num_vector_embeds=__UpperCAmelCase, activation_fn=__UpperCAmelCase, num_embeds_ada_norm=__UpperCAmelCase, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE : Dict = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE : Optional[Any] = [1, 0] def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : List[str]=None, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : List[str]=None, __UpperCAmelCase : bool = True, ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = hidden_states SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE : str = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE : Dict = self.transformers[transformer_index]( __UpperCAmelCase, encoder_hidden_states=__UpperCAmelCase, timestep=__UpperCAmelCase, cross_attention_kwargs=__UpperCAmelCase, return_dict=__UpperCAmelCase, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE : Optional[int] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCAmelCase )
507
1
from __future__ import annotations from typing import Any class a__ : def __init__( self , UpperCAmelCase = 6 ) -> None: __a = None __a = None self.create_linked_list(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: __a = Node() __a = current_node __a = current_node __a = current_node for _ in range(1 , UpperCAmelCase ): __a = Node() __a = current_node __a = previous_node __a = current_node __a = self.front __a = previous_node def __SCREAMING_SNAKE_CASE ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __SCREAMING_SNAKE_CASE ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): __a = self.rear.next if self.rear: __a = data def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __a = self.front.data __a = None return data __a = self.front __a = old_front.next __a = old_front.data __a = None return data def __SCREAMING_SNAKE_CASE ( self ) -> None: if self.is_empty(): raise Exception('Empty Queue' ) def __SCREAMING_SNAKE_CASE ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class a__ : def __init__( self ) -> None: __a = None __a = None __a = None if __name__ == "__main__": import doctest doctest.testmod()
246
from __future__ import annotations lowerCamelCase_ : List[Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> None: __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def __SCREAMING_SNAKE_CASE ( self ) -> None: __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase ) __a = vertex queue.append(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(UpperCAmelCase ) if target_vertex_parent is None: __a = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCAmelCase ) return self.shortest_path(UpperCAmelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": lowerCamelCase_ : Optional[int] = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
246
1
"""simple docstring""" def lowercase_ ( _lowercase : int = 10**12 ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Dict = 1 UpperCAmelCase : Union[str, Any] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
595
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
0
import os import time import numpy as np import onnxruntime as ort a = '''1''' a = '''0''' a = '''1''' a = ort.SessionOptions() a = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') a = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] a = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) a = ort.RunOptions() a = 1_2_8 a = 1 a = np.ones((batch, sequence), dtype=np.intaa) a = np.ones((batch, sequence), dtype=np.intaa) a = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') a = time.time() a = 2_0_0_0 a = {} for iter in range(max_iters): a = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1_0_0_0 / max_iters))
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw).convert('RGB') SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11)), ]) SCREAMING_SNAKE_CASE = transform(_UpperCAmelCase).unsqueeze(0).to(_UpperCAmelCase) return image def lowerCamelCase__ (_UpperCAmelCase): if "visual_encoder" in key: SCREAMING_SNAKE_CASE = re.sub('visual_encoder*' , 'vision_model.encoder' , _UpperCAmelCase) if "blocks" in key: SCREAMING_SNAKE_CASE = re.sub(R'blocks' , 'layers' , _UpperCAmelCase) if "attn" in key: SCREAMING_SNAKE_CASE = re.sub(R'attn' , 'self_attn' , _UpperCAmelCase) if "norm1" in key: SCREAMING_SNAKE_CASE = re.sub(R'norm1' , 'layer_norm1' , _UpperCAmelCase) if "norm2" in key: SCREAMING_SNAKE_CASE = re.sub(R'norm2' , 'layer_norm2' , _UpperCAmelCase) if "encoder.norm" in key: SCREAMING_SNAKE_CASE = re.sub(R'encoder.norm' , 'post_layernorm' , _UpperCAmelCase) if "encoder.patch_embed.proj" in key: SCREAMING_SNAKE_CASE = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _UpperCAmelCase) if "encoder.pos_embed" in key: SCREAMING_SNAKE_CASE = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _UpperCAmelCase) if "encoder.cls_token" in key: SCREAMING_SNAKE_CASE = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _UpperCAmelCase) if "self_attn" in key: SCREAMING_SNAKE_CASE = re.sub(R'self_attn.proj' , 'self_attn.projection' , _UpperCAmelCase) return key @torch.no_grad() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None): if config_path is not None: SCREAMING_SNAKE_CASE = BlipConfig.from_pretrained(_UpperCAmelCase) else: SCREAMING_SNAKE_CASE = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) SCREAMING_SNAKE_CASE = BlipForConditionalGeneration(_UpperCAmelCase).eval() SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' SCREAMING_SNAKE_CASE = blip_decoder(pretrained=_UpperCAmelCase , image_size=384 , vit='base') SCREAMING_SNAKE_CASE = pt_model.eval() SCREAMING_SNAKE_CASE = pt_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE = modified_state_dict.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_key(_UpperCAmelCase) SCREAMING_SNAKE_CASE = value hf_model.load_state_dict(_UpperCAmelCase) SCREAMING_SNAKE_CASE = 384 SCREAMING_SNAKE_CASE = load_demo_image(image_size=_UpperCAmelCase , device='cpu') SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('bert-base-uncased') SCREAMING_SNAKE_CASE = tokenizer(['a picture of']).input_ids SCREAMING_SNAKE_CASE = hf_model.generate(_UpperCAmelCase , _UpperCAmelCase) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] SCREAMING_SNAKE_CASE = hf_model.generate(_UpperCAmelCase) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCAmelCase) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' SCREAMING_SNAKE_CASE = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) SCREAMING_SNAKE_CASE = blip_vqa(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base') vqa_model.eval() SCREAMING_SNAKE_CASE = vqa_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE = modified_state_dict.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_key(_UpperCAmelCase) SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = BlipForQuestionAnswering(_UpperCAmelCase) hf_vqa_model.load_state_dict(_UpperCAmelCase) SCREAMING_SNAKE_CASE = ['How many dogs are in this image?'] SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids SCREAMING_SNAKE_CASE = hf_vqa_model.generate(_UpperCAmelCase , _UpperCAmelCase) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa') SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' SCREAMING_SNAKE_CASE = blip_itm(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base') itm_model.eval() SCREAMING_SNAKE_CASE = itm_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE = modified_state_dict.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_key(_UpperCAmelCase) SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = BlipForImageTextRetrieval(_UpperCAmelCase) SCREAMING_SNAKE_CASE = ['A picture of a woman with a dog sitting in a beach'] SCREAMING_SNAKE_CASE = tokenizer( _UpperCAmelCase , return_tensors='pt' , padding='max_length' , truncation=_UpperCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCAmelCase) hf_itm_model.eval() SCREAMING_SNAKE_CASE = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase) SCREAMING_SNAKE_CASE = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm') if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
73
'''simple docstring''' from math import factorial def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) UpperCAmelCase__ : Any = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCAmelCase__ : Any = float(factorial(lowerCAmelCase__ ) ) coefficient /= factorial(lowerCAmelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
75
0
def A ( lowercase = 4_000_000 ) -> int: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase ) UpperCamelCase , UpperCamelCase = b, a + b return sum(lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
714
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_ = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['DeiTFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
582
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :List[str] ="""biogpt""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_2_3_8_4 , SCREAMING_SNAKE_CASE__ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE__ : List[str]=2_4 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : List[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : str=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : int=2 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = scale_embedding __a = use_cache __a = layerdrop __a = activation_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
582
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __lowerCAmelCase ( snake_case : str = "isbn/0140328726" ) -> dict: __lowerCamelCase: Tuple = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: __lowerCamelCase: Dict = f'{olid} is not a valid Open Library olid' raise ValueError(UpperCAmelCase__ ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def __lowerCAmelCase ( snake_case : dict ) -> dict: __lowerCamelCase: Union[str, Any] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } __lowerCamelCase: int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowerCamelCase: Optional[Any] = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] __lowerCamelCase: str = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCamelCase: Dict = """, """.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _A : Optional[int] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _A : List[str] = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
715
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): UpperCAmelCase__ : Tuple = CycleDiffusionPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } UpperCAmelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) UpperCAmelCase__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self : str ): torch.manual_seed(0 ) __lowerCamelCase: Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowerCamelCase: Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __lowerCamelCase: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase: int = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase: Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str=0 ): __lowerCamelCase: Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[str] = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): __lowerCamelCase: int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase: Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Any ): __lowerCamelCase: Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase: Union[str, Any] = self.get_dummy_components() __lowerCamelCase: Union[str, Any] = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = pipe(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Union[str, Any] = output.images __lowerCamelCase: int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase: Dict = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): __lowerCamelCase: Optional[int] = self.get_dummy_components() for name, module in components.items(): if hasattr(SCREAMING_SNAKE_CASE_ , """half""" ): __lowerCamelCase: Tuple = module.half() __lowerCamelCase: Union[str, Any] = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = pipe(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: int = output.images __lowerCamelCase: Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase: List[str] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self : int ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): __lowerCamelCase: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowerCamelCase: Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) __lowerCamelCase: str = init_image.resize((512, 512) ) __lowerCamelCase: Dict = """CompVis/stable-diffusion-v1-4""" __lowerCamelCase: Optional[int] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder="""scheduler""" ) __lowerCamelCase: List[Any] = CycleDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase: List[Any] = """A black colored car""" __lowerCamelCase: List[Any] = """A blue colored car""" __lowerCamelCase: List[Any] = torch.manual_seed(0 ) __lowerCamelCase: Any = pipe( prompt=SCREAMING_SNAKE_CASE_ , source_prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) __lowerCamelCase: Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowerCamelCase: Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) __lowerCamelCase: List[str] = init_image.resize((512, 512) ) __lowerCamelCase: List[Any] = """CompVis/stable-diffusion-v1-4""" __lowerCamelCase: Optional[Any] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder="""scheduler""" ) __lowerCamelCase: Dict = CycleDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase: Optional[int] = """A black colored car""" __lowerCamelCase: int = """A blue colored car""" __lowerCamelCase: str = torch.manual_seed(0 ) __lowerCamelCase: Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , source_prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) __lowerCamelCase: Any = output.images assert np.abs(image - expected_image ).max() < 2E-2
189
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _A: Dict = logging.get_logger(__name__) _A: Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A: Tuple = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _A: Dict = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _A: Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCAmelCase ( UpperCAmelCase_ ): _A : int = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Dict = RealmTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(__A , normalizer_state.pop('type' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**__A ) __UpperCAmelCase = do_lower_case def __lowerCamelCase ( self , __A , **__A ): __UpperCAmelCase = PaddingStrategy.MAX_LENGTH __UpperCAmelCase = text __UpperCAmelCase = kwargs.pop('text_pair' , __A ) __UpperCAmelCase = kwargs.pop('return_tensors' , __A ) __UpperCAmelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__A ): if batch_text_pair is not None: __UpperCAmelCase = batch_text_pair[idx] else: __UpperCAmelCase = None __UpperCAmelCase = super().__call__(__A , __A , return_tensors=__A , **__A ) __UpperCAmelCase = encoded_candidates.get('input_ids' ) __UpperCAmelCase = encoded_candidates.get('attention_mask' ) __UpperCAmelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__A ) __UpperCAmelCase = {key: item for key, item in output_data.items() if len(__A ) != 0} return BatchEncoding(__A , tensor_type=__A ) def __lowerCamelCase ( self , __A , __A=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , __A , __A = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , __A , __A = None ): __UpperCAmelCase = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
126
'''simple docstring''' import os from datetime import datetime as dt from github import Github _A: Any = [ """good first issue""", """feature request""", """wip""", ] def _lowerCAmelCase ( )-> Optional[int]: __UpperCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) __UpperCAmelCase = g.get_repo('huggingface/accelerate' ) __UpperCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: __UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase ) __UpperCAmelCase = comments[0] if len(_lowerCAmelCase ) > 0 else None __UpperCAmelCase = dt.utcnow() __UpperCAmelCase = (current_time - issue.updated_at).days __UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
126
1
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = np.full((len(__SCREAMING_SNAKE_CASE ), sequence_length, 2) , __SCREAMING_SNAKE_CASE ) else: _SCREAMING_SNAKE_CASE : Any = np.full((len(__SCREAMING_SNAKE_CASE ), sequence_length) , __SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(__SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE : int = tensor[:sequence_length] else: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE : List[str] = tensor[:sequence_length] return out_tensor.tolist() def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = ord(__SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _SCREAMING_SNAKE_CASE : Tuple = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat.startswith("""P""" ): return True return False @dataclass class _snake_case ( __snake_case ): """simple docstring""" a = 42 a = True a = None a = None a = -1_00 a = "pt" def _lowerCAmelCase ( self : List[str] , _A : str): """simple docstring""" import torch _SCREAMING_SNAKE_CASE : List[str] = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE : Optional[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE : Tuple = torch.tensor(batch["""entity_ids"""]).shape[1] _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE : Union[str, Any] = [ list(_A) + [self.label_pad_token_id] * (sequence_length - len(_A)) for label in labels ] else: _SCREAMING_SNAKE_CASE : List[str] = [ [self.label_pad_token_id] * (sequence_length - len(_A)) + list(_A) for label in labels ] _SCREAMING_SNAKE_CASE : Optional[int] = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE : Tuple = padding_tensor(_A , -1 , _A , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE : Dict = padding_tensor(_A , (-1, -1) , _A , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.tensor(_A , dtype=torch.intaa) for k, v in batch.items()} return batch
721
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> List[str]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Any: return max(metric_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[str]: _SCREAMING_SNAKE_CASE : List[str] = [line.strip() for line in open(__SCREAMING_SNAKE_CASE , """r""" ).readlines()] _SCREAMING_SNAKE_CASE : Dict = [] if args.gold_data_mode == "qa": _SCREAMING_SNAKE_CASE : int = pd.read_csv(__SCREAMING_SNAKE_CASE , sep="""\t""" , header=__SCREAMING_SNAKE_CASE ) for answer_list in data[1]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ast.literal_eval(__SCREAMING_SNAKE_CASE ) answers.append(__SCREAMING_SNAKE_CASE ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = [line.strip() for line in open(__SCREAMING_SNAKE_CASE , """r""" ).readlines()] _SCREAMING_SNAKE_CASE : Optional[int] = [[reference] for reference in references] _SCREAMING_SNAKE_CASE : Optional[int] = 0 for prediction, ground_truths in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = 1_00.0 * em / total _SCREAMING_SNAKE_CASE : Optional[Any] = 1_00.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = args.k _SCREAMING_SNAKE_CASE : int = [line.strip() for line in open(__SCREAMING_SNAKE_CASE , """r""" ).readlines()] _SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(__SCREAMING_SNAKE_CASE , """r""" ).readlines()] _SCREAMING_SNAKE_CASE : Optional[Any] = 0 for hypo, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = set(hypo.split("""\t""" )[:k] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _SCREAMING_SNAKE_CASE : int = 1_00.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: def strip_title(__SCREAMING_SNAKE_CASE ): if title.startswith("""\"""" ): _SCREAMING_SNAKE_CASE : Optional[int] = title[1:] if title.endswith("""\"""" ): _SCREAMING_SNAKE_CASE : str = title[:-1] return title _SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , )["""input_ids"""].to(args.device ) _SCREAMING_SNAKE_CASE : List[str] = rag_model.rag.question_encoder(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = question_enc_outputs[0] _SCREAMING_SNAKE_CASE : List[Any] = rag_model.retriever( __SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for docs in all_docs: _SCREAMING_SNAKE_CASE : str = [strip_title(__SCREAMING_SNAKE_CASE ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(__SCREAMING_SNAKE_CASE ) ) return provenance_strings def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[Any]: with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict.input_ids.to(args.device ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict.attention_mask.to(args.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = rag_model.generate( # rag_model overwrites generate __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.generator_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): logger.info("""Q: {} - A: {}""".format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return answers def lowerCamelCase_()-> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=__SCREAMING_SNAKE_CASE , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=__SCREAMING_SNAKE_CASE , choices=["""exact""", """compressed""", """legacy"""] , type=__SCREAMING_SNAKE_CASE , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=__SCREAMING_SNAKE_CASE , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=__SCREAMING_SNAKE_CASE , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=__SCREAMING_SNAKE_CASE , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=__SCREAMING_SNAKE_CASE , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=__SCREAMING_SNAKE_CASE , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=__SCREAMING_SNAKE_CASE , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=__SCREAMING_SNAKE_CASE , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=__SCREAMING_SNAKE_CASE , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: _SCREAMING_SNAKE_CASE : Union[str, Any] = {} if args.model_type is None: _SCREAMING_SNAKE_CASE : Optional[int] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): _SCREAMING_SNAKE_CASE : List[Any] = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration _SCREAMING_SNAKE_CASE : Optional[Any] = args.n_docs if args.index_name is not None: _SCREAMING_SNAKE_CASE : Optional[Any] = args.index_name if args.index_path is not None: _SCREAMING_SNAKE_CASE : Any = args.index_path else: _SCREAMING_SNAKE_CASE : Any = BartForConditionalGeneration _SCREAMING_SNAKE_CASE : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , __SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = get_scores if args.eval_mode == """e2e""" else get_precision_at_k _SCREAMING_SNAKE_CASE : Tuple = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(__SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(__SCREAMING_SNAKE_CASE ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): _SCREAMING_SNAKE_CASE : str = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = model_class.from_pretrained(__SCREAMING_SNAKE_CASE , retriever=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: _SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: _SCREAMING_SNAKE_CASE : str = [] for line in tqdm(__SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(__SCREAMING_SNAKE_CASE ) == args.eval_batch_size: _SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(__SCREAMING_SNAKE_CASE ) + """\n""" ) preds_file.flush() _SCREAMING_SNAKE_CASE : Any = [] if len(__SCREAMING_SNAKE_CASE ) > 0: _SCREAMING_SNAKE_CASE : List[str] = evaluate_batch_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(__SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase_ = get_args() main(args)
635
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Union[str, Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
def lowerCAmelCase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0) -> int: """simple docstring""" a__ : str = right or len(_lowercase) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1) if __name__ == "__main__": import doctest doctest.testmod()
136
0
"""simple docstring""" import string from math import logaa def _UpperCamelCase ( _A , _A ) -> int: """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( _A , _A ) -> tuple[int, int]: """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(_A )) def _UpperCamelCase ( _A , _A , _A=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( _A , _A ) -> float: """simple docstring""" return round(tf * idf , 3 )
713
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a_ : def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""" ) def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Dict ) ->List[str]: '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : Tuple ) ->Dict: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) _UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() _UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () a : Optional[Any] = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a : Any = True a : Optional[int] = False a : Any = False a : Optional[int] = True a : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests a : int = [0.8, 0.9] def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) _UpperCAmelCase = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) _UpperCAmelCase = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) _UpperCAmelCase = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) ) _UpperCAmelCase = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
19
0
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" UpperCAmelCase = len(__UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __UpperCAmelCase , __UpperCAmelCase , ) def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] depth_first_search([] , [] , [] , __UpperCAmelCase , __UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(__UpperCAmelCase ) print("" ) print(len(__UpperCAmelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
333
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCamelCase : Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : bool , UpperCamelCase_ : str = None , UpperCamelCase_ : list = None ) -> List[Any]: """simple docstring""" lowerCamelCase_ : int = None lowerCamelCase_ : Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase_ : List[Any] = os.path.abspath('''examples''' ) for item in os.listdir(UpperCamelCase_ ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase_ : List[str] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCamelCase_ , feature_script=UpperCamelCase_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase_ : Optional[int] = compare_against_test( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = '''\n'''.join(UpperCamelCase_ ) if special_strings is not None: for string in special_strings: lowerCamelCase_ : List[Any] = diff.replace(UpperCamelCase_ , '''''' ) self.assertEqual(UpperCamelCase_ , '''''' ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase_ ) self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ : Any = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase_ : int = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @mock.patch.dict(os.environ ,{"TESTING_MOCKED_DATALOADERS": "1"} ) class lowerCAmelCase__ ( _lowerCAmelCase ): A = False @classmethod def __UpperCamelCase ( cls : int ) -> Tuple: """simple docstring""" super().setUpClass() lowerCamelCase_ : Any = tempfile.mkdtemp() lowerCamelCase_ : int = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase_ : List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __UpperCamelCase ( cls : Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowerCamelCase_ : str = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : Dict = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() lowerCamelCase_ : Any = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) self.assertNotIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() lowerCamelCase_ : List[str] = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) if torch.cuda.is_available(): lowerCamelCase_ : str = torch.cuda.device_count() else: lowerCamelCase_ : List[Any] = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) else: self.assertIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) @slow def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ : int = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase_ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) lowerCamelCase_ : Any = re.findall('''({.+})''' , UpperCamelCase_ ) lowerCamelCase_ : int = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase_ : int = ast.literal_eval(UpperCamelCase_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase_ : Union[str, Any] = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''tracking''' ) ) ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" lowerCamelCase_ : Optional[Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ : List[Any] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
501
0
"""simple docstring""" def UpperCAmelCase__ ( A__ , A__ ) -> bool: """simple docstring""" lowerCamelCase__ = len(A__ ) lowerCamelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
274
"""simple docstring""" def UpperCAmelCase__ ( A__ ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
274
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("_" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 192 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 21841 else: SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __a ( A__ : List[str] ): if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: SCREAMING_SNAKE_CASE = "encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = "layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE = "layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) else: SCREAMING_SNAKE_CASE = "swin." + name return name def __a ( A__ : Optional[Any] , A__ : Any ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(A__ ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split("." ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __a ( A__ : Optional[Any] , A__ : Any ): SCREAMING_SNAKE_CASE = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(A__ ) SCREAMING_SNAKE_CASE = SwinForImageClassification(A__ ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , A__ ) model.load_state_dict(A__ ) SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = timm_model(inputs["pixel_values"] ) SCREAMING_SNAKE_CASE = model(**A__ ).logits assert torch.allclose(A__ , A__ , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __A : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
16
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Any = "yolos" def __init__( self: Dict , __UpperCamelCase: str=7_68 , __UpperCamelCase: List[Any]=12 , __UpperCamelCase: List[Any]=12 , __UpperCamelCase: List[str]=30_72 , __UpperCamelCase: List[str]="gelu" , __UpperCamelCase: List[str]=0.0 , __UpperCamelCase: List[str]=0.0 , __UpperCamelCase: Optional[Any]=0.02 , __UpperCamelCase: List[str]=1E-12 , __UpperCamelCase: List[Any]=[5_12, 8_64] , __UpperCamelCase: Tuple=16 , __UpperCamelCase: Union[str, Any]=3 , __UpperCamelCase: Optional[Any]=True , __UpperCamelCase: Optional[int]=1_00 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: Optional[Any]=False , __UpperCamelCase: Tuple=1 , __UpperCamelCase: Any=5 , __UpperCamelCase: Dict=2 , __UpperCamelCase: Optional[Any]=5 , __UpperCamelCase: Optional[Any]=2 , __UpperCamelCase: Union[str, Any]=0.1 , **__UpperCamelCase: Tuple , ): '''simple docstring''' super().__init__(**__UpperCamelCase ) __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = qkv_bias __magic_name__ = num_detection_tokens __magic_name__ = use_mid_position_embeddings __magic_name__ = auxiliary_loss # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : str = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' return 1E-4 @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return 12
705
from math import factorial, radians def _lowercase ( a_ : float ,a_ : int = 1_8 ,a_ : int = 1_0 ) -> float: '''simple docstring''' __magic_name__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __magic_name__ = radians(a_ ) __magic_name__ = angle_in_radians __magic_name__ = 3 __magic_name__ = -1 for _ in range(a_ ): result += (b * (angle_in_radians**a)) / factorial(a_ ) __magic_name__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(a_ ,a_ ) if __name__ == "__main__": __import__("doctest").testmod()
184
0
import os import string import sys a_ = 1 << 8 a_ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } a_ = KEYMAP["""up"""] a_ = KEYMAP["""left"""] if sys.platform == "win32": a_ = [] a_ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): a_ = ord(str(i)) def a__ ( ): if os.name == "nt": import msvcrt __lowerCamelCase = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase__ ) == 0: # Read the keystroke __lowerCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCamelCase__ ) if ord(UpperCamelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) __lowerCamelCase = chr(KEYMAP['''esc'''] ) except KeyError: __lowerCamelCase = cha[1] else: __lowerCamelCase = ch.decode(UpperCamelCase__ ) else: __lowerCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCamelCase = sys.stdin.fileno() __lowerCamelCase = termios.tcgetattr(UpperCamelCase__ ) try: tty.setraw(UpperCamelCase__ ) __lowerCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase__ ,termios.TCSADRAIN ,UpperCamelCase__ ) return ch def a__ ( ): __lowerCamelCase = get_raw_chars() if ord(UpperCamelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase__ ) == KEYMAP["esc"]: __lowerCamelCase = get_raw_chars() if ord(UpperCamelCase__ ) == KEYMAP["mod_int"]: __lowerCamelCase = get_raw_chars() if ord(UpperCamelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
175
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A_ = logging.WARNING def A_ ( ): SCREAMING_SNAKE_CASE:Dict = os.getenv("DATASETS_VERBOSITY" , snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def A_ ( ): return __name__.split("." )[0] def A_ ( ): return logging.getLogger(_get_library_name() ) def A_ ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE:List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def A_ ( ): SCREAMING_SNAKE_CASE:List[str] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def A_ ( snake_case = None ): if name is None: SCREAMING_SNAKE_CASE:Any = _get_library_name() return logging.getLogger(snake_case ) def A_ ( ): return _get_library_root_logger().getEffectiveLevel() def A_ ( snake_case ): _get_library_root_logger().setLevel(snake_case ) def A_ ( ): return set_verbosity(snake_case ) def A_ ( ): return set_verbosity(snake_case ) def A_ ( ): return set_verbosity(snake_case ) def A_ ( ): return set_verbosity(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:List[Any] = False def A_ ( ): SCREAMING_SNAKE_CASE:Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _snake_case : def __init__( self : int ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Dict ): # pylint: disable=unused-argument SCREAMING_SNAKE_CASE:int = args[0] if args else None def __iter__( self : List[str] ): return iter(self._iterator ) def __getattr__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): def empty_fn(*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): return self def __exit__( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ): return A_ = True class _snake_case : def __call__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict=False ,**SCREAMING_SNAKE_CASE__ : List[str] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ = _tqdm_cls() def A_ ( ): global _tqdm_active return bool(_tqdm_active ) def A_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE:str = True def A_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE:str = False
709
'''simple docstring''' import random def A_ ( snake_case , snake_case , snake_case = False ): SCREAMING_SNAKE_CASE:dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def A_ ( snake_case ): return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
465
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests snake_case__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
408
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
243
0
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = """src/transformers""" # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R"""^\s*try:""") # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R"""^\s*else:""") def SCREAMING_SNAKE_CASE__ ( __a ): if _re_test_backend.search(__a ) is None: return None snake_case_ : Optional[Any] = [b[0] for b in _re_backend.findall(__a )] backends.sort() return "_and_".join(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ : int = f.readlines() snake_case_ : int = 0 while line_index < len(__a ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__a ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: snake_case_ : Dict = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__a ): snake_case_ : Any = _re_one_line_import_struct.search(__a ).groups()[0] snake_case_ : Optional[Any] = re.findall('\[([^\]]+)\]' , __a ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue snake_case_ : str = _re_import_struct_key_value.search(__a ) if single_line_import_search is not None: snake_case_ : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__a ) > 0] objects.extend(__a ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : List[str] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): snake_case_ : Dict = lines[line_index] if _re_import_struct_add_one.search(__a ) is not None: objects.append(_re_import_struct_add_one.search(__a ).groups()[0] ) elif _re_import_struct_add_many.search(__a ) is not None: snake_case_ : int = _re_import_struct_add_many.search(__a ).groups()[0].split(', ' ) snake_case_ : Dict = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_between_brackets.search(__a ) is not None: snake_case_ : Optional[int] = _re_between_brackets.search(__a ).groups()[0].split(', ' ) snake_case_ : Optional[Any] = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_quote_object.search(__a ) is not None: objects.append(_re_quote_object.search(__a ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : Optional[Any] = [] while ( line_index < len(__a ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): snake_case_ : Optional[int] = lines[line_index] snake_case_ : Tuple = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Tuple = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__a ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): snake_case_ : Tuple = lines[line_index] snake_case_ : Any = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE__ ( __a , __a ): def find_duplicates(__a ): return [k for k, v in collections.Counter(__a ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : List[str] = [] for key in import_dict_objects.keys(): snake_case_ : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case_ : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : Tuple = 'base imports' if key == 'none' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = [] for root, _, files in os.walk(__a ): if "__init__.py" in files: snake_case_ : Dict = os.path.join(__a , '__init__.py' ) snake_case_ : Dict = parse_init(__a ) if objects is not None: snake_case_ : Tuple = analyze_results(*__a ) if len(__a ) > 0: snake_case_ : Dict = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(__a ) ) if len(__a ) > 0: raise ValueError('\n\n'.join(__a ) ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = [] for path, directories, files in os.walk(__a ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__a ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__a ) / folder).glob('*.py' ) ) ) == 0: continue snake_case_ : Dict = str((Path(__a ) / folder).relative_to(__a ) ) snake_case_ : Union[str, Any] = short_path.replace(os.path.sep , '.' ) submodules.append(__a ) for fname in files: if fname == "__init__.py": continue snake_case_ : Any = str((Path(__a ) / fname).relative_to(__a ) ) snake_case_ : str = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__a ) return submodules _SCREAMING_SNAKE_CASE = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def SCREAMING_SNAKE_CASE__ ( ): # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Optional[int] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(__a , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case_ : Optional[int] = spec.loader.load_module() snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__a ) > 0: snake_case_ : Any = '\n'.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
534
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a ): # Load checkpoint snake_case_ : Union[str, Any] = torch.load(__a , map_location='cpu' ) snake_case_ : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository snake_case_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ : Tuple = v else: snake_case_ : Dict = v snake_case_ : Tuple = chkpt['params'] snake_case_ : List[Any] = {n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} snake_case_ : Optional[int] = chkpt['dico_word2id'] snake_case_ : List[str] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case_ : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case_ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
534
1
'''simple docstring''' lowerCAmelCase : Tuple ='''Input must be a string of 8 numbers plus letter''' lowerCAmelCase : Optional[Any] ='''TRWAGMYFPDXBNJZSQVHLCKE''' def UpperCAmelCase_ ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase ,__lowerCamelCase ): lowercase_ :Dict = F'Expected string as input, found {type(__lowerCamelCase ).__name__}' raise TypeError(__lowerCamelCase ) lowercase_ :List[Any] = spanish_id.replace("-" ,"" ).upper() if len(__lowerCamelCase ) != 9: raise ValueError(__lowerCamelCase ) try: lowercase_ :List[str] = int(spanish_id_clean[0:8] ) lowercase_ :Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
172
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ): if number > 0: raise ValueError("input must be a negative integer" ) lowercase_ :Optional[Any] = len(bin(__lowerCamelCase )[3:] ) lowercase_ :Optional[int] = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] lowercase_ :Dict = ( ( "1" + "0" * (binary_number_length - len(__lowerCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
172
1
'''simple docstring''' import os def A (__lowerCamelCase :Dict ): _lowerCAmelCase = len(grid[0] ) _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): _lowerCAmelCase = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _lowerCAmelCase = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _lowerCAmelCase = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _lowerCAmelCase = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _lowerCAmelCase = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: _lowerCAmelCase = max_product return largest def A (): _lowerCAmelCase = [] with open(os.path.dirname(__lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) _lowerCAmelCase = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
162
'''simple docstring''' def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 1: _lowerCAmelCase = f'Input value of [number={number}] must be > 0' raise ValueError(__lowerCamelCase ) _lowerCAmelCase = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
162
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = StableDiffusionDiffEditPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase = frozenset([] ) def lowercase__ ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) snake_case__ : List[str] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) snake_case__ : List[Any] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase , set_alpha_to_zero=lowerCamelCase , ) torch.manual_seed(0 ) snake_case__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) snake_case__ : Tuple = CLIPTextModel(lowerCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self , lowerCamelCase , lowerCamelCase=0 ) -> Any: """simple docstring""" snake_case__ : str = floats_tensor((1, 16, 16) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) snake_case__ : Optional[int] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith('''mps''' ): snake_case__ : Tuple = torch.manual_seed(lowerCamelCase ) else: snake_case__ : str = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) snake_case__ : int = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase=0 ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) snake_case__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Optional[int] = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ) if str(lowerCamelCase ).startswith('''mps''' ): snake_case__ : Tuple = torch.manual_seed(lowerCamelCase ) else: snake_case__ : List[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) snake_case__ : int = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase=0 ) -> List[str]: """simple docstring""" snake_case__ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) snake_case__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Tuple = Image.fromarray(np.uinta(lowerCamelCase ) ).convert('''RGB''' ) if str(lowerCamelCase ).startswith('''mps''' ): snake_case__ : List[Any] = torch.manual_seed(lowerCamelCase ) else: snake_case__ : str = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) snake_case__ : int = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self ) -> str: """simple docstring""" if not hasattr(self.pipeline_class , '''_optional_components''' ): return snake_case__ : int = self.get_dummy_components() snake_case__ : str = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) snake_case__ : List[Any] = self.get_dummy_inputs(lowerCamelCase ) snake_case__ : Optional[Any] = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) snake_case__ : Any = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) snake_case__ : Optional[int] = self.get_dummy_inputs(lowerCamelCase ) snake_case__ : List[Any] = pipe_loaded(**lowerCamelCase )[0] snake_case__ : List[str] = np.abs(output - output_loaded ).max() self.assertLess(lowerCamelCase , 1E-4 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict = '''cpu''' snake_case__ : int = self.get_dummy_components() snake_case__ : str = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) snake_case__ : Any = self.get_dummy_mask_inputs(lowerCamelCase ) snake_case__ : str = pipe.generate_mask(**lowerCamelCase ) snake_case__ : Optional[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) snake_case__ : str = np.array([0] * 9 ) snake_case__ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = '''cpu''' snake_case__ : List[str] = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inversion_inputs(lowerCamelCase ) snake_case__ : Any = pipe.invert(**lowerCamelCase ).images snake_case__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case__ : Any = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) snake_case__ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = '''cpu''' snake_case__ : str = self.get_dummy_components() snake_case__ : Tuple = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} snake_case__ : Optional[Any] = DPMSolverMultistepScheduler(**lowerCamelCase ) snake_case__ : Any = DPMSolverMultistepInverseScheduler(**lowerCamelCase ) snake_case__ : Optional[Any] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) snake_case__ : int = self.get_dummy_inversion_inputs(lowerCamelCase ) snake_case__ : Tuple = pipe.invert(**lowerCamelCase ).images snake_case__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case__ : str = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) snake_case__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) @require_torch_gpu @slow class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase__ ( cls ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) snake_case__ : List[Any] = raw_image.convert('''RGB''' ).resize((768, 768) ) snake_case__ : Dict = raw_image def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) snake_case__ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase ) snake_case__ : Dict = '''a bowl of fruit''' snake_case__ : Any = '''a bowl of pears''' snake_case__ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase , target_prompt=lowerCamelCase , generator=lowerCamelCase , ) snake_case__ : Union[str, Any] = pipe.invert( prompt=lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase ).latents snake_case__ : Optional[Any] = pipe( prompt=lowerCamelCase , mask_image=lowerCamelCase , image_latents=lowerCamelCase , generator=lowerCamelCase , negative_prompt=lowerCamelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] snake_case__ : Optional[Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : int = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case__ : Optional[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase ) snake_case__ : Dict = '''a bowl of fruit''' snake_case__ : int = '''a bowl of pears''' snake_case__ : str = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase , target_prompt=lowerCamelCase , generator=lowerCamelCase , ) snake_case__ : Optional[Any] = pipe.invert( prompt=lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase , num_inference_steps=25 , ).latents snake_case__ : Any = pipe( prompt=lowerCamelCase , mask_image=lowerCamelCase , image_latents=lowerCamelCase , generator=lowerCamelCase , negative_prompt=lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] snake_case__ : Dict = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
261
'''simple docstring''' def _A ( snake_case__ : list[int] , snake_case__ : list[int] ): snake_case__ : Tuple = len(snake_case__ ) print('''The following activities are selected:''' ) # The first activity is always selected snake_case__ : Optional[Any] = 0 print(snake_case__ , end=''',''' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=''',''' ) snake_case__ : int = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = [1, 3, 0, 5, 8, 5] _lowerCAmelCase : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
261
1
import re import string import numpy as np import datasets _lowerCamelCase : Tuple = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _lowerCamelCase : List[Any] = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _lowerCamelCase : Union[str, Any] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Dict ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence" ), "references": datasets.Value("string", id="sequence" ), } ), reference_urls=[], ) def A_ ( self : Optional[Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : int=None, _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : List[Any]=False, ) -> int: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE__ : List[str] = np.array([re.sub(_lowercase, "", _lowercase ) for x in predictions] ) SCREAMING_SNAKE_CASE__ : Dict = np.array([re.sub(_lowercase, "", _lowercase ) for x in references] ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.asarray(_lowercase ) if ignore_case: SCREAMING_SNAKE_CASE__ : Optional[int] = np.char.lower(_lowercase ) SCREAMING_SNAKE_CASE__ : int = np.char.lower(_lowercase ) if ignore_punctuation: SCREAMING_SNAKE_CASE__ : Optional[Any] = string.punctuation.maketrans("", "", string.punctuation ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.char.translate(_lowercase, table=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = np.char.translate(_lowercase, table=_lowercase ) if ignore_numbers: SCREAMING_SNAKE_CASE__ : List[Any] = string.digits.maketrans("", "", string.digits ) SCREAMING_SNAKE_CASE__ : List[str] = np.char.translate(_lowercase, table=_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = np.char.translate(_lowercase, table=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = predictions == references return {"exact_match": np.mean(_lowercase ) * 1_0_0}
703
from collections.abc import Generator def _a ( ) -> Generator[int, None, None]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = 0, 1 while True: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = b, a + b yield b def _a ( SCREAMING_SNAKE_CASE__ : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCamelCase : # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # sigma(t_i) @classmethod def __A ( cls : List[str] ): '''simple docstring''' return cls() @dataclass class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 class __UpperCamelCase ( lowercase , lowercase ): @property def __A ( self : Tuple ): '''simple docstring''' return True @register_to_config def __init__( self : Any , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 100 , lowerCAmelCase : float = 1.007 , lowerCAmelCase : float = 80 , lowerCAmelCase : float = 0.05 , lowerCAmelCase : float = 50 , ): '''simple docstring''' pass def __A ( self : List[str] ): '''simple docstring''' return KarrasVeSchedulerState.create() def __A ( self : Dict , lowerCAmelCase : KarrasVeSchedulerState , lowerCAmelCase : int , lowerCAmelCase : Tuple = () ): '''simple docstring''' UpperCAmelCase_ = jnp.arange(0 , lowerCAmelCase )[::-1].copy() UpperCAmelCase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase , schedule=jnp.array(lowerCAmelCase , dtype=jnp.floataa ) , timesteps=lowerCAmelCase , ) def __A ( self : Union[str, Any] , lowerCAmelCase : KarrasVeSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : float , lowerCAmelCase : random.KeyArray , ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ = random.split(lowerCAmelCase , num=1 ) UpperCAmelCase_ = self.config.s_noise * random.normal(key=lowerCAmelCase , shape=sample.shape ) UpperCAmelCase_ = sigma + gamma * sigma UpperCAmelCase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self : Optional[int] , lowerCAmelCase : KarrasVeSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : bool = True , ): '''simple docstring''' UpperCAmelCase_ = sample_hat + sigma_hat * model_output UpperCAmelCase_ = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase ) def __A ( self : int , lowerCAmelCase : KarrasVeSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : bool = True , ): '''simple docstring''' UpperCAmelCase_ = sample_prev + sigma_prev * model_output UpperCAmelCase_ = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase ) def __A ( self : Any , lowerCAmelCase : KarrasVeSchedulerState , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] ): '''simple docstring''' raise NotImplementedError()
162
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a: Union[str, Any] = logging.get_logger(__name__) _a: Dict = {"""tokenizer_file""": """tokenizer.json"""} _a: Dict = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = None def __init__( self : Tuple , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : int=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase_ = add_prefix_space def __A ( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def __A ( self : str , lowerCAmelCase : "Conversation" ): '''simple docstring''' UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
162
1
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase__ : int = '' UpperCAmelCase__ : List[str] = '' UpperCAmelCase__ : List[str] = '' UpperCAmelCase__ : List[str] = 1 # (0 is vertical, 1 is horizontal) def _A ( ): _UpperCAmelCase : Optional[Any] = get_dataset(_UpperCamelCase , _UpperCamelCase ) print('''Processing...''' ) _UpperCAmelCase : Tuple = update_image_and_anno(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for index, image in enumerate(_UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase : Any = random_chars(32 ) _UpperCAmelCase : Optional[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] _UpperCAmelCase : List[Any] = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , _UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(_UpperCamelCase )} with {file_name}''' ) _UpperCAmelCase : Any = [] for anno in new_annos[index]: _UpperCAmelCase : List[Any] = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_UpperCamelCase ) with open(F'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _A ( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[int] = [] for label_file in glob.glob(os.path.join(_UpperCamelCase , '''*.txt''' ) ): _UpperCAmelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_UpperCamelCase ) as in_file: _UpperCAmelCase : Tuple = in_file.readlines() _UpperCAmelCase : str = os.path.join(_UpperCamelCase , F'''{label_name}.jpg''' ) _UpperCAmelCase : str = [] for obj_list in obj_lists: _UpperCAmelCase : Any = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCamelCase ) labels.append(_UpperCamelCase ) return img_paths, labels def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ): _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] for idx in range(len(_UpperCamelCase ) ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = img_list[idx] path_list.append(_UpperCamelCase ) _UpperCAmelCase : int = anno_list[idx] _UpperCAmelCase : Dict = cva.imread(_UpperCamelCase ) if flip_type == 1: _UpperCAmelCase : Tuple = cva.flip(_UpperCamelCase , _UpperCamelCase ) for bbox in img_annos: _UpperCAmelCase : List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase : Any = cva.flip(_UpperCamelCase , _UpperCamelCase ) for bbox in img_annos: _UpperCAmelCase : str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCamelCase ) new_imgs_list.append(_UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def _A ( _UpperCamelCase = 32 ): assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase : Dict = ascii_lowercase + digits return "".join(random.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
710
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = Dict[str, Any] UpperCAmelCase__ : List[str] = List[Prediction] @add_end_docstrings(lowercase_ ) class lowerCAmelCase_ ( lowercase_ ): def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a_ ( self : str , **UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = {} if "threshold" in kwargs: _UpperCAmelCase : List[str] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = load_image(UpperCAmelCase_ ) _UpperCAmelCase : Dict = torch.IntTensor([[image.height, image.width]] ) _UpperCAmelCase : Dict = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: _UpperCAmelCase : Optional[Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) _UpperCAmelCase : Tuple = target_size return inputs def a_ ( self : List[str] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = model_inputs.pop('''target_size''' ) _UpperCAmelCase : int = self.model(**UpperCAmelCase_ ) _UpperCAmelCase : int = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: _UpperCAmelCase : Tuple = model_inputs['''bbox'''] return model_outputs def a_ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=0.9 ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _UpperCAmelCase , _UpperCAmelCase : Tuple = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _UpperCAmelCase : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _UpperCAmelCase : List[Any] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] _UpperCAmelCase : Union[str, Any] = ['''score''', '''label''', '''box'''] _UpperCAmelCase : Optional[Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _UpperCAmelCase : Optional[int] = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Any = raw_annotations[0] _UpperCAmelCase : List[str] = raw_annotation['''scores'''] _UpperCAmelCase : str = raw_annotation['''labels'''] _UpperCAmelCase : Dict = raw_annotation['''boxes'''] _UpperCAmelCase : List[str] = scores.tolist() _UpperCAmelCase : int = [self.model.config.idalabel[label.item()] for label in labels] _UpperCAmelCase : Any = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _UpperCAmelCase : Tuple = ['''score''', '''label''', '''box'''] _UpperCAmelCase : Any = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def a_ ( self : Optional[int] , UpperCAmelCase_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = box.int().tolist() _UpperCAmelCase : Optional[Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
416
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' if len(lowercase_ ) == 0: return [] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = min(lowercase_ ), max(lowercase_ ) __UpperCAmelCase : Any = int(max_value - min_value ) + 1 __UpperCAmelCase : list[list] = [[] for _ in range(lowercase_ )] for i in my_list: buckets[int(i - min_value )].append(lowercase_ ) return [v for bucket in buckets for v in sorted(lowercase_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
462
from __future__ import annotations import requests lowerCAmelCase = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 1 , lowercase_ = "new" , lowercase_ = None ) -> dict: '''simple docstring''' __UpperCAmelCase : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowercase_ ) - valid_terms ) ): __UpperCAmelCase : List[Any] = f"Invalid search term: {invalid_search_terms}" raise ValueError(lowercase_ ) __UpperCAmelCase : Optional[int] = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError __UpperCAmelCase : List[str] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowercase_ )} __UpperCAmelCase : List[Any] = {} for id_ in range(lowercase_ ): __UpperCAmelCase : str = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
462
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ): _lowercase : Optional[Any] = parent _lowercase : Any = batch_size _lowercase : str = seq_length _lowercase : Union[str, Any] = is_training _lowercase : Tuple = use_attention_mask _lowercase : List[str] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : Tuple = vocab_size _lowercase : List[Any] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Any = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : Optional[int] = type_sequence_label_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = num_choices def __a ( self ): _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : str = None if self.use_attention_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Optional[Any] = None if self.use_token_type_ids: _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Dict = config_and_inputs _lowercase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __a ( self ): _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : Any = True _lowercase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = True _UpperCamelCase : int = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ): _lowercase : Optional[Any] = FlaxBertModelTester(self ) @slow def __a ( self ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. _lowercase : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased' ) _lowercase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
66
"""simple docstring""" import functools def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[Any] = len(_A ) snake_case_ :Optional[int] = len(_A ) @functools.cache def min_distance(_A, _A ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ :str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, _A ), 1 + min_distance(_A, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
584
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( _a , _a , _a ): snake_case_ : Tuple = AutoConfig.from_pretrained(_a ) snake_case_ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=_a ) snake_case_ : Union[str, Any] = checkpoints.load_tax_checkpoint(_a ) snake_case_ : Optional[int] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": snake_case_ : str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Any = f"layers_{str(_a )}" # Self-Attention snake_case_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Optional[Any] = flax_model.params['''encoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : List[str] = tax_attention_key snake_case_ : Optional[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : str = tax_attention_value snake_case_ : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: snake_case_ : Any = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : Union[str, Any] = tax_mlp_wi snake_case_ : List[Any] = tax_mlp_wo snake_case_ : int = tax_mlp_layer_norm snake_case_ : Any = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T snake_case_ : Tuple = tax_encoder_global_rel_embedding # Assigning snake_case_ : Dict = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] snake_case_ : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : Tuple = f"layers_{str(_a )}" # Self-Attention snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention snake_case_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] snake_case_ : str = tax_enc_dec_attention_module['''out''']['''kernel'''] snake_case_ : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] snake_case_ : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Dict = flax_model.params['''decoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : int = tax_attention_key snake_case_ : List[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : Dict = tax_attention_value snake_case_ : str = tax_pre_attention_layer_norm snake_case_ : Any = tax_enc_dec_attention_key snake_case_ : str = tax_enc_dec_attention_out snake_case_ : int = tax_enc_dec_attention_query snake_case_ : Any = tax_enc_dec_attention_value snake_case_ : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: snake_case_ : Tuple = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : List[Any] = tax_mlp_wi snake_case_ : Dict = tax_mlp_wo snake_case_ : List[Any] = txa_mlp_layer_norm snake_case_ : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : str = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] snake_case_ : Tuple = txa_decoder_norm # Only for layer 0: snake_case_ : str = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Optional[Any] = tax_decoder_rel_embedding # Token Embeddings snake_case_ : Union[str, Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] snake_case_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowercase__ : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
485
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _UpperCAmelCase : _lowerCAmelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The column name of the images in the files."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the training data."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the validation data."""}) _lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : Union[str, Any] ): snake_case_ : List[Any] = {} if self.train_dir is not None: snake_case_ : str = self.train_dir if self.validation_dir is not None: snake_case_ : Union[str, Any] = self.validation_dir snake_case_ : Tuple = data_files if data_files else None @dataclass class _UpperCAmelCase : _lowerCAmelCase : str = field( default=lowerCAmelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""}) _lowerCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCAmelCase : str = field(default=lowerCAmelCase__ , metadata={"""help""": """Name or path of preprocessor config."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _lowerCAmelCase : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""}) @dataclass class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""}) def __lowercase ( _a ): snake_case_ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[str] = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. snake_case_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. snake_case_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : List[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) snake_case_ : Tuple = split['''train'''] snake_case_ : str = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Dict = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Optional[int] = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case_ : Tuple = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case_ : Tuple = ViTMAEForPreTraining(_a ) if training_args.do_train: snake_case_ : List[str] = ds['''train'''].column_names else: snake_case_ : Optional[Any] = ds['''validation'''].column_names if data_args.image_column_name is not None: snake_case_ : Tuple = data_args.image_column_name elif "image" in column_names: snake_case_ : Tuple = '''image''' elif "img" in column_names: snake_case_ : str = '''img''' else: snake_case_ : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case_ : str = image_processor.size['''shortest_edge'''] else: snake_case_ : Dict = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case_ : str = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): snake_case_ : Tuple = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: snake_case_ : List[str] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: snake_case_ : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate snake_case_ : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case_ : str = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Any = None if training_args.resume_from_checkpoint is not None: snake_case_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : List[str] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub snake_case_ : Optional[int] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def __lowercase ( _a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
485
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _UpperCAmelCase : Union[str, Any] = (720, 1280) # Height, Width _UpperCAmelCase : str = (0.4, 0.6) # if height or width lower than this scale, drop it. _UpperCAmelCase : Optional[Any] = 1 / 100 _UpperCAmelCase : Optional[Any] = """""" _UpperCAmelCase : int = """""" _UpperCAmelCase : Union[str, Any] = """""" _UpperCAmelCase : List[Any] = 250 def snake_case__ ( ) -> None: _UpperCamelCase, _UpperCamelCase : List[Any] = get_dataset(UpperCamelCase ,UpperCamelCase ) for index in range(UpperCamelCase ): _UpperCamelCase : List[str] = random.sample(range(len(UpperCamelCase ) ) ,4 ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[str] = update_image_and_anno( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,filter_scale=UpperCamelCase ,) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase : List[str] = random_chars(32 ) _UpperCamelCase : List[str] = path.split(os.sep )[-1].rsplit('''.''' ,1 )[0] _UpperCamelCase : Any = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' ,UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _UpperCamelCase : Any = [] for anno in new_annos: _UpperCamelCase : List[Any] = anno[3] - anno[1] _UpperCamelCase : int = anno[4] - anno[2] _UpperCamelCase : int = anno[1] + width / 2 _UpperCamelCase : int = anno[2] + height / 2 _UpperCamelCase : Optional[Any] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCamelCase ) with open(f'''{file_root}.txt''' ,'''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> tuple[list, list]: _UpperCamelCase : List[str] = [] _UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(UpperCamelCase ,'''*.txt''' ) ): _UpperCamelCase : int = label_file.split(os.sep )[-1].rsplit('''.''' ,1 )[0] with open(UpperCamelCase ) as in_file: _UpperCamelCase : Dict = in_file.readlines() _UpperCamelCase : Tuple = os.path.join(UpperCamelCase ,f'''{label_name}.jpg''' ) _UpperCamelCase : Tuple = [] for obj_list in obj_lists: _UpperCamelCase : List[Any] = obj_list.rstrip('''\n''' ).split(''' ''' ) _UpperCamelCase : Tuple = float(obj[1] ) - float(obj[3] ) / 2 _UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 _UpperCamelCase : Tuple = float(obj[1] ) + float(obj[3] ) / 2 _UpperCamelCase : List[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCamelCase ) labels.append(UpperCamelCase ) return img_paths, labels def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 0.0 ,) -> tuple[list, list, str]: _UpperCamelCase : Optional[int] = np.zeros([output_size[0], output_size[1], 3] ,dtype=np.uinta ) _UpperCamelCase : str = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase : Dict = int(scale_x * output_size[1] ) _UpperCamelCase : Dict = int(scale_y * output_size[0] ) _UpperCamelCase : int = [] _UpperCamelCase : Union[str, Any] = [] for i, index in enumerate(UpperCamelCase ): _UpperCamelCase : Optional[int] = all_img_list[index] path_list.append(UpperCamelCase ) _UpperCamelCase : str = all_annos[index] _UpperCamelCase : Tuple = cva.imread(UpperCamelCase ) if i == 0: # top-left _UpperCamelCase : Any = cva.resize(UpperCamelCase ,(divid_point_x, divid_point_y) ) _UpperCamelCase : Any = img for bbox in img_annos: _UpperCamelCase : List[Any] = bbox[1] * scale_x _UpperCamelCase : Dict = bbox[2] * scale_y _UpperCamelCase : Any = bbox[3] * scale_x _UpperCamelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _UpperCamelCase : Union[str, Any] = cva.resize(UpperCamelCase ,(output_size[1] - divid_point_x, divid_point_y) ) _UpperCamelCase : List[Any] = img for bbox in img_annos: _UpperCamelCase : Any = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase : Optional[Any] = bbox[2] * scale_y _UpperCamelCase : Any = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _UpperCamelCase : Dict = cva.resize(UpperCamelCase ,(divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase : List[str] = img for bbox in img_annos: _UpperCamelCase : int = bbox[1] * scale_x _UpperCamelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase : int = bbox[3] * scale_x _UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _UpperCamelCase : Dict = cva.resize( UpperCamelCase ,(output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase : Union[str, Any] = img for bbox in img_annos: _UpperCamelCase : Optional[int] = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _UpperCamelCase : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case__ ( UpperCamelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase ) for _ in range(UpperCamelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
683
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase ( a_ ): """simple docstring""" @slow @require_torch def _lowercase ( self ) -> List[Any]: _UpperCamelCase : Union[str, Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) _UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _UpperCamelCase : Optional[Any] = bertabert.config.encoder.vocab_size _UpperCamelCase : List[str] = tokenizer.sep_token_id _UpperCamelCase : List[str] = tokenizer.cls_token_id _UpperCamelCase : Optional[Any] = 128 _UpperCamelCase : int = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) _UpperCamelCase : Dict = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) _UpperCamelCase : Dict = train_dataset.select(range(32 ) ) _UpperCamelCase : Tuple = val_dataset.select(range(16 ) ) _UpperCamelCase : Union[str, Any] = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCamelCase : Optional[Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) _UpperCamelCase : Optional[int] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) _UpperCamelCase : str = inputs.input_ids _UpperCamelCase : Union[str, Any] = inputs.attention_mask _UpperCamelCase : str = outputs.input_ids _UpperCamelCase : str = outputs.input_ids.copy() _UpperCamelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _UpperCamelCase : Union[str, Any] = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): _UpperCamelCase : Dict = pred.label_ids _UpperCamelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCamelCase : Any = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) _UpperCamelCase : Dict = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) _UpperCamelCase : int = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset _UpperCamelCase : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset _UpperCamelCase : List[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) _UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCamelCase : Union[str, Any] = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCamelCase : Optional[int] = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
683
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCAmelCase__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCamelCase : str = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def lowerCamelCase_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCamelCase : List[str] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) _UpperCamelCase : int = PegasusConfig(**UpperCAmelCase_ ) _UpperCamelCase : int = PegasusForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : str = torch_model.model.state_dict() _UpperCamelCase : List[Any] = {} for k, v in tf_weights.items(): _UpperCamelCase : List[Any] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: _UpperCamelCase : int = v.T _UpperCamelCase : Union[str, Any] = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected _UpperCamelCase : List[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _UpperCamelCase : List[str] = mapping['shared.weight'] _UpperCamelCase : List[Any] = mapping['shared.weight'] _UpperCamelCase : Union[str, Any] = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : List[str] = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( UpperCAmelCase_ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCamelCase : str = tf.train.list_variables(UpperCAmelCase_ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): _UpperCamelCase : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCamelCase : Tuple = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = array return tf_weights def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = Path(UpperCAmelCase_ ).parent.name _UpperCamelCase : Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] _UpperCamelCase : List[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model _UpperCamelCase : Union[str, Any] = get_tf_weights_as_numpy(UpperCAmelCase_ ) _UpperCamelCase : str = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": _UpperCamelCase : Optional[Any] = task_specific_params _UpperCamelCase : List[str] = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) _UpperCamelCase : List[str] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase__ = parser.parse_args() if args.save_dir is None: lowerCAmelCase__ = Path(args.tf_ckpt_path).parent.name lowerCAmelCase__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase__ ( __snake_case , unittest.TestCase ): __snake_case : int = BarthezTokenizer __snake_case : Optional[int] = BarthezTokenizerFast __snake_case : str = True __snake_case : str = True def A__ ( self ): super().setUp() _A : Union[str, Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=A__ ) _A : str = tokenizer def A__ ( self ): _A : Optional[int] = '''<pad>''' _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) ,A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) ,A__ ) def A__ ( self ): _A : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(A__ ) ,101122 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,101122 ) @require_torch def A__ ( self ): _A : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _A : Union[str, Any] = [0, 57, 3018, 70307, 91, 2] _A : List[str] = self.tokenizer( A__ ,max_length=len(A__ ) ,padding=A__ ,truncation=A__ ,return_tensors='''pt''' ) self.assertIsInstance(A__ ,A__ ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) _A : Dict = batch.input_ids.tolist()[0] self.assertListEqual(A__ ,A__ ) def A__ ( self ): if not self.test_rust_tokenizer: return _A : Any = self.get_tokenizer() _A : int = self.get_rust_tokenizer() _A : str = '''I was born in 92000, and this is falsé.''' _A : Union[str, Any] = tokenizer.tokenize(A__ ) _A : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ ,A__ ) _A : List[Any] = tokenizer.encode(A__ ,add_special_tokens=A__ ) _A : Tuple = rust_tokenizer.encode(A__ ,add_special_tokens=A__ ) self.assertListEqual(A__ ,A__ ) _A : Optional[int] = self.get_rust_tokenizer() _A : Optional[int] = tokenizer.encode(A__ ) _A : Optional[int] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ ,A__ ) @slow def A__ ( self ): # fmt: off _A : Dict = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _A : int = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=A__ ,model_name='''moussaKam/mbarthez''' ,revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' ,sequences=A__ ,)
206
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCamelCase : Union[str, Any] ={'UserAgent': UserAgent().random} def a__ (__lowercase :Optional[Any] ) -> dict: _A : str = script.contents[0] _A : Dict = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase__ : def __init__( self ,A__ ): _A : Any = f"""https://www.instagram.com/{username}/""" _A : Optional[Any] = self.get_json() def A__ ( self ): _A : str = requests.get(self.url ,headers=A__ ).text _A : Dict = BeautifulSoup(A__ ,'''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def A__ ( self ): return self.user_data["username"] @property def A__ ( self ): return self.user_data["full_name"] @property def A__ ( self ): return self.user_data["biography"] @property def A__ ( self ): return self.user_data["business_email"] @property def A__ ( self ): return self.user_data["external_url"] @property def A__ ( self ): return self.user_data["edge_followed_by"]["count"] @property def A__ ( self ): return self.user_data["edge_follow"]["count"] @property def A__ ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A__ ( self ): return self.user_data["profile_pic_url_hd"] @property def A__ ( self ): return self.user_data["is_verified"] @property def A__ ( self ): return self.user_data["is_private"] def a__ (__lowercase :str = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _A : Optional[int] = InstagramUser(__lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : List[Any] =InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
206
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase__ = "fp16" self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase__ = "fp16" self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCAmelCase__ = "fp16" self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase__ = "fp16" self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCAmelCase__ = "fp16" self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCAmelCase__ = "fp16" self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase__ = "fp16" self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
277
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A = logging.get_logger(__name__) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *_lowercase : Any , **_lowercase : Optional[int] ): """simple docstring""" warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
277
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return base * power(__lowercase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") UpperCAmelCase_ : Dict = int(input("Enter the base: ").strip()) UpperCAmelCase_ : Dict = int(input("Enter the exponent: ").strip()) UpperCAmelCase_ : List[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents UpperCAmelCase_ : Optional[int] = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
21
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCamelCase ( __lowercase : int ,__lowercase : List[str] ,__lowercase : str ,__lowercase : Optional[Any] ,__lowercase : Any ): '''simple docstring''' for attribute in key.split('.' ): A_ : Dict = getattr(__lowercase ,__lowercase ) if weight_type is not None: A_ : Any = getattr(__lowercase ,__lowercase ).shape else: A_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : int = value elif weight_type == "weight_g": A_ : Tuple = value elif weight_type == "weight_v": A_ : Union[str, Any] = value elif weight_type == "bias": A_ : Any = value else: A_ : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase ( __lowercase : str ,__lowercase : Dict ,__lowercase : Tuple ): '''simple docstring''' A_ : Optional[Any] = [] A_ : Tuple = fairseq_model.state_dict() A_ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == 'group' ,) A_ : List[str] = True else: for key, mapped_key in MAPPING.items(): A_ : str = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A_ : int = True if "*" in mapped_key: A_ : str = name.split(__lowercase )[0].split('.' )[-2] A_ : Optional[Any] = mapped_key.replace('*' ,__lowercase ) if "weight_g" in name: A_ : Dict = 'weight_g' elif "weight_v" in name: A_ : Tuple = 'weight_v' elif "weight" in name: A_ : Union[str, Any] = 'weight' elif "bias" in name: A_ : Optional[Any] = 'bias' else: A_ : Union[str, Any] = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Union[str, Any] ,__lowercase : Any ,__lowercase : List[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : Optional[int] = full_name.split('conv_layers.' )[-1] A_ : Any = name.split('.' ) A_ : Dict = int(items[0] ) A_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : str ): '''simple docstring''' A_ : Union[str, Any] = SEWConfig() if is_finetuned: A_ : Any = model.wav_encoder.wav_model.cfg else: A_ : int = model.cfg A_ : Any = fs_config.conv_bias A_ : Dict = eval(fs_config.conv_feature_layers ) A_ : List[Any] = [x[0] for x in conv_layers] A_ : Optional[Any] = [x[1] for x in conv_layers] A_ : List[Any] = [x[2] for x in conv_layers] A_ : Optional[int] = 'gelu' A_ : Union[str, Any] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' A_ : Tuple = 0.0 A_ : Dict = fs_config.activation_fn.name A_ : List[Any] = fs_config.encoder_embed_dim A_ : int = 0.02 A_ : List[str] = fs_config.encoder_ffn_embed_dim A_ : Any = 1e-5 A_ : Optional[Any] = fs_config.encoder_layerdrop A_ : Optional[int] = fs_config.encoder_attention_heads A_ : Any = fs_config.conv_pos_groups A_ : int = fs_config.conv_pos A_ : Tuple = len(__lowercase ) A_ : List[Any] = fs_config.encoder_layers A_ : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A_ : Union[str, Any] = model.cfg A_ : str = fs_config.final_dropout A_ : Any = fs_config.layerdrop A_ : str = fs_config.activation_dropout A_ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A_ : str = fs_config.attention_dropout A_ : Any = fs_config.dropout_input A_ : Dict = fs_config.dropout A_ : Optional[Any] = fs_config.mask_channel_length A_ : List[str] = fs_config.mask_channel_prob A_ : Tuple = fs_config.mask_length A_ : Dict = fs_config.mask_prob A_ : Any = 'Wav2Vec2FeatureExtractor' A_ : Union[str, Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : int ,__lowercase : Optional[int]=None ,__lowercase : Optional[Any]=None ,__lowercase : str=True ): '''simple docstring''' if is_finetuned: A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A_ : Union[str, Any] = SEWConfig.from_pretrained(__lowercase ) else: A_ : Dict = convert_config(model[0] ,__lowercase ) A_ : Union[str, Any] = model[0].eval() A_ : Optional[int] = True if config.feat_extract_norm == 'layer' else False A_ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_60_00 ,padding_value=0 ,do_normalize=__lowercase ,return_attention_mask=__lowercase ,) if is_finetuned: if dict_path: A_ : Optional[int] = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : int = target_dict.pad_index A_ : List[Any] = target_dict.bos_index A_ : Optional[Any] = target_dict.pad_index A_ : str = target_dict.bos_index A_ : str = target_dict.eos_index A_ : str = len(target_dict.symbols ) A_ : Union[str, Any] = os.path.join(__lowercase ,'vocab.json' ) if not os.path.isdir(__lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowercase ) ) return os.makedirs(__lowercase ,exist_ok=__lowercase ) with open(__lowercase ,'w' ,encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices ,__lowercase ) A_ : Any = WavaVecaCTCTokenizer( __lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='|' ,do_lower_case=__lowercase ,) A_ : Tuple = WavaVecaProcessor(feature_extractor=__lowercase ,tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) A_ : Dict = SEWForCTC(__lowercase ) else: A_ : Tuple = SEWModel(__lowercase ) feature_extractor.save_pretrained(__lowercase ) recursively_load_weights(__lowercase ,__lowercase ,__lowercase ) hf_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
558
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _SCREAMING_SNAKE_CASE ( ): print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): print("""Generating prime p...""" ) _lowercase = rabinMiller.generate_large_prime(snake_case_ ) print("""Generating prime q...""" ) _lowercase = rabinMiller.generate_large_prime(snake_case_ ) _lowercase = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: _lowercase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(snake_case_ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) _lowercase = cryptoMath.find_mod_inverse(snake_case_ , (p - 1) * (q - 1) ) _lowercase = (n, e) _lowercase = (n, d) return (public_key, private_key) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() _lowercase , _lowercase = generate_key(snake_case_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , """w""" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , """w""" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
572
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowercase = 1 _lowercase = 1 while repunit: _lowercase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _SCREAMING_SNAKE_CASE ( snake_case_ = 1000000 ): _lowercase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
572
1
'''simple docstring''' from manim import * class lowerCAmelCase ( UpperCamelCase_ ): def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ : List[Any] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase__ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ : Dict = [mem.copy() for i in range(6 )] lowerCAmelCase__ : str = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Union[str, Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : List[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Union[str, Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Any = Text("CPU" , font_size=24 ) lowerCAmelCase__ : Tuple = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) lowerCAmelCase__ : int = [mem.copy() for i in range(4 )] lowerCAmelCase__ : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Tuple = Text("GPU" , font_size=24 ) lowerCAmelCase__ : List[str] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) lowerCAmelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Optional[int] = Text("Model" , font_size=24 ) lowerCAmelCase__ : List[str] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) lowerCAmelCase__ : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) lowerCAmelCase__ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : str = Text("Loaded Checkpoint" , font_size=24 ) lowerCAmelCase__ : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) lowerCAmelCase__ : Any = [] lowerCAmelCase__ : List[str] = [] for i, rect in enumerate(a__ ): lowerCAmelCase__ : Any = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) lowerCAmelCase__ : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) lowerCAmelCase__ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : List[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) lowerCAmelCase__ : Tuple = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) lowerCAmelCase__ : Dict = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCAmelCase__ : int = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : str = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Union[str, Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : str = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) lowerCAmelCase__ : Optional[int] = Text("Disk" , font_size=24 ) lowerCAmelCase__ : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) lowerCAmelCase__ : int = [] for i, rect in enumerate(a__ ): lowerCAmelCase__ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) lowerCAmelCase__ : int = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
378
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py snake_case = """.""" if __name__ == "__main__": snake_case = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") snake_case = [] snake_case = [] with open(doctest_file_path) as fp: for line in fp: snake_case = line.strip() snake_case = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: snake_case = """\n""".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
378
1
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = CodeGenTokenizer a_ = CodeGenTokenizerFast a_ = True a_ = {"add_prefix_space": True} a_ = False def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] a_ : Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) a_ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a_ : Any = {"""unk_token""": """<unk>"""} a_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' a_ : str = """lower newer""" a_ : str = """lower newer""" return input_text, output_text def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : Dict = """lower newer""" a_ : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] a_ : Any = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = tokens + [tokenizer.unk_token] a_ : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return a_ : Optional[int] = self.get_tokenizer() a_ : List[Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) a_ : Tuple = """lower newer""" # Testing tokenization a_ : List[Any] = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) a_ : Dict = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens a_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) a_ : List[str] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens a_ : Dict = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) a_ : Optional[int] = tokenizer.encode(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) a_ : Dict = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing the unknown token a_ : List[str] = tokens + [rust_tokenizer.unk_token] a_ : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' pass def _lowerCAmelCase ( self , lowerCAmelCase_=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input a_ : List[Any] = """This is a simple input""" a_ : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] a_ : List[Any] = ("""This is a simple input""", """This is a pair""") a_ : int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input a_ : Optional[int] = """This is a simple input""" a_ : Union[str, Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] a_ : List[str] = ("""This is a simple input""", """This is a pair""") a_ : int = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] a_ : Optional[int] = tokenizer.pad_token_id a_ : Optional[int] = tokenizer(lowerCAmelCase_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) a_ : str = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors="""np""" ) a_ : List[Any] = tokenizer(*lowerCAmelCase_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) a_ : str = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = """$$$""" a_ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase_ , add_bos_token=lowerCAmelCase_ ) a_ : Any = """This is a simple input""" a_ : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] a_ : Union[str, Any] = tokenizer.bos_token_id a_ : int = tokenizer(lowerCAmelCase_ ) a_ : Union[str, Any] = tokenizer(lowerCAmelCase_ ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a_ : Optional[Any] = tokenizer.decode(out_s.input_ids ) a_ : Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) a_ : Union[str, Any] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" a_ : Tuple = """\nif len_a > len_b: result = a\nelse: result = b""" a_ : int = tokenizer.encode(lowerCAmelCase_ ) a_ : Any = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] a_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase_ , truncate_before_pattern=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' pass
460
'''simple docstring''' def _snake_case ( A_ : list ): """simple docstring""" if len(A_ ) <= 1: return lst a_ : Any = 1 while i < len(A_ ): if lst[i - 1] <= lst[i]: i += 1 else: a_ , a_ : int = lst[i], lst[i - 1] i -= 1 if i == 0: a_ : List[str] = 1 return lst if __name__ == "__main__": __snake_case: List[Any] = input("Enter numbers separated by a comma:\n").strip() __snake_case: Optional[int] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
460
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Optional[int] ,A : int=13 ,A : Tuple=7 ,A : Dict=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=True ,A : Any=99 ,A : Tuple=32 ,A : Dict=5 ,A : Optional[int]=4 ,A : Dict=37 ,A : Any="gelu" ,A : Any=0.1 ,A : Optional[int]=0.1 ,A : Union[str, Any]=512 ,A : Any=16 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[int]=4 ,): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase__ : Dict = model(A ,attention_mask=A )[0] UpperCAmelCase__ : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1e-4 ) )
65
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "roformer" def __init__(self : Dict , snake_case_ : Optional[Any]=5_0_0_0_0 , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=7_6_8 , snake_case_ : Dict=1_2 , snake_case_ : Optional[int]=1_2 , snake_case_ : Optional[Any]=3_0_7_2 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=1_5_3_6 , snake_case_ : Any=2 , snake_case_ : Optional[int]=0.02 , snake_case_ : int=1E-12 , snake_case_ : Union[str, Any]=0 , snake_case_ : Any=False , snake_case_ : Dict=True , **snake_case_ : Union[str, Any] , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) __a : Dict = vocab_size __a : Optional[Any] = hidden_size if embedding_size is None else embedding_size __a : Optional[Any] = hidden_size __a : Any = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : List[Any] = hidden_act __a : List[Any] = intermediate_size __a : List[str] = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : List[Any] = type_vocab_size __a : List[Any] = initializer_range __a : Dict = layer_norm_eps __a : List[str] = rotary_value __a : Optional[Any] = use_cache class UpperCamelCase__ ( __lowercase ): @property def lowerCAmelCase (self : Union[str, Any] ): if self.task == "multiple-choice": __a : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : Optional[int] = {0: '''batch''', 1: '''sequence'''} __a : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
521
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
86
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ (self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # create attention mask UpperCamelCase__ = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.seq_length // 2 UpperCamelCase__ = 0 # first forward pass UpperCamelCase__ , UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase__ = ids_tensor((1,) , SCREAMING_SNAKE_CASE_ ).item() + 1 UpperCamelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase__ = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )] , dim=1 , ) # get two different outputs UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = BioGptModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ """last_hidden_state""" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase__ = BioGptForCausalLM(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = BioGptModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = BioGptForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = BioGptModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE_ , gradient_checkpointing=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase__ = """left""" # Define PAD Token = EOS Token = 50256 UpperCamelCase__ = tokenizer.eos_token UpperCamelCase__ = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase__ = [ """Hello, my dog is a little""", """Today, I""", ] UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs["""attention_mask"""].to(SCREAMING_SNAKE_CASE_ ) , ) UpperCamelCase__ = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(input_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() UpperCamelCase__ = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_length=model.config.max_length - num_paddings ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase_ (self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = """multi_label_classification""" UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase__ = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = 4_23_84 UpperCamelCase__ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase__ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) UpperCamelCase__ = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate( **SCREAMING_SNAKE_CASE_ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
86
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCamelCase ( _snake_case ,_snake_case ): """simple docstring""" __a : str = """pixel_values""" __a : Tuple = False __a : Optional[int] = TimmBackboneConfig def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , '''timm''' ) super().__init__(snake_case_ ) __lowercase = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"backbone {config.backbone} is not supported by timm." ) if hasattr(snake_case_ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __lowercase = getattr(snake_case_ , '''use_pretrained_backbone''' , snake_case_ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __lowercase = config.out_indices if getattr(snake_case_ , '''out_indices''' , snake_case_ ) is not None else (-1,) __lowercase = timm.create_model( config.backbone , pretrained=snake_case_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=snake_case_ , **snake_case_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowercase = self._backbone.return_layers __lowercase = {layer["module"]: str(snake_case_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __lowercase = kwargs.pop('''config''' , TimmBackboneConfig() ) __lowercase = kwargs.pop('''use_timm_backbone''' , snake_case_ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __lowercase = kwargs.pop('''num_channels''' , config.num_channels ) __lowercase = kwargs.pop('''features_only''' , config.features_only ) __lowercase = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) __lowercase = kwargs.pop('''out_indices''' , config.out_indices ) __lowercase = TimmBackboneConfig( backbone=snake_case_ , num_channels=snake_case_ , features_only=snake_case_ , use_pretrained_backbone=snake_case_ , out_indices=snake_case_ , ) return super()._from_config(snake_case_ , **snake_case_ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowercase = self._all_layers __lowercase = self._backbone(snake_case_ , **snake_case_ ) __lowercase = self._return_layers __lowercase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowercase = self._backbone(snake_case_ , **snake_case_ ) __lowercase = None __lowercase = tuple(snake_case_ ) __lowercase = tuple(snake_case_ ) if hidden_states is not None else None if not return_dict: __lowercase = (feature_maps,) if output_hidden_states: __lowercase = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case_ , hidden_states=snake_case_ , attentions=snake_case_ )
721
from __future__ import annotations def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(lowercase , a % b ) __lowercase = a // b return (y, x - k * y) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(lowercase , lowercase ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(lowercase , lowercase ) if b < 0: __lowercase = (b % n + n) % n return b def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase , __lowercase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
522
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A : Optional[Any] = get_tests_dir('''fixtures''') class __A ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase : Tuple = mock.Mock() lowerCAmelCase : Any = 500 lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Optional[Any] = HTTPError lowerCAmelCase : Dict = {} # Download this model to make sure it's in the cache. lowerCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_ ) as mock_head: lowerCAmelCase : int = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : Dict ): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def lowercase__ ( self : Any ): with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase : int = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(UpperCAmelCase_ ) @is_staging_test class __A ( unittest.TestCase ): @classmethod def lowercase__ ( cls : int ): lowerCAmelCase : Tuple = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : Tuple ): try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = ViTImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id='test-image-processor' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) lowerCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = ViTImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-image-processor-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : str ): CustomImageProcessor.register_for_auto_class() lowerCAmelCase : str = CustomImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) lowerCAmelCase : int = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
343
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' if index == r: for j in range(_UpperCAmelCase ): print(data[j], end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase : List[Any] = arr[i] combination_util(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, index + 1, _UpperCAmelCase, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, 0, _UpperCAmelCase, 0 ) if __name__ == "__main__": # Driver code to check the function above __A : Optional[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
343
1
from timeit import timeit def __UpperCamelCase ( lowerCAmelCase__ : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) __a : int = 0 while number: number &= number - 1 result += 1 return result def __UpperCamelCase ( lowerCAmelCase__ : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) __a : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCamelCase ( ): def do_benchmark(lowerCAmelCase__ : int ) -> None: __a : Optional[Any] = '''import __main__ as z''' print(f"Benchmark when {number = }:" ) print(f"{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }" ) __a : Union[str, Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=lowerCAmelCase__ ) print(f"timeit() runs in {timing} seconds" ) print(f"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }" ) __a : Dict = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=lowerCAmelCase__ , ) print(f"timeit() runs in {timing} seconds" ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
326
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __UpperCamelCase ( lowerCAmelCase__ : int ): random.seed(lowerCAmelCase__ ) np.random.seed(lowerCAmelCase__ ) torch.manual_seed(lowerCAmelCase__ ) torch.cuda.manual_seed_all(lowerCAmelCase__ ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase__ : def __init__(self : Any , snake_case_ : Iterable[torch.nn.Parameter] , snake_case_ : float = 0.9999 , snake_case_ : float = 0.0 , snake_case_ : int = 0 , snake_case_ : bool = False , snake_case_ : Union[float, int] = 1.0 , snake_case_ : Union[float, int] = 2 / 3 , snake_case_ : Optional[Any] = None , snake_case_ : Dict[str, Any] = None , **snake_case_ : int , ): if isinstance(snake_case_ , torch.nn.Module ): __a : Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a : str = True if kwargs.get('''max_value''' , snake_case_ ) is not None: __a : List[Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : Optional[Any] = kwargs['''max_value'''] if kwargs.get('''min_value''' , snake_case_ ) is not None: __a : Optional[int] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : int = kwargs['''min_value'''] __a : Any = list(snake_case_ ) __a : Optional[int] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , snake_case_ ) is not None: __a : Optional[Any] = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) self.to(device=kwargs['''device'''] ) __a : List[str] = None __a : Tuple = decay __a : str = min_decay __a : Any = update_after_step __a : List[str] = use_ema_warmup __a : Any = inv_gamma __a : Any = power __a : Union[str, Any] = 0 __a : Dict = None # set in `step()` __a : Any = model_cls __a : Any = model_config @classmethod def lowerCAmelCase (cls : List[str] , snake_case_ : Dict , snake_case_ : Dict ): __a , __a : Optional[int] = model_cls.load_config(snake_case_ , return_unused_kwargs=snake_case_ ) __a : Dict = model_cls.from_pretrained(snake_case_ ) __a : List[Any] = cls(model.parameters() , model_cls=snake_case_ , model_config=model.config ) ema_model.load_state_dict(snake_case_ ) return ema_model def lowerCAmelCase (self : Optional[Any] , snake_case_ : Dict ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) __a : int = self.model_cls.from_config(self.model_config ) __a : List[Any] = self.state_dict() state_dict.pop('''shadow_params''' , snake_case_ ) model.register_to_config(**snake_case_ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Tuple = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __a : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a : List[str] = (1 + step) / (1_0 + step) __a : Dict = min(snake_case_ , self.decay ) # make sure decay is not smaller than min_decay __a : int = max(snake_case_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if isinstance(snake_case_ , torch.nn.Module ): __a : List[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Union[str, Any] = parameters.parameters() __a : Optional[Any] = list(snake_case_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a : str = self.get_decay(self.optimization_step ) __a : List[str] = decay __a : Dict = 1 - decay __a : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a : Dict = deepspeed.zero.GatheredParameters(snake_case_ , modifier_rank=snake_case_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = list(snake_case_ ) for s_param, param in zip(self.shadow_params , snake_case_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase (self : int , snake_case_ : int=None , snake_case_ : int=None ): __a : str = [ p.to(device=snake_case_ , dtype=snake_case_ ) if p.is_floating_point() else p.to(device=snake_case_ ) for p in self.shadow_params ] def lowerCAmelCase (self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase (self : Tuple , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , snake_case_ ): param.data.copy_(c_param.data ) # Better memory-wise. __a : Optional[Any] = None def lowerCAmelCase (self : Optional[int] , snake_case_ : dict ): __a : Dict = copy.deepcopy(snake_case_ ) __a : int = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) __a : List[str] = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , snake_case_ ): raise ValueError('''Invalid min_decay''' ) __a : Dict = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , snake_case_ ): raise ValueError('''Invalid optimization_step''' ) __a : Optional[int] = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , snake_case_ ): raise ValueError('''Invalid update_after_step''' ) __a : Any = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case_ ): raise ValueError('''Invalid use_ema_warmup''' ) __a : Any = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) __a : Tuple = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) __a : Dict = state_dict.get('''shadow_params''' , snake_case_ ) if shadow_params is not None: __a : Tuple = shadow_params if not isinstance(self.shadow_params , snake_case_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(snake_case_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
326
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = int(lowerCAmelCase_ ) assert noofclusters < len(lowerCAmelCase_ ) # Find out the dimensionality _snake_case = len(vectors[0] ) # Will help select random centroids from among the available vectors _snake_case = list(range(len(lowerCAmelCase_ ) ) ) shuffle(lowerCAmelCase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _snake_case = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _snake_case = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _snake_case = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowerCAmelCase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values _snake_case = tf.placeholder('''float64''' , [dim] ) _snake_case = [] for centroid in centroids: cent_assigns.append(tf.assign(lowerCAmelCase_ , lowerCAmelCase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _snake_case = [tf.Variable(0 ) for i in range(len(lowerCAmelCase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value _snake_case = tf.placeholder('''int32''' ) _snake_case = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowerCAmelCase_ , lowerCAmelCase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _snake_case = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _snake_case = tf.reduce_mean(lowerCAmelCase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input _snake_case = tf.placeholder('''float''' , [dim] ) _snake_case = tf.placeholder('''float''' , [dim] ) _snake_case = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCAmelCase_ , lowerCAmelCase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _snake_case = tf.placeholder('''float''' , [noofclusters] ) _snake_case = tf.argmin(lowerCAmelCase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _snake_case = tf.initialize_all_variables() # Initialize all variables sess.run(lowerCAmelCase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _snake_case = 100 for _ in range(lowerCAmelCase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowerCAmelCase_ ) ): _snake_case = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _snake_case = [ sess.run(lowerCAmelCase_ , feed_dict={va: vect, va: sess.run(lowerCAmelCase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _snake_case = sess.run( lowerCAmelCase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowerCAmelCase_ ): # Collect all the vectors assigned to this cluster _snake_case = [ vectors[i] for i in range(len(lowerCAmelCase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _snake_case = sess.run( lowerCAmelCase_ , feed_dict={mean_input: array(lowerCAmelCase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _snake_case = sess.run(lowerCAmelCase_ ) _snake_case = sess.run(lowerCAmelCase_ ) return centroids, assignments
103
from collections.abc import Iterable from typing import Any class A : def __init__( self : Dict , lowercase_ : int | None = None ) -> int: """simple docstring""" _lowerCamelCase : List[Any] =value _lowerCamelCase : Node | None =None # Added in order to delete a node easier _lowerCamelCase : Node | None =None _lowerCamelCase : Node | None =None def __repr__( self : Dict ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class A : def __init__( self : Union[str, Any] , lowercase_ : Node | None = None ) -> int: """simple docstring""" _lowerCamelCase : Optional[int] =root def __str__( self : Tuple ) -> str: """simple docstring""" return str(self.root ) def lowerCamelCase ( self : Optional[Any] , lowercase_ : Node , lowercase_ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids _lowerCamelCase : Optional[int] =node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_ ): # If it is the right children _lowerCamelCase : int =new_children else: _lowerCamelCase : Dict =new_children else: _lowerCamelCase : Tuple =new_children def lowerCamelCase ( self : Optional[Any] , lowercase_ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase ( self : int ) -> bool: """simple docstring""" return self.root is None def lowerCamelCase ( self : List[Any] , lowercase_ : Union[str, Any] ) -> None: """simple docstring""" _lowerCamelCase : Optional[Any] =Node(lowercase_ ) # create a new Node if self.empty(): # if Tree is empty _lowerCamelCase : Union[str, Any] =new_node # set its root else: # Tree is not empty _lowerCamelCase : Optional[int] =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _lowerCamelCase : Optional[int] =new_node # We insert the new node in a leaf break else: _lowerCamelCase : Optional[Any] =parent_node.left else: if parent_node.right is None: _lowerCamelCase : Optional[Any] =new_node break else: _lowerCamelCase : Optional[int] =parent_node.right _lowerCamelCase : Optional[Any] =parent_node def lowerCamelCase ( self : Any , *lowercase_ : Union[str, Any] ) -> None: """simple docstring""" for value in values: self.__insert(lowercase_ ) def lowerCamelCase ( self : Optional[int] , lowercase_ : List[Any] ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: _lowerCamelCase : int =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _lowerCamelCase : Dict =node.left if value < node.value else node.right return node def lowerCamelCase ( self : Tuple , lowercase_ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None _lowerCamelCase : Union[str, Any] =self.root if not self.empty(): while node.right is not None: _lowerCamelCase : Optional[int] =node.right return node def lowerCamelCase ( self : Optional[Any] , lowercase_ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: _lowerCamelCase : Union[str, Any] =self.root if self.root is None: return None if not self.empty(): _lowerCamelCase : Optional[int] =self.root while node.left is not None: _lowerCamelCase : List[Any] =node.left return node def lowerCamelCase ( self : Tuple , lowercase_ : int ) -> None: """simple docstring""" _lowerCamelCase : List[str] =self.search(lowercase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ , lowercase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ , node.left ) else: _lowerCamelCase : List[str] =self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _lowerCamelCase : Union[str, Any] =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase ( self : str , lowercase_ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase ( self : str , lowercase_ : Dict=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : list , lowercase_ : Node | None ) -> None: """simple docstring""" if node: self.inorder(lowercase_ , node.left ) arr.append(node.value ) self.inorder(lowercase_ , node.right ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Node ) -> int: """simple docstring""" _lowerCamelCase : list[int] =[] self.inorder(lowercase_ , lowercase_ ) # append all values to list using inorder traversal return arr[k - 1] def a_ ( SCREAMING_SNAKE_CASE__ : Node | None ): '''simple docstring''' _lowerCamelCase : int =[] if curr_node is not None: _lowerCamelCase : List[Any] =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] =(8, 3, 6, 1, 10, 14, 13, 4, 7) _lowerCamelCase : int =BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
464
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
609
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[Any] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
609
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : Any ={ '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = '''convnextv2''' def __init__( self , _A=3 , _A=4 , _A=4 , _A=None , _A=None , _A="gelu" , _A=0.0_2 , _A=1e-12 , _A=0.0 , _A=224 , _A=None , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_stages __SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
148
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : List[str] =logging.get_logger(__name__) lowerCAmelCase__ : List[Any] ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase__ : Dict ={ '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCAmelCase__ : Dict ={'''facebook/blenderbot_small-90M''': 512} def __lowercase ( a__ ) -> str: __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char __SCREAMING_SNAKE_CASE = set(a__ ) return pairs class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : int = VOCAB_FILES_NAMES UpperCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , _A , _A , _A="__start__" , _A="__end__" , _A="__unk__" , _A="__null__" , **_A , ): '''simple docstring''' super().__init__(unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , **_A ) with open(_A , encoding='utf-8' ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(_A ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(_A , encoding='utf-8' ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split('\n' )[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges] __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = {} @property def _A ( self ): '''simple docstring''' return len(self.encoder ) def _A ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self , _A ): '''simple docstring''' if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = re.sub('([.,!?()])' , r' \1' , _A ) __SCREAMING_SNAKE_CASE = re.sub('(\')' , r' \1 ' , _A ) __SCREAMING_SNAKE_CASE = re.sub(r'\s{2,}' , ' ' , _A ) if "\n" in token: __SCREAMING_SNAKE_CASE = token.replace('\n' , ' __newln__' ) __SCREAMING_SNAKE_CASE = token.split(' ' ) __SCREAMING_SNAKE_CASE = [] for token in tokens: if not len(_A ): continue __SCREAMING_SNAKE_CASE = token.lower() __SCREAMING_SNAKE_CASE = tuple(_A ) __SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __SCREAMING_SNAKE_CASE = get_pairs(_A ) if not pairs: words.append(_A ) continue while True: __SCREAMING_SNAKE_CASE = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(_A ): try: __SCREAMING_SNAKE_CASE = word.index(_A , _A ) new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(_A ) __SCREAMING_SNAKE_CASE = new_word if len(_A ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(_A ) __SCREAMING_SNAKE_CASE = '@@ '.join(_A ) __SCREAMING_SNAKE_CASE = word[:-4] __SCREAMING_SNAKE_CASE = word words.append(_A ) return " ".join(_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = re.findall(r'\S+\n?' , _A ) for token in words: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = token.lower() return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def _A ( self , _A ): '''simple docstring''' return self.decoder.get(_A , self.unk_token ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ' '.join(_A ).replace('@@ ' , '' ).strip() return out_string def _A ( self , _A , _A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '\n' ) __SCREAMING_SNAKE_CASE = 0 with open(_A , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __SCREAMING_SNAKE_CASE = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return vocab_file, merge_file
148
1
import pytest __A : Any = """__dummy_dataset1__""" __A : List[str] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase_ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase_ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = script_dir / f"""{script_name}.py""" with open(SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE )
450
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A : Tuple = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if "://" in dataset_path: SCREAMING_SNAKE_CASE = dataset_path.split("""://""" )[1] return dataset_path def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): '''simple docstring''' if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = threading.Lock()
450
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase__ ( A__ ): @staticmethod @abstractmethod def lowerCamelCase_ ( __a : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' raise NotImplementedError()
306
def __lowerCAmelCase ( _UpperCamelCase = 2000000 ) -> int: '''simple docstring''' lowerCamelCase__: Tuple = [0 for i in range(n + 1 )] lowerCamelCase__: Optional[Any] = 1 lowerCamelCase__: List[str] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _UpperCamelCase ): lowerCamelCase__: Dict = 1 lowerCamelCase__: List[str] = 0 for i in range(_UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
306
1
from __future__ import annotations from collections import Counter from random import random class _SCREAMING_SNAKE_CASE : def __init__(self): '''simple docstring''' __UpperCAmelCase ={} def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase ={} def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCamelCase__) if nodea not in self.connections: self.add_node(lowerCamelCase__) __UpperCAmelCase =probability def A__ (self): '''simple docstring''' return list(self.connections) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =0 __UpperCAmelCase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Any: __UpperCAmelCase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase =Counter(graph.get_nodes() ) __UpperCAmelCase =start for _ in range(__lowerCAmelCase ): __UpperCAmelCase =graph.transition(__lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: hf_model.apply_weight_norm() UpperCAmelCase__ : Tuple = checkpoint['''input_conv.weight_g'''] UpperCAmelCase__ : Any = checkpoint['''input_conv.weight_v'''] UpperCAmelCase__ : Union[str, Any] = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): UpperCAmelCase__ : int = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCAmelCase__ : str = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCAmelCase__ : List[Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase__ : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase__ : List[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase__ : Any = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase__ : Tuple = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase__ : Tuple = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase__ : List[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase__ : List[Any] = checkpoint['''output_conv.1.weight_g'''] UpperCAmelCase__ : Union[str, Any] = checkpoint['''output_conv.1.weight_v'''] UpperCAmelCase__ : List[Any] = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> List[str]: if config_path is not None: UpperCAmelCase__ : Tuple = SpeechTaHifiGanConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : Union[str, Any] = SpeechTaHifiGanConfig() UpperCAmelCase__ : Optional[int] = SpeechTaHifiGan(lowerCAmelCase__ ) UpperCAmelCase__ : Any = torch.load(lowerCAmelCase__ ) load_weights(orig_checkpoint['''model''']['''generator'''] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = np.load(lowerCAmelCase__ ) UpperCAmelCase__ : str = stats[0].reshape(-1 ) UpperCAmelCase__ : Optional[int] = stats[1].reshape(-1 ) UpperCAmelCase__ : Tuple = torch.from_numpy(lowerCAmelCase__ ).float() UpperCAmelCase__ : Union[str, Any] = torch.from_numpy(lowerCAmelCase__ ).float() model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
75
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _snake_case ( lowerCamelCase ): """simple docstring""" lowerCamelCase_ = '''imagegpt''' lowerCamelCase_ = ['''past_key_values'''] lowerCamelCase_ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a=5_1_2 + 1 , a=3_2 * 3_2 , a=5_1_2 , a=2_4 , a=8 , a=None , a="quick_gelu" , a=0.1 , a=0.1 , a=0.1 , a=1e-5 , a=0.02 , a=True , a=True , a=False , a=False , a=False , **a , ) -> Optional[int]: """simple docstring""" _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = scale_attn_by_inverse_layer_idx _A = reorder_and_upcast_attn _A = tie_word_embeddings super().__init__(tie_word_embeddings=a , **a ) class _snake_case ( lowerCamelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def lowercase_ ( self , a , a = 1 , a = -1 , a = False , a = None , a = 3 , a = 3_2 , a = 3_2 , ) -> Mapping[str, Any]: """simple docstring""" _A = self._generate_dummy_images(a , a , a , a ) _A = dict(preprocessor(images=a , return_tensors=a ) ) return inputs
317
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): def __init__( self , _a ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ = nn.ModuleList(_a ) def __a ( self , _a , _a , _a , _a , _a , _a = None , _a = None , _a = None , _a = None , _a = False , _a = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(_a , _a , self.nets ) ): lowerCAmelCase_ , lowerCAmelCase_ = controlnet( _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) # merge samples if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = down_samples, mid_sample else: lowerCAmelCase_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_a , _a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __a ( self , _a , _a = True , _a = None , _a = False , _a = None , ) -> int: lowerCAmelCase_ = 0 lowerCAmelCase_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( _a , is_main_process=_a , save_function=_a , safe_serialization=_a , variant=_a , ) idx += 1 lowerCAmelCase_ = model_path_to_save + f"_{idx}" @classmethod def __a ( cls , _a , **_a ) -> List[str]: lowerCAmelCase_ = 0 lowerCAmelCase_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase_ = pretrained_model_path while os.path.isdir(_a ): lowerCAmelCase_ = ControlNetModel.from_pretrained(_a , **_a ) controlnets.append(_a ) idx += 1 lowerCAmelCase_ = pretrained_model_path + f"_{idx}" logger.info(f"{len(_a )} controlnets loaded from {pretrained_model_path}." ) if len(_a ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(_a )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(_a )
226
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , _a , _a=13 , _a=10 , _a=3 , _a=2 , _a=2 , _a=2 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.0_2 , _a=0.9 , _a=None , ) -> Tuple: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = tubelet_size lowerCAmelCase_ = num_frames lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = mask_ratio lowerCAmelCase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCAmelCase_ = (image_size // patch_size) ** 2 lowerCAmelCase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCAmelCase_ = int(mask_ratio * self.seq_length ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = VideoMAEModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a ) -> Any: lowerCAmelCase_ = VideoMAEForPreTraining(_a ) model.to(_a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.batch_size , -1 ).bool() lowerCAmelCase_ = model(_a , _a ) # model only returns predictions for masked patches lowerCAmelCase_ = mask.sum().item() lowerCAmelCase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __a ( self ) -> str: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Optional[int]: lowerCAmelCase_ = VideoMAEModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __a ( self , _a , _a , _a=False ) -> Optional[Any]: lowerCAmelCase_ = copy.deepcopy(_a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.model_tester.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCAmelCase_ = bool_masked_pos.to(_a ) if return_labels: if model_class in [ *get_values(_a ), ]: lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def __a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __a ( self ) -> List[str]: pass def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) @slow def __a ( self ) -> Optional[int]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = VideoMAEModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __a ( self ) -> Optional[int]: if not self.has_attentions: pass else: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True for model_class in self.all_model_classes: lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase_ = len(_a ) # Check attention is always last and order is fine lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 1 , len(_a ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __a ( self ) -> List[str]: def check_hidden_states_output(_a , _a , _a ): lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_a ) , _a ) lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[Any]: pass def A(): lowerCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCAmelCase_ = np.load(__a ) return list(__a ) @require_torch @require_vision class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self ) -> Any: lowerCAmelCase_ = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # verify the logits lowerCAmelCase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase_ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) # add boolean mask, indicating which patches to mask lowerCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowerCAmelCase_ = torch.load(_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # verify the logits lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=_a ) self.assertEqual(outputs.logits.shape , _a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _a , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCAmelCase_ = torch.tensor([0.5_1_4_2] , device=_a ) self.assertTrue(torch.allclose(outputs.loss , _a , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_a ).to( _a ) with torch.no_grad(): lowerCAmelCase_ = model(**_a ) lowerCAmelCase_ = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=_a ) self.assertTrue(torch.allclose(outputs.loss , _a , atol=1E-4 ) )
226
1
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' __lowerCamelCase : str =[] if isinstance(__snake_case , __snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =[] for d in reversed(__snake_case ): idx.append(flat_idx % d ) __lowerCamelCase : Optional[Any] =flat_idx // d return tuple(reversed(__snake_case ) ) @torch.jit.ignore def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple = None , SCREAMING_SNAKE_CASE : List[str] = None , ): '''simple docstring''' def reduce_edge_list(SCREAMING_SNAKE_CASE : Tuple ) -> None: __lowerCamelCase : int =True for i in range(len(__snake_case ) ): __lowerCamelCase : str =-1 * (i + 1) l[reversed_idx] &= tally __lowerCamelCase : Optional[int] =l[reversed_idx] if start_edges is None: __lowerCamelCase : Union[str, Any] =[s == 0 for s in start] reduce_edge_list(__snake_case ) if end_edges is None: __lowerCamelCase : Union[str, Any] =[e == (d - 1) for e, d in zip(__snake_case , __snake_case )] reduce_edge_list(__snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__snake_case ) == 0: return [()] elif len(__snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowerCamelCase : List[Tuple[slice, ...]] =[] __lowerCamelCase : List[slice] =[] # Dimensions common to start and end can be selected directly for s, e in zip(__snake_case , __snake_case ): if s == e: path_list.append(slice(__snake_case , s + 1 ) ) else: break __lowerCamelCase : Tuple[slice, ...] =tuple(__snake_case ) __lowerCamelCase : Optional[int] =len(__snake_case ) # start == end, and we're done if divergence_idx == len(__snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase : Optional[int] =start[divergence_idx] return tuple( path + (slice(__snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase : Any =end[divergence_idx] return tuple( path + (slice(__snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCamelCase : str =end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __lowerCamelCase : str =t.shape[:no_batch_dims] __lowerCamelCase : Optional[int] =list(_flat_idx_to_idx(__snake_case , __snake_case ) ) # _get_minimal_slice_set is inclusive __lowerCamelCase : int =list(_flat_idx_to_idx(flat_end - 1 , __snake_case ) ) # Get an ordered list of slices to perform __lowerCamelCase : Optional[int] =_get_minimal_slice_set( __snake_case , __snake_case , __snake_case , ) __lowerCamelCase : Union[str, Any] =[t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = False , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = False , ): '''simple docstring''' if not (len(__snake_case ) > 0): raise ValueError('''Must provide at least one input''' ) __lowerCamelCase : List[Any] =[shape[:no_batch_dims] for shape in _fetch_dims(__snake_case )] __lowerCamelCase : Any =tuple([max(__snake_case ) for s in zip(*__snake_case )] ) def _prep_inputs(SCREAMING_SNAKE_CASE : str ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCamelCase : int =t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCamelCase : Tuple =t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowerCamelCase : Optional[Any] =t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCamelCase : Dict[str, Any] =tensor_tree_map(_prep_inputs , __snake_case ) __lowerCamelCase : Optional[Any] =None if _out is not None: __lowerCamelCase : Optional[int] =tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowerCamelCase : Optional[Any] =1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCamelCase : Tuple =flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE : Any ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCamelCase : int =0 __lowerCamelCase : List[str] =prepped_outputs for _ in range(__snake_case ): # Chunk the input if not low_mem: __lowerCamelCase : Union[str, Any] =_select_chunk else: __lowerCamelCase : Union[str, Any] =partial( _chunk_slice , flat_start=__snake_case , flat_end=min(__snake_case , i + chunk_size ) , no_batch_dims=len(__snake_case ) , ) __lowerCamelCase : Dict[str, Any] =tensor_tree_map(__snake_case , __snake_case ) # Run the layer on the chunk __lowerCamelCase : List[str] =layer(**__snake_case ) # Allocate space for the output if out is None: __lowerCamelCase : Tuple =tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __snake_case ) # Put the chunk in its pre-allocated space if isinstance(__snake_case , __snake_case ): def assign(SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> None: for k, v in da.items(): if isinstance(__snake_case , __snake_case ): assign(__snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCamelCase : Union[str, Any] =da[k] assign(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): for xa, xa in zip(__snake_case , __snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCamelCase : Optional[Any] =xa elif isinstance(__snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCamelCase : List[Any] =output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __lowerCamelCase : Tuple =tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , __snake_case ) return out class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Dict , __lowercase :int = 512 , ): __lowerCamelCase : List[Any] =max_chunk_size __lowerCamelCase : Optional[int] =None __lowerCamelCase : Optional[tuple] =None def __lowercase ( self :Dict , __lowercase :Callable , __lowercase :tuple , __lowercase :int ): logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCamelCase : List[int] =[2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCamelCase : Any =[c for c in candidates if c > min_chunk_size] __lowerCamelCase : int =[min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__lowercase :int ) -> bool: try: with torch.no_grad(): fn(*_SCREAMING_SNAKE_CASE , chunk_size=_SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False __lowerCamelCase : int =0 __lowerCamelCase : Optional[Any] =len(_SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: __lowerCamelCase : List[Any] =test_chunk_size(candidates[i] ) if not viable: __lowerCamelCase : List[str] =(min_viable_chunk_size_index + i) // 2 else: __lowerCamelCase : str =i __lowerCamelCase : Tuple =(i + len(_SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __lowercase ( self :str , __lowercase :Iterable , __lowercase :Iterable ): __lowerCamelCase : Optional[Any] =True for aa, aa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert type(_SCREAMING_SNAKE_CASE ) == type(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCamelCase : Optional[int] =[v for _, v in sorted(aa.items() , key=lambda __lowercase : x[0] )] __lowerCamelCase : Optional[int] =[v for _, v in sorted(aa.items() , key=lambda __lowercase : x[0] )] consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def __lowercase ( self :int , __lowercase :Callable , __lowercase :tuple , __lowercase :int , ): __lowerCamelCase : Any =True __lowerCamelCase : tuple =tree_map(lambda __lowercase : a.shape if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) else a , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =self._compare_arg_caches(self.cached_arg_data , _SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value __lowerCamelCase : Tuple =False if not consistent: __lowerCamelCase : List[Any] =self._determine_favorable_chunk_size( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Tuple =arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
179
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
293
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCamelCase ( ): lowercase__ : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__SCREAMING_SNAKE_CASE , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__SCREAMING_SNAKE_CASE , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def _lowerCamelCase ( ): lowercase__ : Any = parse_args() # Import training_script as a module. lowercase__ : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__ : Tuple = script_fpath.stem lowercase__ : Union[str, Any] = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase__ : int = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
704
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] __snake_case = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } __snake_case = {F"funnel-transformer/{name}": 512 for name in _model_names} __snake_case = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names} class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = VOCAB_FILES_NAMES _a : Any = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_INIT_CONFIGURATION _a : List[Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__="##" , **lowerCamelCase__ , ) -> Union[str, Any]: super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , clean_text=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , wordpieces_prefix=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowercase__ : Optional[Any] = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : Optional[Any] = tokenize_chinese_chars lowercase__ : Union[str, Any] = normalizer_class(**lowerCamelCase__ ) lowercase__ : Union[str, Any] = do_lower_case def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: lowercase__ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
128
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=1.0 ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> Union[str, Any]: if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=2000 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=160 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=4000 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = padding_value lowerCamelCase_ = sampling_rate lowerCamelCase_ = return_attention_mask lowerCamelCase_ = do_normalize lowerCamelCase_ = feature_size lowerCamelCase_ = chunk_length lowerCamelCase_ = hop_length def UpperCamelCase( self ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Any: '''simple docstring''' def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = WhisperFeatureExtractionTester(self ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = feat_extract_first.mel_filters lowerCamelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = feat_extract_first.mel_filters lowerCamelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test truncation required lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] lowerCamelCase_ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs_truncated] lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' import torch lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = WhisperFeatureExtractor() lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = self._load_datasamples(1 )[0] lowerCamelCase_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue lowerCamelCase_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ ) - 1 ) < 1E-3 ) )
42
import pprint import requests lowerCamelCase__ = "https://zenquotes.io/api" def __A() -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __A() -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": lowerCamelCase__ = random_quotes() pprint.pprint(response)
612
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _snake_case ( __snake_case ): _UpperCamelCase = filter(lambda __snake_case : p.requires_grad , model.parameters() ) _UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): if metric == "rouge2": _UpperCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCamelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _UpperCamelCase = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _snake_case ( __snake_case , __snake_case ): return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=__snake_case , verbose=__snake_case , ) class lowerCAmelCase_ ( pl.Callback ): def UpperCamelCase_ ( self : int , _A : Optional[int] , _A : Dict ): _UpperCamelCase = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def UpperCamelCase_ ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Tuple=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCamelCase = od / '''test_results.txt''' _UpperCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCamelCase = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCamelCase = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , '''a+''' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue _UpperCamelCase = metrics[key] if isinstance(_A , torch.Tensor ): _UpperCamelCase = val.item() _UpperCamelCase = F"""{key}: {val:.6f}\n""" writer.write(_A ) if not save_generations: return if "preds" in metrics: _UpperCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_A ) @rank_zero_only def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Tuple ): try: _UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCamelCase = pl_module.model.num_parameters() _UpperCamelCase = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase_ ( self : str , _A : pl.Trainer , _A : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , '''test''' ) @rank_zero_only def UpperCamelCase_ ( self : Optional[Any] , _A : pl.Trainer , _A : str ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
71
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _UpperCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _UpperCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] _UpperCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} _UpperCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] , __snake_case : tuple[int, ...] ): _A = "" _A = 42 _A = 42 _A = 42 for keychar, cipherchar in zip(cycle(__snake_case ) , __snake_case ): _A = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__snake_case ) return decoded def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] ): _A = [] for key in product(__snake_case , repeat=3 ): _A = try_key(__snake_case , __snake_case ) if encoded is not None: possibles.append(__snake_case ) return possibles def _SCREAMING_SNAKE_CASE ( __snake_case : list[str] , __snake_case : str ): return [possible for possible in possibles if common_word in possible.lower()] def _SCREAMING_SNAKE_CASE ( __snake_case : str = "p059_cipher.txt" ): _A = 42 _A = 42 _A = 42 _A = 42 _A = Path(__snake_case ).parent.joinpath(__snake_case ).read_text(encoding='utf-8' ) _A = [int(__snake_case ) for number in data.strip().split(',' )] _A = filter_valid_chars(__snake_case ) for common_word in COMMON_WORDS: _A = filter_common_word(__snake_case , __snake_case ) if len(__snake_case ) == 1: break _A = possibles[0] return sum(ord(__snake_case ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
107
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__lowerCAmelCase , __lowerCAmelCase ) return actual_power(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
252
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def a ( A__ ) -> Optional[Any]: '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A__ ) EnvironmentCommand.register_subcommand(A__ ) TestCommand.register_subcommand(A__ ) RunBeamCommand.register_subcommand(A__ ) DummyDataCommand.register_subcommand(A__ ) # Parse args SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_known_args() if not hasattr(A__ , '''func''' ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE__ : Any = parse_unknown_args(A__ ) # Run SCREAMING_SNAKE_CASE__ : Optional[Any] = args.func(A__ , **A__ ) service.run() if __name__ == "__main__": main()
250
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ :Optional[Any] = logging.get_logger(__name__) class lowercase : def __init__( self : Dict , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : List[str]=None , _lowercase : List[Any]=None ): if not conversation_id: SCREAMING_SNAKE_CASE__ : Union[str, Any] = uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE__ : List[str] = [] if generated_responses is None: SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : uuid.UUID = conversation_id SCREAMING_SNAKE_CASE__ : List[str] = past_user_inputs SCREAMING_SNAKE_CASE__ : List[str] = generated_responses SCREAMING_SNAKE_CASE__ : Optional[str] = text def __eq__( self : Optional[Any] , _lowercase : List[str] ): if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase__ ( self : int , _lowercase : str , _lowercase : bool = False ): if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = text def lowercase__ ( self : Union[str, Any] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE__ : List[Any] = None def lowercase__ ( self : Optional[int] , _lowercase : str ): self.generated_responses.append(_lowercase ) def lowercase__ ( self : int ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Any ): SCREAMING_SNAKE_CASE__ : Dict = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE__ : Dict = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _UpperCAmelCase , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( _UpperCAmelCase ): def __init__( self : str , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer.eos_token def lowercase__ ( self : List[Any] , _lowercase : Union[str, Any]=None , _lowercase : Dict=None , _lowercase : Tuple=None , **_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Tuple = {} if min_length_for_response is not None: SCREAMING_SNAKE_CASE__ : List[str] = min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE__ : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : Dict=0 , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def lowercase__ ( self : str , _lowercase : Conversation , _lowercase : Optional[int]=32 ): if not isinstance(_lowercase , _lowercase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE__ : Optional[int] = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": SCREAMING_SNAKE_CASE__ : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase__ ( self : int , _lowercase : Optional[int] , _lowercase : Dict=10 , **_lowercase : Any ): SCREAMING_SNAKE_CASE__ : List[str] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) SCREAMING_SNAKE_CASE__ : Any = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = max_length - minimum_tokens SCREAMING_SNAKE_CASE__ : Tuple = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_inputs['''attention_mask'''][:, -trim:] SCREAMING_SNAKE_CASE__ : Dict = model_inputs.pop('''conversation''' ) SCREAMING_SNAKE_CASE__ : Any = max_length SCREAMING_SNAKE_CASE__ : Tuple = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : List[str] = 1 else: SCREAMING_SNAKE_CASE__ : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict=True ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_outputs['''output_ids'''] SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def lowercase__ ( self : Any , _lowercase : Conversation ): SCREAMING_SNAKE_CASE__ : int = self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[-self.tokenizer.model_max_length :] return input_ids
250
1
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> float: def get_matched_characters(lowercase_ : str , lowercase_ : str ) -> str: _lowerCamelCase = [] _lowerCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase = int(max(0 , i - limit ) ) _lowerCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) _lowerCamelCase = F"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = len(lowercase_ ) # transposition _lowerCamelCase = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase = 0.0 else: _lowerCamelCase = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
661
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError('''Invalid input''' ) _lowerCamelCase = 10**n _lowerCamelCase = 2_84_33 * (pow(2 , 7_83_04_57 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
661
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase ( _UpperCamelCase : List[str] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = args.pruning_method __UpperCAmelCase : Union[str, Any] = args.threshold __UpperCAmelCase : List[Any] = args.model_name_or_path.rstrip("""/""" ) __UpperCAmelCase : List[Any] = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) __UpperCAmelCase : Union[str, Any] = torch.load(os.path.join(_UpperCamelCase , """pytorch_model.bin""" ) ) __UpperCAmelCase : Optional[int] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __UpperCAmelCase : int = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __UpperCAmelCase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: __UpperCAmelCase : Any = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __UpperCAmelCase : List[str] = MagnitudeBinarizer.apply(inputs=_UpperCamelCase , threshold=_UpperCamelCase ) __UpperCAmelCase : int = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __UpperCAmelCase : Union[str, Any] = name[:-6] __UpperCAmelCase : int = model[f'''{prefix_}mask_scores'''] __UpperCAmelCase : Tuple = TopKBinarizer.apply(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : List[str] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __UpperCAmelCase : Union[str, Any] = name[:-6] __UpperCAmelCase : int = model[f'''{prefix_}mask_scores'''] __UpperCAmelCase : Tuple = ThresholdBinarizer.apply(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __UpperCAmelCase : Optional[Any] = name[:-6] __UpperCAmelCase : str = model[f'''{prefix_}mask_scores'''] __UpperCAmelCase ,__UpperCAmelCase : int = -0.1, 1.1 __UpperCAmelCase : Tuple = torch.sigmoid(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = s * (r - l) + l __UpperCAmelCase : Optional[int] = s_bar.clamp(min=0.0 , max=1.0 ) __UpperCAmelCase : int = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __UpperCAmelCase : Optional[Any] = os.path.join( os.path.dirname(_UpperCamelCase ) , f'''bertarized_{os.path.basename(_UpperCamelCase )}''' ) if not os.path.isdir(_UpperCamelCase ): shutil.copytree(_UpperCamelCase , _UpperCamelCase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) UpperCAmelCase : str = parser.parse_args() main(args)
299
"""simple docstring""" from __future__ import annotations import queue class lowerCamelCase__ : """simple docstring""" def __init__( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = data __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None def lowerCamelCase ( ) -> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) __UpperCAmelCase : Optional[int] = input("""Enter the value of the root node: """ ).strip().lower() __UpperCAmelCase : queue.Queue = queue.Queue() __UpperCAmelCase : int = TreeNode(int(_UpperCamelCase ) ) q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : List[str] = q.get() __UpperCAmelCase : List[str] = f'''Enter the left node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : str = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = left_node q.put(_UpperCamelCase ) __UpperCAmelCase : List[str] = f'''Enter the right node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : List[str] = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : Tuple = right_node q.put(_UpperCamelCase ) raise def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : str = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : Union[str, Any] = [] while not q.empty(): __UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(_UpperCamelCase ) __UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child __UpperCAmelCase : List[str] = stack.pop() # start to traverse its right child __UpperCAmelCase : List[str] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Dict = node while n or stack: while n: stack.append(_UpperCamelCase ) __UpperCAmelCase : Tuple = n.left __UpperCAmelCase : Any = stack.pop() print(n.data , end=""",""" ) __UpperCAmelCase : List[Any] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = [], [] __UpperCAmelCase : Optional[Any] = node stacka.append(_UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 __UpperCAmelCase : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : str = "" , _UpperCamelCase : int=5_0 , _UpperCamelCase : Tuple="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char __UpperCAmelCase ,__UpperCAmelCase : Tuple = divmod(width - len(_UpperCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCAmelCase : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
299
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""perceiver""" def __init__( self : Optional[Any] , snake_case : Dict=256 , snake_case : Dict=1_280 , snake_case : str=768 , snake_case : Optional[int]=1 , snake_case : List[Any]=26 , snake_case : List[Any]=8 , snake_case : int=8 , snake_case : Any=None , snake_case : List[Any]=None , snake_case : Union[str, Any]="kv" , snake_case : List[str]=1 , snake_case : int=1 , snake_case : Dict="gelu" , snake_case : str=0.1 , snake_case : Any=0.02 , snake_case : Optional[Any]=1e-12 , snake_case : Tuple=True , snake_case : Optional[int]=262 , snake_case : List[str]=2_048 , snake_case : str=56 , snake_case : Dict=[368, 496] , snake_case : str=16 , snake_case : Optional[int]=1_920 , snake_case : Optional[Any]=16 , snake_case : Tuple=[1, 16, 224, 224] , **snake_case : List[Any] , ): super().__init__(**snake_case ) UpperCAmelCase_ :List[Any] = num_latents UpperCAmelCase_ :Union[str, Any] = d_latents UpperCAmelCase_ :Union[str, Any] = d_model UpperCAmelCase_ :int = num_blocks UpperCAmelCase_ :Optional[int] = num_self_attends_per_block UpperCAmelCase_ :int = num_self_attention_heads UpperCAmelCase_ :List[str] = num_cross_attention_heads UpperCAmelCase_ :List[Any] = qk_channels UpperCAmelCase_ :str = v_channels UpperCAmelCase_ :List[Any] = cross_attention_shape_for_attention UpperCAmelCase_ :str = self_attention_widening_factor UpperCAmelCase_ :Union[str, Any] = cross_attention_widening_factor UpperCAmelCase_ :List[str] = hidden_act UpperCAmelCase_ :str = attention_probs_dropout_prob UpperCAmelCase_ :str = initializer_range UpperCAmelCase_ :List[Any] = layer_norm_eps UpperCAmelCase_ :Tuple = use_query_residual # masked language modeling attributes UpperCAmelCase_ :Optional[int] = vocab_size UpperCAmelCase_ :Dict = max_position_embeddings # image classification attributes UpperCAmelCase_ :Tuple = image_size # flow attributes UpperCAmelCase_ :Optional[Any] = train_size # multimodal autoencoding attributes UpperCAmelCase_ :Dict = num_frames UpperCAmelCase_ :List[str] = audio_samples_per_frame UpperCAmelCase_ :Optional[int] = samples_per_patch UpperCAmelCase_ :Union[str, Any] = output_shape class _snake_case ( A__ ): '''simple docstring''' @property def snake_case_ ( self : List[Any] ): if self.task == "multiple-choice": UpperCAmelCase_ :List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ :int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def snake_case_ ( self : Any ): return 1e-4 def snake_case_ ( self : Optional[Any] , snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case : int = -1 , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional[TensorType] = None , snake_case : int = 3 , snake_case : int = 40 , snake_case : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case , snake_case ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ :List[Any] = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ :Optional[int] = preprocessor.num_special_tokens_to_add(snake_case ) UpperCAmelCase_ :Union[str, Any] = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ :List[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size UpperCAmelCase_ :List[str] = dict(preprocessor(snake_case , return_tensors=snake_case ) ) UpperCAmelCase_ :List[str] = inputs.pop('''input_ids''' ) return inputs elif isinstance(snake_case , snake_case ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ :Dict = compute_effective_axis_dimension(snake_case , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase_ :List[Any] = self._generate_dummy_images(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase_ :str = dict(preprocessor(images=snake_case , return_tensors=snake_case ) ) UpperCAmelCase_ :Optional[Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
608
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __lowerCamelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __lowerCamelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def a ( __snake_case : Tuple, __snake_case : str ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase_ :Optional[int] = k.replace(__snake_case, __snake_case ) return k def a ( __snake_case : dict, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :str = BigBirdPegasusConfig(**__snake_case ) UpperCAmelCase_ :Optional[Any] = BigBirdPegasusForConditionalGeneration(__snake_case ) UpperCAmelCase_ :Dict = torch_model.state_dict() UpperCAmelCase_ :List[Any] = {} # separating decoder weights UpperCAmelCase_ :Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase_ :Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :int = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :Union[str, Any] = DECODER_PATTERNS UpperCAmelCase_ :Any = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :str = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :Any = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :str = REMAINING_PATTERNS UpperCAmelCase_ :Dict = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :Any = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCAmelCase_ :Optional[int] = mapping['''model.embed_positions.weight'''] UpperCAmelCase_ :Tuple = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = torch_model.load_state_dict(__snake_case, strict=__snake_case ) UpperCAmelCase_ :List[Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def a ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :Tuple = tf.train.list_variables(__snake_case ) UpperCAmelCase_ :Optional[int] = {} UpperCAmelCase_ :Optional[Any] = ['''global_step'''] for name, shape in tqdm(__snake_case, desc='''converting tf checkpoint to dict''' ): UpperCAmelCase_ :int = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase_ :List[str] = tf.train.load_variable(__snake_case, __snake_case ) UpperCAmelCase_ :str = array return tf_weights def a ( __snake_case : str, __snake_case : str, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :Any = get_tf_weights_as_numpy(__snake_case ) UpperCAmelCase_ :Union[str, Any] = convert_bigbird_pegasus(__snake_case, __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __lowerCamelCase = parser.parse_args() __lowerCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
608
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str ,_SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: '''simple docstring''' A = parent def A( self : Optional[Any] ) -> Any: '''simple docstring''' return {} def snake_case ( ): A = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' A = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class UpperCamelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" snake_case = MarkupLMFeatureExtractor if is_bsa_available() else None def A( self : Tuple ) -> str: '''simple docstring''' A = MarkupLMFeatureExtractionTester(self ) @property def A( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def A( self : int ) -> Union[str, Any]: '''simple docstring''' # Initialize feature_extractor A = self.feature_extraction_class() # Test not batched input A = get_html_strings()[0] A = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off A = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] A = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes ,_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths ,_SCREAMING_SNAKE_CASE ) # Test batched A = get_html_strings() A = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off A = expected_nodes + [['My First Heading', 'My first paragraph.']] A = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths ,_SCREAMING_SNAKE_CASE )
110
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = JukeboxTokenizer snake_case = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def A( self : Optional[int] ) -> Any: '''simple docstring''' import torch A = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) A = tokenizer(**self.metas )['input_ids'] # fmt: off A = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def A( self : Tuple ) -> List[Any]: '''simple docstring''' import torch A = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) A = tokenizer(**self.metas )['input_ids'] # fmt: off A = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
110
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Dict = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 class __magic_name__ : def __init__( self , __snake_case ) -> None: '''simple docstring''' __a =None for i in sorted(__snake_case , reverse=__snake_case ): __a =Node(__snake_case , self.head ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' __a =self.head while node: yield node.data __a =node.next_node def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self ) -> str: '''simple docstring''' return " -> ".join([str(__snake_case ) for node in self] ) def UpperCamelCase_( _snake_case : SortedLinkedList , _snake_case : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_snake_case ) + list(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
242
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = DistilBertTokenizer SCREAMING_SNAKE_CASE = DistilBertTokenizerFast SCREAMING_SNAKE_CASE = True @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) __a =tokenizer.encode('sequence builders' , add_special_tokens=__snake_case ) __a =tokenizer.encode('multi-sequence build' , add_special_tokens=__snake_case ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
242
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( lowercase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Any: __lowerCAmelCase : str = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase__ , ) __lowerCAmelCase : Dict = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCAmelCase : Tuple = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCAmelCase : Union[str, Any] = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample __lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase : Optional[Any] = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCAmelCase__ ), "This is a local test"
700
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil A_ = 1_00 A_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) A_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def A ( _UpperCAmelCase : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __lowerCAmelCase : set[int] = set() __lowerCAmelCase : int __lowerCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( _UpperCAmelCase : int = 5_0_0_0 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 ,_UpperCAmelCase ): if len(partition(_UpperCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
123
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = CLIPConfig lowerCAmelCase_ = ["""CLIPEncoderLayer"""] def __init__( self : Any , UpperCamelCase__ : CLIPConfig ) -> Optional[int]: super().__init__(UpperCamelCase__ ) _UpperCamelCase =CLIPVisionModelWithProjection(config.vision_config ) _UpperCamelCase =nn.Linear(config.vision_config.projection_dim , 1 ) _UpperCamelCase =nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=0.5 , UpperCamelCase__ : Optional[Any]=0.5 ) -> Optional[Any]: _UpperCamelCase =self.vision_model(UpperCamelCase__ )[0] _UpperCamelCase =self.p_head(UpperCamelCase__ ) _UpperCamelCase =nsfw_detected.flatten() _UpperCamelCase =nsfw_detected > p_threshold _UpperCamelCase =nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: _UpperCamelCase =np.zeros(images[idx].shape ) _UpperCamelCase =self.w_head(UpperCamelCase__ ) _UpperCamelCase =watermark_detected.flatten() _UpperCamelCase =watermark_detected > w_threshold _UpperCamelCase =watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: _UpperCamelCase =np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
404
'''simple docstring''' class UpperCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> List[Any]: _UpperCamelCase ='''''' _UpperCamelCase ='''''' _UpperCamelCase =[] def UpperCamelCase__ ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCamelCase =self.__min_dist_top_down_dp(UpperCamelCase__ , n - 1 ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , UpperCamelCase__ ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =[[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1 , len(UpperCamelCase__ ) - 1 ) def UpperCamelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCamelCase =j elif j == 0: # second string is empty _UpperCamelCase =i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCamelCase =self.dp[i - 1][j - 1] else: _UpperCamelCase =self.dp[i][j - 1] _UpperCamelCase =self.dp[i - 1][j] _UpperCamelCase =self.dp[i - 1][j - 1] _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase : int = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __lowerCamelCase : Optional[int] = input('Enter the first string: ').strip() __lowerCamelCase : Optional[int] = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
404
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def A(__a: List[str] , __a: Tuple ): lowerCAmelCase_ = np.argmax(__A , axis=1 ) return np.sum(outputs == labels ) def A(__a: int ): with open(__A , encoding="utf_8" ) as f: lowerCAmelCase_ = csv.reader(__A ) lowerCAmelCase_ = [] next(__A ) # skip the first line for line in tqdm(__A ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def A(__a: List[str] , __a: Dict , __a: List[str] , __a: int , __a: Dict , __a: Any ): lowerCAmelCase_ = [] for dataset in encoded_datasets: lowerCAmelCase_ = len(__A ) lowerCAmelCase_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase_ = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase_ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase_ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__A ): lowerCAmelCase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase_ = with_conta lowerCAmelCase_ = with_conta lowerCAmelCase_ = len(__A ) - 1 lowerCAmelCase_ = len(__A ) - 1 lowerCAmelCase_ = with_conta lowerCAmelCase_ = with_conta lowerCAmelCase_ = mc_label lowerCAmelCase_ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__A ) for t in all_inputs ) ) return tensor_datasets def A(): lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__A , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=__A , type=__A , required=__A , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=__A , default="" ) parser.add_argument("--eval_dataset" , type=__A , default="" ) parser.add_argument("--seed" , type=__A , default=42 ) parser.add_argument("--num_train_epochs" , type=__A , default=3 ) parser.add_argument("--train_batch_size" , type=__A , default=8 ) parser.add_argument("--eval_batch_size" , type=__A , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=__A , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=__A , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=__A , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=__A , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=__A , default=6.25E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=__A , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=__A , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=__A , default=0.01 ) parser.add_argument("--lm_coef" , type=__A , default=0.9 ) parser.add_argument("--n_valid" , type=__A , default=374 ) parser.add_argument("--server_ip" , type=__A , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__A , default="" , help="Can be used for distant debugging." ) lowerCAmelCase_ = parser.parse_args() print(__A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase_ = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(__A , __A ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase_ = ['''_start_''', '''_delimiter_''', '''_classify_'''] lowerCAmelCase_ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__A ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(__A ) lowerCAmelCase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__A ) ) model.to(__A ) # Load and encode the datasets def tokenize_and_encode(__a: Tuple ): if isinstance(__A , __A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__A ) ) elif isinstance(__A , __A ): return obj return [tokenize_and_encode(__A ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase_ = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase_ = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase_ = (train_dataset, eval_dataset) lowerCAmelCase_ = tokenize_and_encode(__A ) # Compute the max input length for the Transformer lowerCAmelCase_ = model.config.n_positions // 2 - 2 lowerCAmelCase_ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase_ = min(__A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase_ = pre_process_datasets(__A , __A , __A , *__A ) lowerCAmelCase_ = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase_ = TensorDataset(*__A ) lowerCAmelCase_ = RandomSampler(__A ) lowerCAmelCase_ = DataLoader(__A , sampler=__A , batch_size=args.train_batch_size ) lowerCAmelCase_ = TensorDataset(*__A ) lowerCAmelCase_ = SequentialSampler(__A ) lowerCAmelCase_ = DataLoader(__A , sampler=__A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase_ = args.max_steps lowerCAmelCase_ = args.max_steps // (len(__A ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase_ = len(__A ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase_ = list(model.named_parameters() ) lowerCAmelCase_ = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] lowerCAmelCase_ = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] lowerCAmelCase_ = AdamW(__A , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase_ = get_linear_schedule_with_warmup( __A , num_warmup_steps=args.warmup_steps , num_training_steps=__A ) if args.do_train: lowerCAmelCase_ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = tqdm(__A , desc="Training" ) for step, batch in enumerate(__A ): lowerCAmelCase_ = tuple(t.to(__A ) for t in batch ) lowerCAmelCase_ = batch lowerCAmelCase_ = model(__A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A ) lowerCAmelCase_ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase_ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase_ = '''Training loss: {:.2e} lr: {:.2e}'''.format(__A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase_ = model.module if hasattr(__A , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase_ = os.path.join(args.output_dir , __A ) lowerCAmelCase_ = os.path.join(args.output_dir , __A ) torch.save(model_to_save.state_dict() , __A ) model_to_save.config.to_json_file(__A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__A ) if args.do_eval: model.eval() lowerCAmelCase_ = 0, 0 lowerCAmelCase_ = 0, 0 for batch in tqdm(__A , desc="Evaluating" ): lowerCAmelCase_ = tuple(t.to(__A ) for t in batch ) lowerCAmelCase_ = batch with torch.no_grad(): lowerCAmelCase_ = model( __A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A ) lowerCAmelCase_ = mc_logits.detach().cpu().numpy() lowerCAmelCase_ = mc_labels.to("cpu" ).numpy() lowerCAmelCase_ = accuracy(__A , __A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase_ = eval_loss / nb_eval_steps lowerCAmelCase_ = eval_accuracy / nb_eval_examples lowerCAmelCase_ = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase_ = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} lowerCAmelCase_ = os.path.join(args.output_dir , "eval_results.txt" ) with open(__A , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , __A , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
708
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ = 1_00 lowerCamelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A(__a: int ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ = set() lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A(__a: int = 5000 ): for number_to_partition in range(1 , __a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
226
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase = BertTokenizer __lowercase = BertTokenizerFast __lowercase = True __lowercase = True __lowercase = filter_non_english def UpperCAmelCase_ ( self :Dict )-> int: super().setUp() A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> Optional[Any]: A__ = "UNwant\u00E9d,running" A__ = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self :int )-> int: A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase_ ( self :Tuple )-> Optional[Any]: if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = "UNwant\u00E9d,running" A__ = tokenizer.tokenize(_a ) A__ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) A__ = tokenizer.encode(_a , add_special_tokens=_a ) A__ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(_a ) A__ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing A__ = self.get_tokenizer(do_lower_case=_a ) A__ = self.get_rust_tokenizer(do_lower_case=_a ) A__ = "UNwant\u00E9d,running" A__ = tokenizer.tokenize(_a ) A__ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) A__ = tokenizer.encode(_a , add_special_tokens=_a ) A__ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(_a ) A__ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :Union[str, Any] )-> int: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :int )-> Tuple: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :Tuple )-> str: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :str )-> Tuple: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :Dict )-> List[Any]: A__ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCAmelCase_ ( self :int )-> List[str]: A__ = BasicTokenizer() A__ = "a\n\'ll !!to?\'d of, can\'t." A__ = ["a", "\'", "ll", "!", "!", "to", "?", "\'", "d", "of", ",", "can", "\'", "t", "."] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def UpperCAmelCase_ ( self :int )-> Optional[int]: A__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A__ = {} for i, token in enumerate(_a ): A__ = i A__ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCAmelCase_ ( self :List[str] )-> List[str]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCAmelCase_ ( self :int )-> List[str]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.tokenizer_class.from_pretrained("bert-base-uncased" ) A__ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) A__ = tokenizer.build_inputs_with_special_tokens(_a ) A__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) A__ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False A__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCAmelCase_ ( self :Dict )-> int: A__ = ["的", "人", "有"] A__ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = True A__ = self.tokenizer_class.from_pretrained(_a , **_a ) A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = tokenizer_p.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.convert_ids_to_tokens(_a ) A__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) A__ = False A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = self.tokenizer_class.from_pretrained(_a , **_a ) A__ = tokenizer_r.encode(_a , add_special_tokens=_a ) A__ = tokenizer_p.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.convert_ids_to_tokens(_a ) A__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". A__ = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
440
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
from collections import Counter from timeit import timeit def lowerCamelCase_ ( _lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def lowerCamelCase_ ( _lowercase = "" ) -> bool: if len(_lowercase ) == 0: return True __A : List[Any] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __A : dict[str, int] = {} for character in lower_case_input_str: __A : str = character_freq_dict.get(_lowercase , 0 ) + 1 __A : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase_ ( _lowercase = "" ) -> None: print("\nFor string = " , _lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": UpperCamelCase = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
704
from __future__ import annotations def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( _lowercase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
387
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1_000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __lowerCAmelCase = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1_000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __lowerCAmelCase = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __lowerCAmelCase = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } __lowerCAmelCase = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } __lowerCAmelCase = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def _UpperCAmelCase ( __A : Tuple ): if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def _UpperCAmelCase ( __A : str , __A : Tuple , __A : Optional[int] , __A : int , __A : Optional[Any]=False ): a_ : str = checkpoint[f'{old_prefix}.in_layers.0.weight'] a_ : Dict = checkpoint[f'{old_prefix}.in_layers.0.bias'] a_ : Optional[Any] = checkpoint[f'{old_prefix}.in_layers.2.weight'] a_ : Any = checkpoint[f'{old_prefix}.in_layers.2.bias'] a_ : Any = checkpoint[f'{old_prefix}.emb_layers.1.weight'] a_ : int = checkpoint[f'{old_prefix}.emb_layers.1.bias'] a_ : Union[str, Any] = checkpoint[f'{old_prefix}.out_layers.0.weight'] a_ : Optional[Any] = checkpoint[f'{old_prefix}.out_layers.0.bias'] a_ : Optional[Any] = checkpoint[f'{old_prefix}.out_layers.3.weight'] a_ : List[Any] = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: a_ : int = checkpoint[f'{old_prefix}.skip_connection.weight'] a_ : List[Any] = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def _UpperCAmelCase ( __A : int , __A : int , __A : Union[str, Any] , __A : Optional[int] , __A : List[str]=None ): a_ , a_ , a_ : Any = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) a_ , a_ , a_ : List[Any] = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) a_ : List[str] = checkpoint[f'{old_prefix}.norm.weight'] a_ : Optional[Any] = checkpoint[f'{old_prefix}.norm.bias'] a_ : Any = weight_q.squeeze(-1 ).squeeze(-1 ) a_ : int = bias_q.squeeze(-1 ).squeeze(-1 ) a_ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) a_ : Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) a_ : str = weight_v.squeeze(-1 ).squeeze(-1 ) a_ : Optional[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) a_ : Union[str, Any] = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) a_ : Any = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _UpperCAmelCase ( __A : str , __A : str ): a_ : int = torch.load(__A , map_location='''cpu''' ) a_ : Union[str, Any] = {} a_ : int = checkpoint['''time_embed.0.weight'''] a_ : Tuple = checkpoint['''time_embed.0.bias'''] a_ : List[Any] = checkpoint['''time_embed.2.weight'''] a_ : Union[str, Any] = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: a_ : List[Any] = checkpoint['''label_emb.weight'''] a_ : Optional[int] = checkpoint['''input_blocks.0.0.weight'''] a_ : int = checkpoint['''input_blocks.0.0.bias'''] a_ : Optional[int] = unet_config['''down_block_types'''] a_ : Union[str, Any] = unet_config['''layers_per_block'''] a_ : Optional[Any] = unet_config['''attention_head_dim'''] a_ : str = unet_config['''block_out_channels'''] a_ : Any = 1 a_ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(__A ): a_ : Any = channels_list[i] a_ : Tuple = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__A ): a_ : Union[str, Any] = f'down_blocks.{i}.resnets.{j}' a_ : int = f'input_blocks.{current_layer}.0' a_ : List[Any] = True if j == 0 and downsample_block_has_skip else False a_ : List[str] = convert_resnet(__A , __A , __A , __A , has_skip=__A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__A ): a_ : Union[str, Any] = f'down_blocks.{i}.resnets.{j}' a_ : Optional[int] = f'input_blocks.{current_layer}.0' a_ : Optional[int] = True if j == 0 and downsample_block_has_skip else False a_ : Any = convert_resnet(__A , __A , __A , __A , has_skip=__A ) a_ : Optional[int] = f'down_blocks.{i}.attentions.{j}' a_ : List[Any] = f'input_blocks.{current_layer}.1' a_ : int = convert_attention( __A , __A , __A , __A , __A ) current_layer += 1 if i != len(__A ) - 1: a_ : Dict = f'down_blocks.{i}.downsamplers.0' a_ : Optional[int] = f'input_blocks.{current_layer}.0' a_ : Union[str, Any] = convert_resnet(__A , __A , __A , __A ) current_layer += 1 a_ : Any = current_channels # hardcoded the mid-block for now a_ : Tuple = '''mid_block.resnets.0''' a_ : int = '''middle_block.0''' a_ : Tuple = convert_resnet(__A , __A , __A , __A ) a_ : List[Any] = '''mid_block.attentions.0''' a_ : Optional[int] = '''middle_block.1''' a_ : Optional[int] = convert_attention(__A , __A , __A , __A , __A ) a_ : Any = '''mid_block.resnets.1''' a_ : Tuple = '''middle_block.2''' a_ : Tuple = convert_resnet(__A , __A , __A , __A ) a_ : str = 0 a_ : Optional[int] = unet_config['''up_block_types'''] for i, layer_type in enumerate(__A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): a_ : Tuple = f'up_blocks.{i}.resnets.{j}' a_ : Optional[int] = f'output_blocks.{current_layer}.0' a_ : Optional[Any] = convert_resnet(__A , __A , __A , __A , has_skip=__A ) current_layer += 1 if i != len(__A ) - 1: a_ : int = f'up_blocks.{i}.upsamplers.0' a_ : Union[str, Any] = f'output_blocks.{current_layer-1}.1' a_ : int = convert_resnet(__A , __A , __A , __A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): a_ : Optional[Any] = f'up_blocks.{i}.resnets.{j}' a_ : str = f'output_blocks.{current_layer}.0' a_ : List[Any] = convert_resnet(__A , __A , __A , __A , has_skip=__A ) a_ : List[Any] = f'up_blocks.{i}.attentions.{j}' a_ : List[str] = f'output_blocks.{current_layer}.1' a_ : str = convert_attention( __A , __A , __A , __A , __A ) current_layer += 1 if i != len(__A ) - 1: a_ : Dict = f'up_blocks.{i}.upsamplers.0' a_ : Any = f'output_blocks.{current_layer-1}.2' a_ : int = convert_resnet(__A , __A , __A , __A ) a_ : Dict = checkpoint['''out.0.weight'''] a_ : int = checkpoint['''out.0.bias'''] a_ : int = checkpoint['''out.2.weight'''] a_ : str = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = strabool(args.class_cond) __lowerCAmelCase = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __lowerCAmelCase = None __lowerCAmelCase = con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __lowerCAmelCase = CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
466
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( __A): '''simple docstring''' UpperCamelCase__ : Any = """ClapFeatureExtractor""" UpperCamelCase__ : Any = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , a_ , a_ ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , a_=None , a_=None , a_=None , **a_ ): a__ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: a__ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: a__ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: a__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _a ( self , *a_ , **a_ ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , *a_ , **a_ ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _a ( self ): a__ = self.tokenizer.model_input_names a__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
709
import os from datetime import datetime as dt from github import Github UpperCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A_ ( ): """simple docstring""" a__ = Github(os.environ["""GITHUB_TOKEN"""] ) a__ = g.get_repo("""huggingface/diffusers""" ) a__ = repo.get_issues(state="""open""" ) for issue in open_issues: a__ = sorted(issue.get_comments() , key=lambda __a : i.created_at , reverse=__a ) a__ = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
351
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __A : Any = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowercase ( __snake_case : str ): lowercase_ : List[Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) __A : List[str] = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowercase ( __snake_case : Optional[int] ): lowercase_ : List[str] = list(s_dict.keys() ) for key in keys: lowercase_ : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase_ : Optional[Any] = new_key.replace(__snake_case , __snake_case ) print(F'''{key} -> {new_key}''' ) lowercase_ : Any = s_dict.pop(__snake_case ) return s_dict def lowercase ( __snake_case : List[Any] ): lowercase_ , lowercase_ : List[Any] = emb.weight.shape lowercase_ : int = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowercase_ : List[Any] = emb.weight.data return lin_layer def lowercase ( __snake_case : str , __snake_case : str ): os.makedirs(__snake_case , exist_ok=__snake_case ) lowercase_ : Union[str, Any] = os.path.basename(__snake_case ) lowercase_ : Any = url.split('''/''' )[-2] lowercase_ : Tuple = os.path.join(__snake_case , __snake_case ) if os.path.exists(__snake_case ) and not os.path.isfile(__snake_case ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(__snake_case ): lowercase_ : List[Any] = open(__snake_case , '''rb''' ).read() if hashlib.shaaaa(__snake_case ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(__snake_case ) as source, open(__snake_case , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=__snake_case , unit_divisor=1_0_2_4 ) as loop: while True: lowercase_ : Optional[Any] = source.read(8_1_9_2 ) if not buffer: break output.write(__snake_case ) loop.update(len(__snake_case ) ) lowercase_ : Tuple = open(__snake_case , '''rb''' ).read() if hashlib.shaaaa(__snake_case ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowercase ( __snake_case : List[str] , __snake_case : List[str] ): if ".pt" not in checkpoint_path: lowercase_ : Union[str, Any] = _download(_MODELS[checkpoint_path] ) else: lowercase_ : Union[str, Any] = torch.load(__snake_case , map_location='''cpu''' ) lowercase_ : str = original_checkpoint['''dims'''] lowercase_ : List[Any] = original_checkpoint['''model_state_dict'''] lowercase_ : Dict = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__snake_case ) rename_keys(__snake_case ) lowercase_ : str = True lowercase_ : Tuple = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowercase_ : List[Any] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__snake_case , decoder_ffn_dim=__snake_case , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) lowercase_ : Optional[int] = WhisperForConditionalGeneration(__snake_case ) lowercase_ , lowercase_ : List[Any] = model.model.load_state_dict(__snake_case , strict=__snake_case ) if len(__snake_case ) > 0 and not set(__snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: lowercase_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase_ : Dict = proj_out_weights model.save_pretrained(__snake_case ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __A : List[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
231
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __A : Optional[int] = None __A : str = logging.get_logger(__name__) __A : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __A : Tuple = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __A : str = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = AlbertTokenizer def __init__( self : Optional[int] , A : Dict=None , A : Tuple=None , A : int=True , A : List[str]=True , A : int=False , A : List[Any]="[CLS]" , A : Dict="[SEP]" , A : Tuple="<unk>" , A : Tuple="[SEP]" , A : Optional[Any]="<pad>" , A : List[str]="[CLS]" , A : Optional[int]="[MASK]" , **A : int , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Union[str, Any] = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowercase_ : int = do_lower_case lowercase_ : str = remove_space lowercase_ : Tuple = keep_accents lowercase_ : Optional[Any] = vocab_file lowercase_ : List[str] = False if not self.vocab_file else True def A ( self : str , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Optional[Any] = [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : List[str] , A : str , A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : List[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
231
1
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( __lowerCamelCase:Dict ): '''simple docstring''' __magic_name__ = 1 __magic_name__ = 2 while i * i <= n: __magic_name__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 5_0_0 ) if __name__ == "__main__": print(solution())
468
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A_ ( snake_case_ ): UpperCAmelCase__ = 42 class A_ ( snake_case_ , snake_case_ ): UpperCAmelCase__ = True @register_to_config def __init__( self : Any , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , __lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , __lowerCamelCase : Tuple[int] = (6_4,) , __lowerCamelCase : int = 1 , __lowerCamelCase : str = "silu" , __lowerCamelCase : int = 4 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : float = 0.1_8215 , ) -> Any: super().__init__() # pass init params to Encoder __magic_name__ = Encoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , down_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , act_fn=__lowerCamelCase , norm_num_groups=__lowerCamelCase , double_z=__lowerCamelCase , ) # pass init params to Decoder __magic_name__ = Decoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , up_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , norm_num_groups=__lowerCamelCase , act_fn=__lowerCamelCase , ) __magic_name__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __magic_name__ = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) __magic_name__ = False __magic_name__ = False # only relevant if vae tiling is enabled __magic_name__ = self.config.sample_size __magic_name__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __magic_name__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __magic_name__ = 0.25 def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ) -> Optional[int]: if isinstance(__lowerCamelCase , (Encoder, Decoder) ): __magic_name__ = value def _snake_case ( self : Dict , __lowerCamelCase : bool = True ) -> int: __magic_name__ = use_tiling def _snake_case ( self : Dict ) -> Optional[int]: self.enable_tiling(__lowerCamelCase ) def _snake_case ( self : int ) -> str: __magic_name__ = True def _snake_case ( self : Optional[Any] ) -> Tuple: __magic_name__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self : Optional[int] ) -> Dict[str, AttentionProcessor]: __magic_name__ = {} def fn_recursive_add_processors(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCamelCase , "set_processor" ): __magic_name__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return processors def _snake_case ( self : Dict , __lowerCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int: __magic_name__ = len(self.attn_processors.keys() ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowerCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : List[str] ): if hasattr(__lowerCamelCase , "set_processor" ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): module.set_processor(__lowerCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case ( self : str , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCamelCase , return_dict=__lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: __magic_name__ = [self.encoder(__lowerCamelCase ) for x_slice in x.split(1 )] __magic_name__ = torch.cat(__lowerCamelCase ) else: __magic_name__ = self.encoder(__lowerCamelCase ) __magic_name__ = self.quant_conv(__lowerCamelCase ) __magic_name__ = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCamelCase , return_dict=__lowerCamelCase ) __magic_name__ = self.post_quant_conv(__lowerCamelCase ) __magic_name__ = self.decoder(__lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) @apply_forward_hook def _snake_case ( self : Optional[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: __magic_name__ = [self._decode(__lowerCamelCase ).sample for z_slice in z.split(1 )] __magic_name__ = torch.cat(__lowerCamelCase ) else: __magic_name__ = self._decode(__lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ) -> Optional[int]: __magic_name__ = min(a.shape[2] , b.shape[2] , __lowerCamelCase ) for y in range(__lowerCamelCase ): __magic_name__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Optional[int]: __magic_name__ = min(a.shape[3] , b.shape[3] , __lowerCamelCase ) for x in range(__lowerCamelCase ): __magic_name__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> AutoencoderKLOutput: __magic_name__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __magic_name__ = [] for i in range(0 , x.shape[2] , __lowerCamelCase ): __magic_name__ = [] for j in range(0 , x.shape[3] , __lowerCamelCase ): __magic_name__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __magic_name__ = self.encoder(__lowerCamelCase ) __magic_name__ = self.quant_conv(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) __magic_name__ = [] for i, row in enumerate(__lowerCamelCase ): __magic_name__ = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) __magic_name__ = torch.cat(__lowerCamelCase , dim=2 ) __magic_name__ = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __magic_name__ = [] for i in range(0 , z.shape[2] , __lowerCamelCase ): __magic_name__ = [] for j in range(0 , z.shape[3] , __lowerCamelCase ): __magic_name__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __magic_name__ = self.post_quant_conv(__lowerCamelCase ) __magic_name__ = self.decoder(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) __magic_name__ = [] for i, row in enumerate(__lowerCamelCase ): __magic_name__ = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) __magic_name__ = torch.cat(__lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ = sample __magic_name__ = self.encode(__lowerCamelCase ).latent_dist if sample_posterior: __magic_name__ = posterior.sample(generator=__lowerCamelCase ) else: __magic_name__ = posterior.mode() __magic_name__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
468
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _snake_case ( snake_case__ : BertModel , snake_case__ : str , snake_case__ : str ): A = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') A = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) A = model.state_dict() def to_tf_var_name(snake_case__ : str ): for patt, repl in iter(snake_case__ ): A = name.replace(snake_case__ , snake_case__ ) return F'bert/{name}' def create_tf_var(snake_case__ : np.ndarray , snake_case__ : str , snake_case__ : tf.Session ): A = tf.dtypes.as_dtype(tensor.dtype ) A = tf.get_variable(dtype=snake_case__ , shape=tensor.shape , name=snake_case__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A = to_tf_var_name(snake_case__ ) A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A = torch_tensor.T A = create_tf_var(tensor=snake_case__ , name=snake_case__ , session=snake_case__ ) tf.keras.backend.set_value(snake_case__ , snake_case__ ) A = session.run(snake_case__ ) print(F'Successfully created {tf_name}: {np.allclose(snake_case__ , snake_case__ )}' ) A = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__ , os.path.join(snake_case__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def _snake_case ( snake_case__ : Tuple=None ): A = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case__ , required=snake_case__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=snake_case__ , required=snake_case__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=snake_case__ , required=snake_case__ , help='Directory in which to save tensorflow model' ) A = parser.parse_args(snake_case__ ) A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
91
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def a__ ( *_lowercase, **_lowercase ) -> Tuple: pass @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" _a = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def a__ ( self, _lowercase, _lowercase, _lowercase ) -> Tuple: SCREAMING_SNAKE_CASE_ = pipeline( 'zero-shot-object-detection', model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def a__ ( self, _lowercase, _lowercase ) -> str: SCREAMING_SNAKE_CASE_ = object_detector(examples[0], threshold=0.0 ) SCREAMING_SNAKE_CASE_ = len(_lowercase ) self.assertGreater(_lowercase, 0 ) self.assertEqual( _lowercase, [ { 'score': ANY(_lowercase ), 'label': ANY(_lowercase ), 'box': {'xmin': ANY(_lowercase ), 'ymin': ANY(_lowercase ), 'xmax': ANY(_lowercase ), 'ymax': ANY(_lowercase )}, } for i in range(_lowercase ) ], ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def a__ ( self ) -> Union[str, Any]: pass @require_torch def a__ ( self ) -> str: SCREAMING_SNAKE_CASE_ = pipeline( 'zero-shot-object-detection', model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png', candidate_labels=['cat', 'remote', 'couch'], threshold=0.64, ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ], ) SCREAMING_SNAKE_CASE_ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ], threshold=0.64, ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ], ) @require_torch @slow def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ) SCREAMING_SNAKE_CASE_ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ], ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ], ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def a__ ( self ) -> Optional[Any]: pass @require_torch @slow def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ = 0.2 SCREAMING_SNAKE_CASE_ = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], threshold=_lowercase, ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ], ) @require_torch @slow def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], top_k=_lowercase, ) self.assertEqual( nested_simplify(_lowercase, decimals=4 ), [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ], )
294
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) _UpperCAmelCase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _UpperCAmelCase : Tuple = model(A_ )["last_hidden_state"] _UpperCAmelCase : str = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. _UpperCAmelCase : int = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
467
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( UpperCAmelCase ): _lowercase = "megatron-bert" def __init__( self , A_=29056 , A_=1024 , A_=24 , A_=16 , A_=4096 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , **A_ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Tuple = use_cache
467
1
"""simple docstring""" from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase_ : def __init__( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Node | None ) -> Union[str, Any]: _UpperCamelCase = pos_x _UpperCamelCase = pos_y _UpperCamelCase = (pos_y, pos_x) _UpperCamelCase = goal_x _UpperCamelCase = goal_y _UpperCamelCase = parent class UpperCAmelCase_ : def __init__( self : Union[str, Any] , __UpperCamelCase : tuple[int, int] , __UpperCamelCase : tuple[int, int] ) -> Any: _UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , __UpperCamelCase ) _UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , __UpperCamelCase ) _UpperCamelCase = [self.start] _UpperCamelCase = False def _UpperCamelCase ( self : int ) -> Path | None: while self.node_queue: _UpperCamelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase = True return self.retrace_path(__UpperCamelCase ) _UpperCamelCase = self.get_successors(__UpperCamelCase ) for node in successors: self.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self : Dict , __UpperCamelCase : Node ) -> list[Node]: _UpperCamelCase = [] for action in delta: _UpperCamelCase = parent.pos_x + action[1] _UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__UpperCamelCase , __UpperCamelCase , self.target.pos_y , self.target.pos_x , __UpperCamelCase ) ) return successors def _UpperCamelCase ( self : Any , __UpperCamelCase : Node | None ) -> Path: _UpperCamelCase = node _UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase = current_node.parent path.reverse() return path class UpperCAmelCase_ : def __init__( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any ) -> Tuple: _UpperCamelCase = BreadthFirstSearch(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = BreadthFirstSearch(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = False def _UpperCamelCase ( self : Dict ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCamelCase = self.fwd_bfs.node_queue.pop(0 ) _UpperCamelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCamelCase = True return self.retrace_bidirectional_path( __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = current_bwd_node _UpperCamelCase = current_fwd_node _UpperCamelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(__UpperCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__UpperCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Node , __UpperCamelCase : Node ) -> Path: _UpperCamelCase = self.fwd_bfs.retrace_path(__UpperCamelCase ) _UpperCamelCase = self.bwd_bfs.retrace_path(__UpperCamelCase ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
420
"""simple docstring""" def lowercase ( a__ : float , a__ : int ) -> float: if digit_amount > 0: return round(number - int(a__ ) , a__ ) return number - int(a__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
420
1
def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" a__ :Any = [] a__ :Union[str, Any] = 1 while len(a ) < 1e6: constant.append(str(a ) ) i += 1 a__ :str = "".join(a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'sew' def __init__( self : Any , __A : str=32 , __A : Dict=768 , __A : int=12 , __A : Dict=12 , __A : Dict=3072 , __A : int=2 , __A : Union[str, Any]="gelu" , __A : Union[str, Any]=0.1 , __A : Optional[Any]=0.1 , __A : Union[str, Any]=0.1 , __A : str=0.0 , __A : Union[str, Any]=0.1 , __A : Optional[Any]=0.1 , __A : Tuple=0.02 , __A : Any=1E-5 , __A : Optional[Any]="group" , __A : str="gelu" , __A : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __A : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __A : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __A : List[str]=False , __A : Tuple=128 , __A : Tuple=16 , __A : Optional[int]=True , __A : Union[str, Any]=0.05 , __A : List[str]=10 , __A : Optional[int]=2 , __A : List[Any]=0.0 , __A : Optional[Any]=10 , __A : Tuple=0 , __A : Tuple="mean" , __A : Any=False , __A : str=False , __A : Dict=256 , __A : Union[str, Any]=0 , __A : Optional[int]=1 , __A : Optional[Any]=2 , **__A : Tuple , ) ->Tuple: """simple docstring""" super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) a__ :List[Any] = hidden_size a__ :List[Any] = feat_extract_norm a__ :List[str] = feat_extract_activation a__ :Any = list(__A ) a__ :Dict = list(__A ) a__ :Optional[int] = list(__A ) a__ :Any = conv_bias a__ :List[str] = num_conv_pos_embeddings a__ :str = num_conv_pos_embedding_groups a__ :Optional[int] = len(self.conv_dim ) a__ :List[Any] = num_hidden_layers a__ :str = intermediate_size a__ :Dict = squeeze_factor a__ :List[Any] = hidden_act a__ :Optional[Any] = num_attention_heads a__ :Tuple = hidden_dropout a__ :Tuple = attention_dropout a__ :List[Any] = activation_dropout a__ :str = feat_proj_dropout a__ :Any = final_dropout a__ :Dict = layerdrop a__ :List[str] = layer_norm_eps a__ :Tuple = initializer_range a__ :Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ :int = apply_spec_augment a__ :Optional[Any] = mask_time_prob a__ :List[Any] = mask_time_length a__ :Any = mask_time_min_masks a__ :Any = mask_feature_prob a__ :Dict = mask_feature_length a__ :Union[str, Any] = mask_feature_min_masks # ctc loss a__ :Dict = ctc_loss_reduction a__ :Any = ctc_zero_infinity # sequence classification a__ :Optional[int] = use_weighted_layer_sum a__ :Tuple = classifier_proj_size @property def _snake_case ( self : Dict ) ->Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
373
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a_ ( _UpperCAmelCase , unittest.TestCase ): a : Optional[Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Any=0 ) ->Dict: '''simple docstring''' _UpperCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__UpperCamelCase ) ) _UpperCAmelCase = np.random.RandomState(__UpperCamelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.7_5, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # warmup pass to apply optimizations _UpperCAmelCase = pipe(**self.get_dummy_inputs() ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case ( self : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a_ ( unittest.TestCase ): @property def _snake_case ( self : Any ) ->Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _snake_case ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = ort.SessionOptions() _UpperCAmelCase = False return options def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = np.random.RandomState(0 ) _UpperCAmelCase = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _UpperCAmelCase = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((7_68, 5_12) ) _UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = np.random.RandomState(0 ) _UpperCAmelCase = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _UpperCAmelCase = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
555
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a : int = 5_0_0_0_0_0 a , a : Union[str, Any] = os.path.split(__file__) a : Dict = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _UpperCamelCase ( _A , **_A ) -> Any: """simple docstring""" _UpperCAmelCase = dataset.map(**_A ) @get_duration def _UpperCamelCase ( _A , **_A ) -> Dict: """simple docstring""" _UpperCAmelCase = dataset.filter(**_A ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(_A , """dataset.arrow""" ) , _A , num_examples=_A ) _UpperCAmelCase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_A ) def tokenize(_A ): return tokenizer(examples["""text"""] ) _UpperCAmelCase = map(_A ) _UpperCAmelCase = map(_A , batched=_A ) _UpperCAmelCase = map(_A , function=lambda _A : None , batched=_A ) with dataset.formatted_as(type="""numpy""" ): _UpperCAmelCase = map(_A , function=lambda _A : None , batched=_A ) with dataset.formatted_as(type="""pandas""" ): _UpperCAmelCase = map(_A , function=lambda _A : None , batched=_A ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): _UpperCAmelCase = map(_A , function=lambda _A : None , batched=_A ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): _UpperCAmelCase = map(_A , function=lambda _A : None , batched=_A ) _UpperCAmelCase = map(_A , function=_A , batched=_A ) _UpperCAmelCase = filter(_A ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_A , """wb""" ) as f: f.write(json.dumps(_A ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
555
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase_ = logging.get_logger(__name__) lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Model type selected in the list: ' + ', '.join(__SCREAMING_SNAKE_CASE )} ) _UpperCamelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) _UpperCamelCase : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _UpperCamelCase : int = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) _UpperCamelCase : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) _UpperCamelCase : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) _UpperCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _UpperCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) _UpperCamelCase : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _UpperCamelCase : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _UpperCamelCase : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) _UpperCamelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class SCREAMING_SNAKE_CASE (__SCREAMING_SNAKE_CASE ): _UpperCamelCase : Union[str, Any] = 'train' _UpperCamelCase : List[Any] = 'dev' class SCREAMING_SNAKE_CASE (__SCREAMING_SNAKE_CASE ): _UpperCamelCase : SquadDataTrainingArguments _UpperCamelCase : List[SquadFeatures] _UpperCamelCase : Split _UpperCamelCase : bool def __init__( self : Dict , a : Union[str, Any] , a : int , a : Any = None , a : int = Split.train , a : Optional[Any] = False , a : Optional[Any] = None , a : Any = "pt" , )-> Any: """simple docstring""" lowercase__ = args lowercase__ = is_language_sensitive lowercase__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: lowercase__ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowercase__ = mode # Load data features from cache or dataset file lowercase__ = 'v2' if args.version_2_with_negative else 'v1' lowercase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + '.lock' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: lowercase__ = time.time() lowercase__ = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowercase__ = self.old_features['features'] lowercase__ = self.old_features.get('dataset' , _a ) lowercase__ = self.old_features.get('examples' , _a ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: lowercase__ = self.processor.get_dev_examples(args.data_dir ) else: lowercase__ = self.processor.get_train_examples(args.data_dir ) lowercase__ , lowercase__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) lowercase__ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Union[str, Any] )-> Dict: """simple docstring""" return len(self.features ) def __getitem__( self : int , a : List[Any] )-> Any: """simple docstring""" lowercase__ = self.features[i] lowercase__ = torch.tensor(feature.input_ids , dtype=torch.long ) lowercase__ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowercase__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowercase__ = torch.tensor(feature.cls_index , dtype=torch.long ) lowercase__ = torch.tensor(feature.p_mask , dtype=torch.float ) lowercase__ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowercase__ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowercase__ = torch.tensor(feature.start_position , dtype=torch.long ) lowercase__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A = 16 __A = 32 def _A ( lowercase__ , lowercase__ = 16 ): lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A = mocked_dataloaders # noqa: F811 def _A ( lowercase__ , lowercase__ ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": lowercase__ = 2 # Initialize accelerator lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase__ ) def inner_training_loop(lowercase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=lowercase__ ) lowercase__ , lowercase__ = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**lowercase__ ) lowercase__ = outputs.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**lowercase__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _A ( ): lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
325
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A ( unittest.TestCase ): def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = """hf-internal-testing/tiny-random-t5""" lowercase__ = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) lowercase__ = tokenizer("""This is me""" , return_tensors="""pt""" ) lowercase__ = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ = model.generate(**lowerCamelCase__ ) lowercase__ = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ = model_reloaded.generate(**lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """hf-internal-testing/tiny-random-t5""" lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) lowercase__ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCamelCase__ ): model.save_pretrained(lowerCamelCase__ ) lowercase__ = model.reverse_bettertransformer() model.save_pretrained(lowerCamelCase__ )
325
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: A : int = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) A : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) A : Dict = "A painting of a squirrel eating a burger" A : str = torch.manual_seed(0 ) A : int = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) A : Any = output.images A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A : Any = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: A : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) A : Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) A : Dict = "A painting of a squirrel eating a burger" A : Any = torch.manual_seed(0 ) A : Optional[int] = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) A : List[Any] = output.images A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A : Optional[int] = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: A : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) A : List[str] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) A : str = "A painting of a squirrel eating a burger" A : str = torch.manual_seed(0 ) A : Dict = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=__lowerCamelCase , ) A : str = output.images A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A : str = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
17
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __SCREAMING_SNAKE_CASE = """.""" if __name__ == "__main__": __SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] with open(doctest_file_path) as fp: for line in fp: __SCREAMING_SNAKE_CASE = line.strip() __SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __SCREAMING_SNAKE_CASE = """\n""".join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
17
1
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def _snake_case ( __snake_case ): # Validation def is_valid_tree(__snake_case ) -> bool: if node is None: return True if not isinstance(__snake_case , __snake_case ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__snake_case ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __snake_case , __snake_case , __snake_case ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __snake_case , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __snake_case ) ) return is_binary_search_tree_recursive_check(__snake_case , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _UpperCamelCase = logging.getLogger(__name__) @dataclass class __a : """simple docstring""" __UpperCamelCase : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __UpperCamelCase : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCamelCase : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __UpperCamelCase : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class __a : """simple docstring""" __UpperCamelCase : str = field( default=__magic_name__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : str = field( default=__magic_name__ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) __UpperCamelCase : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) __UpperCamelCase : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase : Optional[bool] = field( default=__magic_name__ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) __UpperCamelCase : bool = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __UpperCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCamelCase : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCamelCase : bool = field( default=__magic_name__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowercase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase__ : Any = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase__ : Optional[Any] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Optional[int] = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase__ : Tuple = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase__ : Any = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Union[str, Any] = predict_dataset.features["label"].names # Labels lowerCAmelCase__ : Optional[Any] = len(lowercase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase__ , idalabel={str(lowercase__ ): label for i, label in enumerate(lowercase__ )} , labelaid={label: i for i, label in enumerate(lowercase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase__ : List[str] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase__ : List[Any] = False def preprocess_function(lowercase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowercase__ , max_length=data_args.max_seq_length , truncation=lowercase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ : Optional[Any] = min(len(lowercase__ ) , data_args.max_train_samples ) lowerCAmelCase__ : Optional[int] = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase__ : int = train_dataset.map( lowercase__ , batched=lowercase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ : Optional[int] = min(len(lowercase__ ) , data_args.max_eval_samples ) lowerCAmelCase__ : Union[str, Any] = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase__ : List[str] = eval_dataset.map( lowercase__ , batched=lowercase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase__ : str = min(len(lowercase__ ) , data_args.max_predict_samples ) lowerCAmelCase__ : Union[str, Any] = predict_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase__ : Dict = predict_dataset.map( lowercase__ , batched=lowercase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCAmelCase__ : int = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase__ ): lowerCAmelCase__ : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , lowercase__ ) else p.predictions lowerCAmelCase__ : Union[str, Any] = np.argmax(lowercase__ , axis=1 ) return metric.compute(predictions=lowercase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase__ : Tuple = default_data_collator elif training_args.fpaa: lowerCAmelCase__ : Tuple = DataCollatorWithPadding(lowercase__ , pad_to_multiple_of=8 ) else: lowerCAmelCase__ : List[Any] = None # Initialize our Trainer lowerCAmelCase__ : int = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase__ , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: lowerCAmelCase__ : str = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ : List[str] = last_checkpoint lowerCAmelCase__ : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase__ ) lowerCAmelCase__ : str = train_result.metrics lowerCAmelCase__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) lowerCAmelCase__ : List[Any] = min(lowercase__ , len(lowercase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowercase__ ) trainer.save_metrics("train" , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ : str = trainer.evaluate(eval_dataset=lowercase__ ) lowerCAmelCase__ : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) lowerCAmelCase__ : Any = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics("eval" , lowercase__ ) trainer.save_metrics("eval" , lowercase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = trainer.predict(lowercase__ , metric_key_prefix="predict" ) lowerCAmelCase__ : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase__ ) ) lowerCAmelCase__ : str = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics("predict" , lowercase__ ) trainer.save_metrics("predict" , lowercase__ ) lowerCAmelCase__ : Union[str, Any] = np.argmax(lowercase__ , axis=1 ) lowerCAmelCase__ : List[str] = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowercase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowercase__ ): lowerCAmelCase__ : List[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
453
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ : lowercase = None @experimental def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return _map_with_joblib(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" _a : int = num_proc if num_proc <= len(UpperCAmelCase ) else len(UpperCAmelCase ) _a : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase ): _a : List[str] = len(UpperCAmelCase ) // num_proc _a : Any = len(UpperCAmelCase ) % num_proc _a : Optional[int] = div * index + min(UpperCAmelCase , UpperCAmelCase ) _a : Optional[int] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(UpperCAmelCase )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(UpperCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) _a , _a : List[Any] = None, None if not disable_tqdm: _a , _a : Any = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase , initargs=UpperCAmelCase , initializer=UpperCAmelCase ) as pool: _a : Union[str, Any] = pool.map(UpperCAmelCase , UpperCAmelCase ) logger.info(F'Finished {num_proc} processes' ) _a : int = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(UpperCAmelCase )} objects' ) return mapped def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCAmelCase ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCamelCase__ ( UpperCAmelCase ) -> Any: """simple docstring""" _a : Optional[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _a : Any = None
307
from maths.prime_factors import prime_factors def UpperCamelCase__ ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): _a : Optional[Any] = F'Input value of [number={number}] must be an integer' raise TypeError(UpperCAmelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
307
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCamelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCamelCase_ = 'UperNetConfig' class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Union[int, Tuple[int, int]] , __lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , __lowerCamelCase : bool = False , __lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , padding=__lowerCamelCase , bias=__lowerCamelCase , dilation=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.ReLU() def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : torch.Tensor ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.conv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.batch_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.activation(__lowerCamelCase ) return output class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = [ nn.AdaptiveAvgPoolad(__lowerCamelCase ), UperNetConvModule(__lowerCamelCase , __lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : torch.Tensor ): """simple docstring""" _SCREAMING_SNAKE_CASE = input for layer in self.layers: _SCREAMING_SNAKE_CASE = layer(__lowerCamelCase ) return hidden_state class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple[int, ...] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = pool_scales _SCREAMING_SNAKE_CASE = align_corners _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = channels _SCREAMING_SNAKE_CASE = [] for i, pool_scale in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = UperNetPyramidPoolingBlock(pool_scale=__lowerCamelCase , in_channels=__lowerCamelCase , channels=__lowerCamelCase ) self.blocks.append(__lowerCamelCase ) self.add_module(str(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : torch.Tensor ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] for ppm in self.blocks: _SCREAMING_SNAKE_CASE = ppm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.functional.interpolate( __lowerCamelCase , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(__lowerCamelCase ) return ppm_outs class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : str ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = config.pool_scales # e.g. (1, 2, 3, 6) _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = config.hidden_size _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _SCREAMING_SNAKE_CASE = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _SCREAMING_SNAKE_CASE = nn.ModuleList() _SCREAMING_SNAKE_CASE = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _SCREAMING_SNAKE_CASE = UperNetConvModule(__lowerCamelCase , self.channels , kernel_size=1 ) _SCREAMING_SNAKE_CASE = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCamelCase ) self.fpn_convs.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" self.apply(self._init_weights ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" if isinstance(__lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase_ ( self : Any , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = inputs[-1] _SCREAMING_SNAKE_CASE = [x] psp_outs.extend(self.psp_modules(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.cat(__lowerCamelCase , dim=1 ) _SCREAMING_SNAKE_CASE = self.bottleneck(__lowerCamelCase ) return output def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : torch.Tensor ): """simple docstring""" # build laterals _SCREAMING_SNAKE_CASE = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCamelCase ) ) # build top-down path _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = laterals[i - 1].shape[2:] _SCREAMING_SNAKE_CASE = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCamelCase , mode="bilinear" , align_corners=self.align_corners ) # build outputs _SCREAMING_SNAKE_CASE = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) _SCREAMING_SNAKE_CASE = torch.cat(__lowerCamelCase , dim=1 ) _SCREAMING_SNAKE_CASE = self.fpn_bottleneck(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.classifier(__lowerCamelCase ) return output class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 3 , __lowerCamelCase : Union[int, Tuple[int, int]] = 1 ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = config.auxiliary_in_channels _SCREAMING_SNAKE_CASE = config.auxiliary_channels _SCREAMING_SNAKE_CASE = config.auxiliary_num_convs _SCREAMING_SNAKE_CASE = config.auxiliary_concat_input _SCREAMING_SNAKE_CASE = in_index _SCREAMING_SNAKE_CASE = (kernel_size // 2) * dilation _SCREAMING_SNAKE_CASE = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCamelCase , padding=__lowerCamelCase , dilation=__lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCamelCase , padding=__lowerCamelCase , dilation=__lowerCamelCase ) ) if self.num_convs == 0: _SCREAMING_SNAKE_CASE = nn.Identity() else: _SCREAMING_SNAKE_CASE = nn.Sequential(*__lowerCamelCase ) if self.concat_input: _SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCamelCase , padding=kernel_size // 2 ) _SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCAmelCase_ ( self : str ): """simple docstring""" self.apply(self._init_weights ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" if isinstance(__lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase_ ( self : str , __lowerCamelCase : torch.Tensor ): """simple docstring""" # just take the relevant feature maps _SCREAMING_SNAKE_CASE = encoder_hidden_states[self.in_index] _SCREAMING_SNAKE_CASE = self.convs(__lowerCamelCase ) if self.concat_input: _SCREAMING_SNAKE_CASE = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _SCREAMING_SNAKE_CASE = self.classifier(__lowerCamelCase ) return output class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = UperNetConfig lowerCamelCase_ = '''pixel_values''' lowerCamelCase_ = True def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Any ): """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str=False ): """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = value lowerCamelCase_ = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase_ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , A , ) class lowercase_ ( A ): """simple docstring""" def __init__( self : int , __lowerCamelCase : List[str] ): """simple docstring""" super().__init__(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _SCREAMING_SNAKE_CASE = UperNetHead(__lowerCamelCase , in_channels=self.backbone.channels ) _SCREAMING_SNAKE_CASE = UperNetFCNHead(__lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions _SCREAMING_SNAKE_CASE = self.backbone.forward_with_filtered_kwargs( __lowerCamelCase , output_hidden_states=__lowerCamelCase , output_attentions=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.feature_maps _SCREAMING_SNAKE_CASE = self.decode_head(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.functional.interpolate(__lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = None if self.auxiliary_head is not None: _SCREAMING_SNAKE_CASE = self.auxiliary_head(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.functional.interpolate( __lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss _SCREAMING_SNAKE_CASE = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _SCREAMING_SNAKE_CASE = (logits,) + outputs[1:] else: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
418
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ ( __A : np.ndarray , __A : tuple[int, int] , __A : tuple[int, int] , __A : bool , ) -> tuple[float | int, list[tuple[int, int]]]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = grid.shape _SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] _SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = [(0, source)], set() _SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=__A ) _SCREAMING_SNAKE_CASE = None while queue: ((_SCREAMING_SNAKE_CASE), (_SCREAMING_SNAKE_CASE)) = heappop(__A ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(__A ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__A ) ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__A , (dist + 1, (nx, ny)) ) _SCREAMING_SNAKE_CASE = dist + 1 _SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
418
1
import random from .binary_exp_mod import bin_exp_mod def A_ ( _lowerCAmelCase , _lowerCAmelCase=1000 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCamelCase : Union[str, Any] = n - 1 UpperCamelCase : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCamelCase : Optional[int] = 0 while count < prec: UpperCamelCase : Optional[int] = random.randint(2 , n - 1 ) UpperCamelCase : Dict = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCamelCase : List[Any] = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCamelCase : Optional[Any] = False break UpperCamelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
38
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = ['image_processor', 'tokenizer'] _UpperCAmelCase :Tuple = 'BlipImageProcessor' _UpperCAmelCase :Optional[int] = 'AutoTokenizer' def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = False super().__init__(A_ , A_ ) UpperCamelCase : str = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCamelCase : int = self.tokenizer UpperCamelCase : Optional[int] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ ) if text is not None: UpperCamelCase : Dict = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: UpperCamelCase : Dict = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.tokenizer.model_input_names UpperCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
38
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar('''T''') def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (position - 1) // 2 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 1 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 2 class _UpperCamelCase( Generic[T] ): def __init__( self : List[str] ): '''simple docstring''' __a : list[tuple[T, int]] = [] __a : dict[T, int] = {} __a : int = 0 def __len__( self : Any ): '''simple docstring''' return self.elements def __repr__( self : Any ): '''simple docstring''' return str(self.heap ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.elements == 0 def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.heap.append((elem, weight) ) __a : List[Any] = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __a , __a : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __a , __a : Dict = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : List[Any] = self.position_map[elem] __a : str = (elem, weight) if position > 0: __a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : List[Any] = self.position_map[elem] if curr_pos == 0: return None __a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : str = self.heap[curr_pos] __a , __a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : int = self.position_map[elem] __a , __a : Optional[Any] = self.heap[curr_pos] __a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __a , __a : str = self.heap[child_left_position] __a , __a : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __a , __a : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __a , __a : Union[str, Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Optional[Any] = self.heap[nodea_pos][0] __a : str = self.heap[nodea_pos][0] __a , __a : int = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __a : str = nodea_pos __a : Optional[int] = nodea_pos class _UpperCamelCase( Generic[T] ): def __init__( self : List[Any] ): '''simple docstring''' __a : dict[T, dict[T, int]] = {} __a : int = 0 def __repr__( self : Tuple ): '''simple docstring''' return str(self.connections ) def __len__( self : Dict ): '''simple docstring''' return self.nodes def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' if node not in self.connections: __a : Tuple = {} self.nodes += 1 def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = weight __a : Any = weight def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ): __a : dict[T, int] = {node: maxsize for node in graph.connections} __a : dict[T, T | None] = {node: None for node in graph.connections} __a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCamelCase_ , lowerCamelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __a : Optional[int] = priority_queue.extract_min() __a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): __a : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Dict = node return dist, parent
47
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : int ="https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase : Any ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase ( _lowerCamelCase : str ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: A__ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: A__ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: A__ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : str ): A__ = {} import re A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_conv_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" A__ = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_proj_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" A__ = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" A__ = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" A__ = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" A__ = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" A__ = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: A__ = original_key A__ = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: A__ = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) A__ = original_key A__ = original_key A__ = value return new_dict @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : str=None , _lowerCamelCase : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): A__ = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) A__ = MODEL_MAPPING[model_name.split("/" )[-1]] A__ = JukeboxConfig.from_pretrained(_lowerCamelCase ) A__ = JukeboxModel(_lowerCamelCase ) A__ = [] A__ = {} for i, dict_name in enumerate(_lowerCamelCase ): A__ = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] A__ = {} for k in old_dic.keys(): if k.endswith(".b" ): A__ = old_dic[k] elif k.endswith(".w" ): A__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ = old_dic[k] else: A__ = old_dic[k] A__ = "vqvae" if i == 0 else F"priors.{3 - i}" A__ = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) A__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCAmelCase : int =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
440
0
def __UpperCAmelCase ( a_): snake_case_ = [0] * len(a_) snake_case_ = [] snake_case_ = [] snake_case_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_)): if indegree[i] == 0: queue.append(a_) while queue: snake_case_ = queue.pop(0) cnt += 1 topo.append(a_) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(a_) if cnt != len(a_): print('Cycle exists') else: print(a_) # Adjacency List of Graph lowercase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
711
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCAmelCase ( a_): if isinstance(a_ , torch.Tensor): return image elif isinstance(a_ , PIL.Image.Image): snake_case_ = [image] snake_case_ = [trans(img.convert('RGB')) for img in image] snake_case_ = torch.stack(a_) return image class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) def _UpperCamelCase ( self , a ) -> List[str]: if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _UpperCamelCase ( self , a , a , a ) -> Any: # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , a ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self , a , a , a , a , a , a=None ) -> List[Any]: if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}''' ) snake_case_ = image.to(device=a , dtype=a ) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents print('add noise to latents at timestep' , a ) snake_case_ = self.scheduler.add_noise(a , a , a ) snake_case_ = init_latents return latents @torch.no_grad() def __call__( self , a = None , a = 0.8 , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(a ) # 2. Preprocess image snake_case_ = preprocess(a ) # 3. set timesteps self.scheduler.set_timesteps(a , device=self.device ) snake_case_ , snake_case_ = self.get_timesteps(a , a , self.device ) snake_case_ = timesteps[:1].repeat(a ) # 4. Prepare latent variables snake_case_ = self.prepare_latents(a , a , a , self.unet.dtype , self.device , a ) snake_case_ = latents # 5. Denoising loop for t in self.progress_bar(a ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a , ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a )
607
0
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def lowercase__(A , A , A , A , A , A , A , A=False , ) ->Any: """simple docstring""" output_path.parent.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , use_external_data_format=_UpperCamelCase , enable_onnx_checker=_UpperCamelCase , opset_version=_UpperCamelCase , ) else: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , opset_version=_UpperCamelCase , ) @torch.no_grad() def lowercase__(A , A , A , A = False ) ->Optional[int]: """simple docstring""" lowercase__ : Dict= torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ : Union[str, Any]= '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: lowercase__ : Optional[int]= '''cpu''' lowercase__ : List[str]= Path(_UpperCamelCase ) # VAE DECODER lowercase__ : Dict= AutoencoderKL.from_pretrained(model_path + "/vae" ) lowercase__ : str= vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ : int= vae_decoder.decode onnx_export( _UpperCamelCase , model_args=( torch.randn(1 , _UpperCamelCase , 25 , 25 ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_UpperCamelCase , ) del vae_decoder if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") a : Optional[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
218
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) lowerCAmelCase_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowerCAmelCase_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowerCAmelCase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
60
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' a = len(UpperCAmelCase__ ) a = sum(UpperCAmelCase__ ) a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): a = True for i in range(1 , s + 1 ): a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): a = dp[i][j - 1] if arr[i - 1] <= j: a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: a = s - 2 * j break return diff
708
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = embedding_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def A ( self : Optional[int] ) -> Optional[int]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> List[str]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" a = MobileBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> str: """simple docstring""" a = MobileBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" a = MobileBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" a = MobileBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" a = MobileBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" a = self.num_labels a = MobileBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" a = self.num_labels a = MobileBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" a = self.num_choices a = MobileBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=False ) -> Any: """simple docstring""" a = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self : Optional[int] ) -> List[Any]: """simple docstring""" a = MobileBertModelTester(self ) a = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A ( self : str ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def A ( self : str ) -> str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def A ( self : int ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def A ( self : List[Any] ) -> int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def A ( self : int ) -> Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) A_ : Dict = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__lowerCAmelCase ) a = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a = model(__lowerCAmelCase )[0] a = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __lowerCAmelCase ) a = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=__lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = 'pytorch_model.bin' @dataclasses.dataclass class a : _lowercase = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class a : _lowercase = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) _lowercase = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the validation data."} ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "The name of the task to train on."} , ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class a : _lowercase = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) _lowercase = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) _lowercase = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) _lowercase = dataclasses.field( default=1_0 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) _lowercase = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) _lowercase = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) _lowercase = dataclasses.field( default=1_0_0 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) _lowercase = dataclasses.field( default=UpperCAmelCase , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Dict , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: List[Any] , lowerCAmelCase: int ) -> List[str]: _UpperCAmelCase : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _UpperCAmelCase : List[Any] = dataset.filter(lambda lowerCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _UpperCAmelCase : Optional[int] = int(eval_result * len(lowerCAmelCase ) ) print(lowerCAmelCase ) _UpperCAmelCase : Tuple = dataset.sort("probability" , reverse=lowerCAmelCase ) _UpperCAmelCase : List[str] = dataset.select(range(lowerCAmelCase ) ) _UpperCAmelCase : Optional[int] = dataset.remove_columns(["label", "probability"] ) _UpperCAmelCase : Tuple = dataset.rename_column("prediction" , "label" ) _UpperCAmelCase : int = dataset.map(lambda lowerCAmelCase : {"label": idalabel[example["label"]]} ) _UpperCAmelCase : Union[str, Any] = dataset.shuffle(seed=args.seed ) _UpperCAmelCase : str = os.path.join(lowerCAmelCase , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase , index=lowerCAmelCase ) else: dataset.to_json(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int , lowerCAmelCase: List[str] , **lowerCAmelCase: List[Any] ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : Tuple = STModelArguments(model_name_or_path=lowerCAmelCase ) _UpperCAmelCase : Tuple = STDataArguments(train_file=lowerCAmelCase , infer_file=lowerCAmelCase ) _UpperCAmelCase : List[Any] = STTrainingArguments(output_dir=lowerCAmelCase ) _UpperCAmelCase : Tuple = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase ).items(): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase , lowerCAmelCase ): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Sanity checks _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Dict = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _UpperCAmelCase : List[str] = args.train_file _UpperCAmelCase : Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _UpperCAmelCase : List[str] = args.eval_file for key in data_files: _UpperCAmelCase : Any = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: _UpperCAmelCase : List[str] = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _UpperCAmelCase : Optional[int] = F'{args.output_dir}/self-train_iter-{{}}'.format _UpperCAmelCase : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) accelerator.wait_for_everyone() _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : str = 0 _UpperCAmelCase : str = False # Show the progress bar _UpperCAmelCase : Optional[int] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _UpperCAmelCase : List[str] = data_dir_format(lowerCAmelCase ) assert os.path.exists(lowerCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase , "stage-1" ) _UpperCAmelCase : Dict = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase , lowerCAmelCase ): arguments_dict.update({key: value} ) _UpperCAmelCase : str = os.path.join(lowerCAmelCase , "best-checkpoint" , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , lowerCAmelCase , lowerCAmelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , lowerCAmelCase ) finetune(**lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , lowerCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase , "best-checkpoint" ) _UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase , "stage-2" ) # Update arguments_dict _UpperCAmelCase : Optional[int] = model_path _UpperCAmelCase : List[Any] = data_files["train"] _UpperCAmelCase : List[str] = current_output_dir _UpperCAmelCase : Any = os.path.join(lowerCAmelCase , "best-checkpoint" , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , lowerCAmelCase , lowerCAmelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , lowerCAmelCase ) finetune(**lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = iteration _UpperCAmelCase : Dict = data_dir_format(iteration + 1 ) _UpperCAmelCase : int = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase , "best-checkpoint" ) ) _UpperCAmelCase : Optional[Any] = config.idalabel _UpperCAmelCase : Any = os.path.join(lowerCAmelCase , "eval_results_best-checkpoint.json" ) _UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(lowerCAmelCase ) with open(lowerCAmelCase , "r" ) as f: _UpperCAmelCase : Any = float(json.load(lowerCAmelCase )[args.eval_metric] ) _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(lowerCAmelCase ) # Loading the dataset from local csv or json files. _UpperCAmelCase : Tuple = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _UpperCAmelCase : str = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) shutil.copy(lowerCAmelCase , os.path.join(lowerCAmelCase , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(lowerCAmelCase ): shutil.copy(lowerCAmelCase , os.path.join(lowerCAmelCase , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) accelerator.wait_for_everyone() _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _UpperCAmelCase : str = eval_result if best_iteration is None: _UpperCAmelCase : List[Any] = new_iteration _UpperCAmelCase : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _UpperCAmelCase : str = new_iteration _UpperCAmelCase : Optional[int] = new_eval_result _UpperCAmelCase : Dict = 0 else: if new_eval_result == best_eval_result: _UpperCAmelCase : Union[str, Any] = new_iteration _UpperCAmelCase : Any = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _UpperCAmelCase : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , lowerCAmelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase , F'eval_results_iter-{iteration}.json' ) , os.path.join(lowerCAmelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(lowerCAmelCase , "eval_results_best-iteration.json" ) , )
300
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> list[list[int]]: _UpperCAmelCase : list[list[int]] = [] create_all_state(1 , lowerCAmelCase , lowerCAmelCase , [] , lowerCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(lowerCAmelCase , total_number - level + 2 ): current_list.append(lowerCAmelCase ) create_all_state(i + 1 , lowerCAmelCase , level - 1 , lowerCAmelCase , lowerCAmelCase ) current_list.pop() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
300
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : List[str] = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _UpperCAmelCase : Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : Tuple = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Any = 4_5 _UpperCAmelCase : Tuple = 1_5_8_1 _UpperCAmelCase : Optional[int] = 1_5_1_7 _UpperCAmelCase : Optional[int] = 1_5_7_0 _UpperCAmelCase : Optional[int] = 1_5_8_4 _UpperCAmelCase : Optional[Any] = 1_7_9_3 _UpperCAmelCase : Union[str, Any] = 1_7_9_5 _UpperCAmelCase : Dict = 1_9_1_6 _UpperCAmelCase : List[Any] = 1_8_6_4 _UpperCAmelCase : Optional[Any] = 1_9_0_5 _UpperCAmelCase : Tuple = 1_9_1_9 _UpperCAmelCase : Dict = 2_4_2_9 _UpperCAmelCase : Optional[int] = 2_2_0_8 _UpperCAmelCase : Union[str, Any] = 2_4_1_8 _UpperCAmelCase : List[str] = 2_3_2_3 _UpperCAmelCase : Optional[Any] = 2_4_0_7 # @@protoc_insertion_point(module_scope)
704
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _UpperCAmelCase : Tuple = random.Random() if is_torch_available(): import torch def __magic_name__( lowerCamelCase, lowerCamelCase=1.0, lowerCamelCase=None, lowerCamelCase=None): if rng is None: __lowerCAmelCase = global_rng __lowerCAmelCase = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=7 , __lowercase=4_00 , __lowercase=20_00 , __lowercase=1 , __lowercase=0.0 , __lowercase=1_60_00 , __lowercase=True , __lowercase=True , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = min_seq_length __lowerCAmelCase = max_seq_length __lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase = feature_size __lowerCAmelCase = padding_value __lowerCAmelCase = sampling_rate __lowerCAmelCase = return_attention_mask __lowerCAmelCase = do_normalize def _snake_case (self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case (self , __lowercase=False , __lowercase=False ): def _flatten(__lowercase ): return list(itertools.chain(*__lowercase ) ) if equal_length: __lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = ASTFeatureExtractor def _snake_case (self ): __lowerCAmelCase = ASTFeatureExtractionTester(self ) def _snake_case (self ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCAmelCase = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test not batched input __lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values __lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test batched __lowerCAmelCase = feat_extract(__lowercase , padding=__lowercase , return_tensors='''np''' ).input_values __lowerCAmelCase = feat_extract(__lowercase , padding=__lowercase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCAmelCase = np.asarray(__lowercase ) __lowerCAmelCase = feat_extract(__lowercase , return_tensors='''np''' ).input_values __lowerCAmelCase = feat_extract(__lowercase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) @require_torch def _snake_case (self ): import torch __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase = np.random.rand(1_00 ).astype(np.floataa ) __lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowerCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _snake_case (self , __lowercase ): from datasets import load_dataset __lowerCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCAmelCase = ds.sort('''id''' ).select(range(__lowercase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _snake_case (self ): # fmt: off __lowerCAmelCase = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __lowerCAmelCase = self._load_datasamples(1 ) __lowerCAmelCase = ASTFeatureExtractor() __lowerCAmelCase = feature_extractor(__lowercase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __lowercase , atol=1e-4 ) )
474
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ = flax_key_tuple[:-1] + ('''weight''',) A__ = torch.permute(lowercase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ): # linear layer A__ = flax_key_tuple[:-1] + ('''weight''',) A__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" if "metadata" in layer: A__ = layer.split('''metadata''' ) A__ = ''''''.join(split_layer[0] )[:-1] A__ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: A__ = layer.split('''kvstore''' ) A__ = ''''''.join(split_layer[0] )[:-1] A__ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: A__ = layer.split('''/''' ) A__ = '''/'''.join(split_layer[:-1] ) A__ = (split_layer[-1],) if "kvstore/path" in layer: A__ = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: A__ = '''file''' else: A__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = rename_keys(lowercase_ ) A__ = {} for k, v in current_block.items(): A__ = v A__ = new_current_block torch.save(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = WEIGHTS_NAME ) -> Any: """simple docstring""" A__ = convert_file_size_to_int(lowercase_ ) A__ = [] A__ = {} A__ = 0 A__ = 0 os.makedirs(lowercase_ , exist_ok=lowercase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: A__ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] A__ = flatten_dict(lowercase_ , sep='''/''' ) A__ = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ = get_key_and_tensorstore_dict( lowercase_ , lowercase_ , lowercase_ ) if curr_real_layer_name in all_layers: A__ = content else: A__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ = torch.tensor(lowercase_ ) A__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowercase_ ) A__ = '''/'''.join(lowercase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ = os.path.join( lowercase_ , weights_name.replace('''.bin''' , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ = {} A__ = 0 A__ = raw_weights.to(getattr(lowercase_ , lowercase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ = {} A__ = {} for idx, shard in enumerate(lowercase_ ): A__ = weights_name.replace( '''.bin''' , f"""-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} A__ = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) A__ = shard for key in shard: A__ = shard_file # Add the metadata A__ = {'''total_size''': total_size} A__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' ) as f: A__ = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n''' f.write(lowercase_ ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _lowerCamelCase : int = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) A__ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) A__ = TaTokenizer.from_pretrained('''t5-small''' ) A__ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' A__ = tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids A__ = model.generate(lowercase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( __UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = ["""image_processor""", """tokenizer"""] UpperCAmelCase__ : List[str] = """OwlViTImageProcessor""" UpperCAmelCase__ : List[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__(self : Tuple , _A : List[str]=None , _A : Optional[int]=None , **_A : Any ) -> str: snake_case = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) snake_case = kwargs.pop("feature_extractor" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__(self : List[Any] , _A : Optional[Any]=None , _A : List[Any]=None , _A : Any=None , _A : Tuple="max_length" , _A : Optional[int]="np" , **_A : str ) -> Optional[int]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(text[0] , UpperCAmelCase_ )): snake_case = [self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )] elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(text[0] , UpperCAmelCase_ ): snake_case = [] # Maximum number of queries across batch snake_case = max([len(UpperCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase_ ) != max_num_queries: snake_case = t + [" "] * (max_num_queries - len(UpperCAmelCase_ )) snake_case = self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) encodings.append(UpperCAmelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": snake_case = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp snake_case = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch snake_case = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) snake_case = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf snake_case = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) snake_case = BatchEncoding() snake_case = input_ids snake_case = attention_mask if query_images is not None: snake_case = BatchEncoding() snake_case = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ).pixel_values snake_case = query_pixel_values if images is not None: snake_case = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: snake_case = image_features.pixel_values return encoding elif query_images is not None and images is not None: snake_case = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def UpperCAmelCase(self : Optional[Any] , *_A : Dict , **_A : int ) -> Dict: return self.image_processor.post_process(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase(self : Optional[int] , *_A : Optional[int] , **_A : Optional[Any] ) -> Tuple: return self.image_processor.post_process_object_detection(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase(self : Optional[int] , *_A : Any , **_A : str ) -> Tuple: return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase(self : str , *_A : Any , **_A : int ) -> int: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase(self : List[str] , *_A : str , **_A : Optional[Any] ) -> List[Any]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def UpperCAmelCase(self : List[Any] ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase_ , ) return self.image_processor_class @property def UpperCAmelCase(self : Dict ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase_ , ) return self.image_processor
711
import sys _A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase_ ( A__ ) -> int: """simple docstring""" snake_case = 1 for digit in s: product *= int(A__ ) return product def lowercase_ ( A__ = N ) -> int: """simple docstring""" snake_case = -sys.maxsize - 1 snake_case = n[:13] snake_case = 13 while cur_index < len(A__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case = substr[1:] + n[cur_index] cur_index += 1 else: snake_case = max(A__ , str_eval(A__ ) ) snake_case = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
294
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case (UpperCamelCase ): lowerCAmelCase__ :Dict = ["vqvae"] def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,) -> Dict: super().__init__() self.register_modules(unet=UpperCAmelCase_ ,scheduler=UpperCAmelCase_ ,mel=UpperCAmelCase_ ,vqvae=UpperCAmelCase_ ) def _a ( self ) -> int: return 50 if isinstance(self.scheduler ,UpperCAmelCase_ ) else 1_000 @torch.no_grad() def __call__( self ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: lowercase__ = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_ ) lowercase__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=UpperCAmelCase_ ,device=self.device ,) lowercase__ = noise lowercase__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ ,UpperCAmelCase_ ) lowercase__ = self.mel.audio_slice_to_image(UpperCAmelCase_ ) lowercase__ = np.frombuffer(input_image.tobytes() ,dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowercase__ = (input_image / 255) * 2 - 1 lowercase__ = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase__ = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ ,0 ) ).latent_dist.sample( generator=UpperCAmelCase_ )[0] lowercase__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase__ = self.scheduler.add_noise(UpperCAmelCase_ ,UpperCAmelCase_ ,self.scheduler.timesteps[start_step - 1] ) lowercase__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase__ = int(mask_start_secs * pixels_per_second ) lowercase__ = int(mask_end_secs * pixels_per_second ) lowercase__ = self.scheduler.add_noise(UpperCAmelCase_ ,UpperCAmelCase_ ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,UpperCAmelCase_ ): lowercase__ = self.unet(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ )["sample"] else: lowercase__ = self.unet(UpperCAmelCase_ ,UpperCAmelCase_ )["sample"] if isinstance(self.scheduler ,UpperCAmelCase_ ): lowercase__ = self.scheduler.step( model_output=UpperCAmelCase_ ,timestep=UpperCAmelCase_ ,sample=UpperCAmelCase_ ,eta=UpperCAmelCase_ ,generator=UpperCAmelCase_ ,)["prev_sample"] else: lowercase__ = self.scheduler.step( model_output=UpperCAmelCase_ ,timestep=UpperCAmelCase_ ,sample=UpperCAmelCase_ ,generator=UpperCAmelCase_ ,)["prev_sample"] if mask is not None: if mask_start > 0: lowercase__ = mask[:, step, :, :mask_start] if mask_end > 0: lowercase__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase__ = 1 / self.vqvae.config.scaling_factor * images lowercase__ = self.vqvae.decode(UpperCAmelCase_ )["sample"] lowercase__ = (images / 2 + 0.5).clamp(0 ,1 ) lowercase__ = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() lowercase__ = (images * 255).round().astype("uint8" ) lowercase__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ ,mode="RGB" ).convert("L" ) for _ in images) ) lowercase__ = [self.mel.image_to_audio(UpperCAmelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_ )[:, np.newaxis, :] ) ,**ImagePipelineOutput(UpperCAmelCase_ ) ) @torch.no_grad() def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = 50 ) -> np.ndarray: assert isinstance(self.scheduler ,UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ ) lowercase__ = np.array( [np.frombuffer(image.tobytes() ,dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowercase__ = (sample / 255) * 2 - 1 lowercase__ = torch.Tensor(UpperCAmelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): lowercase__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase__ = self.scheduler.alphas_cumprod[t] lowercase__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase__ = 1 - alpha_prod_t lowercase__ = self.unet(UpperCAmelCase_ ,UpperCAmelCase_ )["sample"] lowercase__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _a ( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> torch.Tensor: lowercase__ = acos(torch.dot(torch.flatten(UpperCAmelCase_ ) ,torch.flatten(UpperCAmelCase_ ) ) / torch.norm(UpperCAmelCase_ ) / torch.norm(UpperCAmelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase_ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase_ )
267
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case (unittest.TestCase ): def _a ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def _a ( self ) -> List[Any]: lowercase__ , lowercase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCAmelCase_ ,dtype=jnp.bfloataa ) lowercase__ , lowercase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCAmelCase_ ,from_pt=UpperCAmelCase_ ,dtype=jnp.bfloataa ) lowercase__ = controlnet_params lowercase__ = "bird" lowercase__ = jax.device_count() lowercase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) lowercase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCAmelCase_ ,jax.device_count() ) lowercase__ = replicate(UpperCAmelCase_ ) lowercase__ = shard(UpperCAmelCase_ ) lowercase__ = shard(UpperCAmelCase_ ) lowercase__ = pipe( prompt_ids=UpperCAmelCase_ ,image=UpperCAmelCase_ ,params=UpperCAmelCase_ ,prng_seed=UpperCAmelCase_ ,num_inference_steps=50 ,jit=UpperCAmelCase_ ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _a ( self ) -> List[Any]: lowercase__ , lowercase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCAmelCase_ ,dtype=jnp.bfloataa ) lowercase__ , lowercase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCAmelCase_ ,from_pt=UpperCAmelCase_ ,dtype=jnp.bfloataa ) lowercase__ = controlnet_params lowercase__ = "Chef in the kitchen" lowercase__ = jax.device_count() lowercase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) lowercase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCAmelCase_ ,jax.device_count() ) lowercase__ = replicate(UpperCAmelCase_ ) lowercase__ = shard(UpperCAmelCase_ ) lowercase__ = shard(UpperCAmelCase_ ) lowercase__ = pipe( prompt_ids=UpperCAmelCase_ ,image=UpperCAmelCase_ ,params=UpperCAmelCase_ ,prng_seed=UpperCAmelCase_ ,num_inference_steps=50 ,jit=UpperCAmelCase_ ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
267
1
'''simple docstring''' UpperCAmelCase : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) UpperCAmelCase : Tuple = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = from_type.lower().strip('''s''' ) _snake_case : int = to_type.lower().strip('''s''' ) _snake_case : Any = UNIT_SYMBOL.get(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Dict = UNIT_SYMBOL.get(lowerCAmelCase_ , lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: _snake_case : int = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}''' ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: _snake_case : Any = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}''' ) raise ValueError(lowerCAmelCase_ ) _snake_case : Optional[Any] = METRIC_CONVERSION[from_sanitized] _snake_case : Dict = METRIC_CONVERSION[to_sanitized] _snake_case : str = 1 if from_exponent > to_exponent: _snake_case : List[str] = from_exponent - to_exponent else: _snake_case : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(10 , lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
47
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
1
"""simple docstring""" __UpperCamelCase : str = 2_5_6 # Modulus to hash a string __UpperCamelCase : Union[str, Any] = 1_0_0_0_0_0_3 def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Dict = len(A_ ) lowerCAmelCase__ : Dict = len(A_ ) if p_len > t_len: return False lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(A_ ): lowerCAmelCase__ : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCAmelCase__ : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCAmelCase__ : List[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCAmelCase__ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[Any] = '''abc1abc12''' lowerCAmelCase__ : List[Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase__ : int = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(A_ , A_ ) and not rabin_karp(A_ , A_ ) # Test 2) lowerCAmelCase__ : Optional[Any] = '''ABABX''' lowerCAmelCase__ : Optional[Any] = '''ABABZABABYABABX''' assert rabin_karp(A_ , A_ ) # Test 3) lowerCAmelCase__ : Optional[int] = '''AAAB''' lowerCAmelCase__ : Dict = '''ABAAAAAB''' assert rabin_karp(A_ , A_ ) # Test 4) lowerCAmelCase__ : Union[str, Any] = '''abcdabcy''' lowerCAmelCase__ : Optional[int] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(A_ , A_ ) # Test 5) lowerCAmelCase__ : Tuple = '''Lü''' lowerCAmelCase__ : Optional[Any] = '''Lüsai''' assert rabin_karp(A_ , A_ ) lowerCAmelCase__ : Dict = '''Lue''' assert not rabin_karp(A_ , A_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
450
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase : Optional[Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : Optional[Any] ,lowercase_ : Optional[Any]=1_6 ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=7 ,lowercase_ : int=1_4 ,lowercase_ : str=1_0 ,lowercase_ : List[Any]=1_9 ,lowercase_ : Any=5 ,lowercase_ : Any=4 ,lowercase_ : List[str]=True ,lowercase_ : Union[str, Any]=1_6 ,lowercase_ : Tuple=2 ,lowercase_ : str=4 ,lowercase_ : Tuple=4 ,lowercase_ : int="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : int=0.1 ,lowercase_ : Optional[int]=[1, 2, 3, 4, 5] ,lowercase_ : List[Any]=2_5 ,lowercase_ : Union[str, Any]=5 ,): lowerCAmelCase__ : List[str] = d_model lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Any = prediction_length lowerCAmelCase__ : str = context_length lowerCAmelCase__ : int = cardinality lowerCAmelCase__ : Dict = num_time_features lowerCAmelCase__ : str = lags_sequence lowerCAmelCase__ : int = embedding_dimension lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Dict = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = context_length lowerCAmelCase__ : Optional[Any] = prediction_length + label_length lowerCAmelCase__ : Union[str, Any] = label_length lowerCAmelCase__ : Optional[int] = moving_average lowerCAmelCase__ : Dict = autocorrelation_factor def __lowerCAmelCase ( self : Tuple ): return AutoformerConfig( d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): lowerCAmelCase__ : str = config.context_length + max(config.lags_sequence ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, 1] ,config.cardinality[0] ) lowerCAmelCase__ : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase__ : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = self.get_config() lowerCAmelCase__ : Dict = self.prepare_autoformer_inputs_dict(lowercase_ ) return config, inputs_dict def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self : Dict ,lowercase_ : Optional[int] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Any = AutoformerModel(config=lowercase_ ).to(lowercase_ ).eval() lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : Any = outputs.encoder_last_hidden_state lowerCAmelCase__ : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[Any] = model.get_encoder() encoder.save_pretrained(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AutoformerEncoder.from_pretrained(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : str = model.create_network_inputs(**lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase__ : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,) lowerCAmelCase__ : Dict = encoder(inputs_embeds=lowercase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase__ : Optional[int] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 ) .unsqueeze(1 ) .repeat(1 ,config.prediction_length ,1 ) ) lowerCAmelCase__ : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,) lowerCAmelCase__ : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) lowerCAmelCase__ : Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[int] = model.get_decoder() decoder.save_pretrained(lowercase_ ) lowerCAmelCase__ : Tuple = AutoformerDecoder.from_pretrained(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = decoder( trend=lowercase_ ,inputs_embeds=lowercase_ ,encoder_hidden_states=lowercase_ ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__ = (AutoformerForPrediction,) if is_torch_available() else () lowercase__ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = AutoformerModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model_class.from_pretrained(lowercase_ ,output_loading_info=lowercase_ ) self.assertEqual(info['''missing_keys'''] ,[] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __lowerCAmelCase ( self : Optional[int] ): pass def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = inspect.signature(getattr(lowercase_ ,'''forward''' ) ) # The main input is the name of the argument after `self` lowerCAmelCase__ : Any = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(lowercase_ ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowercase_ )] ,lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : int = getattr(self.model_tester ,'''seq_length''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(self.model_tester ,'''decoder_seq_length''' ,lowercase_ ) lowerCAmelCase__ : Tuple = getattr(self.model_tester ,'''encoder_seq_length''' ,lowercase_ ) lowerCAmelCase__ : List[Any] = getattr(self.model_tester ,'''d_model''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(self.model_tester ,'''num_attention_heads''' ,lowercase_ ) lowerCAmelCase__ : str = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Dict = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : int = outputs.encoder_attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) lowerCAmelCase__ : Tuple = len(lowercase_ ) lowerCAmelCase__ : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowercase_ ,lowercase_ ) # decoder attentions lowerCAmelCase__ : str = outputs.decoder_attentions self.assertIsInstance(lowercase_ ,(list, tuple) ) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # cross attentions lowerCAmelCase__ : Any = outputs.cross_attentions self.assertIsInstance(lowercase_ ,(list, tuple) ) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(out_len + 2 ,len(lowercase_ ) ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) @is_flaky() def __lowerCAmelCase ( self : str ): super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( A_="train-batch.pt" ): lowerCAmelCase__ : Any = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=A_ , repo_type='''dataset''' ) lowerCAmelCase__ : Union[str, Any] = torch.load(A_ , map_location=A_ ) return batch @require_torch @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : int = prepare_batch() with torch.no_grad(): lowerCAmelCase__ : Any = model( past_values=batch['''past_values'''] ,past_time_features=batch['''past_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,static_categorical_features=batch['''static_categorical_features'''] ,future_values=batch['''future_values'''] ,future_time_features=batch['''future_time_features'''] ,)[0] lowerCAmelCase__ : Dict = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] ,device=lowercase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowercase_ ,atol=lowercase_ ) ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : List[Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCAmelCase__ : str = model( past_values=batch['''past_values'''] ,past_time_features=batch['''past_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,static_categorical_features=batch['''static_categorical_features'''] ,).encoder_last_hidden_state lowerCAmelCase__ : Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] ,device=lowercase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowercase_ ,atol=lowercase_ ) ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCAmelCase__ : int = model.generate( static_categorical_features=batch['''static_categorical_features'''] ,past_time_features=batch['''past_time_features'''] ,past_values=batch['''past_values'''] ,future_time_features=batch['''future_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,) lowerCAmelCase__ : List[Any] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] ,device=lowercase_ ) lowerCAmelCase__ : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,lowercase_ ,rtol=1E-1 ) )
450
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. snake_case__ : Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. snake_case__ : int = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. snake_case__ : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = len([g for position, g in enumerate(__lowercase) if g == main_target[position]]) return (item, float(__lowercase)) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = random.randint(0 , len(__lowercase) - 1) UpperCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] UpperCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = list(__lowercase) if random.uniform(0 , 1) < MUTATION_PROBABILITY: UpperCamelCase_ = random.choice(__lowercase) return "".join(__lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = [] # Generate more children proportionally to the fitness score. UpperCamelCase_ = int(parent_a[1] * 100) + 1 UpperCamelCase_ = 10 if child_n >= 10 else child_n for _ in range(__lowercase): UpperCamelCase_ = population_score[random.randint(0 , __lowercase)][0] UpperCamelCase_ = crossover(parent_a[0] , __lowercase) # Append new string to the population list. pop.append(mutate(__lowercase , __lowercase)) pop.append(mutate(__lowercase , __lowercase)) return pop def _snake_case (__lowercase , __lowercase , __lowercase = True): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCamelCase_ = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowercase) # Verify that the target contains no genes besides the ones inside genes variable. UpperCamelCase_ = sorted({c for c in target if c not in genes}) if not_in_genes_list: UpperCamelCase_ = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowercase) # Generate random starting population. UpperCamelCase_ = [] for _ in range(__lowercase): population.append(''.join([random.choice(__lowercase) for i in range(len(__lowercase))])) # Just some logs to know what the algorithms is doing. UpperCamelCase_ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowercase) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCamelCase_ = [evaluate(__lowercase , __lowercase) for item in population] # Check if there is a matching evolution. UpperCamelCase_ = sorted(__lowercase , key=lambda __lowercase: x[1] , reverse=__lowercase) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""") # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCamelCase_ = population[: int(N_POPULATION / 3)] population.clear() population.extend(__lowercase) # Normalize population score to be between 0 and 1. UpperCamelCase_ = [ (item, score / len(__lowercase)) for item, score in population_score ] # This is selection for i in range(__lowercase): population.extend(select(population_score[int(__lowercase)] , __lowercase , __lowercase)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowercase) > N_POPULATION: break if __name__ == "__main__": snake_case__ : Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) snake_case__ : Any = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) snake_case__ : Union[str, Any] = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
707
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
618
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case( UpperCAmelCase , unittest.TestCase ): __snake_case: List[str] = DDIMPipeline __snake_case: Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __snake_case: Union[str, Any] = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } __snake_case: str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __snake_case: int = False def _UpperCamelCase (self : Tuple ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A__ = DDIMScheduler() A__ = {'unet': unet, 'scheduler': scheduler} return components def _UpperCamelCase (self : Any , a : List[str] , a : str=0 ) -> Any: """simple docstring""" if str(a ).startswith('mps' ): A__ = torch.manual_seed(a ) else: A__ = torch.Generator(device=a ).manual_seed(a ) A__ = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCamelCase (self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) A__ = self.get_dummy_inputs(a ) A__ = pipe(**a ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A__ = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1e-3 ) def _UpperCamelCase (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCamelCase (self : Any ) -> int: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def _UpperCamelCase (self : Optional[Any] ) -> List[str]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _UpperCamelCase (self : List[str] ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case( unittest.TestCase ): def _UpperCamelCase (self : Any ) -> List[Any]: """simple docstring""" A__ = 'google/ddpm-cifar10-32' A__ = UNetaDModel.from_pretrained(a ) A__ = DDIMScheduler() A__ = DDIMPipeline(unet=a , scheduler=a ) ddim.to(a ) ddim.set_progress_bar_config(disable=a ) A__ = torch.manual_seed(0 ) A__ = ddim(generator=a , eta=0.0 , output_type='numpy' ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase (self : int ) -> Optional[int]: """simple docstring""" A__ = 'google/ddpm-ema-bedroom-256' A__ = UNetaDModel.from_pretrained(a ) A__ = DDIMScheduler.from_pretrained(a ) A__ = DDIMPipeline(unet=a , scheduler=a ) ddpm.to(a ) ddpm.set_progress_bar_config(disable=a ) A__ = torch.manual_seed(0 ) A__ = ddpm(generator=a , output_type='numpy' ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A__ = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
531
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case: def __init__(self : List[Any] , a : str , a : Any=13 , a : Optional[Any]=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : List[str]=True , a : List[Any]=True , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : List[str]=37 , a : List[str]="gelu" , a : int=0.1 , a : int=0.1 , a : str=10 , a : Tuple=0.02 , a : Union[str, Any]=3 , a : List[str]=None , a : Any=2 , ) -> Optional[int]: """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 2 def _UpperCamelCase (self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def _UpperCamelCase (self : Union[str, Any] ) -> int: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCamelCase (self : Optional[int] , a : Tuple , a : Dict , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = DeiTModel(config=a ) model.to(a ) model.eval() A__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase (self : Optional[int] , a : Any , a : Optional[Any] , a : Optional[int] ) -> Dict: """simple docstring""" A__ = DeiTForMaskedImageModeling(config=a ) model.to(a ) model.eval() A__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = DeiTForMaskedImageModeling(a ) model.to(a ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase (self : Optional[Any] , a : Optional[Any] , a : Union[str, Any] , a : Union[str, Any] ) -> str: """simple docstring""" A__ = self.type_sequence_label_size A__ = DeiTForImageClassification(a ) model.to(a ) model.eval() A__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = DeiTForImageClassification(a ) model.to(a ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase (self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _snake_case( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __snake_case: Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case: int = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case: Any = False __snake_case: Any = False __snake_case: Any = False def _UpperCamelCase (self : Any ) -> int: """simple docstring""" A__ = DeiTModelTester(self ) A__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _UpperCamelCase (self : Dict ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def _UpperCamelCase (self : List[str] ) -> List[str]: """simple docstring""" pass def _UpperCamelCase (self : Optional[Any] ) -> Tuple: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCamelCase (self : Union[str, Any] ) -> str: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(a ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCamelCase (self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase (self : Dict ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def _UpperCamelCase (self : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def _UpperCamelCase (self : Optional[int] , a : int , a : Union[str, Any] , a : List[Any]=False ) -> Optional[int]: """simple docstring""" A__ = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCamelCase (self : Any ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A__ = model_class(a ) model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) A__ = model(**a ).loss loss.backward() def _UpperCamelCase (self : Optional[Any] ) -> int: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A__ = False A__ = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A__ = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) A__ = model(**a ).loss loss.backward() def _UpperCamelCase (self : Optional[Any] ) -> List[str]: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), *get_values(a ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): A__ = problem_type['title'] A__ = problem_type['num_labels'] A__ = model_class(a ) model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: A__ = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) A__ = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: A__ = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _UpperCamelCase (self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DeiTModel.from_pretrained(a ) self.assertIsNotNone(a ) def _A ( ): '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _snake_case( unittest.TestCase ): @cached_property def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def _UpperCamelCase (self : List[str] ) -> Optional[Any]: """simple docstring""" A__ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( a ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): A__ = model(**a ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) A__ = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCamelCase (self : Tuple ) -> str: """simple docstring""" A__ = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=a , return_tensors='pt' ) A__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A__ = model(a )
531
1
from __future__ import annotations def snake_case_ ( __lowercase ): return [ord(__lowercase ) - 9_6 for elem in plain] def snake_case_ ( __lowercase ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case_ ( ): UpperCAmelCase_ : List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __lowercase ) print('''Decoded:''' , decode(__lowercase ) ) if __name__ == "__main__": main()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0