code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math def _a ( lowerCamelCase_ ): if num <= 0: snake_case : str =F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCamelCase_ ) snake_case : Optional[int] =[True] * (num + 1) snake_case : List[str] =[] snake_case : str =2 snake_case : Union[str, Any] =int(math.sqrt(lowerCamelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase_ ): if sieve[i] is True: snake_case : List[str] =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCamelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( a_ , unittest.TestCase ): __UpperCAmelCase = KandinskyVaaControlnetImgaImgPipeline __UpperCAmelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __UpperCAmelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __UpperCAmelCase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __UpperCAmelCase = False @property def __snake_case ( self : Optional[Any] ): '''simple docstring''' return 32 @property def __snake_case ( self : Dict ): '''simple docstring''' return 32 @property def __snake_case ( self : Any ): '''simple docstring''' return self.time_input_dim @property def __snake_case ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return 100 @property def __snake_case ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) snake_case : List[str] ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case : Optional[Any] =UNetaDConditionModel(**_snake_case ) return model @property def __snake_case ( self : Dict ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) snake_case : Dict =VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self : Any ): '''simple docstring''' snake_case : str =self.dummy_unet snake_case : str =self.dummy_movq snake_case : int ={ '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case : Optional[int] =DDIMScheduler(**_snake_case ) snake_case : Union[str, Any] ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __snake_case ( self : List[str], _snake_case : int, _snake_case : Dict=0 ): '''simple docstring''' snake_case : str =floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case : str =floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image snake_case : Union[str, Any] =floats_tensor((1, 3, 64, 64), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case : Optional[int] =image.cpu().permute(0, 2, 3, 1 )[0] snake_case : int =Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((256, 256) ) # create hint snake_case : int =floats_tensor((1, 3, 64, 64), rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('''mps''' ): snake_case : Dict =torch.manual_seed(_snake_case ) else: snake_case : Union[str, Any] =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) snake_case : Tuple ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : int ='''cpu''' snake_case : Tuple =self.get_dummy_components() snake_case : Optional[int] =self.pipeline_class(**_snake_case ) snake_case : Any =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case : Optional[int] =pipe(**self.get_dummy_inputs(_snake_case ) ) snake_case : Tuple =output.images snake_case : Optional[int] =pipe( **self.get_dummy_inputs(_snake_case ), return_dict=_snake_case, )[0] snake_case : Union[str, Any] =image[0, -3:, -3:, -1] snake_case : Dict =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : str =np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : int ): '''simple docstring''' snake_case : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) snake_case : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case : List[Any] =init_image.resize((512, 512) ) snake_case : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) snake_case : List[Any] =torch.from_numpy(np.array(_snake_case ) ).float() / 255.0 snake_case : Optional[Any] =hint.permute(2, 0, 1 ).unsqueeze(0 ) snake_case : Any ='''A robot, 4k photo''' snake_case : List[Any] =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) snake_case : int =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa ) snake_case : List[str] =pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) snake_case : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case , snake_case : List[str] =pipe_prior( _snake_case, image=_snake_case, strength=0.85, generator=_snake_case, negative_prompt='''''', ).to_tuple() snake_case : List[str] =pipeline( image=_snake_case, image_embeds=_snake_case, negative_image_embeds=_snake_case, hint=_snake_case, generator=_snake_case, num_inference_steps=100, height=512, width=512, strength=0.5, output_type='''np''', ) snake_case : List[str] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case, _snake_case )
349
1
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = abs(lowerCamelCase__ ) snake_case__ = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = abs(lowerCamelCase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return sum(int(lowerCamelCase__ ) for c in str(abs(lowerCamelCase__ ) ) ) def SCREAMING_SNAKE_CASE__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: snake_case__ = F"""{func.__name__}({value})""" snake_case__ = timeit(F"""__main__.{call}""" , setup="import __main__" ) print(F"""{call:56} = {func(lowerCamelCase__ )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCamelCase__ , lowerCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
715
from math import factorial def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 100 ): return sum(int(__lowerCAmelCase ) for x in str(factorial(__lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
530
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
409
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: List[str] =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =-1 SCREAMING_SNAKE_CASE_: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Any =TextStreamer(lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Tuple =cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: int =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =-1 SCREAMING_SNAKE_CASE_: List[Any] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE_: int =TextIteratorStreamer(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE_: Union[str, Any] =Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() SCREAMING_SNAKE_CASE_: Optional[int] ="""""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: str =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =-1 SCREAMING_SNAKE_CASE_: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Optional[Any] =tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: str =TextStreamer(lowerCAmelCase , skip_prompt=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Dict =cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""distilgpt2""" ) SCREAMING_SNAKE_CASE_: Dict =AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =-1 SCREAMING_SNAKE_CASE_: str =torch.ones((1, 5) , device=lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: List[str] =TextStreamer(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=1 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: Any =cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Any =tokenizer(lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: Tuple =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =-1 SCREAMING_SNAKE_CASE_: Union[str, Any] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =TextIteratorStreamer(lowerCAmelCase , timeout=0.0_0_1 ) SCREAMING_SNAKE_CASE_: Optional[Any] ={"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE_: Dict =Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] ="""""" for new_text in streamer: streamer_text += new_text
409
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __a ( unittest.TestCase ): def UpperCamelCase ( self : int , snake_case_ : List[str])-> List[Any]: __lowerCAmelCase =3 __lowerCAmelCase =2_50 __lowerCAmelCase =ids_tensor((batch_size, length) , snake_case_) __lowerCAmelCase =torch.ones((batch_size, length) , device=snake_case_ , dtype=torch.float) / length return input_ids, scores def UpperCamelCase ( self : int)-> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(5) __lowerCAmelCase =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(9) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(10) self.assertTrue(criteria(snake_case_ , snake_case_)) def UpperCamelCase ( self : int)-> Union[str, Any]: __lowerCAmelCase =MaxLengthCriteria(max_length=10) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(5) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(9) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(10) self.assertTrue(criteria(snake_case_ , snake_case_)) def UpperCamelCase ( self : Dict)-> Any: __lowerCAmelCase =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(5) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(9) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(10) self.assertTrue(criteria(snake_case_ , snake_case_)) __lowerCAmelCase =StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length , 10) def UpperCamelCase ( self : Optional[int])-> Dict: __lowerCAmelCase , __lowerCAmelCase =self._get_tensors(5) __lowerCAmelCase =MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(snake_case_ , snake_case_)) __lowerCAmelCase =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(snake_case_ , snake_case_)) def UpperCamelCase ( self : Union[str, Any])-> str: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 10) with self.assertWarns(snake_case_): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 11) __lowerCAmelCase =validate_stopping_criteria(StoppingCriteriaList() , 11) self.assertEqual(len(snake_case_) , 1)
707
def __lowerCAmelCase ( __lowerCamelCase : int ) -> list: __lowerCAmelCase =int(__lowerCamelCase ) if n_element < 1: __lowerCAmelCase =ValueError("""a should be a positive number""" ) raise my_error __lowerCAmelCase =[1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =(0, 0, 0) __lowerCAmelCase =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowercase_ = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') lowercase_ = hamming(int(n)) print('''-----------------------------------------------------''') print(F"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
456
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
'''simple docstring''' def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : str, UpperCamelCase__ : List[str] ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCamelCase__, n - 1, UpperCamelCase__ ) * a) % mod else: SCREAMING_SNAKE_CASE__ : List[Any] =binary_exponentiation(UpperCamelCase__, n / 2, UpperCamelCase__ ) return (b * b) % mod # a prime number a_ = 7_0_1 a_ = 1_0_0_0_0_0_0_0_0_0 a_ = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
296
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE__ : List[str] = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : int = BigBirdForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , is_trivia_qa=SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _lowerCamelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
157
import numpy # List of input, output pairs _lowerCamelCase : List[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : List[Any] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Optional[int] = [2, 4, 1, 5] _lowerCamelCase : List[str] = len(train_data) _lowerCamelCase : Tuple = 0.009 def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict="train" ) -> List[Any]: '''simple docstring''' return calculate_hypothesis_value(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - output( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=m ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = 0 for i in range(SCREAMING_SNAKE_CASE__ ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE__ ) else: summation_value += _error(SCREAMING_SNAKE_CASE__ ) * train_data[i][0][index] return summation_value def _a ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = summation_of_cost_derivative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / m return cost_derivative_value def _a ( ) -> Optional[int]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.0_0_0_0_0_2 SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 while True: j += 1 SCREAMING_SNAKE_CASE__ : int = [0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Any = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ , rtol=SCREAMING_SNAKE_CASE__ , ): break SCREAMING_SNAKE_CASE__ : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def _a ( ) -> List[str]: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE__ ) ): print(("Actual output value:", output(SCREAMING_SNAKE_CASE__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(SCREAMING_SNAKE_CASE__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
157
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : int = 101 ): SCREAMING_SNAKE_CASE_ = length def __len__( self : str ): return self.length def __getitem__( self : Dict , _lowerCAmelCase : str ): return i class lowerCamelCase_ : '''simple docstring''' def __call__( self : List[str] , _lowerCAmelCase : Optional[int] ): return {"input_ids": torch.tensor(_lowerCAmelCase ), "labels": torch.tensor(_lowerCAmelCase )} class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ): super().__init__() # Add some (unused) params otherwise DDP will complain. SCREAMING_SNAKE_CASE_ = nn.Linear(120 , 80 ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_neuroncore def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = F"--output_dir {output_dir}".split() SCREAMING_SNAKE_CASE_ = ['torchrun'] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_multi_gpu def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = F"--output_dir {output_dir}".split() SCREAMING_SNAKE_CASE_ = ['torchrun'] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase__ : int = HfArgumentParser((TrainingArguments,)) lowerCamelCase__ : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowerCamelCase__ : str = DummyDataset(dataset_length) def UpperCAmelCase_ ( __UpperCAmelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE_ = list(range(len(__UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} lowerCamelCase__ : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase__ : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : List[str] = 2 lowerCamelCase__ : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : Union[str, Any] = None
31
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( A__ ): lowercase__ = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ = 6 lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) elif "large" in model_name: lowercase__ = 12 lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) lowercase__ = window_size lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads return config def _lowerCAmelCase ( A__ ): if "encoder.mask_token" in name: lowercase__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: lowercase__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: lowercase__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: lowercase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase__ = 'layernorm.weight' if name == "encoder.norm.bias": lowercase__ = 'layernorm.bias' if "decoder" in name: pass else: lowercase__ = 'swin.' + name return name def _lowerCAmelCase ( A__ , A__ ): for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ = key.split('.' ) lowercase__ = int(key_split[2] ) lowercase__ = int(key_split[4] ) lowercase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[ :dim ] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[ -dim: ] else: lowercase__ = val return orig_state_dict def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = torch.load(A__ , map_location='cpu' )['model'] lowercase__ = get_swin_config(A__ ) lowercase__ = SwinForMaskedImageModeling(A__ ) model.eval() lowercase__ = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = ViTImageProcessor(size={'height': 192, 'width': 192} ) lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ) lowercase__ = image_processor(images=A__ , return_tensors='pt' ) with torch.no_grad(): lowercase__ = model(**A__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a__ : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
622
0
from heapq import heappop, heappush import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> tuple[float | int, list[tuple[int, int]]]: UpperCamelCase , UpperCamelCase = grid.shape UpperCamelCase = [-1, 1, 0, 0] UpperCamelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase , UpperCamelCase = [(0, source)], set() UpperCamelCase = np.full((rows, cols) , np.inf ) UpperCamelCase = 0 UpperCamelCase = np.empty((rows, cols) , dtype=_lowercase ) UpperCamelCase = None while queue: ((UpperCamelCase) , (UpperCamelCase)) = heappop(_lowercase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase , UpperCamelCase = predecessors[x, y] path.append(_lowercase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowercase ) ): UpperCamelCase , UpperCamelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowercase , (dist + 1, (nx, ny)) ) UpperCamelCase = dist + 1 UpperCamelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
170
from typing import Dict, Optional import numpy as np import datasets _snake_case = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' _snake_case = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' _snake_case = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = False , ) -> List[str]: if label_map is not None: for old_id, new_id in label_map.items(): UpperCamelCase = new_id # turn into Numpy arrays UpperCamelCase = np.array(_lowercase ) UpperCamelCase = np.array(_lowercase ) if reduce_labels: UpperCamelCase = 255 UpperCamelCase = label - 1 UpperCamelCase = 255 UpperCamelCase = label != ignore_index UpperCamelCase = np.not_equal(_lowercase , _lowercase ) UpperCamelCase = pred_label[mask] UpperCamelCase = np.array(_lowercase )[mask] UpperCamelCase = pred_label[pred_label == label] UpperCamelCase = np.histogram(_lowercase , bins=_lowercase , range=(0, num_labels - 1) )[0] UpperCamelCase = np.histogram(_lowercase , bins=_lowercase , range=(0, num_labels - 1) )[0] UpperCamelCase = np.histogram(_lowercase , bins=_lowercase , range=(0, num_labels - 1) )[0] UpperCamelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = False , ) -> Optional[Any]: UpperCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) UpperCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) UpperCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) UpperCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_lowercase , _lowercase ): UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = intersect_and_union( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> List[Any]: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = total_intersect_and_union( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # compute metrics UpperCamelCase = {} UpperCamelCase = total_area_intersect.sum() / total_area_label.sum() UpperCamelCase = total_area_intersect / total_area_union UpperCamelCase = total_area_intersect / total_area_label UpperCamelCase = np.nanmean(_lowercase ) UpperCamelCase = np.nanmean(_lowercase ) UpperCamelCase = all_acc UpperCamelCase = iou UpperCamelCase = acc if nan_to_num is not None: UpperCamelCase = {metric: np.nan_to_num(_lowercase , nan=_lowercase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): """simple docstring""" UpperCamelCase = mean_iou( results=SCREAMING_SNAKE_CASE__ , gt_seg_maps=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , ignore_index=SCREAMING_SNAKE_CASE__ , nan_to_num=SCREAMING_SNAKE_CASE__ , label_map=SCREAMING_SNAKE_CASE__ , reduce_labels=SCREAMING_SNAKE_CASE__ , ) return iou_result
170
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
291
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase = logging.getLogger(__name__) lowercase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A: SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCAmelCase )} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) SCREAMING_SNAKE_CASE = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowercase__ ( self : str ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __A: SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) SCREAMING_SNAKE_CASE = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def lowercase__ ( self : Tuple ): if self.train_file is not None: lowerCamelCase_ = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase_ = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> Dict: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase_ = [json.loads(UpperCAmelCase__ ) for line in f.read().splitlines() if (len(UpperCAmelCase__ ) > 0 and not line.isspace())] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) lowerCamelCase_ = {c: dataset[c] for c in dataset.column_names} lowerCamelCase_ = refs return Dataset.from_dict(UpperCAmelCase__ ) def __lowerCAmelCase ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) lowerCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowerCamelCase_ = {} if data_args.train_file is not None: lowerCamelCase_ = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ = data_args.validation_file lowerCamelCase_ = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCamelCase_ = """text""" lowerCamelCase_ = load_dataset(UpperCAmelCase__ , data_files=UpperCAmelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowerCamelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) lowerCamelCase_ = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCamelCase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase_ = AutoModelForMaskedLM.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase_ = datasets["""train"""].column_names else: lowerCamelCase_ = datasets["""validation"""].column_names lowerCamelCase_ = """text""" if """text""" in column_names else column_names[0] lowerCamelCase_ = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase__ : Any ): # Remove empty lines lowerCamelCase_ = [line for line in examples["""text"""] if len(UpperCAmelCase__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=data_args.max_seq_length ) lowerCamelCase_ = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase_ = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase_ = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase_ = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase_ = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase_ = model_args.model_name_or_path else: lowerCamelCase_ = None lowerCamelCase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowerCamelCase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase_ = trainer.evaluate() lowerCamelCase_ = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase_ = perplexity lowerCamelCase_ = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
272
0
'''simple docstring''' from __future__ import annotations __UpperCamelCase : List[Any] = list[tuple[int, int]] __UpperCamelCase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCamelCase : Union[str, Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> Tuple: _A : Optional[int] = pos_x _A : Any = pos_y _A : List[Any] = (pos_y, pos_x) _A : str = goal_x _A : List[str] = goal_y _A : Union[str, Any] = g_cost _A : int = parent _A : int = self.calculate_heuristic() def _lowerCamelCase ( self ) -> float: _A : Any = abs(self.pos_x - self.goal_x ) _A : str = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , UpperCAmelCase__ ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: _A : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase__ ) _A : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , UpperCAmelCase__ ) _A : List[Any] = [self.start] _A : list[Node] = [] _A : str = False def _lowerCamelCase ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _A : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _A : List[str] = True return self.retrace_path(UpperCAmelCase__ ) self.closed_nodes.append(UpperCAmelCase__ ) _A : List[str] = self.get_successors(UpperCAmelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase__ ) else: # retrieve the best current path _A : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase__ ) else: self.open_nodes.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowerCamelCase ( self , UpperCAmelCase__ ) -> list[Node]: _A : str = [] for action in delta: _A : Optional[Any] = parent.pos_x + action[1] _A : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase__ , ) ) return successors def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Path: _A : Any = node _A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _A : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = (0, 0) __UpperCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __UpperCamelCase : Tuple = GreedyBestFirst(init, goal) __UpperCamelCase : int = greedy_bf.search() if path: for pos_x, pos_y in path: __UpperCamelCase : int = 2 for elem in grid: print(elem)
417
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( snake_case_ , unittest.TestCase ): """simple docstring""" __magic_name__ = """ssube/stable-diffusion-x4-upscaler-onnx""" def _lowerCamelCase ( self , UpperCAmelCase__=0 ) -> Any: _A : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(UpperCAmelCase__ ) ) _A : Union[str, Any] = torch.manual_seed(UpperCAmelCase__ ) _A : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ) -> int: _A : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Tuple = self.get_dummy_inputs() _A : Union[str, Any] = pipe(**UpperCAmelCase__ ).images _A : List[str] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _A : int = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ) -> List[str]: _A : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _A : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Union[str, Any] = self.get_dummy_inputs() _A : Union[str, Any] = pipe(**UpperCAmelCase__ ).images _A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _A : Dict = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ) -> Union[str, Any]: _A : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _A : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Dict = self.get_dummy_inputs() _A : Tuple = pipe(**UpperCAmelCase__ ).images _A : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _A : Tuple = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ) -> List[Any]: _A : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _A : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Tuple = self.get_dummy_inputs() _A : Optional[int] = pipe(**UpperCAmelCase__ ).images _A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _A : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ) -> Dict: _A : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _A : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Dict = self.get_dummy_inputs() _A : Union[str, Any] = pipe(**UpperCAmelCase__ ).images _A : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _A : Tuple = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def _lowerCamelCase ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ) -> Optional[int]: _A : int = ort.SessionOptions() _A : Tuple = False return options def _lowerCamelCase ( self ) -> Union[str, Any]: _A : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _A : Optional[Any] = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _A : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Optional[int] = '''A fantasy landscape, trending on artstation''' _A : Union[str, Any] = torch.manual_seed(0 ) _A : List[str] = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=UpperCAmelCase__ , output_type='''np''' , ) _A : Tuple = output.images _A : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A : Optional[int] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ) -> Union[str, Any]: _A : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _A : Optional[Any] = init_image.resize((1_2_8, 1_2_8) ) _A : Dict = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _A : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=UpperCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Optional[Any] = '''A fantasy landscape, trending on artstation''' _A : Any = torch.manual_seed(0 ) _A : List[Any] = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=UpperCAmelCase__ , output_type='''np''' , ) _A : Optional[int] = output.images _A : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A : str = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
417
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = '''rwkv''' __UpperCamelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[str] , __lowerCamelCase : Tuple=50_277 , __lowerCamelCase : List[str]=1_024 , __lowerCamelCase : List[Any]=4_096 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=1E-5 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=6 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Optional[int] , ) -> List[Any]: '''simple docstring''' __lowercase = vocab_size __lowercase = context_length __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase = layer_norm_epsilon __lowercase = rescale_every __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( tie_word_embeddings=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
375
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = {} state_dict.pop('pixel_mean' , snake_case ) state_dict.pop('pixel_std' , snake_case ) __lowercase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): __lowercase = int(re.match(snake_case , snake_case ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __lowercase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __lowercase = key.replace('layers.2' , 'proj_out' ) __lowercase = value __lowercase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case="ybelkada/segment-anything" ) -> int: __lowercase = hf_hub_download(snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowercase = SamConfig( vision_config=snake_case , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowercase = SamConfig( vision_config=snake_case , ) __lowercase = torch.load(snake_case , map_location='cpu' ) __lowercase = replace_keys(snake_case ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=snake_case ) __lowercase = SamModel(snake_case ) hf_model.load_state_dict(snake_case ) __lowercase = hf_model.to('cuda' ) __lowercase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) __lowercase = [[[400, 650]]] __lowercase = [[1]] __lowercase = processor(images=np.array(snake_case ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __lowercase = ((75, 275, 1_725, 850),) __lowercase = processor(images=np.array(snake_case ) , input_boxes=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __lowercase = [[[400, 650], [800, 650]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
375
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''xlnet''' _a = ['''mems'''] _a = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: str , _lowerCAmelCase: int=3_20_00 , _lowerCAmelCase: str=10_24 , _lowerCAmelCase: Dict=24 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Union[str, Any]=40_96 , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Optional[int]="bi" , _lowerCAmelCase: Dict=0.02 , _lowerCAmelCase: str=1e-1_2 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: Any=5_12 , _lowerCAmelCase: int=None , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: List[Any]=-1 , _lowerCAmelCase: str=False , _lowerCAmelCase: Tuple="last" , _lowerCAmelCase: str=True , _lowerCAmelCase: Tuple="tanh" , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: int=5 , _lowerCAmelCase: Optional[int]=5 , _lowerCAmelCase: Dict=5 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Tuple=2 , **_lowerCAmelCase: Optional[int] , ): lowercase :Any = vocab_size lowercase :List[Any] = d_model lowercase :str = n_layer lowercase :Dict = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowercase :Dict = d_model // n_head lowercase :List[Any] = ff_activation lowercase :str = d_inner lowercase :Dict = untie_r lowercase :List[str] = attn_type lowercase :Tuple = initializer_range lowercase :str = layer_norm_eps lowercase :List[str] = dropout lowercase :List[Any] = mem_len lowercase :Dict = reuse_len lowercase :List[str] = bi_data lowercase :Any = clamp_len lowercase :List[str] = same_length lowercase :Union[str, Any] = summary_type lowercase :str = summary_use_proj lowercase :List[str] = summary_activation lowercase :List[str] = summary_last_dropout lowercase :List[str] = start_n_top lowercase :Union[str, Any] = end_n_top lowercase :Dict = bos_token_id lowercase :Tuple = pad_token_id lowercase :Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _lowerCAmelCase , ) lowercase :Dict = kwargs["use_cache"] lowercase :Any = use_mems_eval lowercase :Tuple = use_mems_train super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self: Tuple ): logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: List[str] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
453
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Optional[int] = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
453
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
'''simple docstring''' import math def _UpperCAmelCase ( __A : int ): a_ : str = [] a_ : Tuple = 2 a_ : Optional[Any] = int(math.sqrt(__A ) ) # Size of every segment a_ : Optional[Any] = [True] * (end + 1) a_ : Union[str, Any] = [] while start <= end: if temp[start] is True: in_prime.append(__A ) for i in range(start * start , end + 1 , __A ): a_ : List[Any] = False start += 1 prime += in_prime a_ : Any = end + 1 a_ : Optional[Any] = min(2 * end , __A ) while low <= n: a_ : Optional[Any] = [True] * (high - low + 1) for each in in_prime: a_ : Any = math.floor(low / each ) * each if t < low: t += each for j in range(__A , high + 1 , __A ): a_ : Union[str, Any] = False for j in range(len(__A ) ): if temp[j] is True: prime.append(j + low ) a_ : Tuple = high + 1 a_ : str = min(high + end , __A ) return prime print(sieve(10**6))
466
1
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class snake_case ( unittest.TestCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxAlbertModelTester(self ) @slow def _lowercase (self ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('''albert-base-v2''' ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class snake_case ( unittest.TestCase ): @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) SCREAMING_SNAKE_CASE_ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] SCREAMING_SNAKE_CASE_ = (1, 11, 7_68) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
628
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case ( __lowercase ): UpperCAmelCase__ = '''glpn''' def __init__(self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE_=[32, 64, 1_60, 2_56] , SCREAMING_SNAKE_CASE_=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[1, 2, 5, 8] , SCREAMING_SNAKE_CASE_=[4, 4, 4, 4] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-6 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=-1 , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_encoder_blocks SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = sr_ratios SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = mlp_ratios SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = decoder_hidden_size SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = head_in_index
628
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] A__ : set[int] = {ord(char) for char in VALID_CHARS} A__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str | None: __lowerCamelCase : str = "" __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : int for keychar, cipherchar in zip(cycle(UpperCAmelCase_ ) , UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCAmelCase_ ) return decoded def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[str]: __lowerCamelCase : list[str] = [] for key in product(UpperCAmelCase_ , repeat=3 ): __lowerCamelCase : int = try_key(UpperCAmelCase_ , UpperCAmelCase_ ) if encoded is not None: possibles.append(UpperCAmelCase_ ) return possibles def UpperCAmelCase__ ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> int: __lowerCamelCase : list[int] __lowerCamelCase : list[str] __lowerCamelCase : str __lowerCamelCase : str __lowerCamelCase : str = Path(UpperCAmelCase_ ).parent.joinpath(UpperCAmelCase_ ).read_text(encoding='utf-8' ) __lowerCamelCase : Tuple = [int(UpperCAmelCase_ ) for number in data.strip().split(',' )] __lowerCamelCase : Union[str, Any] = filter_valid_chars(UpperCAmelCase_ ) for common_word in COMMON_WORDS: __lowerCamelCase : Any = filter_common_word(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: break __lowerCamelCase : int = possibles[0] return sum(ord(UpperCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from PIL import Image def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Image: def brightness(SCREAMING_SNAKE_CASE_ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE = change_brightness(img, 1_00) brigt_img.save("image_data/lena_brightness.png", format="png")
366
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCamelCase : Any = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCamelCase : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): """simple docstring""" for attribute in key.split(""".""" ): __lowerCamelCase : Any = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: __lowerCamelCase : List[Any] = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: __lowerCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase : List[Any] = value elif weight_type == "weight_g": __lowerCamelCase : Tuple = value elif weight_type == "weight_v": __lowerCamelCase : List[Any] = value elif weight_type == "bias": __lowerCamelCase : Optional[int] = value else: __lowerCamelCase : Dict = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): """simple docstring""" __lowerCamelCase : Tuple = [] __lowerCamelCase : Union[str, Any] = fairseq_model.state_dict() __lowerCamelCase : Optional[Any] = hf_model.feature_extractor __lowerCamelCase : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): __lowerCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase : Any = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase : Union[str, Any] = True if "*" in mapped_key: __lowerCamelCase : int = name.split(UpperCAmelCase )[0].split(""".""" )[-2] __lowerCamelCase : Dict = mapped_key.replace("""*""" , UpperCAmelCase ) if "weight_g" in name: __lowerCamelCase : int = """weight_g""" elif "weight_v" in name: __lowerCamelCase : List[str] = """weight_v""" elif "bias" in name: __lowerCamelCase : str = """bias""" elif "weight" in name: __lowerCamelCase : List[str] = """weight""" else: __lowerCamelCase : int = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): """simple docstring""" __lowerCamelCase : List[str] = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase : Tuple = name.split(""".""" ) __lowerCamelCase : Tuple = int(items[0] ) __lowerCamelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase : Union[str, Any] = full_name.split("""adaptor.""" )[-1] __lowerCamelCase : Any = name.split(""".""" ) if items[1].isdigit(): __lowerCamelCase : Dict = int(items[1] ) else: __lowerCamelCase : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowerCamelCase : str = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowerCamelCase : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowerCamelCase : Optional[int] = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowerCamelCase : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowerCamelCase : int = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowerCamelCase : Tuple = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Tuple = emb.weight.shape __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , ): """simple docstring""" __lowerCamelCase : int = WavaVecaConfig.from_pretrained( UpperCAmelCase , add_adapter=UpperCAmelCase , adapter_stride=UpperCAmelCase , adapter_kernel_size=UpperCAmelCase , use_auth_token=UpperCAmelCase , output_hidden_size=UpperCAmelCase , ) __lowerCamelCase : Optional[int] = MBartConfig.from_pretrained(UpperCAmelCase ) # load model __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) __lowerCamelCase : Union[str, Any] = model[0].eval() # load feature extractor __lowerCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , use_auth_token=UpperCAmelCase ) # set weights for wav2vec2 encoder __lowerCamelCase : Tuple = WavaVecaModel(UpperCAmelCase ) recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) # load decoder weights __lowerCamelCase : Dict = MBartForCausalLM(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : List[str] = MBartaaTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : int = hf_wavavec.config.to_dict() __lowerCamelCase : str = tokenizer.pad_token_id __lowerCamelCase : Optional[Any] = tokenizer.bos_token_id __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Tuple = """mbart50""" __lowerCamelCase : List[str] = """wav2vec2""" __lowerCamelCase : List[str] = tokenizer.eos_token_id __lowerCamelCase : Optional[int] = 250_004 __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') __UpperCamelCase : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
458
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Dict =k_size // 2 lowerCamelCase__ , lowerCamelCase__: Any =mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCamelCase__: Dict =1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: str =image.shape[0], image.shape[1] # dst image height and width lowerCamelCase__: Dict =height - k_size + 1 lowerCamelCase__: Tuple =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCamelCase__: Optional[int] =zeros((dst_height * dst_width, k_size * k_size) ) lowerCamelCase__: Dict =0 for i, j in product(range(__a ) , range(__a ) ): lowerCamelCase__: Dict =ravel(image[i : i + k_size, j : j + k_size] ) lowerCamelCase__: Optional[int] =window row += 1 # turn the kernel into shape(k*k, 1) lowerCamelCase__: List[Any] =gen_gaussian_kernel(__a , __a ) lowerCamelCase__: str =ravel(__a ) # reshape and get the dst image lowerCamelCase__: Dict =dot(__a , __a ).reshape(__a , __a ).astype(__a ) return dst if __name__ == "__main__": # read original image __A = imread(R"../image_data/lena.jpg") # turn image in gray scale value __A = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A = gaussian_filter(gray, 3, sigma=1) __A = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
59
import operator as op def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Optional[Any] =[] lowerCamelCase__: Tuple =lambda __a , __a : int(x / y ) # noqa: E731 integer division operation lowerCamelCase__: Tuple ={ "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) else: lowerCamelCase__: List[Any] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) lowerCamelCase__: Optional[Any] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __A = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
59
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCamelCase =None lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase ={ "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowerCamelCase ={ "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowerCamelCase =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Any = vocab_file UpperCamelCase__ : int = False if not self.vocab_file else True UpperCamelCase__ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase__ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase__ : List[Any] = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase__ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : List[Any] = [self.sep_token_id] UpperCamelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : Optional[Any] = src_lang UpperCamelCase__ : Optional[Any] = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : int = src_lang UpperCamelCase__ : List[str] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase__ : Dict = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase__ : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = [] UpperCamelCase__ : List[str] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return UpperCamelCase__ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
462
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase =logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , '''decord''' ) self.check_model_type(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = {} if frame_sampling_rate is not None: UpperCamelCase__ : Tuple = frame_sampling_rate if num_frames is not None: UpperCamelCase__ : str = num_frames UpperCamelCase__ : List[str] = {} if top_k is not None: UpperCamelCase__ : List[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1 ) -> Optional[Any]: """simple docstring""" if num_frames is None: UpperCamelCase__ : Optional[Any] = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): UpperCamelCase__ : str = BytesIO(requests.get(__SCREAMING_SNAKE_CASE ).content ) UpperCamelCase__ : Tuple = VideoReader(__SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = num_frames * frame_sampling_rate - 1 UpperCamelCase__ : List[Any] = np.linspace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num=__SCREAMING_SNAKE_CASE , dtype=np.intaa ) UpperCamelCase__ : str = videoreader.get_batch(__SCREAMING_SNAKE_CASE ).asnumpy() UpperCamelCase__ : Tuple = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.model(**__SCREAMING_SNAKE_CASE ) return model_outputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 ) -> str: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase__ : Dict = self.model.config.num_labels if self.framework == "pt": UpperCamelCase__ : Any = model_outputs.logits.softmax(-1 )[0] UpperCamelCase__ ,UpperCamelCase__ : List[str] = probs.topk(__SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCamelCase__ : Any = scores.tolist() UpperCamelCase__ : Any = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )]
462
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__( a_ ): UpperCamelCase : List[str] = "Speech2TextFeatureExtractor" UpperCamelCase : str = "Speech2TextTokenizer" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" super().__init__(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.feature_extractor __lowercase = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __lowercase = kwargs.pop("""raw_speech""" ) else: __lowercase = kwargs.pop("""audio""" , __UpperCAmelCase ) __lowercase = kwargs.pop("""sampling_rate""" , __UpperCAmelCase ) __lowercase = kwargs.pop("""text""" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __lowercase = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: __lowercase = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __lowercase = encodings["""input_ids"""] return inputs def __magic_name__ ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __magic_name__ ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @contextmanager def __magic_name__ ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __lowercase = True __lowercase = self.tokenizer yield __lowercase = self.feature_extractor __lowercase = False
566
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a_ ( _A ) -> Any: """simple docstring""" snake_case__ = VideoMAEConfig() set_architecture_configs(_A , _A ) if "finetuned" not in model_name: snake_case__ = False if "finetuned" in model_name: snake_case__ = 'huggingface/label-files' if "kinetics" in model_name: snake_case__ = 400 snake_case__ = 'kinetics400-id2label.json' elif "ssv2" in model_name: snake_case__ = 174 snake_case__ = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) snake_case__ = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) snake_case__ = {int(_A ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} return config def a_ ( _A , _A ) -> str: """simple docstring""" if "small" in model_name: snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 16 snake_case__ = 12 snake_case__ = 3 snake_case__ = 192 snake_case__ = 768 elif "large" in model_name: snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 snake_case__ = 12 snake_case__ = 8 snake_case__ = 512 snake_case__ = 2048 elif "huge" in model_name: snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 snake_case__ = 12 snake_case__ = 8 snake_case__ = 640 snake_case__ = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def a_ ( _A ) -> Dict: """simple docstring""" if "encoder." in name: snake_case__ = name.replace('encoder.' , '' ) if "cls_token" in name: snake_case__ = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: snake_case__ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: snake_case__ = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: snake_case__ = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case__ = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: snake_case__ = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: snake_case__ = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: snake_case__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: snake_case__ = name.replace('attn' , 'attention.self' ) if "attn" in name: snake_case__ = name.replace('attn' , 'attention.attention' ) if "norm1" in name: snake_case__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case__ = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: snake_case__ = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: snake_case__ = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: snake_case__ = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case__ = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case__ = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: snake_case__ = name.replace('head' , 'classifier' ) return name def a_ ( _A , _A ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case__ = orig_state_dict.pop(_A ) if key.startswith('encoder.' ): snake_case__ = key.replace('encoder.' , '' ) if "qkv" in key: snake_case__ = key.split('.' ) if key.startswith('decoder.blocks' ): snake_case__ = config.decoder_hidden_size snake_case__ = int(key_split[2] ) snake_case__ = 'decoder.decoder_layers.' if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[dim : dim * 2, :] snake_case__ = val[-dim:, :] else: snake_case__ = config.hidden_size snake_case__ = int(key_split[1] ) snake_case__ = 'videomae.encoder.layer.' if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[dim : dim * 2, :] snake_case__ = val[-dim:, :] else: snake_case__ = val return orig_state_dict def a_ ( ) -> Tuple: """simple docstring""" snake_case__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) snake_case__ = np.load(_A ) return list(_A ) def a_ ( _A , _A , _A , _A ) -> Dict: """simple docstring""" snake_case__ = get_videomae_config(_A ) if "finetuned" in model_name: snake_case__ = VideoMAEForVideoClassification(_A ) else: snake_case__ = VideoMAEForPreTraining(_A ) # download original checkpoint, hosted on Google Drive snake_case__ = 'pytorch_model.bin' gdown.cached_download(_A , _A , quiet=_A ) snake_case__ = torch.load(_A , map_location='cpu' ) if "model" in files: snake_case__ = files['model'] else: snake_case__ = files['module'] snake_case__ = convert_state_dict(_A , _A ) model.load_state_dict(_A ) model.eval() # verify model on basic input snake_case__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case__ = prepare_video() snake_case__ = image_processor(_A , return_tensors='pt' ) if "finetuned" not in model_name: snake_case__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) snake_case__ = torch.load(_A ) snake_case__ = model(**_A ) snake_case__ = outputs.logits snake_case__ = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case__ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _A , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case__ = outputs.loss assert torch.allclose(_A , _A , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) model.save_pretrained(_A ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(_A , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
328
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) A__ = logging.getLogger(__name__) A__ = {'''facebook/bart-base''': BartForConditionalGeneration} A__ = {'''facebook/bart-base''': BartTokenizer} def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=lowerCAmelCase__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--config_name''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=lowerCAmelCase__ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Where to store the final ONNX file.''' ) snake_case__ : Any = parser.parse_args() return args def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase="cpu" ) -> Tuple: """simple docstring""" snake_case__ : Optional[int] = model_dict[model_name].from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ ) snake_case__ : str = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase__ ) if model_name in ["facebook/bart-base"]: snake_case__ : Tuple = 0 snake_case__ : Tuple = None snake_case__ : List[Any] = 0 return huggingface_model, tokenizer def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" model.eval() snake_case__ : List[str] = None snake_case__ : Dict = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase__ ) ) with torch.no_grad(): snake_case__ : Any = '''My friends are cool but they eat too many carbs.''' snake_case__ : str = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) snake_case__ : Tuple = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=lowerCAmelCase__ , max_length=lowerCAmelCase__ , early_stopping=lowerCAmelCase__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCAmelCase__ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCAmelCase__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=lowerCAmelCase__ , ) logger.info('''Model exported to {}'''.format(lowerCAmelCase__ ) ) snake_case__ : str = remove_dup_initializers(os.path.abspath(lowerCAmelCase__ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(lowerCAmelCase__ ) ) snake_case__ : Dict = onnxruntime.InferenceSession(lowerCAmelCase__ ) snake_case__ : Any = ort_sess.run( lowerCAmelCase__ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(lowerCAmelCase__ ), '''max_length''': np.array(lowerCAmelCase__ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = parse_args() snake_case__ : int = 5 snake_case__ : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case__ : List[str] = torch.device(args.device ) snake_case__ , snake_case__ : str = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase__ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(lowerCAmelCase__ ) if args.max_length: snake_case__ : Union[str, Any] = args.max_length if args.num_beams: snake_case__ : Dict = args.num_beams if args.output_file_path: snake_case__ : Optional[Any] = args.output_file_path else: snake_case__ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
714
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[int] = """markuplm""" def __init__( self :int ,__lowercase :str=3_0_5_2_2 ,__lowercase :str=7_6_8 ,__lowercase :str=1_2 ,__lowercase :Dict=1_2 ,__lowercase :Optional[Any]=3_0_7_2 ,__lowercase :Any="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Any=5_1_2 ,__lowercase :List[Any]=2 ,__lowercase :Tuple=0.02 ,__lowercase :List[Any]=1e-1_2 ,__lowercase :List[Any]=0 ,__lowercase :Optional[int]=0 ,__lowercase :str=2 ,__lowercase :Optional[Any]=2_5_6 ,__lowercase :List[str]=1_0_2_4 ,__lowercase :List[str]=2_1_6 ,__lowercase :Union[str, Any]=1_0_0_1 ,__lowercase :int=3_2 ,__lowercase :Union[str, Any]=5_0 ,__lowercase :Optional[Any]="absolute" ,__lowercase :int=True ,__lowercase :Optional[Any]=None ,**__lowercase :Union[str, Any] ,): super().__init__( pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,**__lowercase ,) snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[int] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : str = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Optional[Any] = use_cache snake_case__ : Optional[Any] = classifier_dropout # additional properties snake_case__ : Any = max_depth snake_case__ : Optional[Any] = max_xpath_tag_unit_embeddings snake_case__ : Dict = max_xpath_subs_unit_embeddings snake_case__ : str = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : List[str] = xpath_unit_hidden_size
219
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=None , _snake_case : Dict=None ) -> int: '''simple docstring''' if attention_mask is None: _A = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase_ : '''simple docstring''' UpperCAmelCase : int = OPTConfig UpperCAmelCase : Any = {} UpperCAmelCase : Any = '''gelu''' def __init__( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=4 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Any=16 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id _A = embed_dim _A = word_embed_proj_dim _A = False def lowerCAmelCase_ ( self : Any ): _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A = tf.concat([input_ids, eos_tensor] , axis=1 ) _A = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **self.config_updates , ) _A = prepare_opt_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): _A = TFOPTModel(config=SCREAMING_SNAKE_CASE__ ) _A = inputs_dict['''input_ids'''] _A = input_ids[:1, :] _A = inputs_dict['''attention_mask'''][:1, :] _A = 1 # first forward pass _A = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) _A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A = tf.concat([input_ids, next_tokens] , axis=-1 ) _A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] _A = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A = output_from_no_past[:, -3:, random_slice_idx] _A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) @require_tf class lowercase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase : Union[str, Any] = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase : Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : Any = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Optional[Any] = 10 def lowerCAmelCase_ ( self : int ): _A = TFOPTModelTester(self ) _A = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): if hasattr(SCREAMING_SNAKE_CASE__ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(SCREAMING_SNAKE_CASE__ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _A = model_class(config=SCREAMING_SNAKE_CASE__ ) _A = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_input_embeddings() ) _A = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(SCREAMING_SNAKE_CASE__ ) _A = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_input_embeddings() ) _A = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _A = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , SCREAMING_SNAKE_CASE__ ) # check that weights remain the same after resizing _A = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A = False self.assertTrue(SCREAMING_SNAKE_CASE__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , SCREAMING_SNAKE_CASE__ ) _A = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A = False self.assertTrue(SCREAMING_SNAKE_CASE__ ) def _snake_case ( _snake_case : int ) -> Tuple: '''simple docstring''' return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = 99 def lowerCAmelCase_ ( self : Optional[Any] ): _A = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _A = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _A = input_ids.shape[0] _A = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : str ): _A = TFOPTModel.from_pretrained('facebook/opt-350m' ) _A = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _A = tf.not_equal(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id ) with tf.GradientTape(): _A = model(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).last_hidden_state _A = (1, 11, 512) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) _A = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=4E-3 ) ) _A = tf.function(SCREAMING_SNAKE_CASE__ , jit_compile=SCREAMING_SNAKE_CASE__ ) _A = xla_generate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=4E-2 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] ): super().setUp() _A = '''facebook/opt-350m''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = TFOPTForCausalLM.from_pretrained(self.path_model ) _A = GPTaTokenizer.from_pretrained(self.path_model ) _A = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _A = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) _A = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _A = tf.constant( [ [1.3851, -13.8_923, -10.5_229, -10.7_533, -0.2309, -10.2_384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6_276, -3.9415, -21.5_242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1_650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7_926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) _A = tf.function(SCREAMING_SNAKE_CASE__ , jit_compile=SCREAMING_SNAKE_CASE__ ) _A = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : int ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase_ ( self : List[Any] ): _A = '''facebook/opt-125m''' _A = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _A = [] _A = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _A = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) for prompt in self.prompts: _A = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ).input_ids _A = model.generate(SCREAMING_SNAKE_CASE__ , max_length=10 ) _A = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) predicted_outputs += generated_string self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( self : List[str] ): _A = '''facebook/opt-350m''' _A = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _A = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) _A = '''left''' # use different length sentences to test batching _A = [ '''Hello, my dog is a little''', '''Today, I''', ] _A = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE__ ) _A = inputs['''input_ids'''] _A = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=inputs['attention_mask'] ) _A = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=SCREAMING_SNAKE_CASE__ ) _A = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _A = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_length=model.config.max_length - num_paddings ) _A = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _A = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _A = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase_ ( self : Dict ): _A = '''facebook/opt-350m''' _A = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _A = [] _A = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _A = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) for prompt in self.prompts: _A = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ).input_ids _A = model.generate(SCREAMING_SNAKE_CASE__ , max_length=10 ) _A = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) predicted_outputs += generated_string self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
7
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer UpperCamelCase__ :List[Any] = logging.get_logger(__name__) UpperCamelCase__ :Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp UpperCamelCase__ :List[str] = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } UpperCamelCase__ :List[Any] = { """RUCAIBox/mvp""": 1_024, } class A( lowerCamelCase__ ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = MvpTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> List[str]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _UpperCamelCase :int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: _UpperCamelCase :int = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('''type''' ) ) _UpperCamelCase :Optional[int] = add_prefix_space _UpperCamelCase :List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCamelCase :Any = '''post_processor''' _UpperCamelCase :Optional[Any] = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if tokenizer_component_instance: _UpperCamelCase :Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCamelCase :Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: _UpperCamelCase :Optional[Any] = tuple(state['''cls'''] ) _UpperCamelCase :str = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: _UpperCamelCase :Optional[int] = add_prefix_space _UpperCamelCase :Union[str, Any] = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE__ ) != trim_offsets: _UpperCamelCase :Union[str, Any] = trim_offsets _UpperCamelCase :Optional[Any] = True if changes_to_apply: _UpperCamelCase :Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , state.pop('''type''' ) ) _UpperCamelCase :Optional[Any] = component_class(**SCREAMING_SNAKE_CASE__ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" _UpperCamelCase :List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value _UpperCamelCase :int = value def _UpperCamelCase( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> BatchEncoding: """simple docstring""" _UpperCamelCase :int = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> BatchEncoding: """simple docstring""" _UpperCamelCase :Dict = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" _UpperCamelCase :Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> str: """simple docstring""" _UpperCamelCase :Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" _UpperCamelCase :Any = [self.sep_token_id] _UpperCamelCase :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
355
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : List[str] = '''T5Config''' class _lowerCamelCase (a__ ): lowercase__ = """mt5""" lowercase__ = MTaConfig class _lowerCamelCase (a__ ): lowercase__ = """mt5""" lowercase__ = MTaConfig class _lowerCamelCase (a__ ): lowercase__ = """mt5""" lowercase__ = MTaConfig
709
from __future__ import annotations def __lowercase( __snake_case : list[int] ,__snake_case : list[int] ,__snake_case : list[int] ,__snake_case : list[list[str]] ,__snake_case : int ,) -> None: __snake_case = len(__snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,__snake_case ,__snake_case ,) def __lowercase( __snake_case : int ) -> None: __snake_case = [] depth_first_search([] ,[] ,[] ,__snake_case ,__snake_case ) # Print all the boards for board in boards: for column in board: print(__snake_case ) print('' ) print(len(__snake_case ) ,'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
345
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( a__ : Any , a__ : Optional[Any] ) -> Union[str, Any]: # Load checkpoint _UpperCamelCase = torch.load(a__ , map_location='''cpu''' ) _UpperCamelCase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: _UpperCamelCase = v else: _UpperCamelCase = v _UpperCamelCase = chkpt["""params"""] _UpperCamelCase = {n: v for n, v in config.items() if not isinstance(a__ , (torch.FloatTensor, numpy.ndarray) )} _UpperCamelCase = chkpt["""dico_word2id"""] _UpperCamelCase = {s + """</w>""" if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model _UpperCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _UpperCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME _UpperCamelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(a__ , a__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
420
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class UpperCamelCase__ ( a ): '''simple docstring''' def snake_case ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if tokenize_kwargs is None: __lowerCAmelCase : Union[str, Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __lowerCAmelCase : List[Any] = truncation __lowerCAmelCase : Union[str, Any] = tokenize_kwargs __lowerCAmelCase : Optional[Any] = {} if return_tensors is not None: __lowerCAmelCase : Tuple = return_tensors return preprocess_params, {}, postprocess_params def snake_case ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: __lowerCAmelCase : int = self.framework __lowerCAmelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return model_inputs def snake_case ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: __lowerCAmelCase : List[Any] = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: return super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
123
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def A ( _UpperCAmelCase : Vector ,_UpperCAmelCase : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_UpperCAmelCase ) - np.asarray(_UpperCAmelCase )) ** 2 ) ) def A ( _UpperCAmelCase : Vector ,_UpperCAmelCase : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def A ( ) -> None: '''simple docstring''' from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' ,number=1_0_0_0_0 ,globals=globals() ,) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' ,number=1_0_0_0_0 ,globals=globals() ,) ) benchmark()
123
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCamelCase_ , n - 1 , lowerCamelCase_ ) * a) % mod else: _lowercase : str = binary_exponentiation(lowerCamelCase_ , n / 2 , lowerCamelCase_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : Optional[int] = 1000000000 SCREAMING_SNAKE_CASE : Optional[int] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
89
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['transformers', 'torch', 'note_seq'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : str,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase_ ( cls : Dict,*__A : Dict,**__A : Tuple ): requires_backends(cls,["transformers", "torch", "note_seq"] )
44
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = """▁""" UpperCAmelCase_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : Tuple = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } UpperCAmelCase_ : Optional[int] = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : int="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : List[Any]="</s>" , lowercase_ : List[str]="<s>" , lowercase_ : Dict="<unk>" , lowercase_ : Dict="<pad>" , lowercase_ : Tuple="<mask>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token SCREAMING_SNAKE_CASE_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.sp_model) + self.fairseq_offset SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) + [1] return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) + [1] def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : int = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[str]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
704
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Any): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_) requires_backends(self , '''vision''') self.check_model_type(lowercase_) def __call__( self : int , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[Any]): '''simple docstring''' return super().__call__(lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowercase_ : List[str]): '''simple docstring''' return {}, {}, {} def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = load_image(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = image.size SCREAMING_SNAKE_CASE_ : int = self.image_processor(images=lowercase_ , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.model(**lowercase_) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE_ : List[Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=lowercase_) SCREAMING_SNAKE_CASE_ : Any = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE_ : List[str] = (output * 255 / np.max(lowercase_)).astype('''uint8''') SCREAMING_SNAKE_CASE_ : List[Any] = Image.fromarray(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = predicted_depth SCREAMING_SNAKE_CASE_ : Optional[int] = depth return output_dict
176
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _snake_case (unittest.TestCase): __A : List[str] =MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[int] = hf_hub_download( repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) UpperCAmelCase_ : Union[str, Any] = VideoClassificationPipeline(model=_snake_case ,image_processor=_snake_case ,top_k=2 ) UpperCAmelCase_ : int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): for example in examples: UpperCAmelCase_ : Any = video_classifier(_snake_case ) self.assertEqual( _snake_case ,[ {"score": ANY(_snake_case ), "label": ANY(_snake_case )}, {"score": ANY(_snake_case ), "label": ANY(_snake_case )}, ] ,) @require_torch def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCAmelCase_ : Tuple = VideoMAEFeatureExtractor( size={"shortest_edge": 10} ,crop_size={"height": 10, "width": 10} ) UpperCAmelCase_ : str = pipeline( "video-classification" ,model=_snake_case ,feature_extractor=_snake_case ,frame_sampling_rate=4 ) UpperCAmelCase_ : int = hf_hub_download(repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) UpperCAmelCase_ : Any = video_classifier(_snake_case ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] ,) UpperCAmelCase_ : Optional[Any] = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] ,) @require_tf def UpperCamelCase__ ( self ): pass
71
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = np.shape(lowerCAmelCase ) if rows != columns: _lowerCAmelCase = ( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(lowerCAmelCase ) _lowerCAmelCase = np.zeros((rows, columns) ) _lowerCAmelCase = np.zeros((rows, columns) ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _lowerCAmelCase = (table[i][j] - total) / upper[j][j] _lowerCAmelCase = 1 for j in range(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) _lowerCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
207
0
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _SCREAMING_SNAKE_CASE = get_logger() _SCREAMING_SNAKE_CASE = None class _lowerCAmelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Tuple , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None , **__snake_case : Optional[int] )-> Dict: super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) snake_case = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case = str(jax.devices()[0] ) snake_case = jnp_array_kwargs @staticmethod def lowerCAmelCase ( )-> str: import jax return {str(__A ): device for device in jax.devices()} def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str )-> int: import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def lowerCAmelCase ( self : Dict , __snake_case : Dict )-> Optional[int]: import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case = {"dtype": jnp.intaa} else: snake_case = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase ( self : Tuple , __snake_case : Optional[int] )-> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , """__array__""" ) and not isinstance(__A , jax.Array ): snake_case = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def lowerCAmelCase ( self : Tuple , __snake_case : dict )-> Tuple: return map_nested(self._recursive_tensorize , __A , map_list=__A ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : pa.Table )-> str: snake_case = self.numpy_arrow_extractor().extract_row(__A ) snake_case = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def lowerCAmelCase ( self : Any , __snake_case : pa.Table )-> int: snake_case = self.numpy_arrow_extractor().extract_column(__A ) snake_case = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case = self.recursive_tensorize(__A ) snake_case = self._consolidate(__A ) return column def lowerCAmelCase ( self : Optional[int] , __snake_case : pa.Table )-> Any: snake_case = self.numpy_arrow_extractor().extract_batch(__A ) snake_case = self.python_features_decoder.decode_batch(__A ) snake_case = self.recursive_tensorize(__A ) for column_name in batch: snake_case = self._consolidate(batch[column_name] ) return batch
711
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list[int] ) -> int: snake_case = len(__lowerCAmelCase ) // 2 # choose the middle 3 elements snake_case = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
517
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ : int = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" A_ : str = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" A_ : Optional[int] = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
590
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 768 , )->Union[str, Any]: '''simple docstring''' super().__init__() A_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ : Any = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Tuple: '''simple docstring''' A_ : Optional[Any] = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) A_ : str = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = (embeds * self.std) + self.mean return embeds
590
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =None a_ =BloomTokenizerFast a_ =BloomTokenizerFast a_ =True a_ =False a_ ="""tokenizer_file""" a_ ={"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def UpperCAmelCase ( self )-> int: '''simple docstring''' super().setUp() lowerCAmelCase__ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowerCAmelCase__ = tokenizer.batch_encode_plus(__UpperCAmelCase )["input_ids"] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=6 )-> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase__ = "This is a simple input" lowerCAmelCase__ = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase__ = ("This is a simple input", "This is a pair") lowerCAmelCase__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase__ = None # Hotfixing padding = None self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" , ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = load_dataset("xnli" , "all_languages" , split="test" , streaming=__UpperCAmelCase ) lowerCAmelCase__ = next(iter(__UpperCAmelCase ) )["premise"] # pick up one data lowerCAmelCase__ = list(sample_data.values() ) lowerCAmelCase__ = list(map(tokenizer.encode , __UpperCAmelCase ) ) lowerCAmelCase__ = [tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) for x in output_tokens] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
115
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def a__ ( lowerCAmelCase ) -> List[Any]: UpperCAmelCase__ : List[str] = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) UpperCAmelCase__ : str = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase__ : int = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase__ : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="""my_dataset""" )] ) def a__ ( lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : Union[str, Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
182
from __future__ import annotations def lowercase__ ( __snake_case : list[int] ): '''simple docstring''' if not nums: return 0 UpperCAmelCase_ : int = nums[0] UpperCAmelCase_ : Any = 0 for num in nums[1:]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = ( max_excluding + num, max(__snake_case , __snake_case ), ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
406
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (EulerDiscreteScheduler,) lowercase = 10 def snake_case_ ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**UpperCamelCase__ ) return config def snake_case_ ( self ) -> str: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "new-model" if is_tf_available(): class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = NewModelConfig @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Tuple ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow @require_tensorflow_probability def _snake_case ( self : Union[str, Any] ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : List[Any] ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] SCREAMING_SNAKE_CASE = TFAutoModel.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): try: AutoConfig.register("new-model" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE = auto_class.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = auto_class.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _snake_case ( self : Optional[int] ): with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def _snake_case ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def _snake_case ( self : str ): with self.assertRaisesRegex( __lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self : Tuple ): with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _snake_case ( self : int ): # Make sure we have cached the model. SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
16
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _snake_case = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _snake_case = [0, 25, 50] _snake_case = [25, 50, 75] _snake_case = fuzz.membership.trimf(X, abca) _snake_case = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _snake_case = np.ones(75) _snake_case = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _snake_case = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _snake_case = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _snake_case = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _snake_case = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _snake_case = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _snake_case = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
720
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="roc_bert" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_72 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=9_10 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : int=2_48_58 , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = use_cache UpperCamelCase = enable_pronunciation UpperCamelCase = enable_shape UpperCamelCase = pronunciation_embed_dim UpperCamelCase = pronunciation_vocab_size UpperCamelCase = shape_embed_dim UpperCamelCase = shape_vocab_size UpperCamelCase = concat_input UpperCamelCase = position_embedding_type UpperCamelCase = classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
170
0
"""simple docstring""" import logging import os from .state import PartialState class a_ ( logging.LoggerAdapter ): @staticmethod def _snake_case ( __UpperCamelCase : Any ) ->str: '''simple docstring''' _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) ->str: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) _UpperCAmelCase = kwargs.pop("""main_process_only""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""in_order""" , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase ,_UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase ,_UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( _A , _A = None ) -> str: """simple docstring""" if log_level is None: _UpperCAmelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" , _A ) _UpperCAmelCase = logging.getLogger(_A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_A , {} )
555
"""simple docstring""" import math class a_ : def _snake_case ( self : List[Any] , __UpperCamelCase : list[list[float]] , __UpperCamelCase : list[int] ) ->int: '''simple docstring''' _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _snake_case ( self : Dict , __UpperCamelCase : list[list[int | float]] , __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : float ) ->list[list[int | float]]: '''simple docstring''' for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _UpperCamelCase ( ) -> None: """simple docstring""" _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(_A ): for j in range(len(_A ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(_A , _A ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(_A , _A , _A , _A ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(_A , _A ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
555
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int = 1000 ): """simple docstring""" lowerCamelCase__ : str =3 lowerCamelCase__ : Optional[int] =0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
708
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowercase : List[str] = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): """simple docstring""" # save results if os.path.exists(__lowerCamelCase ): if os.path.exists(os.path.join(__lowerCamelCase , '''config.json''' ) ) and os.path.isfile( os.path.join(__lowerCamelCase , '''config.json''' ) ): os.remove(os.path.join(__lowerCamelCase , '''config.json''' ) ) if os.path.exists(os.path.join(__lowerCamelCase , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__lowerCamelCase , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__lowerCamelCase , '''pytorch_model.bin''' ) ) else: os.makedirs(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =2 if unlogit: lowerCamelCase__ : Any =torch.pow(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] =p * torch.log(__lowerCamelCase ) lowerCamelCase__ : Tuple =0 return -plogp.sum(dim=-1 ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(__lowerCamelCase ) ) ) ) for row in range(len(__lowerCamelCase ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Tuple=False ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Tuple =model.config.num_hidden_layers, model.config.num_attention_heads lowerCamelCase__ : Optional[Any] =torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) lowerCamelCase__ : Optional[Any] =torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) if head_mask is None: lowerCamelCase__ : List[Any] =torch.ones(__lowerCamelCase , __lowerCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCamelCase__ : Union[str, Any] =None lowerCamelCase__ : List[str] =0.0 lowerCamelCase__ : Union[str, Any] =0.0 for step, inputs in enumerate(tqdm(__lowerCamelCase , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCamelCase__ : Any =tuple(t.to(args.device ) for t in inputs ) ((lowerCamelCase__) , ) : Any =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCamelCase__ : Dict =model(__lowerCamelCase , labels=__lowerCamelCase , head_mask=__lowerCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCamelCase ): lowerCamelCase__ : Any =entropy(attn.detach() , __lowerCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCamelCase__ : int =2 lowerCamelCase__ : List[str] =torch.pow(torch.pow(__lowerCamelCase , __lowerCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCamelCase__ : int =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__lowerCamelCase ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__lowerCamelCase ) logger.info('''Head ranked by importance scores''' ) lowerCamelCase__ : Optional[int] =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCamelCase__ : Dict =torch.arange( head_importance.numel() , device=args.device ) lowerCamelCase__ : Any =head_ranks.view_as(__lowerCamelCase ) print_ad_tensor(__lowerCamelCase ) return attn_entropy, head_importance, total_loss def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase ) lowerCamelCase__ : int =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __lowerCamelCase , original_score * args.masking_threshold ) lowerCamelCase__ : Dict =torch.ones_like(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCamelCase__ : List[Any] =original_score while current_score >= original_score * args.masking_threshold: lowerCamelCase__ : List[Any] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCamelCase__ : int =float('''Inf''' ) lowerCamelCase__ : Union[str, Any] =head_importance.view(-1 ).sort()[1] if len(__lowerCamelCase ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCamelCase__ : List[str] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCamelCase__ : Optional[int] =new_head_mask.view(-1 ) lowerCamelCase__ : Optional[Any] =0.0 lowerCamelCase__ : Dict =new_head_mask.view_as(__lowerCamelCase ) lowerCamelCase__ : Tuple =new_head_mask.clone().detach() print_ad_tensor(__lowerCamelCase ) # Compute metric and head importance again lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : Any =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(__lowerCamelCase ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =datetime.now() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] =compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : Tuple =1 / loss lowerCamelCase__ : Optional[Any] =datetime.now() - before_time lowerCamelCase__ : int =sum(p.numel() for p in model.parameters() ) lowerCamelCase__ : Any ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Optional[int] =[ v, ] assert sum(len(__lowerCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCamelCase ) lowerCamelCase__ : List[str] =sum(p.numel() for p in model.parameters() ) lowerCamelCase__ : Any =datetime.now() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase , actually_pruned=__lowerCamelCase , ) lowerCamelCase__ : str =1 / loss lowerCamelCase__ : Union[str, Any] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __lowerCamelCase , __lowerCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __lowerCamelCase , __lowerCamelCase ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(__lowerCamelCase , args.output_dir ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__lowerCamelCase , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__lowerCamelCase , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__lowerCamelCase , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__lowerCamelCase , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__lowerCamelCase , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__lowerCamelCase , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowerCamelCase , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__lowerCamelCase , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__lowerCamelCase , default=42 ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__lowerCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__lowerCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) lowerCamelCase__ : List[Any] =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCamelCase__ : Dict =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCamelCase__ : Dict =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCamelCase__ : str =torch.device('''cuda''' , args.local_rank ) lowerCamelCase__ : Any =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCamelCase__ : Union[str, Any] =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCamelCase__ : List[Any] =nn.parallel.DistributedDataParallel( __lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCamelCase ) elif args.n_gpu > 1: lowerCamelCase__ : int =nn.DataParallel(__lowerCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Prepare dataset lowerCamelCase__ : Union[str, Any] =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCamelCase__ : Any =(torch.from_numpy(__lowerCamelCase ),) lowerCamelCase__ : List[Any] =TensorDataset(*__lowerCamelCase ) lowerCamelCase__ : List[str] =RandomSampler(__lowerCamelCase ) lowerCamelCase__ : Dict =DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCamelCase__ : Optional[int] =mask_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) prune_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
625
0
'''simple docstring''' from itertools import permutations def _UpperCamelCase (_lowerCamelCase : tuple )-> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case = [7, 11, 13, 17] for i, test in enumerate(_lowerCamelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _UpperCamelCase (_lowerCamelCase : int = 10 )-> int: '''simple docstring''' return sum( int(''''''.join(map(_lowerCamelCase , _lowerCamelCase ) ) ) for num in permutations(range(_lowerCamelCase ) ) if is_substring_divisible(_lowerCamelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
24
"""simple docstring""" def a ( __UpperCAmelCase : list[int] ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) __magic_name__: Dict = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
96
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = StableUnCLIPPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _UpperCAmelCase = False def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[str] = 32 lowerCamelCase :List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=__snake_case , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__snake_case , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase :List[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__snake_case , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase :Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) lowerCamelCase :Union[str, Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) lowerCamelCase :List[str] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = AutoencoderKL() lowerCamelCase :int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def snake_case ( self : int , __snake_case : Tuple , __snake_case : str=0 ): if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :int = torch.manual_seed(__snake_case ) else: lowerCamelCase :str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Dict = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): lowerCamelCase :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) lowerCamelCase :List[str] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :Optional[Any] = pipe('''anime turle''' , generator=__snake_case , output_type='''np''' ) lowerCamelCase :Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase :str = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) lowerCamelCase :Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) lowerCamelCase :str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> bool: '''simple docstring''' return len(set(__snake_case ) ) == len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
241
from collections import defaultdict from math import gcd def lowercase_ ( __snake_case : int = 1_50_00_00 ) -> int: '''simple docstring''' snake_case__ :defaultdict = defaultdict(__snake_case ) snake_case__ :List[Any] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue snake_case__ :Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
241
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=14 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : str = seq_length UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : str = use_mc_token_ids UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Optional[int] = num_choices UpperCAmelCase__ : List[str] = scope UpperCAmelCase__ : Any = self.vocab_size - 1 def snake_case__ ( self): UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : List[str] = None if self.use_mc_token_ids: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.num_choices] , self.seq_length) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : int = self.get_config() UpperCAmelCase__ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase): UpperCAmelCase__ : Dict = CTRLModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() model(_lowerCamelCase , token_type_ids=_lowerCamelCase , head_mask=_lowerCamelCase) model(_lowerCamelCase , token_type_ids=_lowerCamelCase) UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values) , config.n_layer) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase): UpperCAmelCase__ : Dict = CTRLLMHeadModel(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase): UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : int = CTRLForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : str = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) @require_torch class _snake_case ( a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase :Tuple = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase :Any = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase :Union[str, Any] = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase :List[Any] = True lowerCAmelCase :Optional[Any] = False lowerCAmelCase :Tuple = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = CTRLModelTester(self) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCamelCase , n_embd=37) def snake_case__ ( self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCamelCase) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case__ ( self): pass @slow def snake_case__ ( self): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Any = CTRLModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) @unittest.skip("""The model doesn't support left padding""") # and it's not used enough to be worth fixing :) def snake_case__ ( self): pass @require_torch class _snake_case ( unittest.TestCase ): def snake_case__ ( self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case__ ( self): UpperCAmelCase__ : Tuple = CTRLLMHeadModel.from_pretrained("""ctrl""") model.to(_lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=_lowerCamelCase) # Legal the president is UpperCAmelCase__ : List[Any] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase__ : List[str] = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase) self.assertListEqual(output_ids[0].tolist() , _lowerCamelCase)
113
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _snake_case ( a__ ): lowerCAmelCase :Any = '''xlm''' lowerCAmelCase :Any = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _lowerCamelCase=3_0145 , _lowerCamelCase=2048 , _lowerCamelCase=12 , _lowerCamelCase=16 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=True , _lowerCamelCase=512 , _lowerCamelCase=2048**-0.5 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase="first" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Tuple = emb_dim UpperCAmelCase__ : Optional[Any] = n_layers UpperCAmelCase__ : List[str] = n_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Optional[int] = attention_dropout UpperCAmelCase__ : Tuple = gelu_activation UpperCAmelCase__ : Optional[Any] = sinusoidal_embeddings UpperCAmelCase__ : int = causal UpperCAmelCase__ : Union[str, Any] = asm UpperCAmelCase__ : Optional[Any] = n_langs UpperCAmelCase__ : List[Any] = use_lang_emb UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : List[str] = bos_index UpperCAmelCase__ : List[Any] = eos_index UpperCAmelCase__ : int = pad_index UpperCAmelCase__ : str = unk_index UpperCAmelCase__ : Dict = mask_index UpperCAmelCase__ : str = is_encoder UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Any = embed_init_std UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : List[str] = summary_type UpperCAmelCase__ : Union[str, Any] = summary_use_proj UpperCAmelCase__ : Any = summary_activation UpperCAmelCase__ : List[str] = summary_proj_to_labels UpperCAmelCase__ : Union[str, Any] = summary_first_dropout UpperCAmelCase__ : str = start_n_top UpperCAmelCase__ : str = end_n_top UpperCAmelCase__ : Tuple = mask_token_id UpperCAmelCase__ : Union[str, Any] = lang_id if "n_words" in kwargs: UpperCAmelCase__ : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , **_lowerCamelCase) class _snake_case ( a__ ): @property def snake_case__ ( self): if self.task == "multiple-choice": UpperCAmelCase__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
113
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __A : int = logging.getLogger(__name__) def lowerCAmelCase_ ( a : List[str] , a : int ): # save results if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , 'config.json' ) ): os.remove(os.path.join(lowerCAmelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(lowerCAmelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def lowerCAmelCase_ ( a : Any , a : Optional[int]=False ): a__ = 2 if unlogit: a__ = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) a__ = p * torch.log(lowerCAmelCase_ ) a__ = 0 return -plogp.sum(dim=-1 ) def lowerCAmelCase_ ( a : Union[str, Any] ): logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCAmelCase_ ( a : Optional[int] , a : List[str] , a : Dict , a : str=True , a : Optional[Any]=True , a : List[str]=None , a : Dict=False ): a__ = model.config.num_hidden_layers, model.config.num_attention_heads a__ = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) a__ = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: a__ = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: a__ = None a__ = 0.0 a__ = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): a__ = tuple(t.to(args.device ) for t in inputs ) (a__ ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) a__ = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) a__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): a__ = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: a__ = 2 a__ = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: a__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('Head ranked by importance scores' ) a__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) a__ = torch.arange( head_importance.numel() , device=args.device ) a__ = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def lowerCAmelCase_ ( a : List[str] , a : Tuple , a : Union[str, Any] ): a__ = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) a__ = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , lowerCAmelCase_ , original_score * args.masking_threshold ) a__ = torch.ones_like(lowerCAmelCase_ ) a__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) a__ = original_score while current_score >= original_score * args.masking_threshold: a__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads a__ = float('Inf' ) a__ = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads a__ = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) a__ = new_head_mask.view(-1 ) a__ = 0.0 a__ = new_head_mask.view_as(lowerCAmelCase_ ) a__ = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again a__ = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) a__ = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCAmelCase_ ( a : Union[str, Any] , a : Dict , a : str , a : Optional[int] ): a__ = datetime.now() a__ = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) a__ = 1 / loss a__ = datetime.now() - before_time a__ = sum(p.numel() for p in model.parameters() ) a__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): a__ = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) a__ = sum(p.numel() for p in model.parameters() ) a__ = datetime.now() a__ = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) a__ = 1 / loss a__ = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=lowerCAmelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=lowerCAmelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=lowerCAmelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=lowerCAmelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=lowerCAmelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=lowerCAmelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=lowerCAmelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=lowerCAmelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('--local_rank' , type=lowerCAmelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) a__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: a__ = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) a__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) a__ = torch.device('cuda' , args.local_rank ) a__ = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) a__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: a__ = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: a__ = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , lowerCAmelCase_ ) # Prepare dataset a__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) a__ = (torch.from_numpy(lowerCAmelCase_ ),) a__ = TensorDataset(*lowerCAmelCase_ ) a__ = RandomSampler(lowerCAmelCase_ ) a__ = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: a__ = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
394
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : List[str]=14 , __a : Optional[Any]=7 , __a : List[Any]=True , __a : Tuple=True , __a : Union[str, Any]=True , __a : Any=True , __a : Any=True , __a : Dict=99 , __a : List[Any]=32 , __a : Union[str, Any]=5 , __a : List[Any]=4 , __a : Tuple=37 , __a : Dict="gelu" , __a : Tuple=0.1 , __a : str=0.1 , __a : Optional[int]=512 , __a : Union[str, Any]=16 , __a : Tuple=2 , __a : Tuple=0.02 , __a : List[str]=3 , __a : Tuple=4 , __a : int=None , ) -> int: """simple docstring""" __lowercase : Tuple = parent __lowercase : Optional[int] = batch_size __lowercase : int = seq_length __lowercase : Any = is_training __lowercase : str = use_token_type_ids __lowercase : Dict = use_input_mask __lowercase : Tuple = use_labels __lowercase : Optional[Any] = use_mc_token_ids __lowercase : int = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : List[str] = scope __lowercase : Optional[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Dict = None if self.use_mc_token_ids: __lowercase : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowercase : Tuple = None __lowercase : int = None __lowercase : Any = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Dict = self.get_config() __lowercase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : Any , __a : Union[str, Any] , *__a : List[str] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __lowercase : int = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , *__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : str = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __a : int , __a : Dict , __a : str , __a : List[str] , *__a : str ) -> int: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : Optional[Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _A : Any = (CTRLLMHeadModel,) if is_torch_available() else () _A : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _A : str = True _A : List[Any] = False _A : List[Any] = False def lowerCAmelCase ( self : int , __a : Tuple , __a : int , __a : str , __a : int , __a : Dict ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = CTRLModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , n_embd=37 ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__a ) __lowercase : str = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __lowercase : Union[str, Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowercase : List[Any] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
149
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split UpperCamelCase_ = datasets.load_iris() UpperCamelCase_ = np.array(data["data"]) UpperCamelCase_ = np.array(data["target"]) UpperCamelCase_ = data["target_names"] UpperCamelCase_ = train_test_split(X, y) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=5 ) -> int: '''simple docstring''' UpperCAmelCase_ = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified UpperCAmelCase_ = [] for data_point in data: UpperCAmelCase_ = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase_ = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase_ = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
710
UpperCamelCase_ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = set() # keep track of all the paths to be checked UpperCAmelCase_ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase_ = queue.pop(0 ) # get the last node from the path UpperCAmelCase_ = path[-1] if node not in explored: UpperCAmelCase_ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase_ = list(__UpperCAmelCase ) new_path.append(__UpperCAmelCase ) queue.append(__UpperCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCAmelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase_ = [start] UpperCAmelCase_ = set(__UpperCAmelCase ) # Keep tab on distances from `start` node. UpperCAmelCase_ = {start: 0, target: -1} while queue: UpperCAmelCase_ = queue.pop(0 ) if node == target: UpperCAmelCase_ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCAmelCase ) queue.append(__UpperCAmelCase ) UpperCAmelCase_ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
561
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : str = tokenizer(example["""content"""] , truncation=__UpperCamelCase )["""input_ids"""] UpperCAmelCase__ : str = len(example["""content"""] ) / len(output["""input_ids"""] ) return output __UpperCAmelCase = HfArgumentParser(PretokenizationArguments) __UpperCAmelCase = parser.parse_args() if args.num_workers is None: __UpperCAmelCase = multiprocessing.cpu_count() __UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCAmelCase = time.time() __UpperCAmelCase = load_dataset(args.dataset_name, split='train') print(F"Dataset loaded in {time.time()-t_start:.2f}s") __UpperCAmelCase = time.time() __UpperCAmelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F"Dataset tokenized in {time.time()-t_start:.2f}s") __UpperCAmelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"Data pushed to the hub in {time.time()-t_start:.2f}s")
65
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=__lowerCamelCase ): snake_case_ = ["""onnx"""] def __init__( self : int ,*A : List[str] ,**A : int ): '''simple docstring''' requires_backends(self ,["""onnx"""] ) @classmethod def __lowercase ( cls : Optional[Any] ,*A : List[str] ,**A : Dict ): '''simple docstring''' requires_backends(cls ,["""onnx"""] ) @classmethod def __lowercase ( cls : List[Any] ,*A : Optional[int] ,**A : int ): '''simple docstring''' requires_backends(cls ,["""onnx"""] )
65
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Dict: a_ : Optional[Any] = (images / 2 + 0.5).clamp(0, 1 ) a_ : int = images.cpu().permute(0, 2, 3, 1 ).float().numpy() a_ : List[Any] = numpy_to_pil(SCREAMING_SNAKE_CASE__ ) return images def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if images.ndim == 3: a_ : Optional[Any] = images[None, ...] a_ : Tuple = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images a_ : List[str] = [Image.fromarray(image.squeeze(), mode="L" ) for image in images] else: a_ : Union[str, Any] = [Image.fromarray(SCREAMING_SNAKE_CASE__ ) for image in images] return pil_images
370
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( a_ ): __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "ViltImageProcessor" __lowerCAmelCase = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a_=None , a_=None , **a_ ): a_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) a_ : List[Any] = kwargs.pop("feature_extractor" ) a_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) a_ : Dict = self.image_processor def __call__( self , a_ , a_ = None , a_ = True , a_ = False , a_ = None , a_ = None , a_ = 0 , a_ = None , a_ = None , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = None , **a_ , ): a_ : Union[str, Any] = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) # add pixel_values + pixel_mask a_ : List[Any] = self.image_processor(a_ , return_tensors=a_ ) encoding.update(a_ ) return encoding def snake_case_ ( self , *a_ , **a_ ): return self.tokenizer.batch_decode(*a_ , **a_ ) def snake_case_ ( self , *a_ , **a_ ): return self.tokenizer.decode(*a_ , **a_ ) @property def snake_case_ ( self ): a_ : Union[str, Any] = self.tokenizer.model_input_names a_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case_ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
370
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> List[Any]: _A = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): _A = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): _A = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _A = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _A = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: _A = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _A = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] _A = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: _A = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: _A = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _A = key[key.find('''block''' ) + len('''block''' )] _A = key.replace(F'''block{idx}''' , F'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: _A = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: _A = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: _A = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: _A = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: _A = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: _A = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: _A = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) _A = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _A = key[key.find('''linear_c''' ) + len('''linear_c''' )] _A = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: _A = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: _A = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: _A = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: _A = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: _A = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: _A = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: _A = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): _A = key.replace('''module.last_layer_depth''' , '''head.head''' ) _A = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Any ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _A = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _A = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _A = kv_weight[ : config.hidden_sizes[i], : ] _A = kv_bias[: config.hidden_sizes[i]] _A = kv_weight[ config.hidden_sizes[i] :, : ] _A = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Any , _snake_case :str=False , _snake_case :Tuple=None ) -> Any: _A = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _A = GLPNImageProcessor() # prepare image _A = prepare_img() _A = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict _A = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys _A = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict _A = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass _A = model(_snake_case ) _A = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _A = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: _A = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _A = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
from __future__ import annotations lowercase : Dict = """Muhammad Umer Farooq""" lowercase : int = """MIT""" lowercase : Dict = """1.0.0""" lowercase : Optional[int] = """Muhammad Umer Farooq""" lowercase : Optional[Any] = """contact@muhammadumerfarooq.me""" lowercase : Optional[Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class a__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , A_ : str ) -> None: """simple docstring""" super().__init__() lowerCamelCase_: list[str] = [] lowerCamelCase_: str = domain def lowerCAmelCase ( self : Dict , A_ : str , A_ : list[tuple[str, str | None]] ) -> None: """simple docstring""" # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCamelCase_: Tuple = parse.urljoin(self.domain , A_ ) self.urls.append(A_ ) def UpperCAmelCase_ ( _UpperCAmelCase ): return ".".join(get_sub_domain_name(_UpperCAmelCase ).split(""".""" )[-2:] ) def UpperCAmelCase_ ( _UpperCAmelCase ): return parse.urlparse(_UpperCAmelCase ).netloc def UpperCAmelCase_ ( _UpperCAmelCase = "https://github.com" ): lowerCamelCase_: List[str] = get_domain_name(_UpperCAmelCase ) # Initialize the parser lowerCamelCase_: Union[str, Any] = Parser(_UpperCAmelCase ) try: # Open URL lowerCamelCase_: Tuple = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCamelCase_: Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCamelCase_: Any = requests.get(_UpperCAmelCase ) # Get the valid email. lowerCamelCase_: Any = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": lowercase : int = emails_from_url("""https://github.com""") print(F"{len(emails)} emails found:") print("""\n""".join(sorted(emails)))
721
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE ): _A = DistilBertTokenizer _A = DistilBertTokenizerFast _A = True @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_: Any = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowerCamelCase_: str = tokenizer.encode("""sequence builders""" , add_special_tokens=A_ ) lowerCamelCase_: List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A_ ) lowerCamelCase_: int = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
584
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ :List[str] = logging.get_logger(__name__) def A_ ( snake_case__ , snake_case__=False ) -> Optional[int]: _UpperCamelCase :List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _UpperCamelCase :Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def A_ ( snake_case__ , snake_case__ , snake_case__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase :str = '''''' else: _UpperCamelCase :Dict = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase :Any = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) _UpperCamelCase :List[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase :Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase :Union[str, Any] = in_proj_bias[: config.hidden_size] _UpperCamelCase :str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase :Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase :int = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase :Optional[Any] = in_proj_bias[-config.hidden_size :] def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: _UpperCamelCase :Dict = dct.pop(lowerCAmelCase_ ) _UpperCamelCase :Optional[Any] = val def A_ ( ) -> List[Any]: _UpperCamelCase :str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase :Optional[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def A_ ( snake_case__ , snake_case__ ) -> Dict: _UpperCamelCase :Tuple = DeiTConfig() # all deit models have fine-tuned heads _UpperCamelCase :Optional[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _UpperCamelCase :Optional[Any] = 10_00 _UpperCamelCase :List[Any] = '''huggingface/label-files''' _UpperCamelCase :Optional[int] = '''imagenet-1k-id2label.json''' _UpperCamelCase :Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase :int = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase :List[str] = idalabel _UpperCamelCase :List[str] = {v: k for k, v in idalabel.items()} _UpperCamelCase :Union[str, Any] = int(deit_name[-6:-4] ) _UpperCamelCase :str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): _UpperCamelCase :Optional[int] = 1_92 _UpperCamelCase :Any = 7_68 _UpperCamelCase :List[Any] = 12 _UpperCamelCase :int = 3 elif deit_name[9:].startswith('''small''' ): _UpperCamelCase :Any = 3_84 _UpperCamelCase :Any = 15_36 _UpperCamelCase :Optional[int] = 12 _UpperCamelCase :Tuple = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): _UpperCamelCase :str = 10_24 _UpperCamelCase :Union[str, Any] = 40_96 _UpperCamelCase :Optional[Any] = 24 _UpperCamelCase :Any = 16 # load original model from timm _UpperCamelCase :Optional[Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase :List[str] = timm_model.state_dict() _UpperCamelCase :Tuple = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model _UpperCamelCase :str = DeiTForImageClassificationWithTeacher(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by DeiTImageProcessor _UpperCamelCase :Dict = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _UpperCamelCase :Union[str, Any] = DeiTImageProcessor(size=lowerCAmelCase_ , crop_size=config.image_size ) _UpperCamelCase :List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCamelCase :Any = encoding['''pixel_values'''] _UpperCamelCase :str = model(lowerCAmelCase_ ) _UpperCamelCase :Tuple = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase__ :Optional[int] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
355
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def __UpperCAmelCase ( __lowerCamelCase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" raise NotImplementedError()
103
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) return image def __lowerCAmelCase ( A_ : List[Any] ) -> List[str]: __UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase ( A_ : Optional[int] , A_ : int , A_ : str ) -> List[Any]: __UpperCAmelCase = dct.pop(A_ ) __UpperCAmelCase = val def __lowerCAmelCase ( A_ : Optional[int] , A_ : Optional[int] ) -> int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(A_ , requires_grad=A_ ), v_bias) ) __UpperCAmelCase = qkv_bias def __lowerCAmelCase ( A_ : Any ) -> int: __UpperCAmelCase = 3_64 if "coco" in model_name else 2_24 __UpperCAmelCase = InstructBlipVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_20_01 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() __UpperCAmelCase = InstructBlipConfig(vision_config=A_ , text_config=A_ , qformer_config=A_ ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( A_ : int , A_ : Union[str, Any]=None , A_ : Optional[Any]=False ) -> Dict: __UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __UpperCAmelCase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCAmelCase = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __UpperCAmelCase , __UpperCAmelCase = get_blipa_config(A_ ) __UpperCAmelCase = InstructBlipForConditionalGeneration(A_ ).eval() __UpperCAmelCase = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __UpperCAmelCase , __UpperCAmelCase = model_name_to_original[model_name] # load original model print("Loading original model..." ) __UpperCAmelCase = "cuda:1" if torch.cuda.is_available() else "cpu" __UpperCAmelCase = "cuda:2" if torch.cuda.is_available() else "cpu" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_model_and_preprocess( name=A_ , model_type=A_ , is_eval=A_ , device=A_ ) original_model.eval() print("Done!" ) # update state dict keys __UpperCAmelCase = original_model.state_dict() __UpperCAmelCase = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(A_ ) if key.startswith("Qformer.bert" ): __UpperCAmelCase = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __UpperCAmelCase = key.replace("self" , "attention" ) if "llm_proj" in key: __UpperCAmelCase = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __UpperCAmelCase = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __UpperCAmelCase = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __UpperCAmelCase = key.replace("t5" , "language" ) __UpperCAmelCase = val # read in qv biases read_in_q_v_bias(A_ , A_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A_ , strict=A_ ) __UpperCAmelCase = load_demo_image() __UpperCAmelCase = "What is unusual about this image?" # create processor __UpperCAmelCase = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=A_ , image_std=A_ ) __UpperCAmelCase = InstructBlipProcessor( image_processor=A_ , tokenizer=A_ , qformer_tokenizer=A_ , ) __UpperCAmelCase = processor(images=A_ , text=A_ , return_tensors="pt" ).to(A_ ) # make sure processor creates exact same pixel values __UpperCAmelCase = vis_processors["eval"](A_ ).unsqueeze(0 ).to(A_ ) __UpperCAmelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "vicuna" in model_name: __UpperCAmelCase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __UpperCAmelCase = hf_model(**A_ ).logits else: __UpperCAmelCase = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __UpperCAmelCase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(A_ ) __UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCAmelCase = hf_model(**A_ , labels=A_ ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCAmelCase = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , A_ , atol=A_ ) print("Looks ok!" ) print("Generating with original model..." ) __UpperCAmelCase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __UpperCAmelCase = hf_model.generate( **A_ , do_sample=A_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCAmelCase = 2 print("Original generation:" , A_ ) __UpperCAmelCase = processor.batch_decode(A_ , skip_special_tokens=A_ ) __UpperCAmelCase = [text.strip() for text in output_text] print("HF generation:" , A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) return image def __lowerCAmelCase ( A_ : List[Any] ) -> List[str]: __UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase ( A_ : Optional[int] , A_ : int , A_ : str ) -> List[Any]: __UpperCAmelCase = dct.pop(A_ ) __UpperCAmelCase = val def __lowerCAmelCase ( A_ : Optional[int] , A_ : Optional[int] ) -> int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(A_ , requires_grad=A_ ), v_bias) ) __UpperCAmelCase = qkv_bias def __lowerCAmelCase ( A_ : Any ) -> int: __UpperCAmelCase = 3_64 if "coco" in model_name else 2_24 __UpperCAmelCase = InstructBlipVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_20_01 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() __UpperCAmelCase = InstructBlipConfig(vision_config=A_ , text_config=A_ , qformer_config=A_ ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( A_ : int , A_ : Union[str, Any]=None , A_ : Optional[Any]=False ) -> Dict: __UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __UpperCAmelCase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCAmelCase = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __UpperCAmelCase , __UpperCAmelCase = get_blipa_config(A_ ) __UpperCAmelCase = InstructBlipForConditionalGeneration(A_ ).eval() __UpperCAmelCase = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __UpperCAmelCase , __UpperCAmelCase = model_name_to_original[model_name] # load original model print("Loading original model..." ) __UpperCAmelCase = "cuda:1" if torch.cuda.is_available() else "cpu" __UpperCAmelCase = "cuda:2" if torch.cuda.is_available() else "cpu" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_model_and_preprocess( name=A_ , model_type=A_ , is_eval=A_ , device=A_ ) original_model.eval() print("Done!" ) # update state dict keys __UpperCAmelCase = original_model.state_dict() __UpperCAmelCase = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(A_ ) if key.startswith("Qformer.bert" ): __UpperCAmelCase = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __UpperCAmelCase = key.replace("self" , "attention" ) if "llm_proj" in key: __UpperCAmelCase = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __UpperCAmelCase = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __UpperCAmelCase = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __UpperCAmelCase = key.replace("t5" , "language" ) __UpperCAmelCase = val # read in qv biases read_in_q_v_bias(A_ , A_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A_ , strict=A_ ) __UpperCAmelCase = load_demo_image() __UpperCAmelCase = "What is unusual about this image?" # create processor __UpperCAmelCase = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=A_ , image_std=A_ ) __UpperCAmelCase = InstructBlipProcessor( image_processor=A_ , tokenizer=A_ , qformer_tokenizer=A_ , ) __UpperCAmelCase = processor(images=A_ , text=A_ , return_tensors="pt" ).to(A_ ) # make sure processor creates exact same pixel values __UpperCAmelCase = vis_processors["eval"](A_ ).unsqueeze(0 ).to(A_ ) __UpperCAmelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "vicuna" in model_name: __UpperCAmelCase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __UpperCAmelCase = hf_model(**A_ ).logits else: __UpperCAmelCase = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __UpperCAmelCase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(A_ ) __UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCAmelCase = hf_model(**A_ , labels=A_ ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCAmelCase = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , A_ , atol=A_ ) print("Looks ok!" ) print("Generating with original model..." ) __UpperCAmelCase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __UpperCAmelCase = hf_model.generate( **A_ , do_sample=A_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCAmelCase = 2 print("Original generation:" , A_ ) __UpperCAmelCase = processor.batch_decode(A_ , skip_special_tokens=A_ ) __UpperCAmelCase = [text.strip() for text in output_text] print("HF generation:" , A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = CycleDiffusionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCAmelCase__ : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase__ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase__ : int = CLIPTextModel(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase__ : Dict = image / 2 + 0.5 if str(_lowerCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ : str = torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase__ : Union[str, Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase__ : Tuple = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : List[str] = CycleDiffusionPipeline(**_lowerCAmelCase ) UpperCAmelCase__ : Tuple = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inputs(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = pipe(**_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = output.images UpperCAmelCase__ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[int] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowerCAmelCase , """half""" ): UpperCAmelCase__ : Dict = module.half() UpperCAmelCase__ : Optional[int] = CycleDiffusionPipeline(**_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = pipe(**_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __UpperCAmelCase ( self ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def __UpperCAmelCase ( self ): return super().test_inference_batch_single_identical() @skip_mps def __UpperCAmelCase ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCAmelCase ( self ): return super().test_save_load_optional_components() @skip_mps def __UpperCAmelCase ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) UpperCAmelCase__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) UpperCAmelCase__ : Any = init_image.resize((512, 512) ) UpperCAmelCase__ : int = """CompVis/stable-diffusion-v1-4""" UpperCAmelCase__ : Optional[int] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) UpperCAmelCase__ : Tuple = CycleDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase__ : int = """A black colored car""" UpperCAmelCase__ : Union[str, Any] = """A blue colored car""" UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) UpperCAmelCase__ : Optional[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) UpperCAmelCase__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) UpperCAmelCase__ : Optional[int] = init_image.resize((512, 512) ) UpperCAmelCase__ : List[Any] = """CompVis/stable-diffusion-v1-4""" UpperCAmelCase__ : Dict = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) UpperCAmelCase__ : Dict = CycleDiffusionPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[Any] = """A black colored car""" UpperCAmelCase__ : Any = """A blue colored car""" UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) UpperCAmelCase__ : Optional[int] = output.images assert np.abs(image - expected_image ).max() < 2e-2
79
import argparse import datetime def __lowercase ( __lowerCAmelCase : str ): a__ = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } a__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__lowerCAmelCase ) < 1_1: raise ValueError('Must be 10 characters long' ) # Get month a__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('Month must be between 1 - 12' ) a__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day a__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('Date must be between 1 - 31' ) # Get second separator a__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year a__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation a__ = datetime.date(int(__lowerCAmelCase ) , int(__lowerCAmelCase ) , int(__lowerCAmelCase ) ) # Start math if m <= 2: a__ = y - 1 a__ = m + 1_2 # maths var a__ = int(str(__lowerCAmelCase )[:2] ) a__ = int(str(__lowerCAmelCase )[2:] ) a__ = int(2.6 * m - 5.39 ) a__ = int(c / 4 ) a__ = int(k / 4 ) a__ = int(d + k ) a__ = int(t + u + v + x ) a__ = int(z - (2 * c) ) a__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response a__ = F'Your date {date_input}, is a {days[str(__lowerCAmelCase )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() snake_case : Any = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) snake_case : str = parser.parse_args() zeller(args.date_input)
335
0
from __future__ import annotations import typing from collections import Counter def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a , max_perimeter + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a ): SCREAMING_SNAKE_CASE_ : List[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def A_ ( a = 1_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pythagorean_triple(a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
353
def A_ ( a ): """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) SCREAMING_SNAKE_CASE_ : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_ : Any = 1 if upper_limit > 0: SCREAMING_SNAKE_CASE_ : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: lowerCAmelCase : Union[str, Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
353
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase_ : str = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def A_ (__a , __a=None , __a=None , __a=None ): '''simple docstring''' A_ = True while ask_again: A_ = input(__a ) try: if default is not None and len(__a ) == 0: return default return convert_value(__a ) if convert_value is not None else result except Exception: if error_message is not None: print(__a ) def A_ (__a , __a=[] , __a=None , __a=0 ): '''simple docstring''' A_ = BulletMenu(__a , __a ) A_ = menu.run(default_choice=__a ) return convert_value(__a ) if convert_value is not None else result def A_ (__a ): '''simple docstring''' A_ = int(__a ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def A_ (__a ): '''simple docstring''' A_ = int(__a ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def A_ (__a ): '''simple docstring''' A_ = int(__a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ (__a ): '''simple docstring''' A_ = int(__a ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def A_ (__a ): '''simple docstring''' A_ = int(__a ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def A_ (__a ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __lowerCAmelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any ) -> List[Any]: """simple docstring""" A_ = super()._format_usage(_snake_case , _snake_case , _snake_case , _snake_case ) A_ = usage.replace("<command> [<args>] " , "" ) return usage
115
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ (__a , __a , __a , __a , __a=True , __a="pt" ): '''simple docstring''' A_ = {"add_prefix_space": True} if isinstance(__a , __a ) and not line.startswith(" " ) else {} A_ = padding_side return tokenizer( [line] , max_length=__a , padding="max_length" if pad_to_max_length else None , truncation=__a , return_tensors=__a , add_special_tokens=__a , **__a , ) def A_ (__a , __a , __a=None , ): '''simple docstring''' A_ = input_ids.ne(__a ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( _lowercase ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : Dict="train" , _snake_case : List[Any]=None , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , _snake_case : Any="" , ) -> List[str]: """simple docstring""" super().__init__() A_ = Path(_snake_case ).joinpath(type_path + ".source" ) A_ = Path(_snake_case ).joinpath(type_path + ".target" ) A_ = self.get_char_lens(self.src_file ) A_ = max_source_length A_ = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' A_ = tokenizer A_ = prefix if n_obs is not None: A_ = self.src_lens[:n_obs] A_ = src_lang A_ = tgt_lang def __len__( self : Optional[int] ) -> List[str]: """simple docstring""" return len(self.src_lens ) def __getitem__( self : str , _snake_case : Optional[int] ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ = index + 1 # linecache starts at 1 A_ = self.prefix + linecache.getline(str(self.src_file ) , _snake_case ).rstrip("\n" ) A_ = linecache.getline(str(self.tgt_file ) , _snake_case ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _snake_case ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _snake_case ) else self.tokenizer ) A_ = self.tokenizer.generator if isinstance(self.tokenizer , _snake_case ) else self.tokenizer A_ = encode_line(_snake_case , _snake_case , self.max_source_length , "right" ) A_ = encode_line(_snake_case , _snake_case , self.max_target_length , "right" ) A_ = source_inputs["input_ids"].squeeze() A_ = target_inputs["input_ids"].squeeze() A_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase__ ( _snake_case : List[Any] ) -> str: """simple docstring""" return [len(_snake_case ) for x in Path(_snake_case ).open().readlines()] def lowerCamelCase__ ( self : Any , _snake_case : List[str] ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ = torch.stack([x["input_ids"] for x in batch] ) A_ = torch.stack([x["attention_mask"] for x in batch] ) A_ = torch.stack([x["decoder_input_ids"] for x in batch] ) A_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _snake_case ) else self.tokenizer.pad_token_id ) A_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _snake_case ) else self.tokenizer.pad_token_id ) A_ = trim_batch(_snake_case , _snake_case ) A_ , A_ = trim_batch(_snake_case , _snake_case , attention_mask=_snake_case ) A_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase_ : Any = getLogger(__name__) def A_ (__a ): '''simple docstring''' return list(itertools.chain.from_iterable(__a ) ) def A_ (__a ): '''simple docstring''' A_ = get_git_info() save_json(__a , os.path.join(__a , "git_log.json" ) ) def A_ (__a , __a , __a=4 , **__a ): '''simple docstring''' with open(__a , "w" ) as f: json.dump(__a , __a , indent=__a , **__a ) def A_ (__a ): '''simple docstring''' with open(__a ) as f: return json.load(__a ) def A_ (): '''simple docstring''' A_ = git.Repo(search_parent_directories=__a ) A_ = { "repo_id": str(__a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def A_ (__a , __a ): '''simple docstring''' return list(map(__a , __a ) ) def A_ (__a , __a ): '''simple docstring''' with open(__a , "wb" ) as f: return pickle.dump(__a , __a ) def A_ (__a ): '''simple docstring''' def remove_articles(__a ): return re.sub(R"\b(a|an|the)\b" , " " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def A_ (__a , __a ): '''simple docstring''' A_ = normalize_answer(__a ).split() A_ = normalize_answer(__a ).split() A_ = Counter(__a ) & Counter(__a ) A_ = sum(common.values() ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(__a ) A_ = 1.0 * num_same / len(__a ) A_ = (2 * precision * recall) / (precision + recall) return fa def A_ (__a , __a ): '''simple docstring''' return normalize_answer(__a ) == normalize_answer(__a ) def A_ (__a , __a ): '''simple docstring''' assert len(__a ) == len(__a ) A_ = 0 for hypo, pred in zip(__a , __a ): em += exact_match_score(__a , __a ) if len(__a ) > 0: em /= len(__a ) return {"em": em} def A_ (__a ): '''simple docstring''' return model_prefix.startswith("rag" ) def A_ (__a , __a , __a ): '''simple docstring''' A_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ = "dropout_rate" for p in extra_params: if getattr(__a , __a , __a ): if not hasattr(__a , __a ) and not hasattr(__a , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__a ) ) delattr(__a , __a ) continue A_ = p if hasattr(__a , __a ) else equivalent_param[p] setattr(__a , __a , getattr(__a , __a ) ) delattr(__a , __a ) return hparams, config
115
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _A ( A__ ): """simple docstring""" __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' ) __lowercase = Namespace(**checkpoint['''cfg''']['''model'''] ) __lowercase = checkpoint['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''decoder.embed_tokens.weight'''].shape[0] __lowercase = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} __lowercase = XGLMConfig( vocab_size=A__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __lowercase = XGLMForCausalLM(A__ ) __lowercase = model.load_state_dict(A__ , strict=A__ ) print(A__ ) __lowercase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
624
'''simple docstring''' from collections.abc import Callable import numpy as np def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = int(np.ceil((x_end - xa) / step_size ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(A__ ): __lowercase = y[k] + step_size * ode_func(A__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
624
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase__ =version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize UpperCamelCase__ ='\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' UpperCamelCase__ ='\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' UpperCamelCase__ ='\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.9 , __lowerCamelCase=3 , __lowerCamelCase=0.5 ) -> str: if NLTK_VERSION >= version.Version("3.6.5" ): _SCREAMING_SNAKE_CASE : List[str] = [ meteor_score.single_meteor_score( word_tokenize(__lowerCamelCase ) , word_tokenize(__lowerCamelCase ) , alpha=__lowerCamelCase , beta=__lowerCamelCase , gamma=__lowerCamelCase ) for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ) ] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ meteor_score.single_meteor_score(__lowerCamelCase , __lowerCamelCase , alpha=__lowerCamelCase , beta=__lowerCamelCase , gamma=__lowerCamelCase ) for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ) ] return {"meteor": np.mean(__lowerCamelCase )}
249
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if exponent == 1: return base if exponent % 2 == 0: _SCREAMING_SNAKE_CASE : Any = _modexpt(__lowerCamelCase, exponent // 2, __lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCamelCase, exponent - 1, __lowerCamelCase )) % modulo_value def lowerCamelCase__ (__lowerCamelCase = 1777, __lowerCamelCase = 1855, __lowerCamelCase = 8 ): _SCREAMING_SNAKE_CASE : Tuple = base for _ in range(1, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = _modexpt(__lowerCamelCase, __lowerCamelCase, 10**digits ) return result if __name__ == "__main__": print(f"{solution() = }")
249
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
708
def lowerCamelCase__ ( _lowercase = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
300
0
"""simple docstring""" def lowercase__ ( snake_case_ :list ): __UpperCAmelCase = 0 while len(snake_case_ ) > 1: __UpperCAmelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __UpperCAmelCase = files.index(min(snake_case_ ) ) temp += files[min_index] files.pop(snake_case_ ) files.append(snake_case_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" # Initialise PyTorch model _lowerCAmelCase = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: _lowerCAmelCase = BigBirdForQuestionAnswering(__lowerCamelCase ) else: _lowerCAmelCase = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) a__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
589
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase_ : List[str] = logging.get_logger(__name__) UpperCamelCase_ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ : List[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } UpperCamelCase_ : Dict = { """Salesforce/codegen-350M-mono""": 2_048, } class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ = CodeGenTokenizer def __init__( self : Optional[Any] ,a__ : str=None ,a__ : Dict=None ,a__ : str=None ,a__ : List[str]="<|endoftext|>" ,a__ : Any="<|endoftext|>" ,a__ : Dict="<|endoftext|>" ,a__ : List[Any]=False ,**a__ : Any ,): super().__init__( a__ ,a__ ,tokenizer_file=a__ ,unk_token=a__ ,bos_token=a__ ,eos_token=a__ ,add_prefix_space=a__ ,**a__ ,) if kwargs.pop("add_bos_token" ,a__ ): a__ = kwargs.pop("name_or_path" ,"" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) a__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,a__ ) != add_prefix_space: a__ = getattr(a__ ,pre_tok_state.pop("type" ) ) a__ = add_prefix_space a__ = pre_tok_class(**a__ ) a__ = add_prefix_space def lowerCAmelCase_ ( self : Dict ,*a__ : List[Any] ,**a__ : int ): a__ = kwargs.get("is_split_into_words" ,a__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ ,**a__ ) def lowerCAmelCase_ ( self : Union[str, Any] ,*a__ : int ,**a__ : Optional[Any] ): a__ = kwargs.get("is_split_into_words" ,a__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ ,**a__ ) def lowerCAmelCase_ ( self : Optional[Any] ,a__ : str ,a__ : Optional[str] = None ): a__ = self._tokenizer.model.save(a__ ,name=a__ ) return tuple(a__ ) def lowerCAmelCase_ ( self : List[Any] ,a__ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] ,a__ : bool = False ,a__ : bool = None ,a__ : Optional[List[str]] = None ,**a__ : Any ,): a__ = super().decode( token_ids=a__ ,skip_special_tokens=a__ ,clean_up_tokenization_spaces=a__ ,**a__ ,) if truncate_before_pattern is not None and len(a__ ) > 0: a__ = self.truncate(a__ ,a__ ) return decoded_text def lowerCAmelCase_ ( self : List[Any] ,a__ : Dict ,a__ : List[Any] ): def find_re(a__ : List[str] ,a__ : Tuple ,a__ : Tuple ): a__ = pattern.search(a__ ,a__ ) return m.start() if m else -1 a__ = [re.compile(a__ ,re.MULTILINE ) for pattern in truncate_before_pattern] a__ = list(re.finditer("^print" ,a__ ,re.MULTILINE ) ) if len(a__ ) > 1: a__ = completion[: prints[1].start()] a__ = list(re.finditer("^def" ,a__ ,re.MULTILINE ) ) if len(a__ ) > 1: a__ = completion[: defs[1].start()] a__ = 0 a__ = [ pos for pos in [find_re(a__ ,a__ ,a__ ) for terminal in terminals] if pos != -1 ] if len(a__ ) > 0: return completion[: min(a__ )] else: return completion
394
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase (_lowercase ): """simple docstring""" if not is_accelerate_available(): return method a__ = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse("0.17.0" ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
394
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = ["""image_processor""", """tokenizer"""] __UpperCAmelCase = """AutoImageProcessor""" __UpperCAmelCase = """AutoTokenizer""" def __init__( self : Optional[int] , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : int ): '''simple docstring''' __magic_name__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase_ , ) __magic_name__ = kwargs.pop('feature_extractor' ) __magic_name__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = self.image_processor __magic_name__ = False def __call__( self : List[str] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = kwargs.pop('images' , UpperCamelCase_ ) __magic_name__ = kwargs.pop('text' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __magic_name__ = self.image_processor(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: __magic_name__ = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: __magic_name__ = encodings['input_ids'] return inputs def a__ ( self : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : str ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def a__ ( self : Any , *UpperCamelCase_ : str , **UpperCamelCase_ : int ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @contextmanager def a__ ( self : int ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.image_processor __magic_name__ = False def a__ ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' if added_vocab is None: __magic_name__ = self.tokenizer.get_added_vocab() __magic_name__ = {} while tokens: __magic_name__ = re.search(r'<s_(.*?)>' , UpperCamelCase_ , re.IGNORECASE ) if start_token is None: break __magic_name__ = start_token.group(1 ) __magic_name__ = re.search(rf"""</s_{key}>""" , UpperCamelCase_ , re.IGNORECASE ) __magic_name__ = start_token.group() if end_token is None: __magic_name__ = tokens.replace(UpperCamelCase_ , '' ) else: __magic_name__ = end_token.group() __magic_name__ = re.escape(UpperCamelCase_ ) __magic_name__ = re.escape(UpperCamelCase_ ) __magic_name__ = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCamelCase_ , re.IGNORECASE ) if content is not None: __magic_name__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __magic_name__ = self.tokenajson(UpperCamelCase_ , is_inner_value=UpperCamelCase_ , added_vocab=UpperCamelCase_ ) if value: if len(UpperCamelCase_ ) == 1: __magic_name__ = value[0] __magic_name__ = value else: # leaf nodes __magic_name__ = [] for leaf in content.split(r'<sep/>' ): __magic_name__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __magic_name__ = leaf[1:-2] # for categorical special tokens output[key].append(UpperCamelCase_ ) if len(output[key] ) == 1: __magic_name__ = output[key][0] __magic_name__ = tokens[tokens.find(UpperCamelCase_ ) + len(UpperCamelCase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCamelCase_ , added_vocab=UpperCamelCase_ ) if len(UpperCamelCase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def a__ ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase_ , ) return self.image_processor_class @property def a__ ( self : List[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase_ , ) return self.image_processor
545
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def A ( __snake_case: Optional[int] ) -> Tuple: """simple docstring""" for param in module.parameters(): __magic_name__ = False def A ( ) -> Optional[Any]: """simple docstring""" __magic_name__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __magic_name__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A ( __snake_case: int ) -> List[Any]: """simple docstring""" __magic_name__ = plt.imshow(__snake_case ) fig.axes.get_xaxis().set_visible(__snake_case ) fig.axes.get_yaxis().set_visible(__snake_case ) plt.show() def A ( ) -> List[Any]: """simple docstring""" __magic_name__ = datetime.now() __magic_name__ = current_time.strftime('%H:%M:%S' ) return timestamp
545
1
import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : Optional[int] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : int = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] SCREAMING_SNAKE_CASE : List[str] = "3.0.12" SCREAMING_SNAKE_CASE : str = None def __A ( ): """simple docstring""" global _logger __a = _logger or logging.getLogger(__name__ ) return _logger class A_ ( _SCREAMING_SNAKE_CASE ): def __init__( self : int , __SCREAMING_SNAKE_CASE : str ): __a = lock_file return None def __str__( self : List[str] ): __a = f"""The file lock \'{self.lock_file}\' could not be acquired.""" return temp class A_ : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ): __a = lock return None def __enter__( self : Optional[Any] ): return self.lock def __exit__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): self.lock.release() return None class A_ : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=-1 , __SCREAMING_SNAKE_CASE : str=None ): __a = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __a = self.hash_filename_if_too_long(A_ , A_ ) # The path to the lock file. __a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __a = None # The default timeout value. __a = timeout # We use this lock primarily for the lock counter. __a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __a = 0 return None @property def _UpperCAmelCase ( self : Union[str, Any] ): return self._lock_file @property def _UpperCAmelCase ( self : Tuple ): return self._timeout @timeout.setter def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ): __a = float(A_ ) return None def _UpperCAmelCase ( self : Dict ): raise NotImplementedError() def _UpperCAmelCase ( self : Union[str, Any] ): raise NotImplementedError() @property def _UpperCAmelCase ( self : Optional[Any] ): return self._lock_file_fd is not None def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: __a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __a = id(self ) __a = self._lock_file __a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(A_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _UpperCAmelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __a = id(self ) __a = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __a = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : str ): self.acquire() return self def __exit__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): self.release() return None def __del__( self : Dict ): self.release(force=A_ ) return None def _UpperCAmelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ): __a = os.path.basename(A_ ) if len(A_ ) > max_length and max_length > 0: __a = os.path.dirname(A_ ) __a = str(hash(A_ ) ) __a = filename[: max_length - len(A_ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(A_ , A_ ) else: return path class A_ ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=-1 , __SCREAMING_SNAKE_CASE : List[str]=None ): from .file_utils import relative_to_absolute_path super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) __a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def _UpperCAmelCase ( self : Any ): __a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __a = os.open(self._lock_file , A_ ) except OSError: pass else: try: msvcrt.locking(A_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(A_ ) else: __a = fd return None def _UpperCAmelCase ( self : List[Any] ): __a = self._lock_file_fd __a = None msvcrt.locking(A_ , msvcrt.LK_UNLCK , 1 ) os.close(A_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class A_ ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int]=-1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ): __a = os.statvfs(os.path.dirname(A_ ) ).f_namemax super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) def _UpperCAmelCase ( self : Optional[Any] ): __a = os.O_RDWR | os.O_CREAT | os.O_TRUNC __a = os.open(self._lock_file , A_ ) try: fcntl.flock(A_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(A_ ) else: __a = fd return None def _UpperCAmelCase ( self : Union[str, Any] ): __a = self._lock_file_fd __a = None fcntl.flock(A_ , fcntl.LOCK_UN ) os.close(A_ ) return None class A_ ( _SCREAMING_SNAKE_CASE ): def _UpperCAmelCase ( self : List[Any] ): __a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __a = os.open(self._lock_file , A_ ) except OSError: pass else: __a = fd return None def _UpperCAmelCase ( self : Union[str, Any] ): os.close(self._lock_file_fd ) __a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : str = None if msvcrt: SCREAMING_SNAKE_CASE : Tuple = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : Any = UnixFileLock else: SCREAMING_SNAKE_CASE : int = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A_ ( a_ , a_ , a_ ): @register_to_config def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False , ): super().__init__() __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = False __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) __a = TaConfig( vocab_size=__SCREAMING_SNAKE_CASE , d_model=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , d_kv=__SCREAMING_SNAKE_CASE , d_ff=__SCREAMING_SNAKE_CASE , dropout_rate=__SCREAMING_SNAKE_CASE , feed_forward_proj=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , ) __a = nn.ModuleList() for lyr_num in range(__SCREAMING_SNAKE_CASE ): __a = TaBlock(__SCREAMING_SNAKE_CASE ) self.encoders.append(__SCREAMING_SNAKE_CASE ) __a = TaLayerNorm(__SCREAMING_SNAKE_CASE ) __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): __a = self.token_embedder(__SCREAMING_SNAKE_CASE ) __a = encoder_input_tokens.shape[1] __a = torch.arange(__SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device ) x += self.position_encoding(__SCREAMING_SNAKE_CASE ) __a = self.dropout_pre(__SCREAMING_SNAKE_CASE ) # inverted the attention mask __a = encoder_input_tokens.size() __a = self.get_extended_attention_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for lyr in self.encoders: __a = lyr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] __a = self.layer_norm(__SCREAMING_SNAKE_CASE ) return self.dropout_post(__SCREAMING_SNAKE_CASE ), encoder_inputs_mask
525
0
from __future__ import annotations from collections import namedtuple def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
81
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } a__ = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } a__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = VOCAB_FILES_NAMES snake_case_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Any = PRETRAINED_INIT_CONFIGURATION snake_case_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Dict = RealmTokenizer def __init__( self : int , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : List[str]="[SEP]" , lowerCAmelCase : Optional[int]="[PAD]" , lowerCAmelCase : List[Any]="[CLS]" , lowerCAmelCase : Any="[MASK]" , lowerCAmelCase : Dict=True , lowerCAmelCase : int=None , **lowerCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase) != tokenize_chinese_chars ): _snake_case : Tuple = getattr(lowerCAmelCase , normalizer_state.pop("""type""")) _snake_case : Any = do_lower_case _snake_case : Optional[int] = strip_accents _snake_case : str = tokenize_chinese_chars _snake_case : List[str] = normalizer_class(**lowerCAmelCase) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[Any] = kwargs.pop("""text_pair""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""return_tensors""" , lowerCAmelCase) _snake_case : Optional[Any] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCAmelCase): if batch_text_pair is not None: _snake_case : Dict = batch_text_pair[idx] else: _snake_case : List[str] = None _snake_case : Optional[int] = super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) _snake_case : str = encoded_candidates.get("""input_ids""") _snake_case : Union[str, Any] = encoded_candidates.get("""attention_mask""") _snake_case : Any = encoded_candidates.get("""token_type_ids""") if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase) _snake_case : str = {key: item for key, item in output_data.items() if len(lowerCAmelCase) != 0} return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=None) -> List[str]: """simple docstring""" _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : List[Any] = [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : Dict = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase)
477
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConvNextFeatureExtractor'] _snake_case = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure)
716
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = ["image_processor", "tokenizer"] UpperCAmelCase__ = "AutoImageProcessor" UpperCAmelCase__ = "AutoTokenizer" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __UpperCamelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: __UpperCamelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def __lowercase( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __lowercase( self ) -> List[Any]: return ["input_ids", "attention_mask", "pixel_values"]
567
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( __snake_case , unittest.TestCase ): UpperCamelCase = VideoToVideoSDPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase = False # No `output_type`. UpperCamelCase = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=3_2 , attention_head_dim=4 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) UpperCAmelCase = CLIPTextModel(__lowerCamelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=0 ) -> Dict: """simple docstring""" UpperCAmelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(__lowerCamelCase ) else: UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _lowercase ( self : Any ) -> int: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = VideoToVideoSDPipeline(**__lowerCamelCase ) UpperCAmelCase = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase = """np""" UpperCAmelCase = sd_pipe(**__lowerCamelCase ).frames UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) UpperCAmelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCamelCase , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class __lowercase ( unittest.TestCase ): def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=__lowerCamelCase ) UpperCAmelCase = video.to("""cuda""" ) UpperCAmelCase = """Spiderman is surfing""" UpperCAmelCase = pipe(__lowerCamelCase , video=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
377
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
377
1
'''simple docstring''' from __future__ import annotations import math def A_( A : int , A : int , A : bool , A : list[int] , A : float): if depth < 0: raise ValueError('Depth cannot be less than 0') if not scores: raise ValueError('Scores cannot be empty') if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A) , ) ) def A_( ): UpperCamelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] UpperCamelCase = math.log(len(A) , 2) print(f'''Optimal value : {minimax(0 , 0 , A , A , A)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Any = 32 def A_( A : Accelerator , A : int = 16): UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase = load_dataset('glue' , 'mrpc') def tokenize_function(A : Dict): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(A : int): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( A , padding='longest' , max_length=A , pad_to_multiple_of=A , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def A_( A : List[str] , A : Dict): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=A) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs']) UpperCamelCase = int(config['seed']) UpperCamelCase = int(config['batch_size']) UpperCamelCase = evaluate.load('glue' , 'mrpc') set_seed(A) UpperCamelCase , UpperCamelCase = get_dataloaders(A , A) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=A) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( A , A , A , A , A) # Now we train the model for epoch in range(A): model.train() for step, batch in enumerate(A): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(A): UpperCamelCase = model(**A) UpperCamelCase = output.loss accelerator.backward(A) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase = model(**A) UpperCamelCase = outputs.logits.argmax(dim=-1) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=A , references=A , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A) def A_( ): UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=A , default=A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=A , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A , A) if __name__ == "__main__": main()
432
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class a__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''cyberpunk 2077''' lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt=lowerCamelCase_ , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.text_to_image( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = pipe.image_variation(lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
90
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( __a , __a ): '''simple docstring''' @register_to_config def __init__( self : str , *, __lowercase : int = 4 , __lowercase : int = 7_68 , __lowercase : int , __lowercase : str , ): '''simple docstring''' super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(a_ ) ) # parameters for additional clip time embeddings UpperCAmelCase_ = nn.Linear(a_ , a_ ) UpperCAmelCase_ = nn.Linear(a_ , a_ ) # parameters for encoder hidden states UpperCAmelCase_ = clip_extra_context_tokens UpperCAmelCase_ = nn.Linear( a_ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase_ = nn.Linear(a_ , a_ ) UpperCAmelCase_ = nn.LayerNorm(a_ ) def SCREAMING_SNAKE_CASE ( self : Any , *, __lowercase : Union[str, Any] , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase_ = image_embeddings.shape[0] UpperCAmelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase_ = classifier_free_guidance_embeddings.expand( a_ , -1 ) UpperCAmelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase_ = self.embedding_proj(a_ ) UpperCAmelCase_ = self.clip_image_embeddings_project_to_time_embeddings(a_ ) UpperCAmelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase_ = self.clip_extra_context_tokens_proj(a_ ) UpperCAmelCase_ = clip_extra_context_tokens.reshape(a_ , -1 , self.clip_extra_context_tokens ) UpperCAmelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase_ = self.encoder_hidden_states_proj(a_ ) UpperCAmelCase_ = self.text_encoder_hidden_states_norm(a_ ) UpperCAmelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
706
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : np.ndarray lowerCamelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
486
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
94
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int = 100_0000 ) -> int: _UpperCAmelCase : str = set(range(3 , lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase , lowerCAmelCase ) ) ) _UpperCAmelCase : Tuple = [float(lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
300
0
'''simple docstring''' import numpy as np def UpperCAmelCase ( a_ ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
385
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
385
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None ) -> Any: super().__init__() __a = pad_token_id __a = max_length __a = vocab __a = merges __a = BytePairTokenizer(UpperCamelCase , UpperCamelCase , sequence_length=UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) -> Dict: __a = [' '.join(UpperCamelCase ) for m in tokenizer.bpe_ranks.keys()] __a = tokenizer.get_vocab() return cls(UpperCamelCase , UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) -> List[str]: __a = GPTaTokenizer.from_pretrained(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) return cls.from_tokenizer(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase ) -> Optional[Any]: return cls(**UpperCamelCase ) def UpperCamelCase__ ( self ) -> Any: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> int: __a = self.tf_tokenizer(UpperCamelCase ) __a = tf.ones_like(UpperCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length __a = max_length if max_length is not None else self.max_length if max_length is not None: __a , __a = pad_model_inputs( UpperCamelCase , max_seq_length=UpperCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
539
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def SCREAMING_SNAKE_CASE ( a_ : str , a_ : Union[str, Any] , a_ : Dict ): __a = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __a = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __a = f"{src_lang}-{tgt_lang}" __a = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a_ , exist_ok=a_ ) __a = os.path.join(a_ , 'README.md' ) print(f"Generating {path}" ) with open(a_ , 'w' , encoding='utf-8' ) as f: f.write(a_ ) # make sure we are under the root of the project UpperCAmelCase_ = Path(__file__).resolve().parent.parent.parent UpperCAmelCase_ = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model_name.split("-") UpperCAmelCase_ = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
539
1
import math def UpperCamelCase_ ( __a , __a ) -> float: if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
151
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( A__ ): """simple docstring""" _lowercase = (DPMSolverSinglestepScheduler,) _lowercase = (('num_inference_steps', 2_5),) def _UpperCamelCase( self : Optional[int] , **lowerCamelCase__ : Tuple ): a__ : Any = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**lowerCamelCase__ ) return config def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple=0 , **lowerCamelCase__ : Union[str, Any] ): a__ : Optional[Any] = dict(self.forward_default_kwargs ) a__ : Any = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) a__ : Any = self.dummy_sample a__ : int = 0.1 * sample a__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a__ : Dict = self.get_scheduler_config(**lowerCamelCase__ ) a__ : Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals a__ : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) a__ : List[str] = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals a__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] a__, a__ : Any = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): a__ : List[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : List[str] = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase( self : Any ): pass def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Optional[Any]=0 , **lowerCamelCase__ : Optional[int] ): a__ : Tuple = dict(self.forward_default_kwargs ) a__ : Tuple = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) a__ : Union[str, Any] = self.dummy_sample a__ : Tuple = 0.1 * sample a__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a__ : Dict = self.get_scheduler_config() a__ : List[str] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) a__ : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) a__ : int = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) a__ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] a__ : List[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : Dict = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Union[str, Any] ): if scheduler is None: a__ : Union[str, Any] = self.scheduler_classes[0] a__ : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ ) a__ : str = scheduler_class(**lowerCamelCase__ ) a__ : List[Any] = self.scheduler_classes[0] a__ : int = self.get_scheduler_config(**lowerCamelCase__ ) a__ : Any = scheduler_class(**lowerCamelCase__ ) a__ : Any = 10 a__ : int = self.dummy_model() a__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): a__ : List[str] = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def _UpperCamelCase( self : str ): a__ : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) a__ : Optional[Any] = 50 a__ : List[str] = self.dummy_model() a__ : str = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): a__ : List[str] = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample a__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _UpperCamelCase( self : Union[str, Any] ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults a__ : Tuple = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) a__ : int = self.full_loop(scheduler=lowerCamelCase__ ) a__ : str = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 a__ : Tuple = DEISMultistepScheduler.from_config(scheduler.config ) a__ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) a__ : int = UniPCMultistepScheduler.from_config(scheduler.config ) a__ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a__ : Optional[Any] = self.full_loop(scheduler=lowerCamelCase__ ) a__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _UpperCamelCase( self : Union[str, Any] ): self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="dpmsolver++" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def _UpperCamelCase( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) a__ : Dict = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def _UpperCamelCase( self : str ): self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _UpperCamelCase( self : Union[str, Any] ): self.check_over_configs(variance_type=lowerCamelCase__ ) self.check_over_configs(variance_type="learned_range" ) def _UpperCamelCase( self : Any ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def _UpperCamelCase( self : Optional[int] ): a__ : Optional[int] = self.full_loop() a__ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _UpperCamelCase( self : str ): a__ : List[str] = self.full_loop(use_karras_sigmas=lowerCamelCase__ ) a__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _UpperCamelCase( self : int ): a__ : List[Any] = self.full_loop(prediction_type="v_prediction" ) a__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _UpperCamelCase( self : Tuple ): a__ : Any = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=lowerCamelCase__ ) a__ : List[str] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _UpperCamelCase( self : str ): a__ : Union[str, Any] = self.scheduler_classes[0] a__ : List[str] = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) a__ : int = scheduler_class(**lowerCamelCase__ ) a__ : int = 10 a__ : int = self.dummy_model() a__ : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Dict = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
151
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def A_ ( _lowerCamelCase : Any , _lowerCamelCase : List[Any]=False ): _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): _lowerCAmelCase = """segformer.encoder.""" + key if key.startswith('backbone' ): _lowerCAmelCase = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] _lowerCAmelCase = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(__lowerCAmelCase )-1}" ) if "norm" in key: _lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] _lowerCAmelCase = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(__lowerCAmelCase )-1}" ) if "layer_norm1" in key: _lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase = key[key.find('block' ) + len('block' )] _lowerCAmelCase = key.replace(F"block{idx}" , F"block.{int(__lowerCAmelCase )-1}" ) if "attn.q" in key: _lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] _lowerCAmelCase = key.replace(F"linear_c{idx}" , F"linear_c.{int(__lowerCAmelCase )-1}" ) if key.startswith('head' ): _lowerCAmelCase = key.replace('head' , 'classifier' ) _lowerCAmelCase = value return new_state_dict def A_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) _lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def A_ ( ): _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def A_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] ): _lowerCAmelCase = SegformerConfig() _lowerCAmelCase = False # set attributes based on model_name _lowerCAmelCase = """huggingface/label-files""" if "segformer" in model_name: _lowerCAmelCase = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: _lowerCAmelCase = 150 _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = (1, 150, 128, 128) elif "city" in model_name: _lowerCAmelCase = 19 _lowerCAmelCase = """cityscapes-id2label.json""" _lowerCAmelCase = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: _lowerCAmelCase = True _lowerCAmelCase = model_name[4:6] _lowerCAmelCase = 1_000 _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = (1, 1_000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 256 elif size == "b2": _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 768 _lowerCAmelCase = [3, 4, 6, 3] elif size == "b3": _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 768 _lowerCAmelCase = [3, 4, 18, 3] elif size == "b4": _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 768 _lowerCAmelCase = [3, 8, 27, 3] elif size == "b5": _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 768 _lowerCAmelCase = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) _lowerCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCAmelCase , align=__lowerCAmelCase , do_random_crop=__lowerCAmelCase ) # prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: _lowerCAmelCase = torch.load(__lowerCAmelCase , map_location=torch.device('cpu' ) ) else: _lowerCAmelCase = torch.load(__lowerCAmelCase , map_location=torch.device('cpu' ) )["""state_dict"""] # rename keys _lowerCAmelCase = rename_keys(__lowerCAmelCase , encoder_only=__lowerCAmelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__lowerCAmelCase , __lowerCAmelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCAmelCase = False _lowerCAmelCase = SegformerForImageClassification(__lowerCAmelCase ) else: _lowerCAmelCase = SegformerForSemanticSegmentation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # forward pass _lowerCAmelCase = model(__lowerCAmelCase ) _lowerCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCAmelCase = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCAmelCase = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCAmelCase = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCAmelCase = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: _lowerCAmelCase = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
309
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=False ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __UpperCamelCase : Tuple = os.path.abspath(__lowerCAmelCase ) logger.info(f'Loading PyTorch weights from {pt_path}' ) __UpperCamelCase : int = torch.load(__lowerCAmelCase , map_location="""cpu""" ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __UpperCamelCase : List[Any] = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __UpperCamelCase : List[str] = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def __lowerCamelCase ( __lowerCAmelCase : Tuple[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, jnp.ndarray] , __lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCAmelCase : Tuple[str] ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __UpperCamelCase : Optional[int] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __UpperCamelCase : Optional[Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __UpperCamelCase : Optional[Any] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __UpperCamelCase : Union[str, Any] = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __UpperCamelCase : Tuple = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): __UpperCamelCase : Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __UpperCamelCase : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): __UpperCamelCase : Optional[int] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __UpperCamelCase : Tuple = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __UpperCamelCase : str = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __UpperCamelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __UpperCamelCase : Tuple = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __UpperCamelCase : Dict = pt_tuple_key[-2] + """_v""" if name is not None: __UpperCamelCase : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Union[str, Any]: # convert pytorch tensor to numpy __UpperCamelCase : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} __UpperCamelCase : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __UpperCamelCase : Union[str, Any] = flax_model.params["""params"""] else: __UpperCamelCase : List[Any] = flax_model.params __UpperCamelCase : List[Any] = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __UpperCamelCase : List[str] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCAmelCase ) __UpperCamelCase : List[Any] = {} __UpperCamelCase : int = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __UpperCamelCase : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase : List[str] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __UpperCamelCase : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase : Optional[int] = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary __UpperCamelCase : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __UpperCamelCase : int = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __UpperCamelCase : Optional[Any] = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __UpperCamelCase : Optional[int] = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> Dict: import torch # Load the index __UpperCamelCase : List[str] = {} for shard_file in shard_filenames: # load using msgpack utils __UpperCamelCase : List[str] = torch.load(__lowerCAmelCase ) __UpperCamelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()} __UpperCamelCase : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __UpperCamelCase : Optional[Any] = flax_model.params["""params"""] __UpperCamelCase : int = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __UpperCamelCase : Dict = flax_model.params __UpperCamelCase : int = flatten_dict(__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __UpperCamelCase : Any = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase : Any = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __UpperCamelCase : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase : Optional[Any] = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary __UpperCamelCase : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __UpperCamelCase : List[Any] = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: __UpperCamelCase : Optional[Any] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __UpperCamelCase : int = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __UpperCamelCase : int = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: __UpperCamelCase : List[Any] = os.path.abspath(__lowerCAmelCase ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __UpperCamelCase : str = getattr(__lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , """rb""" ) as state_f: try: __UpperCamelCase : Optional[int] = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> List[Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __UpperCamelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __UpperCamelCase : List[Any] = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) __UpperCamelCase : Tuple = flatten_dict(__lowerCAmelCase ) __UpperCamelCase : int = pt_model.state_dict() __UpperCamelCase : Tuple = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __UpperCamelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __UpperCamelCase : Dict = [] __UpperCamelCase : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __UpperCamelCase : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix __UpperCamelCase : Optional[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase : Tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer __UpperCamelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) __UpperCamelCase : Dict = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer __UpperCamelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) __UpperCamelCase : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __UpperCamelCase : List[str] = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: __UpperCamelCase : Tuple = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: __UpperCamelCase : Optional[int] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __UpperCamelCase : Optional[int] = """.""".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __UpperCamelCase : Union[str, Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __UpperCamelCase : int = key.split(""".""" ) __UpperCamelCase : str = None if key_components[-3::2] == ["parametrizations", "original0"]: __UpperCamelCase : Union[str, Any] = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: __UpperCamelCase : Tuple = key_components[-2] + """_v""" if name is not None: __UpperCamelCase : Optional[Any] = key_components[:-3] + [name] __UpperCamelCase : int = """.""".join(__lowerCAmelCase ) __UpperCamelCase : List[str] = key if flax_key in special_pt_names: __UpperCamelCase : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __UpperCamelCase : str = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor __UpperCamelCase : Optional[int] = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list __UpperCamelCase : Union[str, Any] = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(__lowerCAmelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' """If your task is similar to the task the model of the checkpoint was trained on, """ f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
269
0
from typing import Dict from .base import GenericTensor, Pipeline class _A ( __lowercase ): def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): if tokenize_kwargs is None: _UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) _UpperCAmelCase = truncation _UpperCAmelCase = tokenize_kwargs _UpperCAmelCase = {} if return_tensors is not None: _UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.framework _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
175
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: for attribute in key.split(""".""" ): _UpperCAmelCase = getattr(snake_case , snake_case ) if weight_type is not None: _UpperCAmelCase = getattr(snake_case , snake_case ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(snake_case )[0].split(""".""" )[-2] _UpperCAmelCase = mapped_key.replace("""*""" , snake_case ) if "weight_g" in name: _UpperCAmelCase = """weight_g""" elif "weight_v" in name: _UpperCAmelCase = """weight_v""" elif "bias" in name: _UpperCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = """weight""" else: _UpperCAmelCase = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f"Unused weights: {unused_weights}" ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase = name.split(""".""" ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=True ) -> List[Any]: if config_path is not None: _UpperCAmelCase = UniSpeechSatConfig.from_pretrained(snake_case ) else: _UpperCAmelCase = UniSpeechSatConfig() _UpperCAmelCase = """""" if is_finetuned: _UpperCAmelCase = UniSpeechSatForCTC(snake_case ) else: _UpperCAmelCase = UniSpeechSatForPreTraining(snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _UpperCAmelCase = model[0].eval() recursively_load_weights(snake_case , snake_case ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
175
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __A ( a_ :Tuple , a_ :str , a_ :str , a_ :Path , a_ :str = None , a_ :str = None , a_ :str = None , ) -> List[Any]: if config_name_or_path is None: __a : Optional[int] = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __a : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __a : Dict = question_encoder_name_or_path __a : Union[str, Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __a : Optional[int] = RagConfig.from_pretrained(a_) __a : List[str] = AutoConfig.from_pretrained(a_) __a : Any = AutoConfig.from_pretrained(a_) __a : Any = gen_config __a : Tuple = question_encoder_config __a : List[Any] = model_class.from_pretrained_question_encoder_generator( a_ , a_ , config=a_) rag_model.save_pretrained(a_) # Sanity check. model_class.from_pretrained(a_) # Save tokenizers. __a : str = AutoTokenizer.from_pretrained(a_) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''') __a : Optional[Any] = AutoTokenizer.from_pretrained(a_) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''') if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) A = parser.parse_args() A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
52
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __SCREAMING_SNAKE_CASE : str = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __SCREAMING_SNAKE_CASE : Any = TaTokenizerFast __SCREAMING_SNAKE_CASE : Tuple = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
452
0
"""simple docstring""" import os def __lowerCAmelCase( ): """simple docstring""" with open(os.path.dirname(a__ ) + '/p022_names.txt' ) as file: _lowercase : List[Any] = str(file.readlines()[0] ) _lowercase : Dict = names.replace('\"' ,'' ).split(',' ) names.sort() _lowercase : int = 0 _lowercase : List[Any] = 0 for i, name in enumerate(a__ ): for letter in name: name_score += ord(a__ ) - 64 total_score += (i + 1) * name_score _lowercase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
716
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
283
0
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[List[PIL.Image.Image], np.ndarray] _a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
200
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): lowercase__ : List[str] = len(lowerCamelCase__ ) lowercase__ : Optional[int] = sum(lowerCamelCase__ ) lowercase__ : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowercase__ : int = True for i in range(1 , s + 1 ): lowercase__ : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowercase__ : Optional[Any] = dp[i][j - 1] if arr[i - 1] <= j: lowercase__ : int = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowercase__ : List[Any] = s - 2 * j break return diff
200
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "SpeechT5FeatureExtractor" snake_case_ = "SpeechT5Tokenizer" def __init__( self : Optional[int] , __snake_case : Any , __snake_case : List[str] )-> List[Any]: super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : Any )-> str: snake_case = kwargs.pop("""audio""" , UpperCamelCase_ ) snake_case = kwargs.pop("""text""" , UpperCamelCase_ ) snake_case = kwargs.pop("""text_target""" , UpperCamelCase_ ) snake_case = kwargs.pop("""audio_target""" , UpperCamelCase_ ) snake_case = kwargs.pop("""sampling_rate""" , UpperCamelCase_ ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) elif text is not None: snake_case = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) else: snake_case = None if audio_target is not None: snake_case = self.feature_extractor(audio_target=UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) snake_case = targets['input_values'] elif text_target is not None: snake_case = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) snake_case = targets['input_ids'] else: snake_case = None if inputs is None: return targets if targets is not None: snake_case = labels snake_case = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: snake_case = decoder_attention_mask return inputs def lowerCAmelCase ( self : List[str] , *__snake_case : str , **__snake_case : Any )-> List[Any]: snake_case = kwargs.pop("""input_values""" , UpperCamelCase_ ) snake_case = kwargs.pop("""input_ids""" , UpperCamelCase_ ) snake_case = kwargs.pop("""labels""" , UpperCamelCase_ ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: snake_case = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) elif input_ids is not None: snake_case = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) else: snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and "input_ids" in labels[0]): snake_case = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) snake_case = targets['input_ids'] else: snake_case = self.feature_extractor.feature_size snake_case = self.feature_extractor.num_mel_bins snake_case = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) snake_case = feature_size_hack snake_case = targets['input_values'] else: snake_case = None if inputs is None: return targets if targets is not None: snake_case = labels snake_case = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: snake_case = decoder_attention_mask return inputs def lowerCAmelCase ( self : List[str] , *__snake_case : List[str] , **__snake_case : Union[str, Any] )-> Optional[Any]: return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase ( self : int , *__snake_case : Tuple , **__snake_case : int )-> str: return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
704
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
517
0
"""simple docstring""" import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase_ : Any = (0, 0) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 def __eq__( self : Dict , a_ : Dict )-> Any: """simple docstring""" return self.position == cell.position def a ( self : Dict )-> List[Any]: """simple docstring""" print(self.position ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , a_ : Dict=(5, 5) )-> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Any = np.zeros(a_ ) UpperCAmelCase_ : List[Any] = world_size[0] UpperCAmelCase_ : List[str] = world_size[1] def a ( self : Any )-> Union[str, Any]: """simple docstring""" print(self.w ) def a ( self : Union[str, Any] , a_ : str )-> int: """simple docstring""" UpperCAmelCase_ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ : Tuple = cell.position[0] UpperCAmelCase_ : Union[str, Any] = cell.position[1] UpperCAmelCase_ : List[Any] = [] for n in neughbour_cord: UpperCAmelCase_ : Optional[Any] = current_x + n[0] UpperCAmelCase_ : Any = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ : Dict = Cell() UpperCAmelCase_ : Optional[Any] = (x, y) UpperCAmelCase_ : Optional[Any] = cell neighbours.append(a_ ) return neighbours def A_ ( lowercase , lowercase , lowercase ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] _open.append(lowercase ) while _open: UpperCAmelCase_ : str = np.argmin([n.f for n in _open] ) UpperCAmelCase_ : Tuple = _open[min_f] _closed.append(_open.pop(lowercase ) ) if current == goal: break for n in world.get_neigbours(lowercase ): for c in _closed: if c == n: continue UpperCAmelCase_ : List[Any] = current.g + 1 UpperCAmelCase_ ,UpperCAmelCase_ : Dict = n.position UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = goal.position UpperCAmelCase_ : List[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase ) UpperCAmelCase_ : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ : List[str] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase_ = Gridworld() # Start position and goal lowercase_ = Cell() lowercase_ = (0, 0) lowercase_ = Cell() lowercase_ = (4, 4) print(f"""path from {start.position} to {goal.position}""") lowercase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowercase_ = 1 print(world.w)
470
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : str = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : List[str] = """OwlViTImageProcessor""" UpperCamelCase_ : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , a_ : Any=None , a_ : str=None , **a_ : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) UpperCAmelCase_ : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Optional[int]=None , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="max_length" , a_ : List[Any]="np" , **a_ : int )-> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )): UpperCAmelCase_ : List[str] = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )] elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ): UpperCAmelCase_ : Optional[int] = [] # Maximum number of queries across batch UpperCAmelCase_ : Union[str, Any] = max([len(a_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a_ ) != max_num_queries: UpperCAmelCase_ : str = t + [""" """] * (max_num_queries - len(a_ )) UpperCAmelCase_ : Optional[int] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ ) encodings.append(a_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase_ : List[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase_ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase_ : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Union[str, Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Optional[int] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase_ : Union[str, Any] = BatchEncoding() UpperCAmelCase_ : int = input_ids UpperCAmelCase_ : List[str] = attention_mask if query_images is not None: UpperCAmelCase_ : Optional[int] = BatchEncoding() UpperCAmelCase_ : Any = self.image_processor( a_ , return_tensors=a_ , **a_ ).pixel_values UpperCAmelCase_ : Optional[Any] = query_pixel_values if images is not None: UpperCAmelCase_ : str = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase_ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def a ( self : Any , *a_ : Optional[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*a_ , **a_ ) def a ( self : Tuple , *a_ : List[str] , **a_ : Dict )-> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*a_ , **a_ ) def a ( self : Optional[int] , *a_ : Tuple , **a_ : Optional[int] )-> Optional[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*a_ , **a_ ) def a ( self : str , *a_ : Optional[int] , **a_ : str )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def a ( self : str , *a_ : List[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def a ( self : Tuple )-> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a_ , ) return self.image_processor_class @property def a ( self : Optional[Any] )-> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a_ , ) return self.image_processor
470
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "openai-gpt" UpperCAmelCase__ : List[str] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=4_0_4_7_8 , _a=5_1_2 , _a=7_6_8 , _a=1_2 , _a=1_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ) -> List[str]: _a : int = vocab_size _a : List[Any] = n_positions _a : str = n_embd _a : Optional[int] = n_layer _a : Tuple = n_head _a : List[str] = afn _a : Union[str, Any] = resid_pdrop _a : Tuple = embd_pdrop _a : Optional[Any] = attn_pdrop _a : Union[str, Any] = layer_norm_epsilon _a : int = initializer_range _a : int = summary_type _a : Any = summary_use_proj _a : Union[str, Any] = summary_activation _a : Optional[Any] = summary_first_dropout _a : Tuple = summary_proj_to_labels super().__init__(**_a )
709
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "gptj" UpperCAmelCase__ : Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=5_0_4_0_0 , _a=2_0_4_8 , _a=4_0_9_6 , _a=2_8 , _a=1_6 , _a=6_4 , _a=None , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=1e-5 , _a=0.02 , _a=True , _a=5_0_2_5_6 , _a=5_0_2_5_6 , _a=False , **_a , ) -> str: _a : Any = vocab_size _a : str = n_positions _a : Union[str, Any] = n_embd _a : Tuple = n_layer _a : int = n_head _a : List[str] = n_inner _a : List[str] = rotary_dim _a : Optional[int] = activation_function _a : List[str] = resid_pdrop _a : List[str] = embd_pdrop _a : Optional[Any] = attn_pdrop _a : Union[str, Any] = layer_norm_epsilon _a : Optional[Any] = initializer_range _a : Tuple = use_cache _a : Union[str, Any] = bos_token_id _a : Tuple = eos_token_id super().__init__( bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a = "default" , _a = None , _a = False , ) -> List[str]: super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? _a : Optional[int] = 0 @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: _a : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) _a : Optional[int] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowercase ( self ) -> int: return self._config.n_layer @property def __lowercase ( self ) -> int: return self._config.n_head def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ) -> Mapping[str, Any]: _a : str = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() _a : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a : Dict = seqlen + 2 _a : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Union[str, Any] = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _a : Any = common_inputs['''attention_mask'''] if self.use_past: _a : str = ordered_inputs['''attention_mask'''].dtype _a : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def __lowercase ( self ) -> int: return 1_3
578
0
'''simple docstring''' import math lowerCAmelCase_ : Any = 10 lowerCAmelCase_ : List[Any] = 7 lowerCAmelCase_ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase ( A : int = 20 ): SCREAMING_SNAKE_CASE : Optional[int] = math.comb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : int = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
527
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
477
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *__a : str , **__a : Optional[Any] ) ->List[Any]: pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' @require_torch def _lowerCAmelCase ( self : List[str] ) ->Optional[Any]: lowerCamelCase_ : Union[str, Any] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowerCamelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase_ : Optional[Any] = image_classifier(__a , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__a ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) lowerCamelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], ] , ) @require_tf def _lowerCAmelCase ( self : List[str] ) ->Optional[int]: lowerCamelCase_ : List[str] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowerCamelCase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase_ : int = image_classifier(__a , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__a ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) lowerCamelCase_ : List[Any] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], [ {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, {"""score""": 0.333, """label""": ANY(__a )}, ], ] , ) @slow @require_torch def _lowerCAmelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase_ : int = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase_ : List[str] = image_classifier(__a , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__a ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCamelCase_ : int = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def _lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: lowerCamelCase_ : Union[str, Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase_ : Optional[int] = image_classifier(__a , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__a ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCamelCase_ : Tuple = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
171
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "detr" _a = ["past_key_values"] _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , __a : Dict=True , __a : Union[str, Any]=None , __a : Union[str, Any]=3 , __a : Dict=100 , __a : str=6 , __a : List[str]=2_048 , __a : Any=8 , __a : List[str]=6 , __a : List[str]=2_048 , __a : str=8 , __a : Tuple=0.0 , __a : Dict=0.0 , __a : Optional[int]=True , __a : Union[str, Any]="relu" , __a : Optional[int]=256 , __a : Tuple=0.1 , __a : List[str]=0.0 , __a : Tuple=0.0 , __a : Tuple=0.02 , __a : Optional[Any]=1.0 , __a : List[str]=False , __a : Optional[int]="sine" , __a : Optional[Any]="resnet50" , __a : Optional[int]=True , __a : Dict=False , __a : Union[str, Any]=1 , __a : Optional[Any]=5 , __a : List[Any]=2 , __a : Any=1 , __a : int=1 , __a : List[str]=5 , __a : int=2 , __a : Any=0.1 , **__a : List[Any] , ) ->str: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__a , __a ): lowerCamelCase_ : List[Any] = backbone_config.get("""model_type""" ) lowerCamelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ : List[str] = config_class.from_dict(__a ) # set timm attributes to None lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = None, None, None lowerCamelCase_ : Dict = use_timm_backbone lowerCamelCase_ : Optional[Any] = backbone_config lowerCamelCase_ : List[Any] = num_channels lowerCamelCase_ : int = num_queries lowerCamelCase_ : int = d_model lowerCamelCase_ : Union[str, Any] = encoder_ffn_dim lowerCamelCase_ : Union[str, Any] = encoder_layers lowerCamelCase_ : List[str] = encoder_attention_heads lowerCamelCase_ : Any = decoder_ffn_dim lowerCamelCase_ : Union[str, Any] = decoder_layers lowerCamelCase_ : List[Any] = decoder_attention_heads lowerCamelCase_ : Optional[Any] = dropout lowerCamelCase_ : List[str] = attention_dropout lowerCamelCase_ : List[Any] = activation_dropout lowerCamelCase_ : Union[str, Any] = activation_function lowerCamelCase_ : int = init_std lowerCamelCase_ : Optional[Any] = init_xavier_std lowerCamelCase_ : Any = encoder_layerdrop lowerCamelCase_ : List[Any] = decoder_layerdrop lowerCamelCase_ : Union[str, Any] = encoder_layers lowerCamelCase_ : Any = auxiliary_loss lowerCamelCase_ : Tuple = position_embedding_type lowerCamelCase_ : Optional[int] = backbone lowerCamelCase_ : Union[str, Any] = use_pretrained_backbone lowerCamelCase_ : int = dilation # Hungarian matcher lowerCamelCase_ : str = class_cost lowerCamelCase_ : Union[str, Any] = bbox_cost lowerCamelCase_ : Tuple = giou_cost # Loss coefficients lowerCamelCase_ : Optional[int] = mask_loss_coefficient lowerCamelCase_ : int = dice_loss_coefficient lowerCamelCase_ : str = bbox_loss_coefficient lowerCamelCase_ : List[str] = giou_loss_coefficient lowerCamelCase_ : int = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def _lowerCAmelCase ( self : Union[str, Any] ) ->int: return self.encoder_attention_heads @property def _lowerCAmelCase ( self : List[str] ) ->int: return self.d_model @classmethod def _lowerCAmelCase ( cls : Tuple , __a : PretrainedConfig , **__a : Dict ) ->Optional[int]: return cls(backbone_config=__a , **__a ) def _lowerCAmelCase ( self : List[Any] ) ->Dict[str, any]: lowerCamelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase_ : List[str] = self.backbone_config.to_dict() lowerCamelCase_ : Union[str, Any] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self : Optional[Any] ) ->float: return 1e-5 @property def _lowerCAmelCase ( self : Union[str, Any] ) ->int: return 12
171
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) SCREAMING_SNAKE_CASE_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase ) processor.save_pretrained(self.tmpdirname ) def _A ( self: Any , **_lowerCamelCase: Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer def _A ( self: int , **_lowerCamelCase: str ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _A ( self: Tuple , **_lowerCamelCase: Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).qformer_tokenizer def _A ( self: str ): shutil.rmtree(self.tmpdirname ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) self.assertIsInstance(processor.qformer_tokenizer , _lowercase ) def _A ( self: str ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(_lowercase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = processor(text=_lowercase ) SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase , return_token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(_lowercase ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
234
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase( SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=1_6 , SCREAMING_SNAKE_CASE_ = 1_0 , SCREAMING_SNAKE_CASE_ = 2 )-> Optional[Any]: """simple docstring""" def get_dataset(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase_ = get_dataset(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = get_dataset(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) UpperCamelCase_ = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Any: """simple docstring""" UpperCamelCase_ = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase_ , UpperCamelCase_ = batch UpperCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __magic_name__ ( nn.Module ): def __init__( self )-> List[Any]: super().__init__() UpperCamelCase_ = nn.Parameter(torch.randn(1 ) ) UpperCamelCase_ = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase_ ( self , _lowercase )-> str: return x * self.a + self.b class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(total_limit=1 , project_dir=_lowercase , automatic_checkpoint_naming=_lowercase ) # Train baseline UpperCamelCase_ = Accelerator(project_config=_lowercase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() # Train baseline UpperCamelCase_ = Accelerator() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial UpperCamelCase_ = os.path.join(_lowercase , "initial" ) accelerator.save_state(_lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() UpperCamelCase_ = train(3 , _lowercase , _lowercase , _lowercase , _lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = Accelerator() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.load_state(_lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) UpperCamelCase_ = train(2 , _lowercase , _lowercase , _lowercase , _lowercase ) # Save everything UpperCamelCase_ = os.path.join(_lowercase , "checkpoint" ) accelerator.save_state(_lowercase ) # Load everything back in and make sure all states work accelerator.load_state(_lowercase ) test_rands += train(1 , _lowercase , _lowercase , _lowercase , _lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=_lowercase ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=_lowercase , project_config=_lowercase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() UpperCamelCase_ = train(3 , _lowercase , _lowercase , _lowercase , _lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowercase ) UpperCamelCase_ = Accelerator(project_dir=_lowercase , project_config=_lowercase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.load_state(os.path.join(_lowercase , "checkpoints" , "checkpoint_0" ) ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) UpperCamelCase_ = train(2 , _lowercase , _lowercase , _lowercase , _lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowercase , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , _lowercase , _lowercase , _lowercase , _lowercase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = torch.tensor([1, 2, 3] ) UpperCamelCase_ = torch.tensor([2, 3, 4] ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(net.parameters() ) UpperCamelCase_ = Accelerator() with self.assertRaises(_lowercase ) as ve: accelerator.register_for_checkpointing(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ = torch.optim.lr_scheduler.StepLR(_lowercase , step_size=1 , gamma=0.99 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=_lowercase ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=_lowercase , project_config=_lowercase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() UpperCamelCase_ = scheduler.state_dict() train(3 , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertNotEqual(_lowercase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowercase , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(_lowercase , scheduler.state_dict() ) def UpperCAmelCase_ ( self )-> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=_lowercase , total_limit=2 ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=_lowercase , project_config=_lowercase ) UpperCamelCase_ = accelerator.prepare(_lowercase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowercase , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_lowercase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = """/tmp/accelerate/state_checkpointing""" SCREAMING_SNAKE_CASE :Any = DummyModel() SCREAMING_SNAKE_CASE :Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) SCREAMING_SNAKE_CASE :Dict = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :str = dummy_dataloaders() SCREAMING_SNAKE_CASE :Tuple = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE :int = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Tuple = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :Optional[Any] = group["""params"""][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE :List[str] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :Optional[int] = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :str = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
628
0
lowerCamelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase__ = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def A(__a: int , __a: int , __a: int ): assert len(str(__a ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase_ = year // 100 lowerCAmelCase_ = (5 * (century % 4) + 2) % 7 lowerCAmelCase_ = year % 100 lowerCAmelCase_ = centurian % 12 lowerCAmelCase_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
226
from functools import lru_cache def A(__a: int ): lowerCAmelCase_ = 2 lowerCAmelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__a ) if n > 1: factors.add(__a ) return factors @lru_cache def A(__a: int ): return len(unique_prime_factors(__a ) ) def A(__a: list ): return len(set(__a ) ) in (0, 1) def A(__a: int ): lowerCAmelCase_ = 2 while True: # Increment each value of a generated range lowerCAmelCase_ = [base + i for i in range(__a )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase_ = [upf_len(__a ) for x in group] checker.append(__a ) # If all numbers in the list are equal, return the group variable. if equality(__a ): return group # Increment our base variable by 1 base += 1 def A(__a: int = 4 ): lowerCAmelCase_ = run(__a ) return results[0] if len(__a ) else None if __name__ == "__main__": print(solution())
226
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a :int = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
from __future__ import annotations import math def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) ) def UpperCAmelCase__ ( ) -> None: _A = [90, 23, 6, 33, 21, 65, 123, 34_423] _A = math.log(len(__snake_case ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __snake_case , __snake_case , __snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
317
0
"""simple docstring""" from functools import reduce lowerCAmelCase__ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( SCREAMING_SNAKE_CASE : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str(int(SCREAMING_SNAKE_CASE ) * int(SCREAMING_SNAKE_CASE ) ) , n[i : i + 1_3] ) ) for i in range(len(SCREAMING_SNAKE_CASE ) - 1_2 ) ) if __name__ == "__main__": print(F"{solution() = }")
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCamelCase__ ): _lowerCAmelCase = ["""input_features""", """is_longer"""] def __init__( self : List[str] , lowerCamelCase__ : Optional[Any]=6_4 , lowerCamelCase__ : Union[str, Any]=4_8_0_0_0 , lowerCamelCase__ : Any=4_8_0 , lowerCamelCase__ : int=1_0 , lowerCamelCase__ : Any=1_0_2_4 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[str] = 0 , lowerCamelCase__ : Optional[Any] = 1_4_0_0_0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : List[Any] = "fusion" , lowerCamelCase__ : int = "repeatpad" , **lowerCamelCase__ : Optional[Any] , ): super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase : Optional[Any] = top_db lowerCAmelCase : List[Any] = truncation lowerCAmelCase : Any = padding lowerCAmelCase : Optional[int] = fft_window_size lowerCAmelCase : int = (fft_window_size >> 1) + 1 lowerCAmelCase : Any = hop_length lowerCAmelCase : int = max_length_s lowerCAmelCase : Union[str, Any] = max_length_s * sampling_rate lowerCAmelCase : Optional[Any] = sampling_rate lowerCAmelCase : Optional[int] = frequency_min lowerCAmelCase : List[str] = frequency_max lowerCAmelCase : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='''htk''' , ) lowerCAmelCase : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='''slaney''' , mel_scale='''slaney''' , ) def _A ( self : Any ): lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] = None ): lowerCAmelCase : Dict = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='''dB''' , ) return log_mel_spectrogram.T def _A ( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] ): lowerCAmelCase : str = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase : List[Any] = [0] # randomly choose index for each part lowerCAmelCase : Dict = np.random.choice(ranges[0] ) lowerCAmelCase : Tuple = np.random.choice(ranges[1] ) lowerCAmelCase : Union[str, Any] = np.random.choice(ranges[2] ) lowerCAmelCase : List[str] = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase : str = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase : Any = torch.tensor(mel[None, None, :] ) lowerCAmelCase : Tuple = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = mel_shrink[0][0].numpy() lowerCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Any ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase : Optional[int] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase : List[Any] = len(lowerCamelCase__ ) - max_length lowerCAmelCase : Optional[Any] = np.random.randint(0 , overflow + 1 ) lowerCAmelCase : str = waveform[idx : idx + max_length] lowerCAmelCase : Any = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase : Union[str, Any] = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) lowerCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase : str = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase : Optional[int] = False else: lowerCAmelCase : Dict = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase : List[str] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase : Any = int(max_length / len(lowerCamelCase__ ) ) lowerCAmelCase : List[Any] = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase : Optional[Any] = int(max_length / len(lowerCamelCase__ ) ) lowerCAmelCase : str = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase : int = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase : Dict = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) lowerCAmelCase : str = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase : Any = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : int = None , lowerCamelCase__ : List[str] = None , **lowerCamelCase__ : Any , ): lowerCAmelCase : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCAmelCase : str = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase : int = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase : int = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): lowerCAmelCase : Union[str, Any] = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase : Optional[int] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase : Tuple = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] lowerCAmelCase : List[str] = [] lowerCAmelCase : int = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase : Optional[int] = np.random.randint(0 , len(lowerCamelCase__ ) ) lowerCAmelCase : Any = True if isinstance(input_mel[0] , lowerCamelCase__ ): lowerCAmelCase : List[Any] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase : Union[str, Any] = {'''input_features''': input_mel, '''is_longer''': is_longer} lowerCAmelCase : List[str] = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: lowerCAmelCase : str = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
348
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a__ : def __init__( self , A = None ) -> None: '''simple docstring''' if components is None: a = [] a = list(A ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(A , self.__components ) ) + ")" def __add__( self , A ) -> Vector: '''simple docstring''' a = len(self ) if size == len(A ): a = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("must have the same size" ) def __sub__( self , A ) -> Vector: '''simple docstring''' a = len(self ) if size == len(A ): a = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , A ) -> float: '''simple docstring''' ... def __mul__( self , A ) -> float | Vector: '''simple docstring''' if isinstance(A , (float, int) ): a = [c * other for c in self.__components] return Vector(A ) elif isinstance(A , A ) and len(self ) == len(A ): a = len(self ) a = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("invalid operand!" ) def lowerCAmelCase_ ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def lowerCAmelCase_ ( self , A ) -> float: '''simple docstring''' if isinstance(A , A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def lowerCAmelCase_ ( self , A , A ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) a = value def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) a = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def lowerCAmelCase_ ( self , A , A = False ) -> float: '''simple docstring''' a = self * other a = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Vector: assert isinstance(__UpperCamelCase , __UpperCamelCase) return Vector([0] * dimension) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Vector: assert isinstance(__UpperCamelCase , __UpperCamelCase) and (isinstance(__UpperCamelCase , __UpperCamelCase)) a = [0] * dimension a = 1 return Vector(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Vector: assert ( isinstance(__UpperCamelCase , __UpperCamelCase) and isinstance(__UpperCamelCase , __UpperCamelCase) and (isinstance(__UpperCamelCase , (int, float))) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Vector: random.seed(__UpperCamelCase) a = [random.randint(__UpperCamelCase , __UpperCamelCase) for _ in range(__UpperCamelCase)] return Vector(__UpperCamelCase) class a__ : def __init__( self , A , A , A ) -> None: '''simple docstring''' a = matrix a = w a = h def __str__( self ) -> str: '''simple docstring''' a = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] + other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] - other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , A ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... def __mul__( self , A ) -> Vector | Matrix: '''simple docstring''' if isinstance(A , A ): # matrix-vector if len(A ) == self.__width: a = zero_vector(self.__height ) for i in range(self.__height ): a = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A , sum(A ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A , (int, float) ): # matrix-scalar a = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A , self.__width , self.__height ) return None def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.__height def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.__width def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def lowerCAmelCase_ ( self , A , A , A ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: a = value else: raise Exception("change_component: indices out of bounds" ) def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) a = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): a = minor[i][:y] + minor[i][y + 1 :] return Matrix(A , self.__width - 1 , self.__height - 1 ).determinant() def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A , A ) else: raise Exception("Indices out of bounds" ) def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: a = [ self.__matrix[0][y] * self.cofactor(0 , A ) for y in range(self.__width ) ] return sum(A ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Matrix: a = [[0] * n for _ in range(__UpperCamelCase)] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Matrix: random.seed(__UpperCamelCase) a = [ [random.randint(__UpperCamelCase , __UpperCamelCase) for _ in range(__UpperCamelCase)] for _ in range(__UpperCamelCase) ] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase)
515
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE ={ '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE ={ '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __SCREAMING_SNAKE_CASE ={ '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : Any = DistilBertTokenizer def __init__( self: int , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: int=True , _lowerCamelCase: Any="[UNK]" , _lowerCamelCase: List[Any]="[SEP]" , _lowerCamelCase: Optional[Any]="[PAD]" , _lowerCamelCase: List[Any]="[CLS]" , _lowerCamelCase: List[Any]="[MASK]" , _lowerCamelCase: List[Any]=True , _lowerCamelCase: Any=None , **_lowerCamelCase: Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = do_lower_case def _A ( self: int , _lowerCamelCase: Any , _lowerCamelCase: List[str]=None ): SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self: Optional[Any] , _lowerCamelCase: List[int] , _lowerCamelCase: Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self: Tuple , _lowerCamelCase: str , _lowerCamelCase: Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
704
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = "Wav2Vec2FeatureExtractor" SCREAMING_SNAKE_CASE__ : List[Any] = "AutoTokenizer" def __init__( self: Tuple , _lowerCamelCase: str , _lowerCamelCase: Optional[Any] ): super().__init__(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _A ( cls: List[Any] , _lowerCamelCase: Tuple , **_lowerCamelCase: List[str] ): try: return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase ) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) def __call__( self: Union[str, Any] , *_lowerCamelCase: List[Any] , **_lowerCamelCase: str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _A ( self: Optional[int] , *_lowerCamelCase: str , **_lowerCamelCase: List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _A ( self: str , *_lowerCamelCase: Dict , **_lowerCamelCase: Dict ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _A ( self: Optional[int] , *_lowerCamelCase: Optional[int] , **_lowerCamelCase: Tuple ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _A ( self: Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
89
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = 0 @slow def lowerCAmelCase_ ( self ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A_ : int = AutoTokenizer.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowercase ) , 0 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = AutoConfig.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) # Check that tokenizer_type ≠ model_type A_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase , config=lowercase ) self.assertIsInstance(lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCAmelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(lowercase , 'vocab.txt' ) ) A_ : Any = AutoTokenizer.from_pretrained(lowercase , tokenizer_type='bert' , use_fast=lowercase ) self.assertIsInstance(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(lowercase , 'merges.txt' ) ) A_ : List[str] = AutoTokenizer.from_pretrained(lowercase , tokenizer_type='gpt2' , use_fast=lowercase ) self.assertIsInstance(lowercase , lowercase ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(lowercase , 'vocab.txt' ) ) A_ : List[str] = AutoTokenizer.from_pretrained(lowercase , tokenizer_type='bert' ) self.assertIsInstance(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(lowercase , 'merges.txt' ) ) A_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase , tokenizer_type='gpt2' ) self.assertIsInstance(lowercase , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" with pytest.raises(lowercase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A_ : List[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowercase , lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowercase ) else: self.assertEqual(tokenizer.do_lower_case , lowercase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowercase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): A_ : Optional[Any] = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = TOKENIZER_MAPPING.values() A_ : Optional[int] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowercase ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=lowercase ) , lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , lowercase ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=lowercase ) A_ : Optional[int] = 'Hello, world. How are you?' A_ : Optional[Any] = tokenizer.tokenize(lowercase ) self.assertEqual('[UNK]' , tokens[0] ) A_ : Union[str, Any] = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=lowercase ) A_ : int = tokenizer.tokenize(lowercase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(lowercase ) , lowercase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : List[str] = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowercase , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = get_tokenizer_config('bert-base-cased' ) A_ : Any = config.pop('_commit_hash' , lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowercase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. A_ : int = get_tokenizer_config(lowercase ) self.assertDictEqual(lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A_ : Any = AutoTokenizer.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : List[str] = get_tokenizer_config(lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def lowerCAmelCase_ ( self ): """simple docstring""" try: AutoConfig.register('custom' , lowercase ) AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase ): AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) A_ : str = CustomTokenizer.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : Dict = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" try: AutoConfig.register('custom' , lowercase ) # Can register in two steps AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowercase , fast_tokenizer_class=lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowercase , slow_tokenizer_class=lowercase , fast_tokenizer_class=lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase ): AutoTokenizer.register(lowercase , fast_tokenizer_class=lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A_ : Any = BertTokenizerFast.from_pretrained(lowercase ) bert_tokenizer.save_pretrained(lowercase ) A_ : Optional[int] = CustomTokenizerFast.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : List[Any] = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) A_ : str = AutoTokenizer.from_pretrained(lowercase , use_fast=lowercase ) self.assertIsInstance(lowercase , lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): A_ : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase ): A_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase ) A_ : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : Any = AutoTokenizer.from_pretrained(lowercase , trust_remote_code=lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version A_ : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase , use_fast=lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase ) A_ : str = AutoTokenizer.from_pretrained(lowercase , trust_remote_code=lowercase , use_fast=lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def lowerCAmelCase_ ( self ): """simple docstring""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = False class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = NewTokenizer lowerCamelCase_ = False try: AutoConfig.register('custom' , lowercase ) AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) AutoTokenizer.register(lowercase , fast_tokenizer_class=lowercase ) # If remote code is not set, the default is to use local A_ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A_ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase , use_fast=lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A_ : str = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) A_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=lowercase , use_fast=lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version A_ : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=lowercase , use_fast=lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): A_ : List[str] = AutoTokenizer.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A_ : str = AutoTokenizer.from_pretrained(lowercase , revision='aaaaaa' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: A_ : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
558
import argparse import os import re import packaging.version _UpperCAmelCase = """examples/""" _UpperCAmelCase = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _UpperCAmelCase = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _UpperCAmelCase = """README.md""" def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ,__lowercase : Tuple ): '''simple docstring''' with open(__lowercase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: A_ : Dict = f.read() A_ , A_ : Dict = REPLACE_PATTERNS[pattern] A_ : List[str] = replace.replace('VERSION' ,__lowercase ) A_ : int = re_pattern.sub(__lowercase ,__lowercase ) with open(__lowercase ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.write(__lowercase ) def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(__lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__lowercase ,__lowercase ) ,__lowercase ,pattern='examples' ) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Tuple=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowercase ,__lowercase ,__lowercase ) if not patch: update_version_in_examples(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[int] = '🤗 Transformers currently provides the following architectures' A_ : str = '1. Want to contribute a new model?' with open(__lowercase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: A_ : int = f.readlines() # Find the start of the list. A_ : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ : List[str] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): A_ : str = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' ,'https://huggingface.co/docs/transformers/model_doc' ,) index += 1 with open(__lowercase ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.writelines(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES['init'] ,'r' ) as f: A_ : Any = f.read() A_ : Union[str, Any] = REPLACE_PATTERNS['init'][0].search(__lowercase ).groups()[0] return packaging.version.parse(__lowercase ) def UpperCamelCase ( __lowercase : Tuple=False ): '''simple docstring''' A_ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: A_ : Any = default_version.base_version elif patch: A_ : str = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ : List[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ : Dict = input(f'''Which version are you releasing? [{default_version}]''' ) if len(__lowercase ) == 0: A_ : Union[str, Any] = default_version print(f'''Updating version to {version}.''' ) global_version_update(__lowercase ,patch=__lowercase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def UpperCamelCase ( ): '''simple docstring''' A_ : Union[str, Any] = get_version() A_ : List[str] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ : List[str] = current_version.base_version # Check with the user we got that right. A_ : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(__lowercase ) == 0: A_ : Dict = dev_version print(f'''Updating version to {version}.''' ) global_version_update(__lowercase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
558
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : Optional[Any] = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowercase : Union[str, Any] = { 'unc-nlp/lxmert-base-uncased': 5_1_2, } lowercase : Dict = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class _lowerCAmelCase ( _snake_case ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = LxmertTokenizer def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : List[str]="[UNK]" , SCREAMING_SNAKE_CASE : Dict="[SEP]" , SCREAMING_SNAKE_CASE : Any="[PAD]" , SCREAMING_SNAKE_CASE : List[str]="[CLS]" , SCREAMING_SNAKE_CASE : Union[str, Any]="[MASK]" , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Any=None , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
701
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : Dict = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : List[str] = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __a ( A__ ) -> int: lowerCAmelCase = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=A__ )[0] @deprecated(A__ , "Please use tf.data to implement this functionality." ) def __a ( A__ ) -> List[str]: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: lowerCAmelCase = _readaa(A__ ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) lowerCAmelCase = _readaa(A__ ) lowerCAmelCase = _readaa(A__ ) lowerCAmelCase = _readaa(A__ ) lowerCAmelCase = bytestream.read(rows * cols * num_images ) lowerCAmelCase = numpy.frombuffer(A__ , dtype=numpy.uinta ) lowerCAmelCase = data.reshape(A__ , A__ , A__ , 1 ) return data @deprecated(A__ , "Please use tf.one_hot on tensors." ) def __a ( A__ , A__ ) -> Tuple: lowerCAmelCase = labels_dense.shape[0] lowerCAmelCase = numpy.arange(A__ ) * num_classes lowerCAmelCase = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase = 1 return labels_one_hot @deprecated(A__ , "Please use tf.data to implement this functionality." ) def __a ( A__ , A__=False , A__=10 ) -> Optional[int]: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: lowerCAmelCase = _readaa(A__ ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) lowerCAmelCase = _readaa(A__ ) lowerCAmelCase = bytestream.read(A__ ) lowerCAmelCase = numpy.frombuffer(A__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(A__ , A__ ) return labels class _lowerCAmelCase : """simple docstring""" @deprecated( SCREAMING_SNAKE_CASE , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Optional[int]=dtypes.floataa , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : str=None , ) -> Optional[int]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: lowerCAmelCase = 1_0_0_0_0 lowerCAmelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase = images.astype(numpy.floataa ) lowerCAmelCase = numpy.multiply(SCREAMING_SNAKE_CASE , 1.0 / 2_5_5.0 ) lowerCAmelCase = images lowerCAmelCase = labels lowerCAmelCase = 0 lowerCAmelCase = 0 @property def __A ( self : Dict ) -> List[str]: """simple docstring""" return self._images @property def __A ( self : int ) -> Union[str, Any]: """simple docstring""" return self._labels @property def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._num_examples @property def __A ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self._epochs_completed def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Any=True ) -> Optional[Any]: """simple docstring""" if fake_data: lowerCAmelCase = [1] * 7_8_4 lowerCAmelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE )], [fake_label for _ in range(SCREAMING_SNAKE_CASE )], ) lowerCAmelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.images[perma] lowerCAmelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase = self._num_examples - start lowerCAmelCase = self._images[start : self._num_examples] lowerCAmelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.images[perm] lowerCAmelCase = self.labels[perm] # Start next epoch lowerCAmelCase = 0 lowerCAmelCase = batch_size - rest_num_examples lowerCAmelCase = self._index_in_epoch lowerCAmelCase = self._images[start:end] lowerCAmelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(A__ , "Please write your own downloading logic." ) def __a ( A__ , A__ , A__ ) -> Optional[Any]: if not gfile.Exists(A__ ): gfile.MakeDirs(A__ ) lowerCAmelCase = os.path.join(A__ , A__ ) if not gfile.Exists(A__ ): urllib.request.urlretrieve(A__ , A__ ) # noqa: S310 with gfile.GFile(A__ ) as f: lowerCAmelCase = f.size() print("Successfully downloaded" , A__ , A__ , "bytes." ) return filepath @deprecated( A__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def __a ( A__ , A__=False , A__=False , A__=dtypes.floataa , A__=True , A__=5000 , A__=None , A__=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=A__ , one_hot=A__ , dtype=A__ , seed=A__ ) lowerCAmelCase = fake() lowerCAmelCase = fake() lowerCAmelCase = fake() return _Datasets(train=A__ , validation=A__ , test=A__ ) if not source_url: # empty string check lowerCAmelCase = DEFAULT_SOURCE_URL lowerCAmelCase = "train-images-idx3-ubyte.gz" lowerCAmelCase = "train-labels-idx1-ubyte.gz" lowerCAmelCase = "t10k-images-idx3-ubyte.gz" lowerCAmelCase = "t10k-labels-idx1-ubyte.gz" lowerCAmelCase = _maybe_download( A__ , A__ , source_url + train_images_file ) with gfile.Open(A__ , "rb" ) as f: lowerCAmelCase = _extract_images(A__ ) lowerCAmelCase = _maybe_download( A__ , A__ , source_url + train_labels_file ) with gfile.Open(A__ , "rb" ) as f: lowerCAmelCase = _extract_labels(A__ , one_hot=A__ ) lowerCAmelCase = _maybe_download( A__ , A__ , source_url + test_images_file ) with gfile.Open(A__ , "rb" ) as f: lowerCAmelCase = _extract_images(A__ ) lowerCAmelCase = _maybe_download( A__ , A__ , source_url + test_labels_file ) with gfile.Open(A__ , "rb" ) as f: lowerCAmelCase = _extract_labels(A__ , one_hot=A__ ) if not 0 <= validation_size <= len(A__ ): lowerCAmelCase = ( "Validation size should be between 0 and " f"{len(A__ )}. Received: {validation_size}." ) raise ValueError(A__ ) lowerCAmelCase = train_images[:validation_size] lowerCAmelCase = train_labels[:validation_size] lowerCAmelCase = train_images[validation_size:] lowerCAmelCase = train_labels[validation_size:] lowerCAmelCase = {"dtype": dtype, "reshape": reshape, "seed": seed} lowerCAmelCase = _DataSet(A__ , A__ , **A__ ) lowerCAmelCase = _DataSet(A__ , A__ , **A__ ) lowerCAmelCase = _DataSet(A__ , A__ , **A__ ) return _Datasets(train=A__ , validation=A__ , test=A__ )
159
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( snake_case ): def __init__( self , *UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> Tuple: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : Union[str, Any] = eval_examples __lowercase : Union[str, Any] = post_process_function __lowercase : Any = quant_trainer_args __lowercase : Optional[Any] = 1_28 # default number of calibration samples def _lowerCamelCase ( self , UpperCamelCase_=None ) -> Any: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __lowercase : Tuple = calib_dataset if calib_dataset is not None else self.calib_dataset __lowercase : str = self._remove_unused_columns(UpperCamelCase_ , description='''Calibration''' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def _lowerCamelCase ( self , UpperCamelCase_=None ) -> Any: __lowercase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset __lowercase : List[Any] = self.get_calib_dataloader(UpperCamelCase_ ) __lowercase : Dict = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('''***** Running calibration *****''' ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step __lowercase ,__lowercase ,__lowercase : Optional[Any] = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) __lowercase : Tuple = model def _lowerCamelCase ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = "eval" ) -> str: __lowercase : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase : Union[str, Any] = self.get_eval_dataloader(UpperCamelCase_ ) __lowercase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Optional[int] = self.compute_metrics __lowercase : Dict = None __lowercase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : Tuple = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: __lowercase : List[str] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __lowercase : int = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) __lowercase : Optional[int] = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : List[str] = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: __lowercase : Dict = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_ = "test" ) -> List[Any]: __lowercase : Optional[int] = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase : str = self.compute_metrics __lowercase : Dict = None __lowercase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : Union[str, Any] = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: __lowercase : Any = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __lowercase : Dict = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) __lowercase : Optional[int] = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : List[str] = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_="./" ) -> int: __lowercase : Optional[int] = self.eval_dataset __lowercase : Optional[int] = self.get_eval_dataloader(UpperCamelCase_ ) __lowercase : Any = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent __lowercase : Any = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __lowercase : Tuple = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __lowercase : List[Any] = True __lowercase : int = self.model.to(UpperCamelCase_ ) model.eval() model.float() __lowercase : Optional[int] = model.module if hasattr(UpperCamelCase_ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) __lowercase : Tuple = os.path.join(UpperCamelCase_ , '''model.onnx''' ) logger.info(F"""exporting model to {output_model_file}""" ) __lowercase : Tuple = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase_ , ) logger.info('''onnx export finished''' )
76
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) SCREAMING_SNAKE_CASE__ = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Any , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(_snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) A__ = processor(_snake_case , _snake_case , _snake_case , **_snake_case ) else: A__ = processor(_snake_case , _snake_case , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : float ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A__ = temperature def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores / self.temperature return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : float , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_snake_case , _snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = lax.top_k(_snake_case , scores.shape[-1] ) A__ = jnp.full_like(_snake_case , self.filter_value ) A__ = jax.nn.softmax(_snake_case , axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(_snake_case , 1 ) score_mask |= score_mask.at[:, 0].set(_snake_case ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(_snake_case ) A__ = jnp.where(_snake_case , _snake_case , _snake_case ) A__ = jax.lax.sort_key_val(_snake_case , _snake_case )[-1] return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A__ = max(_snake_case , _snake_case ) A__ = filter_value def __call__( self : Optional[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = scores.shape A__ = jnp.full(batch_size * vocab_size , self.filter_value ) A__ = min(self.top_k , scores.shape[-1] ) # Safety check A__ , A__ = lax.top_k(_snake_case , _snake_case ) A__ = jnp.broadcast_to((jnp.arange(_snake_case ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(_snake_case ) A__ = next_scores_flat.reshape(_snake_case , _snake_case ) return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int ): """simple docstring""" A__ = bos_token_id def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.bos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int , _snake_case : int ): """simple docstring""" A__ = max_length A__ = eos_token_id def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.eos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_snake_case , _snake_case ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A__ = min_length A__ = eos_token_id def __call__( self : int , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A__ = jnp.where(_snake_case , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = list(_snake_case ) A__ = begin_index def __call__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(_snake_case , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : list ): """simple docstring""" A__ = list(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : Optional[Any] ): """simple docstring""" A__ = dict(_snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(_snake_case ) A__ = jnp.intaa(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" def _force_token(_snake_case : Dict ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(_snake_case , dtype=scores.dtype ) * -float('inf' ) A__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A__ = lax.dynamic_update_slice(_snake_case , _snake_case , (0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_snake_case ) , lambda: scores , ) , ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_snake_case , 'max_initial_timestamp_index' ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Dict ): """simple docstring""" A__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_snake_case : Dict , _snake_case : str ): A__ = jnp.where((cur_len - self.begin_index) >= 1 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _snake_case , ) A__ = jnp.where((cur_len - self.begin_index) < 2 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _snake_case , _snake_case , ) return jnp.where( _snake_case , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) A__ = jnp.where(cur_len == self.begin_index , _snake_case , _snake_case ) A__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _snake_case , ) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( _snake_case , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _snake_case , ) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(_snake_case , axis=-1 ) def handle_cumulative_probs(_snake_case : List[Any] , _snake_case : Union[str, Any] ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) return scores
52
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def lowerCAmelCase_ ( lowercase: np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowerCAmelCase_ ( lowercase: np.ndarray , lowercase: np.ndarray , lowercase: int ) -> np.ndarray: '''simple docstring''' _UpperCamelCase: Dict = np.nan for i in range(lowercase ): _UpperCamelCase: Any = features[:, labels == i] _UpperCamelCase: Union[str, Any] = data.mean(1 ) # Centralize the data of class i _UpperCamelCase: Dict = data - column_reshape(lowercase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _UpperCamelCase: int = np.dot(lowercase , centered_data.T ) return covariance_sum / features.shape[1] def lowerCAmelCase_ ( lowercase: np.ndarray , lowercase: np.ndarray , lowercase: int ) -> np.ndarray: '''simple docstring''' _UpperCamelCase: List[str] = features.mean(1 ) _UpperCamelCase: List[str] = np.nan for i in range(lowercase ): _UpperCamelCase: int = features[:, labels == i] _UpperCamelCase: List[str] = data.shape[1] _UpperCamelCase: Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase ) - column_reshape(lowercase ) , (column_reshape(lowercase ) - column_reshape(lowercase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _UpperCamelCase: Dict = device_data * np.dot( column_reshape(lowercase ) - column_reshape(lowercase ) , (column_reshape(lowercase ) - column_reshape(lowercase )).T , ) return covariance_sum / features.shape[1] def lowerCAmelCase_ ( lowercase: np.ndarray , lowercase: int ) -> np.ndarray: '''simple docstring''' # Check if the features have been loaded if features.any(): _UpperCamelCase: List[str] = features.mean(1 ) # Center the dataset _UpperCamelCase: List[Any] = features - np.reshape(lowercase , (data_mean.size, 1) ) _UpperCamelCase: Tuple = np.dot(lowercase , centered_data.T ) / features.shape[1] _UpperCamelCase , _UpperCamelCase: str = np.linalg.eigh(lowercase ) # Take all the columns in the reverse order (-1), and then takes only the first _UpperCamelCase: List[str] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _UpperCamelCase: str = np.dot(filtered_eigenvectors.T , lowercase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=lowercase ) logging.error('''Dataset empty''' ) raise AssertionError def lowerCAmelCase_ ( lowercase: np.ndarray , lowercase: np.ndarray , lowercase: int , lowercase: int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _UpperCamelCase , _UpperCamelCase: Tuple = eigh( covariance_between_classes(lowercase , lowercase , lowercase ) , covariance_within_classes(lowercase , lowercase , lowercase ) , ) _UpperCamelCase: Optional[Any] = eigenvectors[:, ::-1][:, :dimensions] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Tuple = np.linalg.svd(lowercase ) _UpperCamelCase: Any = svd_matrix[:, 0:dimensions] _UpperCamelCase: int = np.dot(filtered_svd_matrix.T , lowercase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=lowercase ) logging.error('''Dataset empty''' ) raise AssertionError def lowerCAmelCase_ ( ) -> None: '''simple docstring''' # Create dummy dataset with 2 classes and 3 features _UpperCamelCase: str = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _UpperCamelCase: int = np.array([0, 0, 0, 1, 1] ) _UpperCamelCase: str = 2 _UpperCamelCase: List[str] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase ) as error_info: _UpperCamelCase: str = linear_discriminant_analysis( lowercase , lowercase , lowercase , lowercase ) if isinstance(lowercase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def lowerCAmelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase: Dict = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _UpperCamelCase: Optional[Any] = 2 _UpperCamelCase: str = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase ) as error_info: _UpperCamelCase: List[str] = principal_component_analysis(lowercase , lowercase ) if not np.allclose(lowercase , lowercase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
271
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , _lowercase : Optional[int] , _lowercase : Tuple=13 , _lowercase : str=7 , _lowercase : List[Any]=True , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : List[Any]=32 , _lowercase : List[str]=5 , _lowercase : str=4 , _lowercase : int=37 , _lowercase : List[str]="gelu" , _lowercase : Any=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Dict=512 , _lowercase : int=16 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : List[Any]=4 , ): """simple docstring""" _UpperCamelCase: List[str] = parent _UpperCamelCase: int = batch_size _UpperCamelCase: List[str] = seq_length _UpperCamelCase: Optional[int] = is_training _UpperCamelCase: Optional[Any] = use_attention_mask _UpperCamelCase: Any = use_token_type_ids _UpperCamelCase: List[str] = use_labels _UpperCamelCase: Optional[int] = vocab_size _UpperCamelCase: List[str] = hidden_size _UpperCamelCase: Union[str, Any] = num_hidden_layers _UpperCamelCase: Any = num_attention_heads _UpperCamelCase: List[str] = intermediate_size _UpperCamelCase: Union[str, Any] = hidden_act _UpperCamelCase: Dict = hidden_dropout_prob _UpperCamelCase: List[str] = attention_probs_dropout_prob _UpperCamelCase: str = max_position_embeddings _UpperCamelCase: Dict = type_vocab_size _UpperCamelCase: Tuple = type_sequence_label_size _UpperCamelCase: List[Any] = initializer_range _UpperCamelCase: str = num_choices def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: Any = None if self.use_attention_mask: _UpperCamelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase: Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase: Tuple = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: List[Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: int = config_and_inputs _UpperCamelCase: int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Any = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase: int = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase: List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Optional[int] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase: List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _UpperCamelCase: Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase: Optional[int] = model(_lowercase , attention_mask=_lowercase )[0] _UpperCamelCase: Tuple = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) _UpperCamelCase: Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
271
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = RobertaTokenizer __snake_case = RobertaTokenizerFast __snake_case = True __snake_case = {"""cls_token""": """<s>"""} def _snake_case ( self: List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __lowerCamelCase : Optional[Any] = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCamelCase : int = {'unk_token': '<unk>'} __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _snake_case ( self: Tuple , **a: Optional[int] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Optional[Any] , **a: List[str] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Optional[int] , a: Union[str, Any] ): __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : Optional[Any] = 'lower newer' return input_text, output_text def _snake_case ( self: Tuple ): __lowerCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowerCamelCase : Optional[Any] = tokenizer.tokenize(a ) # , add_prefix_space=True) self.assertListEqual(a , a ) __lowerCamelCase : Optional[int] = tokens + [tokenizer.unk_token] __lowerCamelCase : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _snake_case ( self: Tuple ): __lowerCamelCase : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=a ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=a ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained('roberta-base' ) __lowerCamelCase : str = tokenizer.encode('sequence builders' , add_special_tokens=a ) __lowerCamelCase : List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) __lowerCamelCase : List[str] = tokenizer.encode( 'sequence builders' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Any = 'Encode this sequence.' __lowerCamelCase : str = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __lowerCamelCase : List[Any] = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a , a ) __lowerCamelCase : Any = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a , a ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __lowerCamelCase : Tuple = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a , a ) # Testing spaces after special tokens __lowerCamelCase : str = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space __lowerCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) __lowerCamelCase : List[str] = 'Encode <mask> sequence' __lowerCamelCase : Any = 'Encode <mask>sequence' __lowerCamelCase : Any = tokenizer.encode(a ) __lowerCamelCase : Tuple = encoded.index(a ) __lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a , a ) __lowerCamelCase : Any = tokenizer.encode(a ) __lowerCamelCase : List[Any] = encoded.index(a ) __lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a , a ) def _snake_case ( self: Any ): pass def _snake_case ( self: int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : str = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : int = 'A, <mask> AllenNLP sentence.' __lowerCamelCase : int = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) __lowerCamelCase : Any = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __lowerCamelCase : int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __lowerCamelCase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _snake_case ( self: str ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCamelCase : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , a ) self.assertEqual(post_processor_state['add_prefix_space'] , a ) self.assertEqual(post_processor_state['trim_offsets'] , a ) def _snake_case ( self: List[str] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase : Optional[int] = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : str = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : Optional[int] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : Tuple = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : List[str] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase : int = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : Optional[Any] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : List[Any] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase : Optional[Any] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
230
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
230
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase : def __init__( self : Any , _lowercase : Dict , _lowercase : int=2 , _lowercase : Any=32 , _lowercase : Tuple=16 , _lowercase : List[Any]=3 , _lowercase : List[Any]=True , _lowercase : str=True , _lowercase : int=32 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=[0, 1, 2, 3] , _lowercase : Union[str, Any]=4 , _lowercase : List[Any]=37 , _lowercase : int="gelu" , _lowercase : List[Any]=0.1 , _lowercase : str=0.1 , _lowercase : List[str]=0.02 , _lowercase : Union[str, Any]=3 , _lowercase : List[Any]=[1, 3_84, 24, 24] , _lowercase : Union[str, Any]=True , _lowercase : int=None , ): SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE__ : List[str] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = backbone_out_indices SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[str] = backbone_featmap_shape SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope SCREAMING_SNAKE_CASE__ : Tuple = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : List[str] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Optional[int] = num_patches + 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowercase__ ( self : str , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Optional[int] = DPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = DPTForDepthEstimation(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowercase__ ( self : Tuple , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = self.num_labels SCREAMING_SNAKE_CASE__ : int = DPTForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase : Optional[int] = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase : List[str] = False lowerCamelCase : List[str] = False lowerCamelCase : str = False def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = DPTModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def lowercase__ ( self : List[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = True if model_class in get_values(_lowercase ): continue SCREAMING_SNAKE_CASE__ : Dict = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ).loss loss.backward() def lowercase__ ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : List[Any] = True if model_class in get_values(_lowercase ) or not model_class.supports_gradient_checkpointing: continue SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(config=_lowercase ) # Skip the check for the backbone SCREAMING_SNAKE_CASE__ : Optional[int] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": SCREAMING_SNAKE_CASE__ : Dict = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[int] ): pass @slow def lowercase__ ( self : Tuple ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: SCREAMING_SNAKE_CASE__ : List[Any] = DPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Optional[int] ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''add''' with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : int = DPTForDepthEstimation(_lowercase ) def a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowercase ( unittest.TestCase ): def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(images=_lowercase , return_tensors='''pt''' ).to(_lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.predicted_depth # verify the predicted depth SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _lowercase ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _lowercase , atol=1E-4 ) )
35
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
135
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
'''simple docstring''' def UpperCamelCase ( lowercase_ : list , lowercase_ : int = 0 ) -> list: '''simple docstring''' lowercase =length or len(lowercase_ ) lowercase =False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase , lowercase =list_data[i + 1], list_data[i] lowercase =True return list_data if not swapped else bubble_sort(lowercase_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
72
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = RoCBertTokenizer _snake_case : int = None _snake_case : Optional[Any] = False _snake_case : Tuple = True _snake_case : Union[str, Any] = filter_non_english def A ( self : List[str] )-> Dict: super().setUp() __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __UpperCamelCase = {} __UpperCamelCase = {} for i, value in enumerate(A_ ): __UpperCamelCase = i __UpperCamelCase = i __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def A ( self : Dict )-> Optional[Any]: __UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(A_ , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def A ( self : List[Any] )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def A ( self : str )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : Union[str, Any] )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def A ( self : Any )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : int )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : List[Any] )-> int: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Optional[Any] )-> str: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Any )-> int: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : List[str] )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def A ( self : int )-> int: __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __UpperCamelCase = {} for i, token in enumerate(A_ ): __UpperCamelCase = i __UpperCamelCase = RoCBertWordpieceTokenizer(vocab=A_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def A ( self : int )-> Tuple: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def A ( self : Optional[int] )-> Union[str, Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def A ( self : str )-> str: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def A ( self : List[str] )-> Dict: __UpperCamelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __UpperCamelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def A ( self : str )-> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __UpperCamelCase = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase = tokenizer_r.do_lower_case if hasattr(A_ , "do_lower_case" ) else False __UpperCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def A ( self : Tuple )-> Union[str, Any]: __UpperCamelCase = ["的", "人", "有"] __UpperCamelCase = "".join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase = True __UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase = False __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def A ( self : List[Any] )-> int: __UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase = tokenizer.encode("你好" , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode("你是谁" , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A ( self : Optional[Any] )-> Tuple: __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __UpperCamelCase = "你好,你是谁" __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase = tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
505
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[str] = 'roc_bert' def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=9_1_0 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2_4_8_5_8 , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = vocab_size lowerCAmelCase__ :Tuple = max_position_embeddings lowerCAmelCase__ :List[Any] = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :int = intermediate_size lowerCAmelCase__ :Union[str, Any] = hidden_act lowerCAmelCase__ :List[str] = hidden_dropout_prob lowerCAmelCase__ :str = attention_probs_dropout_prob lowerCAmelCase__ :Dict = initializer_range lowerCAmelCase__ :Optional[Any] = type_vocab_size lowerCAmelCase__ :Optional[int] = layer_norm_eps lowerCAmelCase__ :Dict = use_cache lowerCAmelCase__ :str = enable_pronunciation lowerCAmelCase__ :Union[str, Any] = enable_shape lowerCAmelCase__ :List[str] = pronunciation_embed_dim lowerCAmelCase__ :Union[str, Any] = pronunciation_vocab_size lowerCAmelCase__ :Union[str, Any] = shape_embed_dim lowerCAmelCase__ :str = shape_vocab_size lowerCAmelCase__ :List[Any] = concat_input lowerCAmelCase__ :Any = position_embedding_type lowerCAmelCase__ :Dict = classifier_dropout super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
718
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = UNetaDModel __magic_name__ :Tuple = """sample""" @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 4 lowerCAmelCase__ :Dict = 3 lowerCAmelCase__ :int = (3_2, 3_2) lowerCAmelCase__ :List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = torch.tensor([1_0] ).to(__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } lowerCAmelCase__ :int = self.dummy_input return init_dict, inputs_dict class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = UNetaDModel __magic_name__ :List[str] = """sample""" @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 4 lowerCAmelCase__ :List[Any] = 4 lowerCAmelCase__ :str = (3_2, 3_2) lowerCAmelCase__ :Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = torch.tensor([1_0] ).to(__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (4, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (4, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowerCAmelCase__ :Dict = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) model_accelerate.to(__UpperCAmelCase ) model_accelerate.eval() lowerCAmelCase__ :List[str] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase__ :List[str] = noise.to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = torch.tensor([1_0] * noise.shape[0] ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model_accelerate(__UpperCAmelCase , __UpperCAmelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase , low_cpu_mem_usage=__UpperCAmelCase ) model_normal_load.to(__UpperCAmelCase ) model_normal_load.eval() lowerCAmelCase__ :Optional[int] = model_normal_load(__UpperCAmelCase , __UpperCAmelCase )['sample'] assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase__ :int = noise.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = torch.tensor([1_0] * noise.shape[0] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Tuple = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ :Tuple = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) ) class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = UNetaDModel __magic_name__ :Optional[int] = """sample""" @property def snake_case ( self , __UpperCAmelCase=(3_2, 3_2) ): '''simple docstring''' lowerCAmelCase__ :Dict = 4 lowerCAmelCase__ :int = 3 lowerCAmelCase__ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowerCAmelCase__ :Any = self.dummy_input return init_dict, inputs_dict @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.dummy_input lowerCAmelCase__ :Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = noise lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 4 lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :Dict = (2_5_6, 2_5_6) lowerCAmelCase__ :int = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = torch.tensor(batch_size * [1E-4] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :str = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ :int = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 4 lowerCAmelCase__ :List[Any] = 3 lowerCAmelCase__ :Dict = (3_2, 3_2) lowerCAmelCase__ :Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = torch.tensor(batch_size * [1E-4] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ :Any = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) ) def snake_case ( self ): '''simple docstring''' pass
560
0
# flake8: noqa # Lint as: python3 UpperCamelCase = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
45
def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase = set() return any( node not in visited and depth_first_search(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) for node in graph ) def __snake_case ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' visited.add(__magic_name__ ) rec_stk.add(__magic_name__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__magic_name__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
441
0
def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Optional[int] = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase :int = "" lowercase :Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase , lowercase :Optional[Any] = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase :Optional[int] = [1 for i in range(len(SCREAMING_SNAKE_CASE_ ) )] # for each character in new_string find corresponding palindromic string lowercase :Dict = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase :str = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase :Union[str, Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase :List[str] = j - k + 1 # noqa: E741 lowercase :List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase :Any = length[j] lowercase :List[str] = j # create that string lowercase :Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Optional[int] = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
453
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowercase : Optional[int] =''' Human: <<task>> Assistant: ''' _lowercase : str ='''huggingface-tools/default-prompts''' _lowercase : Optional[int] ={'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def A__ ( lowercase: Dict, lowercase: Dict, lowercase: Optional[Any]="run" ) -> Any: if prompt_or_repo_id is None: A : List[str] =DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s', __A ) is not None: return prompt_or_repo_id A : Dict =cached_file( __A, PROMPT_FILES[mode], repo_type='dataset', user_agent={'agent': agent_name} ) with open(__A, 'r', encoding='utf-8' ) as f: return f.read()
305
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = KandinskyVaaPipeline lowercase_ = [ """image_embeds""", """negative_image_embeds""", ] lowercase_ = ["""image_embeds""", """negative_image_embeds"""] lowercase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ = False @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_0_0 @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A =UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): '''simple docstring''' __A =self.dummy_unet __A =self.dummy_movq __A =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __A ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self , lowercase__ , lowercase__=0 ): '''simple docstring''' __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __A =torch.manual_seed(lowercase__ ) else: __A =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __A ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cpu''' __A =self.get_dummy_components() __A =self.pipeline_class(**lowercase__ ) __A =pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A =pipe(**self.get_dummy_inputs(lowercase__ ) ) __A =output.images __A =pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] __A =image[0, -3:, -3:, -1] __A =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __A =np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): '''simple docstring''' __A =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __A =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) __A =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __A =pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __A ='''red cat, 4k photo''' __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A , __A =pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A =pipeline( image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , output_type='''np''' , ) __A =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
184
0
def snake_case__ ( a , a , a = 0 , a = 0 ) -> int: '''simple docstring''' snake_case__ = right or len(a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a , a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''spiece.model'''} a__ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } a__ = {'''bert_for_seq_generation''': 512} class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[int] = [] UpperCAmelCase_ : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Any="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Union[str, Any]="<pad>" , __UpperCamelCase : Optional[Any]="<::::>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Dict , ): '''simple docstring''' snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): '''simple docstring''' snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self : int , __UpperCamelCase : int ): '''simple docstring''' snake_case__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase( self : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __lowerCAmelCase( self : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' return self.sp_model.piece_to_id(__UpperCamelCase ) def __lowerCAmelCase( self : str , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case__ = self.sp_model.IdToPiece(__UpperCamelCase ) return token def __lowerCAmelCase( self : int , __UpperCamelCase : str ): '''simple docstring''' snake_case__ = [] snake_case__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token snake_case__ = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __lowerCAmelCase( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
566
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if "cls_token" in name: UpperCAmelCase__ : Any = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: UpperCAmelCase__ : Optional[Any] = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: UpperCAmelCase__ : int = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase__ : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCAmelCase__ : List[str] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase__ : List[str] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: UpperCAmelCase__ : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: UpperCAmelCase__ : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase__ : List[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase__ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase__ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: UpperCAmelCase__ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: UpperCAmelCase__ : List[str] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: UpperCAmelCase__ : List[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: UpperCAmelCase__ : Any = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: UpperCAmelCase__ : List[str] = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : Tuple = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: UpperCAmelCase__ : Optional[int] = key.split(""".""" ) UpperCAmelCase__ : Union[str, Any] = int(key_split[1] ) if "decoder_blocks" in key: UpperCAmelCase__ : Optional[int] = config.decoder_hidden_size UpperCAmelCase__ : Optional[int] = """decoder.decoder_layers.""" if "weight" in key: UpperCAmelCase__ : Union[str, Any] = val[:dim, :] UpperCAmelCase__ : Any = val[dim : dim * 2, :] UpperCAmelCase__ : Optional[Any] = val[-dim:, :] elif "bias" in key: UpperCAmelCase__ : Optional[int] = val[:dim] UpperCAmelCase__ : Any = val[dim : dim * 2] UpperCAmelCase__ : List[Any] = val[-dim:] else: UpperCAmelCase__ : Union[str, Any] = config.hidden_size UpperCAmelCase__ : List[str] = """vit.encoder.layer.""" if "weight" in key: UpperCAmelCase__ : int = val[:dim, :] UpperCAmelCase__ : Dict = val[dim : dim * 2, :] UpperCAmelCase__ : Any = val[-dim:, :] elif "bias" in key: UpperCAmelCase__ : str = val[:dim] UpperCAmelCase__ : Tuple = val[dim : dim * 2] UpperCAmelCase__ : Dict = val[-dim:] else: UpperCAmelCase__ : Tuple = val return orig_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = ViTMAEConfig() if "large" in checkpoint_url: UpperCAmelCase__ : int = 1024 UpperCAmelCase__ : List[str] = 4096 UpperCAmelCase__ : List[Any] = 24 UpperCAmelCase__ : Any = 16 elif "huge" in checkpoint_url: UpperCAmelCase__ : List[str] = 14 UpperCAmelCase__ : int = 1280 UpperCAmelCase__ : int = 5120 UpperCAmelCase__ : int = 32 UpperCAmelCase__ : List[Any] = 16 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) UpperCAmelCase__ : Any = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="""cpu""" )["""model"""] UpperCAmelCase__ : Dict = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase__ : Optional[Any] = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" UpperCAmelCase__ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) UpperCAmelCase__ : Tuple = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase__ : List[Any] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCAmelCase__ : Any = model(**__UpperCamelCase ) UpperCAmelCase__ : int = outputs.logits if "large" in checkpoint_url: UpperCAmelCase__ : Optional[int] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCAmelCase__ : List[str] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
65
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase : Tuple = 2_56 class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = ['''melgan'''] def __init__( self: List[str] ,a: SpectrogramNotesEncoder ,a: SpectrogramContEncoder ,a: TaFilmDecoder ,a: DDPMScheduler ,a: OnnxRuntimeModel if is_onnx_available() else Any ,): super().__init__() # From MELGAN __UpperCAmelCase = math.log(1e-5 ) # Matches MelGAN training. __UpperCAmelCase = 4.0 # Largest value for most examples __UpperCAmelCase = 128 self.register_modules( notes_encoder=a ,continuous_encoder=a ,decoder=a ,scheduler=a ,melgan=a ,) def snake_case ( self: List[str] ,a: Union[str, Any] ,a: Optional[Any]=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = output_range if clip: __UpperCAmelCase = torch.clip(a ,self.min_value ,self.max_value ) # Scale to [0, 1]. __UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def snake_case ( self: List[Any] ,a: List[str] ,a: int=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = input_range __UpperCAmelCase = torch.clip(a ,a ,a ) if clip else outputs # Scale to [0, 1]. __UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def snake_case ( self: Optional[int] ,a: Any ,a: Optional[Any] ,a: Optional[Any] ): __UpperCAmelCase = input_tokens > 0 __UpperCAmelCase , __UpperCAmelCase = self.notes_encoder( encoder_input_tokens=a ,encoder_inputs_mask=a ) __UpperCAmelCase , __UpperCAmelCase = self.continuous_encoder( encoder_inputs=a ,encoder_inputs_mask=a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def snake_case ( self: Optional[int] ,a: int ,a: str ,a: Dict ): __UpperCAmelCase = noise_time if not torch.is_tensor(a ): __UpperCAmelCase = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(a ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) __UpperCAmelCase = self.decoder( encodings_and_masks=a ,decoder_input_tokens=a ,decoder_noise_time=a ) return logits @torch.no_grad() def __call__( self: str ,a: List[List[int]] ,a: Optional[torch.Generator] = None ,a: int = 100 ,a: bool = True ,a: str = "numpy" ,a: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,a: int = 1 ,): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a ,a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) __UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) __UpperCAmelCase = np.zeros([1, 0, self.n_dims] ,np.floataa ) __UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) for i, encoder_input_tokens in enumerate(a ): if i == 0: __UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. __UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCAmelCase = ones __UpperCAmelCase = self.scale_features( a ,output_range=[-1.0, 1.0] ,clip=a ) __UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=a ,continuous_mask=a ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=a ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.decode( encodings_and_masks=a ,input_tokens=a ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(a ,a ,a ,generator=a ).prev_sample __UpperCAmelCase = self.scale_to_features(a ,input_range=[-1.0, 1.0] ) __UpperCAmelCase = mel[:1] __UpperCAmelCase = mel.cpu().float().numpy() __UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a ,a ) logger.info('Generated segment' ,a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=a )
396
0
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCamelCase ( __a ): '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )} def _lowerCamelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ArgumentParser( '''HuggingFace Datasets CLI tool''', usage='''datasets-cli <command> [<args>]''', allow_abbrev=__a ) SCREAMING_SNAKE_CASE_ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__a ) EnvironmentCommand.register_subcommand(__a ) TestCommand.register_subcommand(__a ) RunBeamCommand.register_subcommand(__a ) DummyDataCommand.register_subcommand(__a ) # Parse args SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = parser.parse_known_args() if not hasattr(__a, '''func''' ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE_ = parse_unknown_args(__a ) # Run SCREAMING_SNAKE_CASE_ = args.func(__a, **__a ) service.run() if __name__ == "__main__": main()
711
"""simple docstring""" def _lowerCamelCase ( __a ): if not isinstance(__a, __a ): SCREAMING_SNAKE_CASE_ = F'Input value of [number={number}] must be an integer' raise TypeError(__a ) if number < 1: SCREAMING_SNAKE_CASE_ = F'Input value of [number={number}] must be > 0' raise ValueError(__a ) SCREAMING_SNAKE_CASE_ = 1 for i in range(1, __a ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
628
0