code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Dict = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=0 ) -> Tuple: lowerCAmelCase__ = np.random.RandomState(lowerCamelCase_ ) lowerCAmelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = pipe(**lowerCamelCase_ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ = pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images[0, -3:, -3:, -1] lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ = pipe.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors='''np''' , ) lowerCAmelCase__ = text_inputs['''input_ids'''] lowerCAmelCase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCAmelCase__ = prompt_embeds # forward lowerCAmelCase__ = pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = 3 * ['''this is a negative prompt'''] lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ = pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images[0, -3:, -3:, -1] lowerCAmelCase__ = self.get_dummy_inputs() lowerCAmelCase__ = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ = [] for p in [prompt, negative_prompt]: lowerCAmelCase__ = pipe.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors='''np''' , ) lowerCAmelCase__ = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCAmelCase__ , lowerCAmelCase__ = embeds # forward lowerCAmelCase__ = pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = False return options def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # using the PNDM scheduler by default lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='''np''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''open neural network exchange''' lowerCAmelCase__ = np.random.RandomState(0 ) lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type='''np''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''open neural network exchange''' lowerCAmelCase__ = np.random.RandomState(0 ) lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type='''np''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = 0 def test_callback_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> None: lowerCAmelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowerCAmelCase__ = False lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''Andromeda galaxy in a bottle''' lowerCAmelCase__ = np.random.RandomState(0 ) pipe( prompt=lowerCamelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert pipe.safety_checker is None lowerCAmelCase__ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase__ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
90
import math from datetime import datetime, timedelta def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = year % 19 _lowerCAmelCase : Tuple = year % 4 _lowerCAmelCase : Dict = year % 7 _lowerCAmelCase : Optional[Any] = math.floor(year / 100 ) _lowerCAmelCase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCAmelCase : int = leap_day_inhibits / 4 _lowerCAmelCase : List[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCAmelCase : str = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCAmelCase : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCAmelCase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 18 ) else: return datetime(UpperCamelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): _lowerCamelCase : List[Any] = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
429
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Any, UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) else: A__ = max( mf_knapsack(i - 1, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ), mf_knapsack(i - 1, lowerCamelCase_, lowerCamelCase_, j - wt[i - 1] ) + val[i - 1], ) A__ = val return f[i][j] def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Tuple, UpperCAmelCase_ : Any ) -> List[str]: """simple docstring""" A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Tuple, UpperCAmelCase_ : int ) -> Any: """simple docstring""" if not (isinstance(lowerCamelCase_, (list, tuple) ) and isinstance(lowerCamelCase_, (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) A__ = len(lowerCamelCase_ ) if num_items != len(lowerCamelCase_ ): A__ = ( 'The number of weights must be the same as the number of values.\n' F"""But got {num_items} weights and {len(lowerCamelCase_ )} values""" ) raise ValueError(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): if not isinstance(wt[i], lowerCamelCase_ ): A__ = ( 'All weights must be integers but got weight of ' F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowerCamelCase_ ) A__ = knapsack(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) A__ = set() _construct_solution(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return optimal_val, example_optional_set def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : int, UpperCAmelCase_ : List[Any], UpperCAmelCase_ : Tuple, UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase_, lowerCamelCase_, i - 1, lowerCamelCase_, lowerCamelCase_ ) else: optimal_set.add(lowerCamelCase_ ) _construct_solution(lowerCamelCase_, lowerCamelCase_, i - 1, j - wt[i - 1], lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase = [3, 2, 4, 4] UpperCamelCase = [4, 3, 2, 3] UpperCamelCase = 4 UpperCamelCase = 6 UpperCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCamelCase , UpperCamelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCamelCase , UpperCamelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
706
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCamelCase ( UpperCAmelCase_ : Dict, UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> int: """simple docstring""" A__ = 1.5 A__ = int(factor * num_class_images ) A__ = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=UpperCAmelCase_, aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""", exist_ok=UpperCAmelCase_ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: A__ = client.query(text=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) >= factor * num_class_images or num_images > 1e4: break else: A__ = int(factor * num_images ) A__ = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=UpperCAmelCase_, aesthetic_weight=0.1, ) A__ = 0 A__ = 0 A__ = tqdm(desc="downloading real regularization images", total=UpperCAmelCase_ ) with open(F"""{class_data_dir}/caption.txt""", "w" ) as fa, open(F"""{class_data_dir}/urls.txt""", "w" ) as fa, open( F"""{class_data_dir}/images.txt""", "w" ) as fa: while total < num_class_images: A__ = class_images[count] count += 1 try: A__ = requests.get(images["url"] ) if img.status_code == 200: A__ = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""", "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser("", add_help=UpperCAmelCase_ ) parser.add_argument("--class_prompt", help="text prompt to retrieve images", required=UpperCAmelCase_, type=UpperCAmelCase_ ) parser.add_argument("--class_data_dir", help="path to save images", required=UpperCAmelCase_, type=UpperCAmelCase_ ) parser.add_argument("--num_class_images", help="number of images to download", default=200, type=UpperCAmelCase_ ) return parser.parse_args() if __name__ == "__main__": UpperCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
562
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' from __future__ import annotations def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) SCREAMING_SNAKE_CASE : int = number_of_bytes // partitions SCREAMING_SNAKE_CASE : int = [] for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = i * bytes_per_partition + 1 SCREAMING_SNAKE_CASE : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
379
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase__ = True except (ImportError, AttributeError): UpperCamelCase__ = object def UpperCAmelCase ( *a_ , **a_ ) -> List[str]: """simple docstring""" pass UpperCamelCase__ = False UpperCamelCase__ = logging.get_logger('transformers-cli/serving') def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" A_ : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowerCamelCase_ , args.host , args.port , args.workers ) class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCamelCase = 42 class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCamelCase = 42 class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCamelCase = 42 class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase_ ( _lowerCamelCase ) -> Optional[int]: A_ : Any = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=__lowerCamelCase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=__lowerCamelCase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=__lowerCamelCase , default=8888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=__lowerCamelCase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=__lowerCamelCase , help="""Model\'s name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=__lowerCamelCase , help="""Model\'s config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=__lowerCamelCase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=__lowerCamelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : List[Any] = pipeline A_ : int = host A_ : Optional[Any] = port A_ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(F"Serving model over {host}:{port}" ) A_ : Optional[int] = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), ] , timeout=600 , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase_ ( self ) -> List[str]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase_ ( self , _lowerCamelCase = Body(__lowerCamelCase , embed=__lowerCamelCase ) , _lowerCamelCase = Body(__lowerCamelCase , embed=__lowerCamelCase ) ) -> Any: try: A_ : Tuple = self._pipeline.tokenizer.tokenize(__lowerCamelCase ) if return_ids: A_ : Tuple = self._pipeline.tokenizer.convert_tokens_to_ids(__lowerCamelCase ) return ServeTokenizeResult(tokens=__lowerCamelCase , tokens_ids=__lowerCamelCase ) else: return ServeTokenizeResult(tokens=__lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__lowerCamelCase )} ) def UpperCAmelCase_ ( self , _lowerCamelCase = Body(__lowerCamelCase , embed=__lowerCamelCase ) , _lowerCamelCase = Body(__lowerCamelCase , embed=__lowerCamelCase ) , _lowerCamelCase = Body(__lowerCamelCase , embed=__lowerCamelCase ) , ) -> List[str]: try: A_ : List[str] = self._pipeline.tokenizer.decode(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return ServeDeTokenizeResult(model="""""" , text=__lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__lowerCamelCase )} ) async def UpperCAmelCase_ ( self , _lowerCamelCase=Body(__lowerCamelCase , embed=__lowerCamelCase ) ) -> Optional[Any]: if len(__lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model A_ : int = self._pipeline(__lowerCamelCase ) return ServeForwardResult(output=__lowerCamelCase ) except Exception as e: raise HTTPException(500 , {"""error""": str(__lowerCamelCase )} )
702
'''simple docstring''' import numpy as np import qiskit def UpperCAmelCase ( a_ = 8 , a_ = None ) -> str: """simple docstring""" A_ : List[Any] = np.random.default_rng(seed=a_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. A_ : Union[str, Any] = 6 * key_len # Measurement basis for Alice's qubits. A_ : Dict = rng.integers(2 , size=a_ ) # The set of states Alice will prepare. A_ : Optional[int] = rng.integers(2 , size=a_ ) # Measurement basis for Bob's qubits. A_ : List[Any] = rng.integers(2 , size=a_ ) # Quantum Circuit to simulate BB84 A_ : Optional[Any] = qiskit.QuantumCircuit(a_ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(a_ ): if alice_state[index] == 1: bbaa_circ.x(a_ ) if alice_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(a_ ): if bob_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. A_ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. A_ : int = qiskit.execute(a_ , a_ , shots=1 , seed_simulator=a_ ) # Returns the result of measurement. A_ : Any = job.result().get_counts(a_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. A_ : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( a_ , a_ , a_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. A_ : Optional[int] = gen_key[:key_len] if len(a_ ) >= key_len else gen_key.ljust(a_ , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
385
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = KandinskyVaaInpaintPipeline A = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] A = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A = False @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ): '''simple docstring''' return 100 @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ :List[str] = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def snake_case_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.dummy_unet lowerCAmelCase__ :Any = self.dummy_movq lowerCAmelCase__ :Optional[int] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCAmelCase , ) lowerCAmelCase__ :Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image lowerCAmelCase__ :int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ :Union[str, Any] = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ :Dict = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ :Tuple = 0 if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ :Union[str, Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ :Dict = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = "cpu" lowerCAmelCase__ :Optional[Any] = self.get_dummy_components() lowerCAmelCase__ :Union[str, Any] = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCAmelCase__ :List[Any] = output.images lowerCAmelCase__ :Dict = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] lowerCAmelCase__ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ :Dict = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ :Optional[Any] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ :Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ :Optional[Any] = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ :Union[str, Any] = 0 lowerCAmelCase__ :Tuple = "a hat" lowerCAmelCase__ :List[str] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCAmelCase__ :int = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ :int = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ :Any = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ :int = pipeline( image=_lowerCAmelCase , mask_image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ :Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
145
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Any = logging.get_logger(__name__) _a : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _a : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _a : str = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class _UpperCAmelCase ( _A ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] A = GPTaTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) lowerCAmelCase__ :List[str] = kwargs.pop("add_bos_token" , _lowerCAmelCase ) lowerCAmelCase__ :List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: lowerCAmelCase__ :Any = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) lowerCAmelCase__ :List[str] = add_prefix_space lowerCAmelCase__ :Union[str, Any] = pre_tok_class(**_lowerCAmelCase ) lowerCAmelCase__ :int = add_prefix_space def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Tuple = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: lowerCAmelCase__ :int = input_ids[-self.model_max_length :] return input_ids
145
1
"""simple docstring""" def a_ ( lowerCamelCase = 2_0_0 ): UpperCAmelCase__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase__ = [0] * (pence + 1) UpperCAmelCase__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
714
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : str = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "ctrl" snake_case__ = ["past_key_values"] snake_case__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any ,lowerCamelCase__ : str=246_534 ,lowerCamelCase__ : List[str]=256 ,lowerCamelCase__ : Optional[int]=1_280 ,lowerCamelCase__ : Any=8_192 ,lowerCamelCase__ : int=48 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : List[str]=1e-6 ,lowerCamelCase__ : List[str]=0.0_2 ,lowerCamelCase__ : Tuple=True ,**lowerCamelCase__ : Optional[Any] ,): UpperCAmelCase__ = vocab_size UpperCAmelCase__ = n_positions UpperCAmelCase__ = n_embd UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = dff UpperCAmelCase__ = resid_pdrop UpperCAmelCase__ = embd_pdrop UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_range UpperCAmelCase__ = use_cache super().__init__(**lowerCamelCase__ )
632
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __A : Dict = logging.get_logger('''transformers.models.encodec''') __A : str = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } __A : Tuple = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } __A : List[Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } __A : Any = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } __A : Optional[int] = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } __A : str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __A : Optional[int] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __A : Union[str, Any] = [] __A : List[Any] = [] def lowercase ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : int , __snake_case : Tuple ): for attribute in key.split('''.''' ): lowercase_ : Dict = getattr(__snake_case , __snake_case ) if weight_type is not None: lowercase_ : Any = getattr(__snake_case , __snake_case ).shape else: lowercase_ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : Optional[Any] = value elif weight_type == "weight_g": lowercase_ : Union[str, Any] = value elif weight_type == "weight_v": lowercase_ : Union[str, Any] = value elif weight_type == "bias": lowercase_ : List[str] = value elif weight_type == "running_mean": lowercase_ : List[str] = value elif weight_type == "running_var": lowercase_ : int = value elif weight_type == "num_batches_tracked": lowercase_ : str = value elif weight_type == "weight_ih_l0": lowercase_ : int = value elif weight_type == "weight_hh_l0": lowercase_ : Tuple = value elif weight_type == "bias_ih_l0": lowercase_ : int = value elif weight_type == "bias_hh_l0": lowercase_ : str = value elif weight_type == "weight_ih_l1": lowercase_ : Optional[Any] = value elif weight_type == "weight_hh_l1": lowercase_ : Union[str, Any] = value elif weight_type == "bias_ih_l1": lowercase_ : str = value elif weight_type == "bias_hh_l1": lowercase_ : List[str] = value else: lowercase_ : str = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( __snake_case : Optional[Any] , __snake_case : List[Any] ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase_ , lowercase_ : Union[str, Any] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Tuple ): lowercase_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": lowercase_ : Dict = MAPPING_24K elif model_name == "encodec_48khz": lowercase_ : List[str] = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(F'''{name} was ignored''' ) continue lowercase_ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: lowercase_ , lowercase_ : List[str] = key.split('''.*.''' ) if prefix in name and suffix in name: lowercase_ : Tuple = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowercase_ : Union[str, Any] = True if "*" in mapped_key: lowercase_ : Tuple = name.split(__snake_case )[0].split('''.''' )[-2] lowercase_ : Tuple = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: lowercase_ : Union[str, Any] = '''weight_g''' elif "weight_v" in name: lowercase_ : List[str] = '''weight_v''' elif "weight_ih_l0" in name: lowercase_ : int = '''weight_ih_l0''' elif "weight_hh_l0" in name: lowercase_ : Any = '''weight_hh_l0''' elif "bias_ih_l0" in name: lowercase_ : Optional[Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: lowercase_ : Optional[Any] = '''bias_hh_l0''' elif "weight_ih_l1" in name: lowercase_ : int = '''weight_ih_l1''' elif "weight_hh_l1" in name: lowercase_ : List[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: lowercase_ : Union[str, Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: lowercase_ : List[Any] = '''bias_hh_l1''' elif "bias" in name: lowercase_ : List[Any] = '''bias''' elif "weight" in name: lowercase_ : List[Any] = '''weight''' elif "running_mean" in name: lowercase_ : Any = '''running_mean''' elif "running_var" in name: lowercase_ : str = '''running_var''' elif "num_batches_tracked" in name: lowercase_ : Optional[Any] = '''num_batches_tracked''' else: lowercase_ : List[Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowercase ( __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : int , __snake_case : int=None , __snake_case : List[str]=None , ): if config_path is not None: lowercase_ : List[str] = EncodecConfig.from_pretrained(__snake_case ) else: lowercase_ : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowercase_ : Optional[Any] = [8, 5, 4, 4] lowercase_ : Optional[int] = [2.2] lowercase_ : Union[str, Any] = 6_4 lowercase_ : Dict = 3_2_0_0_0 lowercase_ : int = 2_0_4_8 lowercase_ : Dict = False lowercase_ : List[str] = False lowercase_ : Any = False elif model_name == "encodec_48khz": lowercase_ : Dict = [8, 5, 4, 2] lowercase_ : Optional[int] = [3.0, 6.0, 12.0, 24.0] lowercase_ : Union[str, Any] = 4_8_0_0_0 lowercase_ : Optional[int] = 2 lowercase_ : Optional[Any] = False lowercase_ : Dict = '''time_group_norm''' lowercase_ : List[Any] = True lowercase_ : List[str] = 1.0 lowercase_ : Dict = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) lowercase_ : List[Any] = EncodecModel(__snake_case ) lowercase_ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__snake_case ) lowercase_ : Dict = torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowercase_ : Dict = original_checkpoint['''best_state'''] recursively_load_weights(__snake_case , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __A : str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
231
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __A : Optional[int] = None __A : str = logging.get_logger(__name__) __A : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __A : Tuple = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __A : str = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = AlbertTokenizer def __init__( self : Optional[int] , A : Dict=None , A : Tuple=None , A : int=True , A : List[str]=True , A : int=False , A : List[Any]="[CLS]" , A : Dict="[SEP]" , A : Tuple="<unk>" , A : Tuple="[SEP]" , A : Optional[Any]="<pad>" , A : List[str]="[CLS]" , A : Optional[int]="[MASK]" , **A : int , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Union[str, Any] = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowercase_ : int = do_lower_case lowercase_ : str = remove_space lowercase_ : Tuple = keep_accents lowercase_ : Optional[Any] = vocab_file lowercase_ : List[str] = False if not self.vocab_file else True def A ( self : str , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Optional[Any] = [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : List[str] , A : str , A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : List[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
231
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase__ = "\\n Text data.\n Second line of data." lowercase__ = "file" @pytest.fixture(scope='session' ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") UpperCAmelCase : Optional[Any] = bytes(__lowerCAmelCase , 'utf-8' ) with zstd.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def UpperCamelCase( UpperCAmelCase_ ): with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , 'w' ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCAmelCase : Dict = input_paths[compression_format] UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Any = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: UpperCAmelCase : Optional[int] = f.read() with open(__lowerCAmelCase ) as f: UpperCAmelCase : Dict = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = """custom_cache""" UpperCAmelCase : Dict = """custom_extracted_dir""" UpperCAmelCase : List[Any] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCAmelCase : List[Any] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __lowerCAmelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__lowerCAmelCase ) ) UpperCAmelCase : List[str] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase : Optional[int] = xz_file UpperCAmelCase : str = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) UpperCAmelCase : List[str] = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def UpperCamelCase( UpperCAmelCase_ ): # absolute path UpperCAmelCase : Optional[int] = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path UpperCAmelCase : List[str] = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def UpperCamelCase( UpperCAmelCase_ ): # absolute path UpperCAmelCase : Optional[Any] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path UpperCAmelCase : Union[str, Any] = """./__missing_file__.txt""" with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__lowerCAmelCase ) as f: UpperCAmelCase : Optional[int] = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( ): with pytest.raises(__lowerCAmelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): http_get('https://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): ftp_get('ftp://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): fsspec_get('s3://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head('s3://huggingface.co' )
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class a_ ( A_ ): def __init__( self : Tuple , a_ : int , a_ : Tuple ) -> Optional[Any]: super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) def __call__( self : Optional[int] ) -> Union[str, Any]: snake_case: Dict =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) snake_case: List[Any] =1 snake_case: Optional[Any] =self.unet(a_ , a_ ).sample snake_case: Optional[int] =self.scheduler.step(a_ , a_ , a_ ).prev_sample snake_case: Dict =scheduler_output - scheduler_output + torch.ones_like(a_ ) return result
350
def _A (UpperCamelCase : list ) ->list: '''simple docstring''' lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) for _ in range(UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _lowercase = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
157
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() def __snake_case ( SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: LevitConfig , SCREAMING_SNAKE_CASE: Path , SCREAMING_SNAKE_CASE: bool = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _lowerCAmelCase = timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 192: _lowerCAmelCase = timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 256: _lowerCAmelCase = timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 384: _lowerCAmelCase = timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE ) from_model.eval() _lowerCAmelCase = LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() _lowerCAmelCase = OrderedDict() _lowerCAmelCase = from_model.state_dict() _lowerCAmelCase = list(from_model.state_dict().keys() ) _lowerCAmelCase = list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.randn((2, 3, 224, 224) ) _lowerCAmelCase = from_model(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = our_model(SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." _lowerCAmelCase = name print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowerCAmelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __snake_case ( SCREAMING_SNAKE_CASE: Path , SCREAMING_SNAKE_CASE: str = None , SCREAMING_SNAKE_CASE: bool = True ): """simple docstring""" _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = 1000 _lowerCAmelCase = (1, num_labels) _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = num_labels _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } _lowerCAmelCase = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
491
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _snake_case = getLogger(__name__) _snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __snake_case ( SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: int = 8 , SCREAMING_SNAKE_CASE: str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE: Optional[int]=False , SCREAMING_SNAKE_CASE: int="summarization" , SCREAMING_SNAKE_CASE: List[Any]=None , **SCREAMING_SNAKE_CASE: Tuple , ): """simple docstring""" _lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ).open('w' , encoding='utf-8' ) _lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) if fpaa: _lowerCAmelCase = model.half() _lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if prefix is None: _lowerCAmelCase = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ): _lowerCAmelCase = [prefix + text for text in examples_chunk] _lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE , padding='longest' ).to(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowerCAmelCase = int(time.time() - start_time ) # seconds _lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __snake_case ( ): """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __snake_case ( SCREAMING_SNAKE_CASE: Any=True ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE , default=8 , required=SCREAMING_SNAKE_CASE , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE , default=-1 , required=SCREAMING_SNAKE_CASE , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() _lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _lowerCAmelCase = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowerCAmelCase = generate_summaries_or_translations( SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores _lowerCAmelCase = calculate_bleu if 'translation' in args.task else calculate_rouge _lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE )] _lowerCAmelCase = score_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) scores.update(SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE ) if args.info: _lowerCAmelCase = args.info if verbose: print(SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
491
1
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : Dict , snake_case__ : float , snake_case__ : Callable , snake_case__ : int , snake_case__ : float = 1.0 , snake_case__ : str = None , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Union[str, Any] = initial_learning_rate UpperCAmelCase__ : Union[str, Any] = warmup_steps UpperCAmelCase__ : int = power UpperCAmelCase__ : int = decay_schedule_fn UpperCAmelCase__ : Union[str, Any] = name def __call__( self : Optional[Any] , snake_case__ : Dict ): '''simple docstring''' with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase__ : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) UpperCAmelCase__ : int = tf.cast(self.warmup_steps , tf.floataa ) UpperCAmelCase__ : Dict = global_step_float / warmup_steps_float UpperCAmelCase__ : int = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def UpperCamelCase ( self : Any ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def snake_case_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 0.0 , lowercase__ = 0.9 , lowercase__ = 0.999 , lowercase__ = 1E-8 , lowercase__ = None , lowercase__ = None , lowercase__ = 0.0 , lowercase__ = 1.0 , lowercase__ = None , ): UpperCAmelCase__ : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: UpperCAmelCase__ : int = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: UpperCAmelCase__ : Tuple = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=__UpperCAmelCase , ) else: UpperCAmelCase__ : int = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : str , snake_case__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , snake_case__ : float = 0.9 , snake_case__ : float = 0.999 , snake_case__ : float = 1e-7 , snake_case__ : bool = False , snake_case__ : float = 0.0 , snake_case__ : Optional[List[str]] = None , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "AdamWeightDecay" , **snake_case__ : str , ): '''simple docstring''' super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = weight_decay_rate UpperCAmelCase__ : Optional[int] = include_in_weight_decay UpperCAmelCase__ : Any = exclude_from_weight_decay @classmethod def UpperCamelCase ( cls : List[Any] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def UpperCamelCase ( self : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): '''simple docstring''' super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : int = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : str=None , **snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : int ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase__ : Dict = apply_state or {} UpperCAmelCase__ : Optional[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase__ : List[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase ( self : Any , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str=None ): '''simple docstring''' UpperCAmelCase__ : Dict = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) UpperCAmelCase__ : Any = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int=None ): '''simple docstring''' UpperCAmelCase__ : Tuple = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) UpperCAmelCase__ : Any = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def UpperCamelCase ( self : List[Any] , snake_case__ : int ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class UpperCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[Any] = None @property def UpperCamelCase ( self : Any ): '''simple docstring''' if self._accum_steps is None: UpperCAmelCase__ : List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : int , snake_case__ : Optional[int] ): '''simple docstring''' if not self._gradients: UpperCAmelCase__ : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}""" ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def UpperCamelCase ( self : str ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
199
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Union[str, Any] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCAmelCase__ ( _lowerCAmelCase ): A = 42 class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Dict , UpperCamelCase_ : PriorTransformer , UpperCamelCase_ : CLIPVisionModel , UpperCamelCase_ : CLIPImageProcessor , UpperCamelCase_ : HeunDiscreteScheduler , UpperCamelCase_ : ShapERenderer , ) -> str: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ) -> Dict: """simple docstring""" if latents is None: lowerCamelCase_ : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase_ : List[str] = latents.to(UpperCamelCase_ ) lowerCamelCase_ : int = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : List[str]=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) lowerCamelCase_ : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ : Any = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowerCamelCase_ : Any = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ : str = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowerCamelCase_ : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ : List[str] = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ : Dict = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 25 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : float = 4.0 , UpperCamelCase_ : int = 64 , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ) -> Optional[Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowerCamelCase_ : List[Any] = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowerCamelCase_ : Union[str, Any] = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ : str = len(UpperCamelCase_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}""" ) lowerCamelCase_ : List[Any] = self._execution_device lowerCamelCase_ : Optional[Any] = batch_size * num_images_per_prompt lowerCamelCase_ : Optional[int] = guidance_scale > 1.0 lowerCamelCase_ : Any = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowerCamelCase_ : Dict = self.scheduler.timesteps lowerCamelCase_ : List[Any] = self.prior.config.num_embeddings lowerCamelCase_ : Optional[int] = self.prior.config.embedding_dim lowerCamelCase_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ : Tuple = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : List[Any] = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Tuple = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ : List[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ : Optional[int] = noise_pred.chunk(2 ) lowerCamelCase_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ : str = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowerCamelCase_ : Dict = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowerCamelCase_ : Optional[int] = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowerCamelCase_ : Union[str, Any] = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ : str = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
501
0
lowerCAmelCase__: Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : Dict = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase__: list[bool | None] = [None] * 1000_0000 lowerCAmelCase__: Optional[int] = True lowerCAmelCase__: str = False def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore SCREAMING_SNAKE_CASE_ : Optional[Any] = chain(next_number(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Any = number_chain while number < 1000_0000: SCREAMING_SNAKE_CASE_ : Union[str, Any] = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1000_0000 ) -> int: for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
311
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__: Optional[Any] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: str = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Any = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase__: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
311
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase :Tuple , _UpperCAmelCase :Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' A_ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def UpperCAmelCase_ ( _UpperCAmelCase :Dict , _UpperCAmelCase :Any , _UpperCAmelCase :Optional[Any]=False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: A_ = '''''' else: A_ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A_ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( _UpperCAmelCase :str ) -> str: '''simple docstring''' A_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( _UpperCAmelCase :Dict , _UpperCAmelCase :Optional[int] , _UpperCAmelCase :Dict ) -> str: '''simple docstring''' A_ = dct.pop(__SCREAMING_SNAKE_CASE ) A_ = val def UpperCAmelCase_ ( ) -> List[Any]: '''simple docstring''' A_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase :Dict , _UpperCAmelCase :Optional[int] , _UpperCAmelCase :List[str]=False ) -> Optional[int]: '''simple docstring''' A_ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__SCREAMING_SNAKE_CASE , ) A_ = ViTHybridConfig(backbone_config=__SCREAMING_SNAKE_CASE , image_size=384 , num_labels=1000 ) A_ = False # load original model from timm A_ = timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(__SCREAMING_SNAKE_CASE ) A_ = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ = '''huggingface/label-files''' A_ = '''imagenet-1k-id2label.json''' A_ = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) A_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTHybridModel(__SCREAMING_SNAKE_CASE ).eval() else: A_ = ViTHybridForImageClassification(__SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # create image processor A_ = create_transform(**resolve_data_config({} , model=__SCREAMING_SNAKE_CASE ) ) A_ = transform.transforms A_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } A_ = ViTHybridImageProcessor( do_resize=__SCREAMING_SNAKE_CASE , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A_ = prepare_img() A_ = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) A_ = processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): A_ = model(__SCREAMING_SNAKE_CASE ) A_ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: A_ = timm_model.forward_features(__SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1e-3 ) else: A_ = timm_model(__SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(f'ybelkada/{vit_name}' ) processor.push_to_hub(f'ybelkada/{vit_name}' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a__ : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
188
'''simple docstring''' class UpperCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> List[Any]: _UpperCamelCase ='''''' _UpperCamelCase ='''''' _UpperCamelCase =[] def UpperCamelCase__ ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCamelCase =self.__min_dist_top_down_dp(UpperCamelCase__ , n - 1 ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , UpperCamelCase__ ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =[[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1 , len(UpperCamelCase__ ) - 1 ) def UpperCamelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCamelCase =j elif j == 0: # second string is empty _UpperCamelCase =i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCamelCase =self.dp[i - 1][j - 1] else: _UpperCamelCase =self.dp[i][j - 1] _UpperCamelCase =self.dp[i - 1][j] _UpperCamelCase =self.dp[i - 1][j - 1] _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase : int = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __lowerCamelCase : Optional[int] = input('Enter the first string: ').strip() __lowerCamelCase : Optional[int] = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
404
0
'''simple docstring''' import argparse from collections import defaultdict import yaml lowerCAmelCase : Optional[Any] = 'docs/source/en/_toctree.yml' def A_( A : Dict): UpperCamelCase = defaultdict(A) UpperCamelCase = [] UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']}) else: new_doc_list.append(A) UpperCamelCase = new_doc_list UpperCamelCase = [key for key, value in counts.items() if value > 1] UpperCamelCase = [] for duplicate_key in duplicates: UpperCamelCase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key}) if len(A) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.') # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1]) UpperCamelCase = sorted(A , key=lambda A: s["title"].lower()) # "overview" gets special treatment and is always first if len(A) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.') overview_doc.extend(A) # Sort return overview_doc def A_( A : Tuple=False): with open(A , encoding='utf-8') as f: UpperCamelCase = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]['sections'] # Then to the model doc UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase = api_doc[scheduler_idx]['sections'] UpperCamelCase = clean_doc_toc(A) UpperCamelCase = False if new_scheduler_doc != scheduler_doc: UpperCamelCase = True if overwrite: UpperCamelCase = new_scheduler_doc if diff: if overwrite: UpperCamelCase = api_doc with open(A , 'w' , encoding='utf-8') as f: f.write(yaml.dump(A , allow_unicode=A)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') def A_( A : Dict=False): with open(A , encoding='utf-8') as f: UpperCamelCase = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]['sections'] # Then to the model doc UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase = False UpperCamelCase = api_doc[pipeline_idx]['sections'] UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase = pipeline_doc['section'] UpperCamelCase = clean_doc_toc(A) if overwrite: UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(A) # sort overall pipeline doc UpperCamelCase = clean_doc_toc(A) if new_pipeline_docs != pipeline_docs: UpperCamelCase = True if overwrite: UpperCamelCase = new_pipeline_docs if diff: if overwrite: UpperCamelCase = api_doc with open(A , 'w' , encoding='utf-8') as f: f.write(yaml.dump(A , allow_unicode=A)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase : int = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
432
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , A_ , A_ , A_ )-> List[str]: '''simple docstring''' if len(A_ ) == 0 or len(A_ ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(A_ ) ) if isinstance(A_ , A_ ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_=ZeroShotClassificationArgumentHandler() , *A_ , **A_ )-> Tuple: '''simple docstring''' UpperCamelCase = args_parser super().__init__(*A_ , **A_ ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def UpperCAmelCase_ ( self , A_ , A_=True , A_=True , A_=TruncationStrategy.ONLY_FIRST , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=A_ , ) except Exception as e: if "too short" in str(A_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase_ ( self , **A_ )-> str: '''simple docstring''' if kwargs.get('multi_class' , A_ ) is not None: UpperCamelCase = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['hypothesis_template'] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , A_ , *A_ , **A_ , )-> int: '''simple docstring''' if len(A_ ) == 0: pass elif len(A_ ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_=None , A_="This example is {}." )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self._args_parser(A_ , A_ , A_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(A_ , A_ ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A_ ) - 1, **model_input, } def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' UpperCamelCase = inputs['candidate_label'] UpperCamelCase = inputs['sequence'] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**A_ ) UpperCamelCase = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCAmelCase_ ( self , A_ , A_=False )-> List[str]: '''simple docstring''' UpperCamelCase = [outputs['candidate_label'] for outputs in model_outputs] UpperCamelCase = [outputs['sequence'] for outputs in model_outputs] UpperCamelCase = np.concatenate([output['logits'].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(A_ ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
432
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = CLIPConfig A_ = ["CLIPEncoderLayer"] def __init__( self: List[Any] , __A: CLIPConfig ) -> Dict: super().__init__(__A ) _A = CLIPVisionModelWithProjection(config.vision_config ) _A = nn.Linear(config.vision_config.projection_dim , 1 ) _A = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __A ( self: Optional[int] , __A: Any , __A: Dict , __A: Optional[Any]=0.5 , __A: Tuple=0.5 ) -> Optional[Any]: _A = self.vision_model(__A )[0] _A = self.p_head(__A ) _A = nsfw_detected.flatten() _A = nsfw_detected > p_threshold _A = nsfw_detected.tolist() if any(__A ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(__A ): if nsfw_detected_: _A = np.zeros(images[idx].shape ) _A = self.w_head(__A ) _A = watermark_detected.flatten() _A = watermark_detected > w_threshold _A = watermark_detected.tolist() if any(__A ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(__A ): if watermark_detected_: _A = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
484
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: List[str] , __A: List[str] , __A: List[str]=7 , __A: Tuple=3 , __A: Optional[int]=30 , __A: Optional[Any]=4_00 , __A: int=True , __A: str=None , __A: int=True , __A: Any=[0.5, 0.5, 0.5] , __A: Dict=[0.5, 0.5, 0.5] , __A: Dict=True , __A: str=1 / 2_55 , __A: Dict=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def __A ( self: Optional[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self: Any , __A: Optional[Any] , __A: int=False ) -> List[str]: if not batched: _A = image_inputs[0] if isinstance(__A , Image.Image ): _A ,_A = image.size else: _A ,_A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A ,_A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__A , key=lambda __A : item[0] )[0] _A = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = DeformableDetrImageProcessor if is_vision_available() else None def __A ( self: List[str] ) -> List[str]: _A = DeformableDetrImageProcessingTester(self ) @property def __A ( self: Tuple ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Any ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''do_rescale''' ) ) self.assertTrue(hasattr(__A , '''do_pad''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def __A ( self: Tuple ) -> Optional[Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __A ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def __A ( self: Dict ) -> Any: pass def __A ( self: str ) -> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: str ) -> Tuple: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: int ) -> Any: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self: Optional[Any] ) -> Tuple: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def __A ( self: Dict ) -> Optional[int]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
484
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__: ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__: ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCAmelCase__: str = "text" UpperCAmelCase__: str = "labels" def __A ( self , A__ ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) A__ : Optional[Any] = copy.deepcopy(self ) A__ : Tuple = self.label_schema.copy() A__ : List[Any] = features[self.label_column] A__ : str = label_schema return task_template @property def __A ( self ): return { self.text_column: "text", self.label_column: "labels", }
64
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ : Any = logging.getLogger(__name__) def UpperCamelCase (lowercase_: Optional[Any]=2 , lowercase_: Union[str, Any]=3 , lowercase_: int=16 , lowercase_: int = 10 , lowercase_: int = 2 ) -> int: def get_dataset(lowercase_: Optional[int] ): A__ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowercase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) A__ : Dict = get_dataset(lowercase_ ) A__ : Any = get_dataset(lowercase_ ) A__ : Dict = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) A__ : Optional[Any] = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: List[str] , lowercase_: int , lowercase_: int , lowercase_: List[str] , lowercase_: Dict=None ) -> List[Any]: A__ : List[Any] = [] for epoch in range(lowercase_ ): # Train quickly model.train() for batch in dataloader: A__ , A__ : Any = batch A__ : Any = model(lowercase_ ) A__ : Any = torch.nn.functional.mse_loss(lowercase_ , lowercase_ ) accelerator.backward(lowercase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a (nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() A__ : str = nn.Parameter(torch.randn(1 ) ) A__ : Any = nn.Parameter(torch.randn(1 ) ) def __A ( self , A__ ): return x * self.a + self.b class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : str = dummy_dataloaders() A__ : Dict = ProjectConfiguration(total_limit=1 , project_dir=A__ , automatic_checkpoint_naming=A__ ) # Train baseline A__ : List[str] = Accelerator(project_config=A__ ) A__ , A__ , A__ , A__ : Any = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : str = DummyModel() A__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : int = dummy_dataloaders() # Train baseline A__ : str = Accelerator() A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial A__ : List[Any] = os.path.join(A__ , """initial""" ) accelerator.save_state(A__ ) ((A__) , (A__)) : str = model.a.item(), model.b.item() A__ : Dict = optimizer.state_dict() A__ : List[str] = train(3 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : str = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Optional[int] = DummyModel() A__ : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Dict = dummy_dataloaders() A__ : List[str] = Accelerator() A__ , A__ , A__ , A__ : Optional[Any] = accelerator.prepare( A__ , A__ , A__ , A__ ) accelerator.load_state(A__ ) ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) A__ : List[str] = train(2 , A__ , A__ , A__ , A__ ) # Save everything A__ : Optional[int] = os.path.join(A__ , """checkpoint""" ) accelerator.save_state(A__ ) # Load everything back in and make sure all states work accelerator.load_state(A__ ) test_rands += train(1 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Union[str, Any] = model.a.item(), model.b.item() A__ : Optional[int] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : int = DummyModel() A__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[str] = dummy_dataloaders() A__ : str = ProjectConfiguration(automatic_checkpoint_naming=A__ ) # Train baseline A__ : Any = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ : str = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() A__ : int = train(3 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Optional[Any] = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Dict = DummyModel() A__ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Union[str, Any] = dummy_dataloaders() A__ : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A__ ) A__ : Dict = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ : Union[str, Any] = accelerator.prepare( A__ , A__ , A__ , A__ ) accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) ((A__) , (A__)) : Optional[int] = model.a.item(), model.b.item() A__ : Tuple = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) A__ : str = train(2 , A__ , A__ , A__ , A__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Optional[int] = model.a.item(), model.b.item() A__ : List[Any] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) def __A ( self ): A__ : Union[str, Any] = torch.tensor([1, 2, 3] ) A__ : int = torch.tensor([2, 3, 4] ) A__ : List[Any] = DummyModel() A__ : List[Any] = torch.optim.Adam(net.parameters() ) A__ : Tuple = Accelerator() with self.assertRaises(A__ ) as ve: accelerator.register_for_checkpointing(A__ , A__ , A__ , A__ ) A__ : Any = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Any = DummyModel() A__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Dict = torch.optim.lr_scheduler.StepLR(A__ , step_size=1 , gamma=0.9_9 ) A__ , A__ : List[Any] = dummy_dataloaders() A__ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=A__ ) # Train baseline A__ : Optional[Any] = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ , A__ : Union[str, Any] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() A__ : Tuple = scheduler.state_dict() train(3 , A__ , A__ , A__ , A__ , A__ ) self.assertNotEqual(A__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(A__ , scheduler.state_dict() ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : int = ProjectConfiguration(automatic_checkpoint_naming=A__ , total_limit=2 ) # Train baseline A__ : List[str] = Accelerator(project_dir=A__ , project_config=A__ ) A__ : Union[str, Any] = accelerator.prepare(A__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def __A ( self ): A__ : Dict = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(A__ , env=os.environ.copy() ) if __name__ == "__main__": A_ : List[str] = '/tmp/accelerate/state_checkpointing' A_ : Optional[Any] = DummyModel() A_ : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) A_ : str = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ : List[Any] = dummy_dataloaders() A_ : int = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ : List[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ : Dict = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ : str = group['params'][0].device break assert param_device.type == accelerator.device.type A_ : Optional[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: A_ : str = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: A_ : Tuple = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
64
1
def a_ (__A ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __a : Any = sum(__A ) / len(__A ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
351
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__(self: Optional[int] , __UpperCAmelCase: str , __UpperCAmelCase: List[str]=13 , __UpperCAmelCase: Any=7 , __UpperCAmelCase: List[str]=True , __UpperCAmelCase: Optional[int]=True , __UpperCAmelCase: Dict=True , __UpperCAmelCase: Optional[Any]=True , __UpperCAmelCase: Optional[int]=99 , __UpperCAmelCase: Optional[Any]=32 , __UpperCAmelCase: int=5 , __UpperCAmelCase: Dict=4 , __UpperCAmelCase: Optional[int]=37 , __UpperCAmelCase: int="gelu" , __UpperCAmelCase: Tuple=0.1 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: Union[str, Any]=512 , __UpperCAmelCase: Optional[Any]=16 , __UpperCAmelCase: List[Any]=2 , __UpperCAmelCase: str=0.02 , __UpperCAmelCase: int=4 , ) -> str: '''simple docstring''' __a : Tuple = parent __a : int = batch_size __a : Optional[int] = seq_length __a : List[Any] = is_training __a : Tuple = use_attention_mask __a : Optional[int] = use_token_type_ids __a : Tuple = use_labels __a : str = vocab_size __a : Union[str, Any] = hidden_size __a : List[str] = num_hidden_layers __a : Optional[int] = num_attention_heads __a : Any = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : Tuple = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Tuple = type_sequence_label_size __a : List[Any] = initializer_range __a : int = num_choices def UpperCAmelCase__ (self: Tuple ) -> List[Any]: '''simple docstring''' __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Dict = None if self.use_attention_mask: __a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Dict = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ (self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Dict = config_and_inputs __a : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Tuple = config_and_inputs __a : int = True __a : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = True snake_case__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ (self: Dict ) -> Union[str, Any]: '''simple docstring''' __a : Tuple = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase__ (self: Optional[Any] ) -> List[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained("roberta-base" , from_pt=__UpperCAmelCase ) __a : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
351
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( lowerCAmelCase__ : str ): if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase__ : """simple docstring""" def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : List[Any] ) -> Optional[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[int] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[int] , A__ : Dict=None , **A__ : str ) -> Dict: '''simple docstring''' a__ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(A__ , A__ ) a__ : int = TFVisionTextDualEncoderModel(A__ ) a__ : Any = model(input_ids=A__ , pixel_values=A__ , attention_mask=A__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Union[str, Any] , A__ : Dict , A__ : Tuple , A__ : int , A__ : Union[str, Any]=None , **A__ : Tuple ) -> List[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(A__ , A__ ) a__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=A__ , text_model=A__ ) a__ : str = model(input_ids=A__ , pixel_values=A__ , attention_mask=A__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Dict , A__ : Tuple , A__ : str , A__ : Optional[int] , A__ : List[Any]=None , **A__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(A__ , A__ ) a__ : Tuple = {'''vision_model''': vision_model, '''text_model''': text_model} a__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**A__ ) a__ : Any = model(input_ids=A__ , pixel_values=A__ , attention_mask=A__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Tuple , A__ : List[Any] , A__ : Optional[Any] , A__ : str , A__ : Dict=None , **A__ : Union[str, Any] ) -> str: '''simple docstring''' a__ , a__ : Tuple = self.get_vision_text_model(A__ , A__ ) a__ : int = TFVisionTextDualEncoderModel(vision_model=A__ , text_model=A__ ) a__ : Any = model(input_ids=A__ , pixel_values=A__ , attention_mask=A__ ) a__ : Dict = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A__ ) a__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(A__ ) a__ : Dict = model(input_ids=A__ , pixel_values=A__ , attention_mask=A__ ) a__ : Optional[int] = after_output[0].numpy() a__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A__ , 1E-5 ) def __lowerCAmelCase ( self : List[Any] , A__ : int , A__ : Optional[int] , A__ : List[Any] , A__ : Union[str, Any] , A__ : Optional[int]=None , **A__ : int ) -> Tuple: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(A__ , A__ ) a__ : Dict = TFVisionTextDualEncoderModel(vision_model=A__ , text_model=A__ ) a__ : Any = model( input_ids=A__ , pixel_values=A__ , attention_mask=A__ , output_attentions=A__ ) a__ : List[Any] = output.vision_model_output.attentions self.assertEqual(len(A__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[Any] = to_atuple(vision_model.config.image_size ) a__ : List[Any] = to_atuple(vision_model.config.patch_size ) a__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(A__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : Optional[Any] , A__ : np.ndarray , A__ : np.ndarray , A__ : float ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(A__ , A__ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**A__ ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A__ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A__ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**A__ ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A__ ) @slow def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ , a__ : List[Any] = self.get_pretrained_model_and_inputs() a__ : str = model_a(**A__ ) a__ : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A__ ) a__ : Any = TFVisionTextDualEncoderModel.from_pretrained(A__ ) a__ : List[Any] = model_a(**A__ ) a__ : Any = after_outputs[0].numpy() a__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A__ , 1E-5 ) @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' a__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) a__ : Optional[int] = 1_3 a__ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) a__ : Tuple = random_attention_mask([batch_size, 4] ) a__ : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self : int , A__ : Any , A__ : Union[str, Any] ) -> int: '''simple docstring''' a__ : Any = TFViTModel(A__ , name='''vision_model''' ) a__ : str = TFBertModel(A__ , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Any = TFViTModelTester(self ) a__ : List[str] = TFBertModelTester(self ) a__ : int = vit_model_tester.prepare_config_and_inputs() a__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Dict = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) a__ : Any = 1_3 a__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) a__ : Optional[Any] = random_attention_mask([batch_size, 4] ) a__ : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self : Any , A__ : List[str] , A__ : List[str] , A__ : int , A__ : List[Any] , A__ : Any=None , **A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ , a__ : List[str] = self.get_vision_text_model(A__ , A__ ) a__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=A__ , text_model=A__ ) a__ : Any = model( input_ids=A__ , pixel_values=A__ , attention_mask=A__ , output_attentions=A__ ) a__ : List[Any] = output.vision_model_output.attentions self.assertEqual(len(A__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[str] = to_atuple(vision_model.config.image_size ) a__ : Any = to_atuple(vision_model.config.patch_size ) a__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : str = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a__ : Dict = output.text_model_output.attentions self.assertEqual(len(A__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : List[Any] , A__ : Optional[int] , A__ : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = TFDeiTModel(A__ , name='''vision_model''' ) a__ : Optional[int] = TFRobertaModel(A__ , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = TFDeiTModelTester(self ) a__ : Any = TFRobertaModelTester(self ) a__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() a__ : Tuple = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : List[Any] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' a__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) a__ : Any = 1_3 a__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) a__ : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) a__ : Dict = random_attention_mask([batch_size, 4] ) a__ : Union[str, Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self : Optional[int] , A__ : str , A__ : List[str] ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = TFCLIPVisionModel(A__ , name='''vision_model''' ) a__ : Tuple = TFBertModel(A__ , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : Dict = TFCLIPVisionModelTester(self ) a__ : List[Any] = TFBertModelTester(self ) a__ : str = clip_model_tester.prepare_config_and_inputs() a__ : Tuple = bert_model_tester.prepare_config_and_inputs() a__ , a__ : Optional[int] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ : int = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=A__ ) a__ : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) a__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a__ : List[str] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=A__ , padding=A__ , return_tensors='''np''' ) a__ : str = model(**A__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a__ : Optional[int] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , A__ , atol=1E-3 ) )
340
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : str = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path a__ : Tuple = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file a__ : str = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] a__ : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a__ : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks a__ : Union[str, Any] = AddedToken('''<ent>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) a__ : Union[str, Any] = AddedToken('''<ent2>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : List[str] = '''MLukeTokenizer''' with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens a__ : Optional[int] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] a__ : str = tokenizer.convert_tokens_to_ids(['''#'''] )[0] a__ : Any = state_dict['''embeddings.word_embeddings.weight'''] a__ : str = word_emb[ent_init_index].unsqueeze(0 ) a__ : Optional[int] = word_emb[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a__ : Union[str, Any] = state_dict[bias_name] a__ : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) a__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a__ : List[Any] = F'encoder.layer.{layer_index}.attention.self.' a__ : str = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a__ : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] a__ : Union[str, Any] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a__ : List[Any] = state_dict['''entity_predictions.bias'''] a__ : str = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) a__ : Optional[Any] = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) a__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): a__ : Dict = state_dict[key] else: a__ : List[Any] = state_dict[key] a__ , a__ : List[str] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a__ : Any = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='''entity_classification''' ) a__ : Optional[int] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' a__ : List[str] = (0, 9) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Tuple = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Union[str, Any] = torch.Size((1, 33, 768) ) a__ : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Tuple = torch.Size((1, 1, 768) ) a__ : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction a__ : List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) a__ : Tuple = '''Tokyo is the capital of <mask>.''' a__ : str = (24, 30) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Any = model(**lowerCAmelCase__ ) a__ : Optional[int] = encoding['''input_ids'''][0].tolist() a__ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) a__ : int = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) a__ : Optional[int] = outputs.entity_logits[0][0].argmax().item() a__ : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : str ): a__ : int = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] a__ : Optional[Any] = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] a__ : Any = {} for entry in data: a__ : Tuple = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a__ : Union[str, Any] = entity_id break a__ : Dict = F'{language}:{entity_name}' a__ : Dict = entity_id return new_mapping if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
340
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('RGB' ) return image def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = val def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE_ : str = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) SCREAMING_SNAKE_CASE_ : Dict = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat((q_bias, torch.zeros_like(lowerCamelCase_ , requires_grad=lowerCamelCase_ ), v_bias) ) SCREAMING_SNAKE_CASE_ : List[str] = qkv_bias def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 3_64 if 'coco' in model_name else 2_24 SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipVisionConfig(image_size=lowerCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE_ : List[Any] = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE_ : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() SCREAMING_SNAKE_CASE_ : List[Any] = InstructBlipConfig(vision_config=lowerCamelCase_ , text_config=lowerCamelCase_ , qformer_config=lowerCamelCase_ ) return config, image_size @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=None , lowerCamelCase_ : Any=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: SCREAMING_SNAKE_CASE_ : Optional[int] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE_ : List[Any] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = get_blipa_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = InstructBlipForConditionalGeneration(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : str = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'cuda:1' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE_ : Any = 'cuda:2' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = load_model_and_preprocess( name=lowerCamelCase_ , model_type=lowerCamelCase_ , is_eval=lowerCamelCase_ , device=lowerCamelCase_ ) original_model.eval() print('Done!' ) # update state dict keys SCREAMING_SNAKE_CASE_ : Optional[int] = original_model.state_dict() SCREAMING_SNAKE_CASE_ : Dict = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(lowerCamelCase_ ) if key.startswith('Qformer.bert' ): SCREAMING_SNAKE_CASE_ : Tuple = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('self' , 'attention' ) if "llm_proj" in key: SCREAMING_SNAKE_CASE_ : Any = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE_ : str = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): SCREAMING_SNAKE_CASE_ : Any = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('t5' , 'language' ) SCREAMING_SNAKE_CASE_ : Optional[int] = val # read in qv biases read_in_q_v_bias(lowerCamelCase_ , lowerCamelCase_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = load_demo_image() SCREAMING_SNAKE_CASE_ : Any = 'What is unusual about this image?' # create processor SCREAMING_SNAKE_CASE_ : Dict = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = InstructBlipProcessor( image_processor=lowerCamelCase_ , tokenizer=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = processor(images=lowerCamelCase_ , text=lowerCamelCase_ , return_tensors='pt' ).to(lowerCamelCase_ ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE_ : str = vis_processors['eval'](lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) hf_model.to(lowerCamelCase_ ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE_ : str = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits SCREAMING_SNAKE_CASE_ : Tuple = hf_model(**lowerCamelCase_ ).logits else: SCREAMING_SNAKE_CASE_ : Any = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits SCREAMING_SNAKE_CASE_ : str = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) SCREAMING_SNAKE_CASE_ : Dict = hf_model(**lowerCamelCase_ , labels=lowerCamelCase_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE_ : List[Any] = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowerCamelCase_ , atol=lowerCamelCase_ ) print('Looks ok!' ) print('Generating with original model...' ) SCREAMING_SNAKE_CASE_ : List[Any] = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = hf_model.generate( **lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE_ : Optional[int] = 2 print('Original generation:' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [text.strip() for text in output_text] print('HF generation:' , lowerCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() UpperCamelCase__ : int = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
105
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCamelCase__ : Optional[Any] = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> int: """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Any = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} import re SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Tuple = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_encoder_block_conv_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : str = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : str = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_decoder_block_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Dict = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_decoder_block_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Any = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = re_prior_cond_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[str] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[int] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Dict = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_prior_cond_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # keep original key else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_key SCREAMING_SNAKE_CASE_ : Optional[Any] = replace_key(lowerCamelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : str = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : Dict = original_key SCREAMING_SNAKE_CASE_ : int = original_key SCREAMING_SNAKE_CASE_ : int = value return new_dict @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : int=None , lowerCamelCase_ : int=None ) -> Dict: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : int = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = JukeboxConfig.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = JukeboxModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = {} for i, dict_name in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : int = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : int = old_dic[k] else: SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'vqvae' if i == 0 else F'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Any = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ ) weight_dict.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) return weight_dict if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCamelCase__ : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
105
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=224 , __SCREAMING_SNAKE_CASE : str=1000 , __SCREAMING_SNAKE_CASE : str=[3, 3, 6, 4] , __SCREAMING_SNAKE_CASE : List[Any]=[48, 56, 112, 220] , ) -> Optional[Any]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = num_labels lowerCamelCase_ = image_size lowerCamelCase_ = layer_depths lowerCamelCase_ = embed_dims def UpperCamelCase ( self : Dict ) -> List[str]: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Union[str, Any] ) -> str: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__SCREAMING_SNAKE_CASE , layer_scale_init_value=1e-5 , ) def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Tuple: lowerCamelCase_ = SwiftFormerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: lowerCamelCase_ = self.num_labels lowerCamelCase_ = SwiftFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCamelCase_ = SwiftFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) = self.prepare_config_and_inputs() lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( __snake_case , __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Tuple = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Tuple = False def UpperCamelCase ( self : Dict ) -> Union[str, Any]: lowerCamelCase_ = SwiftFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def UpperCamelCase ( self : Optional[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def UpperCamelCase ( self : int ) -> List[Any]: pass def UpperCamelCase ( self : List[str] ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCamelCase ( self : int ) -> Dict: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase ( self : Tuple ) -> str: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = SwiftFormerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: pass def UpperCamelCase ( self : Optional[int] ) -> List[str]: def check_hidden_states_output(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = 8 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> List[str]: def _config_zero_init(__SCREAMING_SNAKE_CASE : Optional[Any] ): lowerCamelCase_ = copy.deepcopy(__SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1e-1_0 ) if isinstance(getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = _config_zero_init(getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return configs_no_init lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass def lowerCamelCase__ ( ) -> Optional[int]: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Tuple ) -> Any: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def UpperCamelCase ( self : Dict ) -> Optional[int]: lowerCamelCase_ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
137
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : list[int] , _lowerCamelCase : int ) -> int: if len(_lowerCamelCase ) < k or k < 0: raise ValueError('Invalid Input' ) lowerCamelCase_ = lowerCamelCase_ = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): lowerCamelCase_ = current_sum - array[i] + array[i + k] lowerCamelCase_ = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _SCREAMING_SNAKE_CASE : int = [randint(-1000, 1000) for i in range(100)] _SCREAMING_SNAKE_CASE : Union[str, Any] = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
137
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: UpperCamelCase = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) UpperCamelCase = dict(scheduler.config ) UpperCamelCase = 1 UpperCamelCase = FrozenDict(SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: UpperCamelCase = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) UpperCamelCase = dict(scheduler.config ) UpperCamelCase = True UpperCamelCase = FrozenDict(SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE , segmentation_processor=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.enable_attention_slicing(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" UpperCamelCase = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) UpperCamelCase = self.segmentation_model(**SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCamelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , mask_image=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , )
606
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1000 , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def __lowerCAmelCase ( self ) -> str: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self ) -> int: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" UpperCamelCase = LiltModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) UpperCamelCase = model(SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) UpperCamelCase = model(SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model( SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model( SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return True def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch @slow class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([[1, 2]] , device=SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE , bbox=SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=SCREAMING_SNAKE_CASE , ) self.assertTrue(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
606
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = params _snake_case = np.array(lowercase_ ) _snake_case = np.array([len(lowercase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[str] , __lowerCamelCase : str ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ): """simple docstring""" return len(self.lengths ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.params.max_model_input_size _snake_case = self.lengths > max_len logger.info(f"""Splitting {sum(lowercase_ )} too long sequences.""" ) def divide_chunks(__lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): return [l[i : i + n] for i in range(0 , len(lowercase_ ) , lowercase_ )] _snake_case = [] _snake_case = [] if self.params.mlm: _snake_case , _snake_case = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: _snake_case , _snake_case = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _snake_case = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _snake_case = np.insert(lowercase_ , 0 , lowercase_ ) if sub_s[-1] != sep_id: _snake_case = np.insert(lowercase_ , len(lowercase_ ) , lowercase_ ) assert len(lowercase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase_ ) new_tok_ids.extend(lowercase_ ) new_lengths.extend([len(lowercase_ ) for l in sub_seqs] ) _snake_case = np.array(lowercase_ ) _snake_case = np.array(lowercase_ ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = len(self ) _snake_case = self.lengths > 1_1 _snake_case = self.token_ids[indices] _snake_case = self.lengths[indices] _snake_case = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __UpperCAmelCase ( self : int ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: _snake_case = self.params.special_tok_ids['''unk_token'''] _snake_case = len(self ) _snake_case = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _snake_case = (unk_occs / self.lengths) < 0.5 _snake_case = self.token_ids[indices] _snake_case = self.lengths[indices] _snake_case = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = [t[0] for t in batch] _snake_case = [t[1] for t in batch] assert len(lowercase_ ) == len(lowercase_ ) # Max for paddings _snake_case = max(lowercase_ ) # Pad token ids if self.params.mlm: _snake_case = self.params.special_tok_ids['''pad_token'''] else: _snake_case = self.params.special_tok_ids['''unk_token'''] _snake_case = [list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids] assert len(tk_ ) == len(lowercase_ ) assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ ) _snake_case = torch.tensor(tk_ ) # (bs, max_seq_len_) _snake_case = torch.tensor(lowercase_ ) # (bs) return tk_t, lg_t
716
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _snake_case , _snake_case = array[indexa], array[indexa] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": snake_case = input('''Enter numbers separated by a comma:\n''').strip() snake_case = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
404
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters A_ : List[str] = logging.get_logger(__name__) def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Any , lowercase_: List[str] , lowercase_: List[str]=None , lowercase_: Tuple=None ) -> str: # Recurse if needed if "." in tensor_name: A__ : Union[str, Any] = tensor_name.split(""".""" ) for split in splits[:-1]: A__ : Tuple = getattr(lowercase_ , lowercase_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) A__ : Dict = new_module A__ : List[Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) A__ : List[Any] = tensor_name in module._buffers A__ : List[Any] = getattr(lowercase_ , lowercase_ ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) A__ : Any = False A__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): A__ : str = False A__ : str = False else: A__ : Dict = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) A__ : Tuple = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: A__ : str = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A__ : Optional[int] = old_value.to(lowercase_ ) elif isinstance(lowercase_ , torch.Tensor ): A__ : Dict = value.to("""cpu""" ) if value.dtype == torch.inta: A__ : Union[str, Any] = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: A__ : Any = torch.tensor(lowercase_ , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowercase_ ) and fpaa_statistics is None: A__ : Optional[Any] = new_value.T A__ : Any = old_value.__dict__ if is_abit: A__ : Tuple = bnb.nn.IntaParams(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ ) elif is_abit: A__ : List[str] = bnb.nn.Paramsabit(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ ) A__ : Any = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(lowercase_ ) ) else: if value is None: A__ : Optional[Any] = old_value.to(lowercase_ ) elif isinstance(lowercase_ , torch.Tensor ): A__ : Tuple = value.to(lowercase_ ) else: A__ : Dict = torch.tensor(lowercase_ , device=lowercase_ ) if is_buffer: A__ : List[str] = new_value else: A__ : int = nn.Parameter(lowercase_ , requires_grad=old_value.requires_grad ) A__ : Union[str, Any] = new_value def UpperCamelCase (lowercase_: int , lowercase_: Optional[int]=None , lowercase_: Optional[int]=None , lowercase_: List[str]=None , lowercase_: Optional[int]=False ) -> List[str]: for name, module in model.named_children(): if current_key_name is None: A__ : Any = [] current_key_name.append(lowercase_ ) if (isinstance(lowercase_ , nn.Linear ) or isinstance(lowercase_ , lowercase_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(lowercase_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowercase_ , lowercase_ ): A__ , A__ : Tuple = module.weight.shape else: A__ : Optional[int] = module.in_features A__ : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": A__ : Dict = bnb.nn.LinearabitLt( lowercase_ , lowercase_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A__ : List[str] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A__ : Dict = bnb.nn.Linearabit( lowercase_ , lowercase_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A__ : Dict = True # Store the module class in case we need to transpose the weight later A__ : Tuple = type(lowercase_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowercase_ ) if len(list(module.children() ) ) > 0: A__ , A__ : Any = _replace_with_bnb_linear( lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_been_replaced=lowercase_ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase (lowercase_: List[Any] , lowercase_: Dict=None , lowercase_: List[Any]=None , lowercase_: List[Any]=None ) -> Optional[Any]: A__ : Optional[Any] = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert A__ , A__ : int = _replace_with_bnb_linear( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def UpperCamelCase (*lowercase_: List[Any] , **lowercase_: Tuple ) -> Optional[Any]: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowercase_ , ) return replace_with_bnb_linear(*lowercase_ , **lowercase_ ) def UpperCamelCase (*lowercase_: List[Any] , **lowercase_: str ) -> Optional[Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowercase_ , ) return set_module_quantized_tensor_to_device(*lowercase_ , **lowercase_ ) def UpperCamelCase (lowercase_: List[str] ) -> Union[str, Any]: A__ : Tuple = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A__ : Union[str, Any] = find_tied_parameters(lowercase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase_ , lowercase_ ): A__ : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ : Any = sum(lowercase_ , [] ) A__ : Optional[int] = len(lowercase_ ) > 0 # Check if it is a base model A__ : Optional[int] = not hasattr(lowercase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ : int = list(model.named_children() ) A__ : List[str] = [list_modules[-1][0]] # add last module together with tied weights A__ : Union[str, Any] = set(lowercase_ ) - set(lowercase_ ) A__ : Dict = list(set(lowercase_ ) ) + list(lowercase_ ) # remove ".weight" from the keys A__ : Any = [""".weight""", """.bias"""] A__ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ : Dict = name.replace(lowercase_ , """""" ) filtered_module_names.append(lowercase_ ) return filtered_module_names
456
def UpperCamelCase (lowercase_: list ) -> list: A__ : Union[str, Any] = False while is_sorted is False: # Until all the indices are traversed keep looping A__ : Dict = True for i in range(0 , len(lowercase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: A__ , A__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order A__ : Optional[Any] = False for i in range(1 , len(lowercase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: A__ , A__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order A__ : Optional[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') A_ : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line A_ : Optional[int] = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
456
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : int = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class _snake_case ( A__ ): _lowercase : Any = '''xlnet''' _lowercase : Optional[int] = ['''mems'''] _lowercase : List[Any] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a=3_2000 , a=1024 , a=24 , a=16 , a=4096 , a="gelu" , a=True , a="bi" , a=0.02 , a=1E-12 , a=0.1 , a=512 , a=None , a=True , a=False , a=False , a=-1 , a=False , a="last" , a=True , a="tanh" , a=0.1 , a=5 , a=5 , a=5 , a=1 , a=2 , **a , ) -> Optional[int]: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''') if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''') SCREAMING_SNAKE_CASE = d_model // n_head SCREAMING_SNAKE_CASE = ff_activation SCREAMING_SNAKE_CASE = d_inner SCREAMING_SNAKE_CASE = untie_r SCREAMING_SNAKE_CASE = attn_type SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = mem_len SCREAMING_SNAKE_CASE = reuse_len SCREAMING_SNAKE_CASE = bi_data SCREAMING_SNAKE_CASE = clamp_len SCREAMING_SNAKE_CASE = same_length SCREAMING_SNAKE_CASE = summary_type SCREAMING_SNAKE_CASE = summary_use_proj SCREAMING_SNAKE_CASE = summary_activation SCREAMING_SNAKE_CASE = summary_last_dropout SCREAMING_SNAKE_CASE = start_n_top SCREAMING_SNAKE_CASE = end_n_top SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , a , ) SCREAMING_SNAKE_CASE = kwargs['use_cache'] SCREAMING_SNAKE_CASE = use_mems_eval SCREAMING_SNAKE_CASE = use_mems_train super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) @property def SCREAMING_SNAKE_CASE__ ( self) -> Dict: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''') return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE__ ( self , a) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
444
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
444
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } _lowerCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Any ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase_ = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: UpperCAmelCase_ = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> int: UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(__UpperCamelCase )[0].split('''.''' )[-2] UpperCAmelCase_ = mapped_key.replace('''*''' , __UpperCamelCase ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ = '''weight_v''' elif "bias" in name: UpperCAmelCase_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = '''weight''' elif "running_mean" in name: UpperCAmelCase_ = '''running_mean''' elif "inv_freq" in name: UpperCAmelCase_ = '''inv_freq''' elif "running_var" in name: UpperCAmelCase_ = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase_ = '''num_batches_tracked''' else: UpperCAmelCase_ = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : int ) -> List[str]: UpperCAmelCase_ = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ = name.split('''.''' ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCAmelCase_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCAmelCase_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCAmelCase_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCAmelCase_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : Optional[Any]=True ) -> Optional[int]: if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(__UpperCamelCase , hidden_act='''swish''' ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = '''rotary''' if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(__UpperCamelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = WavaVecaCTCTokenizer( __UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCamelCase , ) UpperCAmelCase_ = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) UpperCAmelCase_ = WavaVecaConformerForCTC(__UpperCamelCase ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(__UpperCamelCase ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase_ = fairseq.tasks.setup_task(__UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCamelCase ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(__UpperCamelCase , __UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
144
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } _lowerCamelCase = { 'google/rembert': 2_56, } _lowerCamelCase = '▁' class a ( _A ): '''simple docstring''' lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = RemBertTokenizer def __init__( self : List[str] , __snake_case : int=None , __snake_case : str=None , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : Optional[int]=False , __snake_case : Tuple="[CLS]" , __snake_case : Any="[SEP]" , __snake_case : Dict="<unk>" , __snake_case : List[str]="[SEP]" , __snake_case : Dict="<pad>" , __snake_case : str="[CLS]" , __snake_case : Union[str, Any]="[MASK]" , **__snake_case : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowerCamelCase_ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase_ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : List[str] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
144
1
'''simple docstring''' _lowercase : int ={str(digit): digit**5 for digit in range(10)} def __UpperCAmelCase ( UpperCamelCase__ :int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCamelCase__ ) ) def __UpperCAmelCase ( ) -> int: return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(UpperCamelCase__ ) ) if __name__ == "__main__": print(solution())
574
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( UpperCamelCase__ :list[int] , UpperCamelCase__ :int ) -> list[list[int]]: snake_case__ : list[list[int]] = [] snake_case__ : list[int] = [] snake_case__ : int = 0 snake_case__ : str = sum(UpperCamelCase__ ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return result def __UpperCAmelCase ( UpperCamelCase__ :list[int] , UpperCamelCase__ :int , UpperCamelCase__ :int , UpperCamelCase__ :list[int] , UpperCamelCase__ :list[list[int]] , UpperCamelCase__ :int , ) -> None: if sum(UpperCamelCase__ ) > max_sum or (remaining_nums_sum + sum(UpperCamelCase__ )) < max_sum: return if sum(UpperCamelCase__ ) == max_sum: result.append(UpperCamelCase__ ) return for index in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): create_state_space_tree( UpperCamelCase__ , UpperCamelCase__ , index + 1 , [*path, nums[index]] , UpperCamelCase__ , remaining_nums_sum - nums[index] , ) _lowercase : List[Any] =[3, 34, 4, 12, 5, 2] _lowercase : List[str] =9 _lowercase : int =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
574
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase_ : List[str] = random.Random() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=1.0 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[Any]=None ): """simple docstring""" if rng is None: _lowerCamelCase : List[Any] = global_rng _lowerCamelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict,__A : List[Any],__A : Any=7,__A : Dict=4_0_0,__A : Union[str, Any]=2_0_0_0,__A : Any=1_0,__A : Dict=1_6_0,__A : List[Any]=8,__A : Optional[int]=0.0,__A : int=4_0_0_0,__A : Dict=False,__A : List[Any]=True,): _lowerCamelCase : int = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : List[Any] = min_seq_length _lowerCamelCase : Optional[Any] = max_seq_length _lowerCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : Optional[int] = padding_value _lowerCamelCase : str = sampling_rate _lowerCamelCase : int = return_attention_mask _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : str = feature_size _lowerCamelCase : Tuple = chunk_length _lowerCamelCase : List[Any] = hop_length def lowerCamelCase_ ( self : str ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self : int,__A : str=False,__A : Union[str, Any]=False ): def _flatten(__A : Tuple ): return list(itertools.chain(*__A ) ) if equal_length: _lowerCamelCase : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: _lowerCamelCase : Dict = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[int] = feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) _lowerCamelCase : Union[str, Any] = self.feature_extraction_class.from_pretrained(__A ) _lowerCamelCase : Optional[int] = feat_extract_first.to_dict() _lowerCamelCase : Dict = feat_extract_second.to_dict() _lowerCamelCase : str = feat_extract_first.mel_filters _lowerCamelCase : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A,__A ) ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Any = os.path.join(__A,"feat_extract.json" ) feat_extract_first.to_json_file(__A ) _lowerCamelCase : int = self.feature_extraction_class.from_json_file(__A ) _lowerCamelCase : Tuple = feat_extract_first.to_dict() _lowerCamelCase : Any = feat_extract_second.to_dict() _lowerCamelCase : Dict = feat_extract_first.mel_filters _lowerCamelCase : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A,__A ) ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] _lowerCamelCase : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Optional[Any] = feature_extractor(__A,padding="max_length",return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase : Union[str, Any] = feature_extractor(speech_inputs[0],return_tensors="np" ).input_features _lowerCamelCase : Dict = feature_extractor(np_speech_inputs[0],return_tensors="np" ).input_features self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test batched _lowerCamelCase : str = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : List[Any] = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase : Dict = np.asarray(__A ) _lowerCamelCase : int = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : Any = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test truncation required _lowerCamelCase : str = [floats_list((1, x) )[0] for x in range(2_0_0,(feature_extractor.n_samples + 5_0_0),2_0_0 )] _lowerCamelCase : Dict = [np.asarray(__A ) for speech_input in speech_inputs] _lowerCamelCase : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs_truncated] _lowerCamelCase : Tuple = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : str = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) def lowerCamelCase_ ( self : Any ): import torch _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : str = np.random.rand(1_0_0,3_2 ).astype(np.floataa ) _lowerCamelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : List[Any] = feature_extractor.pad([{"input_features": inputs}],return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase : List[str] = feature_extractor.pad([{"input_features": inputs}],return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self : Dict,__A : Optional[Any] ): _lowerCamelCase : List[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy","clean",split="validation" ) # automatic decoding with librispeech _lowerCamelCase : Dict = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self : Any ): # fmt: off _lowerCamelCase : Optional[int] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _lowerCamelCase : Optional[Any] = self._load_datasamples(1 ) _lowerCamelCase : Union[str, Any] = WhisperFeatureExtractor() _lowerCamelCase : str = feature_extractor(__A,return_tensors="pt" ).input_features self.assertEqual(input_features.shape,(1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0],__A,atol=1e-4 ) ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[Any] = self._load_datasamples(1 )[0] _lowerCamelCase : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowerCamelCase : Any = feat_extract.zero_mean_unit_var_norm([audio],attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1e-3 ) )
44
def lowerCAmelCase__ ( _a : float , _a : float , _a : float , _a : float , _a : float , ): snake_case_ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: snake_case_ : List[Any] = 1 - (matter_density + radiation_density + dark_energy) snake_case_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
568
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCAmelCase_ ( __lowerCamelCase ): random.seed(__lowerCAmelCase ) np.random.seed(__lowerCAmelCase ) torch.manual_seed(__lowerCAmelCase ) torch.cuda.manual_seed_all(__lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class a : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Iterable[torch.nn.Parameter] , lowerCamelCase : float = 0.99_99 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[float, int] = 1.0 , lowerCamelCase : Union[float, int] = 2 / 3 , lowerCamelCase : Optional[Any] = None , lowerCamelCase : Dict[str, Any] = None , **lowerCamelCase : Optional[int] , ) -> Optional[Any]: if isinstance(lowerCamelCase__ , torch.nn.Module ): __snake_case : List[Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , lowerCamelCase__ , standard_warn=lowerCamelCase__ , ) __snake_case : List[str] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __snake_case : Optional[int] = True if kwargs.get("max_value" , lowerCamelCase__ ) is not None: __snake_case : Tuple = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , lowerCamelCase__ , standard_warn=lowerCamelCase__ ) __snake_case : str = kwargs["max_value"] if kwargs.get("min_value" , lowerCamelCase__ ) is not None: __snake_case : Optional[int] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , lowerCamelCase__ , standard_warn=lowerCamelCase__ ) __snake_case : Tuple = kwargs["min_value"] __snake_case : Optional[Any] = list(lowerCamelCase__ ) __snake_case : Dict = [p.clone().detach() for p in parameters] if kwargs.get("device" , lowerCamelCase__ ) is not None: __snake_case : Any = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , lowerCamelCase__ , standard_warn=lowerCamelCase__ ) self.to(device=kwargs["device"] ) __snake_case : Union[str, Any] = None __snake_case : int = decay __snake_case : Any = min_decay __snake_case : Optional[int] = update_after_step __snake_case : str = use_ema_warmup __snake_case : Union[str, Any] = inv_gamma __snake_case : Union[str, Any] = power __snake_case : List[str] = 0 __snake_case : List[str] = None # set in `step()` __snake_case : Optional[int] = model_cls __snake_case : Union[str, Any] = model_config @classmethod def __snake_case ( cls : int , lowerCamelCase : Tuple , lowerCamelCase : int ) -> "EMAModel": __snake_case : Optional[int] = model_cls.load_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) __snake_case : Union[str, Any] = model_cls.from_pretrained(lowerCamelCase__ ) __snake_case : List[str] = cls(model.parameters() , model_cls=lowerCamelCase__ , model_config=model.config ) ema_model.load_state_dict(lowerCamelCase__ ) return ema_model def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> Dict: if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) __snake_case : int = self.model_cls.from_config(self.model_config ) __snake_case : Union[str, Any] = self.state_dict() state_dict.pop("shadow_params" , lowerCamelCase__ ) model.register_to_config(**lowerCamelCase__ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCamelCase__ ) def __snake_case ( self : List[str] , lowerCamelCase : int ) -> float: __snake_case : int = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __snake_case : int = 1 - (1 + step / self.inv_gamma) ** -self.power else: __snake_case : Any = (1 + step) / (10 + step) __snake_case : int = min(lowerCamelCase__ , self.decay ) # make sure decay is not smaller than min_decay __snake_case : Union[str, Any] = max(lowerCamelCase__ , self.min_decay ) return cur_decay_value @torch.no_grad() def __snake_case ( self : str , lowerCamelCase : Iterable[torch.nn.Parameter] ) -> Dict: if isinstance(lowerCamelCase__ , torch.nn.Module ): __snake_case : Union[str, Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , lowerCamelCase__ , standard_warn=lowerCamelCase__ , ) __snake_case : Any = parameters.parameters() __snake_case : Dict = list(lowerCamelCase__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __snake_case : Tuple = self.get_decay(self.optimization_step ) __snake_case : Any = decay __snake_case : Optional[Any] = 1 - decay __snake_case : Union[str, Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCamelCase__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __snake_case : str = deepspeed.zero.GatheredParameters(lowerCamelCase__ , modifier_rank=lowerCamelCase__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCamelCase__ ) def __snake_case ( self : Optional[int] , lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: __snake_case : List[str] = list(lowerCamelCase__ ) for s_param, param in zip(self.shadow_params , lowerCamelCase__ ): param.data.copy_(s_param.to(param.device ).data ) def __snake_case ( self : int , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None ) -> None: __snake_case : str = [ p.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if p.is_floating_point() else p.to(device=lowerCamelCase__ ) for p in self.shadow_params ] def __snake_case ( self : List[Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __snake_case ( self : Optional[int] , lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: __snake_case : Tuple = [param.detach().cpu().clone() for param in parameters] def __snake_case ( self : List[str] , lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , lowerCamelCase__ ): param.data.copy_(c_param.data ) # Better memory-wise. __snake_case : int = None def __snake_case ( self : Union[str, Any] , lowerCamelCase : dict ) -> None: __snake_case : Optional[Any] = copy.deepcopy(lowerCamelCase__ ) __snake_case : List[str] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) __snake_case : Union[str, Any] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , lowerCamelCase__ ): raise ValueError("Invalid min_decay" ) __snake_case : List[str] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCamelCase__ ): raise ValueError("Invalid optimization_step" ) __snake_case : List[Any] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCamelCase__ ): raise ValueError("Invalid update_after_step" ) __snake_case : str = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCamelCase__ ): raise ValueError("Invalid use_ema_warmup" ) __snake_case : int = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) __snake_case : Any = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) __snake_case : List[str] = state_dict.get("shadow_params" , lowerCamelCase__ ) if shadow_params is not None: __snake_case : Optional[Any] = shadow_params if not isinstance(self.shadow_params , lowerCamelCase__ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(lowerCamelCase__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
718
from __future__ import annotations _snake_case : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : dict[str, list[str]] , lowerCamelCase : str ) -> None: __snake_case : Tuple = graph # mapping node to its parent in resulting breadth first tree __snake_case : dict[str, str | None] = {} __snake_case : Dict = source_vertex def __snake_case ( self : Optional[int] ) -> None: __snake_case : Dict = {self.source_vertex} __snake_case : List[str] = None __snake_case : Optional[Any] = [self.source_vertex] # first in first out queue while queue: __snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase ) __snake_case : Any = vertex queue.append(lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : str ) -> str: if target_vertex == self.source_vertex: return self.source_vertex __snake_case : Optional[Any] = self.parent.get(lowerCamelCase ) if target_vertex_parent is None: __snake_case : Optional[Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(lowerCamelCase ) return self.shortest_path(lowerCamelCase ) + F'->{target_vertex}' if __name__ == "__main__": _snake_case : Optional[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
203
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 100 ) -> int: """simple docstring""" _A = n * (n + 1) * (2 * n + 1) / 6 _A = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"{solution() = }")
27
from __future__ import annotations a : Optional[Any] = [True] * 1_000_001 a : Union[str, Any] = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): a : Optional[Any] = False i += 1 def lowerCamelCase__ ( __lowerCamelCase : int ): return seive[n] def lowerCamelCase__ ( __lowerCamelCase : int ): return any(digit in """02468""" for digit in str(__lowerCamelCase ) ) def lowerCamelCase__ ( __lowerCamelCase : int = 1000000 ): __UpperCAmelCase : Optional[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__lowerCamelCase ) and not contains_an_even_digit(__lowerCamelCase ): __UpperCAmelCase : Tuple = str(__lowerCamelCase ) __UpperCAmelCase : List[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCamelCase ) )] if all(is_prime(__lowerCamelCase ) for i in list_nums ): result.append(__lowerCamelCase ) return result def lowerCamelCase__ ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
63
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a : UpperCamelCase : CommonSchedulerState # setable values UpperCamelCase : jnp.ndarray UpperCamelCase : jnp.ndarray UpperCamelCase : Optional[int] = None @classmethod def __snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class a ( lowercase ): UpperCamelCase : DDPMSchedulerState class a ( lowercase , lowercase ): UpperCamelCase : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] UpperCamelCase : jnp.dtype @property def __snake_case ( self ): return True @register_to_config def __init__( self , UpperCamelCase_ = 1_000 , UpperCamelCase_ = 0.0001 , UpperCamelCase_ = 0.02 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "fixed_small" , UpperCamelCase_ = True , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = jnp.floataa , ): UpperCAmelCase__ : Dict = dtype def __snake_case ( self , UpperCamelCase_ = None ): if common is None: UpperCAmelCase__ : Union[str, Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Optional[Any] = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ): return sample def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = () ): UpperCAmelCase__ : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : int = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ): UpperCAmelCase__ : Optional[int] = state.common.alphas_cumprod[t] UpperCAmelCase__ : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Optional[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(UpperCamelCase_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : int = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : Tuple = variance UpperCAmelCase__ : Optional[int] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : List[str] = frac * max_log + (1 - frac) * min_log return variance def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = True , ): UpperCAmelCase__ : Tuple = timestep if key is None: UpperCAmelCase__ : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Any = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : List[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Dict = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Tuple = 1 - alpha_prod_t UpperCAmelCase__ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : str = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Tuple = jax.random.split(UpperCamelCase_ , num=1 ) UpperCAmelCase__ : Tuple = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self ): return self.config.num_train_timesteps
254
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a ( lowercase ): UpperCamelCase : List[Any] = """deit""" def __init__( self , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=224 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=16 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Optional[Any] = qkv_bias UpperCAmelCase__ : Dict = encoder_stride class a ( lowercase ): UpperCamelCase : Optional[int] = version.parse("""1.11""" ) @property def __snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __snake_case ( self ): return 1E-4
254
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __a : List[Any] = input("""Enter image url: """).strip() print(F'Downloading image from {url} ...') __a : Optional[Any] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image __a : Union[str, Any] = soup.find("""meta""", {"""property""": """og:image"""})['content'] __a : Optional[Any] = requests.get(image_url).content __a : Tuple = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'Done. Image saved to disk as {file_name}.')
606
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor A__ : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def a ( lowerCamelCase_ ): '''simple docstring''' if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): lowercase__ = [image] lowercase__ = [trans(img.convert('''RGB''' ) ) for img in image] lowercase__ = torch.stack(lowerCamelCase_ ) return image class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase ) def lowercase__ ( self : int, lowerCamelCase : Optional[int] ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase__ ( self : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : List[str] ): '''simple docstring''' # get the original timestep using init_timestep lowercase__ = min(int(num_inference_steps * strength ), lowerCamelCase ) lowercase__ = max(num_inference_steps - init_timestep, 0 ) lowercase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : Optional[Any], lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any=None ): '''simple docstring''' if not isinstance(lowerCamelCase, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase )}""" ) lowercase__ = image.to(device=lowerCamelCase, dtype=lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase__ = init_latents.shape lowercase__ = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase ) # get latents print('''add noise to latents at timestep''', lowerCamelCase ) lowercase__ = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = init_latents return latents @torch.no_grad() def __call__( self : Dict, lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None, lowerCamelCase : float = 0.8, lowerCamelCase : int = 1, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : float = 0.0, lowerCamelCase : int = 50, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, ): '''simple docstring''' self.check_inputs(lowerCamelCase ) # 2. Preprocess image lowercase__ = preprocess(lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase, device=self.device ) lowercase__ , lowercase__ = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device ) lowercase__ = timesteps[:1].repeat(lowerCamelCase ) # 4. Prepare latent variables lowercase__ = self.prepare_latents(lowerCamelCase, lowerCamelCase, lowerCamelCase, self.unet.dtype, self.device, lowerCamelCase ) lowercase__ = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase ): # 1. predict noise model_output lowercase__ = self.unet(lowerCamelCase, lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase__ = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase, ).prev_sample lowercase__ = (image / 2 + 0.5).clamp(0, 1 ) lowercase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase )
183
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = LEDTokenizer SCREAMING_SNAKE_CASE__ = LEDTokenizerFast SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ = dict(zip(a_ ,range(len(a_ ) ) ) ) lowerCAmelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ = {'unk_token': '<unk>'} lowerCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = tokenizer(a_ ,max_length=len(a_ ) ,padding=a_ ,return_tensors='pt' ) self.assertIsInstance(a_ ,a_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) lowerCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(a_ ,a_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = tokenizer(a_ ,padding=a_ ,return_tensors='pt' ) self.assertIn('input_ids' ,a_ ) self.assertIn('attention_mask' ,a_ ) self.assertNotIn('labels' ,a_ ) self.assertNotIn('decoder_attention_mask' ,a_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = tokenizer(text_target=a_ ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] ,padding=a_ ,truncation=a_ ,return_tensors='pt' ) self.assertIsInstance(a_ ,a_ ) self.assertEqual(batch.input_ids.shape ,(2, 5122) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ['A long paragraph for summarization.'] lowerCAmelCase__ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = tokenizer(a_ ,return_tensors='pt' ) lowerCAmelCase__ = tokenizer(text_target=a_ ,return_tensors='pt' ) lowerCAmelCase__ = inputs['input_ids'] lowerCAmelCase__ = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ = ['Summary of the text.', 'Another summary.'] lowerCAmelCase__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase__ = tokenizer(a_ ,padding=a_ ) lowerCAmelCase__ = [[0] * len(a_ ) for x in encoded_output['input_ids']] lowerCAmelCase__ = tokenizer.pad(a_ ) self.assertSequenceEqual(outputs['global_attention_mask'] ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(a_ ,**a_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(a_ ,**a_ ) lowerCAmelCase__ = 'A, <mask> AllenNLP sentence.' lowerCAmelCase__ = tokenizer_r.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) lowerCAmelCase__ = tokenizer_p.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( a_ ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( a_ ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
700
def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase__ = [] lowerCAmelCase__ = list(range(snake_case__ ) ) # Find permutation while factorials: lowerCAmelCase__ = factorials.pop() lowerCAmelCase__ , lowerCAmelCase__ = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
604
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase_ : List[Any] = '''src/diffusers''' lowerCAmelCase_ : List[str] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase_ : str = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase_ : str = spec.loader.load_module() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return line.startswith(lowerCAmelCase ) or len(lowerCAmelCase ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase ) is not None def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = object_name.split(""".""" ) UpperCAmelCase = 0 # First let's find the module where our object lives. UpperCAmelCase = parts[i] while i < len(lowerCAmelCase ) and not os.path.isfile(os.path.join(lowerCAmelCase , F'''{module}.py''' ) ): i += 1 if i < len(lowerCAmelCase ): UpperCAmelCase = os.path.join(lowerCAmelCase , parts[i] ) if i >= len(lowerCAmelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(lowerCAmelCase , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase = """""" UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase = line_index while line_index < len(lowerCAmelCase ) and _should_continue(lines[line_index] , lowerCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase = lines[start_index:line_index] return "".join(lowerCAmelCase ) lowerCAmelCase_ : List[Any] = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase_ : Optional[Any] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase_ : int = re.compile(R'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = code.split("""\n""" ) UpperCAmelCase = 0 while idx < len(lowerCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = len(get_indent(lowerCAmelCase ) ) > 0 if has_indent: UpperCAmelCase = F'''class Bla:\n{code}''' UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase ) UpperCAmelCase = black.format_str(lowerCAmelCase , mode=lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = style_docstrings_in_code(lowerCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' with open(lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [] UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase ): UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = search.groups() UpperCAmelCase = find_code_in_diffusers(lowerCAmelCase ) UpperCAmelCase = get_indent(lowerCAmelCase ) UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase = theoretical_indent UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase = True while line_index < len(lowerCAmelCase ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase ): break UpperCAmelCase = lines[line_index] UpperCAmelCase = _should_continue(lowerCAmelCase , lowerCAmelCase ) and re.search(F'''^{indent}# End copy''' , lowerCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase = lines[start_index:line_index] UpperCAmelCase = """""".join(lowerCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase ) is None] UpperCAmelCase = """\n""".join(lowerCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase ) > 0: UpperCAmelCase = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCAmelCase = [_re_replace_pattern.search(lowerCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = pattern.groups() UpperCAmelCase = re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if option.strip() == "all-casing": UpperCAmelCase = re.sub(obja.lower() , obja.lower() , lowerCAmelCase ) UpperCAmelCase = re.sub(obja.upper() , obja.upper() , lowerCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase = start_index + 1 if overwrite and len(lowerCAmelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase ) return diffs def _lowerCAmelCase ( lowerCAmelCase = False ): '''simple docstring''' UpperCAmelCase = glob.glob(os.path.join(lowerCAmelCase , """**/*.py""" ) , recursive=lowerCAmelCase ) UpperCAmelCase = [] for filename in all_files: UpperCAmelCase = is_copy_consistent(lowerCAmelCase , lowerCAmelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(lowerCAmelCase ) > 0: UpperCAmelCase = """\n""".join(lowerCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase_ : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
673
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : str = VideoToVideoSDPipeline _A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} _A : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} _A : int = PipelineTesterMixin.required_optional_params - {'latents'} _A : List[str] = False # No `output_type`. _A : Any = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) UpperCAmelCase = CLIPTextModel(snake_case__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase_ ( self , snake_case__ , snake_case__=0 ) -> List[str]: """simple docstring""" UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(snake_case__ ) else: UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = VideoToVideoSDPipeline(**snake_case__ ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = """np""" UpperCAmelCase = sd_pipe(**snake_case__ ).frames UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=snake_case__ ) UpperCAmelCase = video.to("""cuda""" ) UpperCAmelCase = """Spiderman is surfing""" UpperCAmelCase = pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
673
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : int = np.max(_outputs , axis=-1 , keepdims=_lowerCAmelCase ) lowercase__ : List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = "sigmoid" lowerCamelCase__ : int = "softmax" lowerCamelCase__ : Union[str, Any] = "none" @add_end_docstrings( _a , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = False lowerCamelCase__ : Optional[Any] = ClassificationFunction.NONE def __init__( self , **a ) -> List[str]: super().__init__(**a ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _UpperCAmelCase ( self , a=None , a=None , a="" , **a ) -> Optional[Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" lowercase__ : Optional[int] = tokenizer_kwargs lowercase__ : Any = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowercase__ : Union[str, Any] = self.model.config.return_all_scores if isinstance(a , a ) or top_k is None: lowercase__ : str = top_k lowercase__ : str = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , a , ) if return_all_scores: lowercase__ : int = None else: lowercase__ : List[str] = 1 if isinstance(a , a ): lowercase__ : List[Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowercase__ : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *a , **a ) -> Dict: lowercase__ : Tuple = super().__call__(*a , **a ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowercase__ : Optional[int] = 'top_k' not in kwargs if isinstance(args[0] , a ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _UpperCAmelCase ( self , a , **a ) -> Dict[str, GenericTensor]: lowercase__ : str = self.framework if isinstance(a , a ): return self.tokenizer(**a , return_tensors=a , **a ) elif isinstance(a , a ) and len(a ) == 1 and isinstance(inputs[0] , a ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=a , **a ) elif isinstance(a , a ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(a , return_tensors=a , **a ) def _UpperCAmelCase ( self , a ) -> List[Any]: return self.model(**a ) def _UpperCAmelCase ( self , a , a=None , a=1 , a=True ) -> List[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowercase__ : List[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowercase__ : Optional[int] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowercase__ : Tuple = self.model.config.function_to_apply else: lowercase__ : List[str] = ClassificationFunction.NONE lowercase__ : Any = model_outputs['logits'][0] lowercase__ : List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowercase__ : Tuple = sigmoid(a ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowercase__ : Optional[Any] = softmax(a ) elif function_to_apply == ClassificationFunction.NONE: lowercase__ : Any = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowercase__ : Optional[int] = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(a ) ] if not _legacy: dict_scores.sort(key=lambda a : x["score"] , reverse=a ) if top_k is not None: lowercase__ : List[Any] = dict_scores[:top_k] return dict_scores
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" UpperCamelCase = "ZinengTang/tvlt-base" UpperCamelCase = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any] )-> List[Any]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase_ : Optional[Any] )-> Tuple: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Any: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCamelCase = np.ones([12_000] ) UpperCamelCase = feature_extractor(UpperCAmelCase_ , return_tensors="np" ) UpperCamelCase = processor(audio=UpperCAmelCase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Any )-> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCamelCase = np.ones([3, 224, 224] ) UpperCamelCase = image_processor(UpperCAmelCase_ , return_tensors="np" ) UpperCamelCase = processor(images=UpperCAmelCase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> Dict: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCamelCase = np.ones([12_000] ) UpperCamelCase = np.ones([3, 224, 224] ) UpperCamelCase = processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def _SCREAMING_SNAKE_CASE ( self : int )-> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
554
"""simple docstring""" class __a : def __init__( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = name UpperCamelCase = value UpperCamelCase = weight def __repr__( self : int )-> Any: """simple docstring""" return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" return self.value def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" return self.name def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[Any]: """simple docstring""" return self.weight def _SCREAMING_SNAKE_CASE ( self : Any )-> Union[str, Any]: """simple docstring""" return self.value / self.weight def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" UpperCamelCase = sorted(UpperCAmelCase_ , key=UpperCAmelCase_ , reverse=UpperCAmelCase_ ) UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0.0, 0.0 for i in range(len(UpperCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( )-> Dict: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
554
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a ( lowercase__ : Optional[Any] ): '''simple docstring''' if isinstance(lowercase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case : def __lowercase( self : Union[str, Any] , a_ : Optional[Any] , a_ : str )-> Tuple: """simple docstring""" pass def __lowercase( self : List[Any] )-> Optional[Any]: """simple docstring""" pass def __lowercase( self : str )-> Tuple: """simple docstring""" pass def __lowercase( self : int , a_ : np.ndarray , a_ : np.ndarray , a_ : float )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = np.abs((a - b) ).max() self.assertLessEqual(a_ , a_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def __lowercase( self : Union[str, Any] , a_ : str , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Any , a_ : str=None , **a_ : List[str] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : str = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowercase( self : Any , a_ : Any , a_ : str , a_ : Union[str, Any] , a_ : List[str] , a_ : Optional[Any]=None , **a_ : Optional[int] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Dict = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowercase( self : Union[str, Any] , a_ : int , a_ : Any , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any=None , **a_ : str )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = after_output[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ , 1e-3 ) def __lowercase( self : List[Any] , a_ : int , a_ : Dict , a_ : str , a_ : Tuple , a_ : Any=None , **a_ : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : int = model( input_ids=a_ , pixel_values=a_ , attention_mask=a_ , output_attentions=a_ ) SCREAMING_SNAKE_CASE__ : str = output.vision_model_output.attentions self.assertEqual(len(a_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : int = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ : Dict = output.text_model_output.attentions self.assertEqual(len(a_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase( self : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : Optional[int] )-> Tuple: """simple docstring""" pt_model.to(a_ ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict SCREAMING_SNAKE_CASE__ : str = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = pt_model(**a_ ).to_tuple() SCREAMING_SNAKE_CASE__ : Optional[int] = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(a_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : int = FlaxVisionTextDualEncoderModel.from_pretrained(a_ , from_pt=a_ ) SCREAMING_SNAKE_CASE__ : str = fx_model_loaded(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(a_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = VisionTextDualEncoderModel.from_pretrained(a_ , from_flax=a_ ) pt_model_loaded.to(a_ ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = pt_model_loaded(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(a_ , pt_output_loaded.numpy() , 4e-2 ) def __lowercase( self : Optional[int] , a_ : int , a_ : int , a_ : Dict )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a_ ) SCREAMING_SNAKE_CASE__ : str = fx_state self.check_pt_flax_equivalence(a_ , a_ , a_ ) def __lowercase( self : List[str] , a_ : Union[str, Any] , a_ : str , a_ : Any )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : int = VisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = load_flax_weights_in_pytorch_model(a_ , fx_model.params ) self.check_pt_flax_equivalence(a_ , a_ , a_ ) def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a_ ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a_ ) def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() self.check_save_load(**a_ ) def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a_ ) @is_pt_flax_cross_test def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = config_inputs_dict.pop('vision_config' ) SCREAMING_SNAKE_CASE__ : List[str] = config_inputs_dict.pop('text_config' ) SCREAMING_SNAKE_CASE__ : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(a_ , a_ , a_ ) self.check_equivalence_flax_to_pt(a_ , a_ , a_ ) @slow def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = model_a(**a_ ) SCREAMING_SNAKE_CASE__ : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : int = model_a(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = after_outputs[0] SCREAMING_SNAKE_CASE__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ , 1e-5 ) @require_flax class snake_case ( UpperCamelCase_ , unittest.TestCase ): def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=a_ , text_from_pt=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = 13 SCREAMING_SNAKE_CASE__ : Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE__ : int = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase( self : List[str] , a_ : Optional[Any] , a_ : Tuple )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = FlaxViTModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxBertModel(a_ ) return vision_model, text_model def __lowercase( self : Any )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE__ : int = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[str] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = vision_config_and_inputs SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case ( UpperCamelCase_ , unittest.TestCase ): def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=a_ , text_from_pt=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = 13 SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase( self : Union[str, Any] , a_ : Tuple , a_ : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaxCLIPVisionModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxBertModel(a_ ) return vision_model, text_model def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = vision_config_and_inputs SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE__ : Any = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a_ , padding=a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : str = model(**a_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE__ : List[str] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , a_ , atol=1e-3 ) )
636
import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self : str , a_ : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = str(id_ ) SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : int , a_ : Tuple )-> Union[str, Any]: """simple docstring""" return self.key < other.key def __repr__( self : Any )-> Dict: """simple docstring""" return self.id def __lowercase( self : Optional[Any] , a_ : int )-> List[str]: """simple docstring""" self.neighbors.append(a_ ) def __lowercase( self : int , a_ : int , a_ : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = weight def _a ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase__ ) graph[b - 1].add_edge(graph[a - 1] , lowercase__ ) def _a ( lowercase__ : list , lowercase__ : Vertex ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [] for u in graph: SCREAMING_SNAKE_CASE__ : Dict = math.inf SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = graph[:] while q: SCREAMING_SNAKE_CASE__ : Optional[Any] = min(lowercase__ ) q.remove(lowercase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): SCREAMING_SNAKE_CASE__ : int = u SCREAMING_SNAKE_CASE__ : Any = u.edges[v.id] for i in range(1 , len(lowercase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _a ( lowercase__ : list , lowercase__ : Vertex ): '''simple docstring''' for u in graph: SCREAMING_SNAKE_CASE__ : List[str] = math.inf SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Tuple = list(lowercase__ ) hq.heapify(lowercase__ ) while h: SCREAMING_SNAKE_CASE__ : Optional[int] = hq.heappop(lowercase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): SCREAMING_SNAKE_CASE__ : List[str] = u SCREAMING_SNAKE_CASE__ : Dict = u.edges[v.id] hq.heapify(lowercase__ ) for i in range(1 , len(lowercase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
636
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = "facebook/bart-large-mnli" __lowerCAmelCase = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __lowerCAmelCase = "text_classifier" __lowerCAmelCase = AutoTokenizer __lowerCAmelCase = AutoModelForSequenceClassification __lowerCAmelCase = ["text", ["text"]] __lowerCAmelCase = ["text"] def __UpperCAmelCase ( self : List[str] ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): _A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int ) -> Optional[Any]: _A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ), [f'This example is {label}' for label in labels], return_tensors='pt', padding='max_length', ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : int ) -> Dict: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
107
def snake_case ( lowerCamelCase ): '''simple docstring''' if collection == []: return [] # get some information about the collection __lowercase = len(lowerCamelCase ) __lowercase = max(lowerCamelCase ) __lowercase = min(lowerCamelCase ) # create the counting array __lowercase = coll_max + 1 - coll_min __lowercase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCamelCase ): __lowercase = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowercase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCamelCase ) ): __lowercase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def snake_case ( lowerCamelCase ): '''simple docstring''' return "".join([chr(lowerCamelCase ) for i in counting_sort([ord(lowerCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" __UpperCamelCase : str = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
80
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Optional[Any]: lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase__ = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self , **_lowerCamelCase )-> int: return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def snake_case_( self , **_lowerCamelCase )-> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def snake_case_( self )-> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_( self )-> Union[str, Any]: lowercase__ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_( self )-> Tuple: lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def snake_case_( self )-> Tuple: lowercase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) lowercase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def snake_case_( self )-> Any: lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_lowerCamelCase , return_tensors='''np''' ) lowercase__ = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_( self )-> Optional[int]: lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = processor(text=_lowerCamelCase ) lowercase__ = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_( self )-> Optional[Any]: lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_lowerCamelCase ): processor() def snake_case_( self )-> Optional[int]: lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_lowerCamelCase ) lowercase__ = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self )-> Any: lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowerCAmelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : str , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : int ) ->str: """simple docstring""" for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ = '''lm_head''' lowercase__ = getattr(lowercase , lowercase ) if weight_type is not None: lowercase__ = getattr(lowercase , lowercase ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCAmelCase ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Any ) ->Tuple: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(lowercase )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , lowercase ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = '''weight''' else: lowercase__ = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : List[str] ) ->Optional[Any]: """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase : Dict , lowercase : Optional[int] , lowercase : Tuple=None , lowercase : Tuple=None , lowercase : Any=True ) ->Tuple: """simple docstring""" if config_path is not None: lowercase__ = UniSpeechConfig.from_pretrained(lowercase ) else: lowercase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ = Dictionary.load_from_json(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(lowercase , '''vocab.json''' ) if not os.path.isdir(lowercase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 4_2 lowercase__ = 4_3 with open(lowercase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowercase , lowercase ) lowercase__ = WavaVecaPhonemeCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase , ) lowercase__ = True if config.feat_extract_norm == '''layer''' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) lowercase__ = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) lowercase__ = UniSpeechForCTC(lowercase ) else: lowercase__ = UniSpeechForPreTraining(lowercase ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ = model[0].eval() recursively_load_weights(lowercase , lowercase , lowercase ) hf_unispeech.save_pretrained(lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
318
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __A ( unittest.TestCase ): def _lowercase (self : Optional[int] ): UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _lowercase (self : Any ): print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase_ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def _lowercase (self : List[Any] ): print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase_ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def _lowercase (self : Dict ): print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCAmelCase_ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =Accelerator() SCREAMING_SNAKE_CASE_: Dict =(accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE_: Optional[Any] ='' SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE_: List[str] =accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE_: List[str] =accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
78
import inspect import unittest class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :int ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps lowercase__ = inspect.getmembers(_lowercase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowercase__ = "k-diffusion" elif backend == "invisible_watermark": lowercase__ = "invisible-watermark" assert backend in deps, f'''{backend} is not in the deps table!'''
655
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> List[str]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(__lowerCamelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> List[Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(__lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase ) else: self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase ) def a__ ( self : List[str] ) -> Any: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" self.scheduler.load_state_dict(__lowerCamelCase ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Tuple: """simple docstring""" return self.scheduler.print_lr(*__lowerCamelCase , **__lowerCamelCase )
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : str ) -> Tuple: _UpperCamelCase = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _UpperCamelCase = MaskFormerConfig(backbone_config=a__ ) _UpperCamelCase = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _UpperCamelCase = 847 _UpperCamelCase = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _UpperCamelCase = 150 _UpperCamelCase = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _UpperCamelCase = 171 _UpperCamelCase = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _UpperCamelCase = 133 _UpperCamelCase = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _UpperCamelCase = 19 _UpperCamelCase = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _UpperCamelCase = 65 _UpperCamelCase = '''mapillary-vistas-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} return config def lowercase ( a__ : str ) -> Union[str, Any]: _UpperCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowercase ( a__ : List[Any] , a__ : str , a__ : List[Any] ) -> int: _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowercase ( a__ : List[str] , a__ : List[Any] ) -> int: _UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:dim, :] _UpperCamelCase = in_proj_bias[: dim] _UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase = in_proj_weight[ -dim :, : ] _UpperCamelCase = in_proj_bias[-dim :] # fmt: on def lowercase ( a__ : Optional[Any] , a__ : Any ) -> List[str]: # fmt: off _UpperCamelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) _UpperCamelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[: hidden_size, :] _UpperCamelCase = in_proj_bias[:config.hidden_size] _UpperCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase = in_proj_weight[-hidden_size :, :] _UpperCamelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) _UpperCamelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[: hidden_size, :] _UpperCamelCase = in_proj_bias[:config.hidden_size] _UpperCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase = in_proj_weight[-hidden_size :, :] _UpperCamelCase = in_proj_bias[-hidden_size :] # fmt: on def lowercase ( ) -> torch.Tensor: _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowercase ( a__ : str , a__ : str , a__ : str , a__ : bool = False ) -> str: _UpperCamelCase = get_maskformer_config(a__ ) # load original state_dict with open(a__ , '''rb''' ) as f: _UpperCamelCase = pickle.load(a__ ) _UpperCamelCase = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCamelCase = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_swin_q_k_v(a__ , config.backbone_config ) read_in_decoder_q_k_v(a__ , a__ ) # update to torch tensors for key, value in state_dict.items(): _UpperCamelCase = torch.from_numpy(a__ ) # load 🤗 model _UpperCamelCase = MaskFormerForInstanceSegmentation(a__ ) model.eval() for name, param in model.named_parameters(): print(a__ , param.shape ) _UpperCamelCase , _UpperCamelCase = model.load_state_dict(a__ , strict=a__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results _UpperCamelCase = prepare_img() if "vistas" in model_name: _UpperCamelCase = 65 elif "cityscapes" in model_name: _UpperCamelCase = 65535 else: _UpperCamelCase = 255 _UpperCamelCase = True if '''ade''' in model_name else False _UpperCamelCase = MaskFormerImageProcessor(ignore_index=a__ , reduce_labels=a__ ) _UpperCamelCase = image_processor(a__ , return_tensors='''pt''' ) _UpperCamelCase = model(**a__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCamelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) image_processor.save_pretrained(a__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
420
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
420
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = KandinskyVaaPriorPipeline lowerCamelCase_ = ['''prompt'''] lowerCamelCase_ = ['''prompt''', '''negative_prompt'''] lowerCamelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCamelCase_ = False @property def lowerCAmelCase_ ( self ): """simple docstring""" return 3_2 @property def lowerCAmelCase_ ( self ): """simple docstring""" return 3_2 @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.time_input_dim @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self ): """simple docstring""" return 1_0_0 @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : int = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } A_ : List[str] = PriorTransformer(**lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ : int = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) A_ : str = CLIPVisionModelWithProjection(lowercase ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.dummy_prior A_ : Optional[int] = self.dummy_image_encoder A_ : str = self.dummy_text_encoder A_ : Tuple = self.dummy_tokenizer A_ : Union[str, Any] = self.dummy_image_processor A_ : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase , clip_sample_range=10.0 , ) A_ : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def lowerCAmelCase_ ( self , lowercase , lowercase=0 ): """simple docstring""" if str(lowercase ).startswith('mps' ): A_ : int = torch.manual_seed(lowercase ) else: A_ : str = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : int = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = 'cpu' A_ : str = self.get_dummy_components() A_ : str = self.pipeline_class(**lowercase ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Tuple = pipe(**self.get_dummy_inputs(lowercase ) ) A_ : Dict = output.image_embeds A_ : Any = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] A_ : List[str] = image[0, -1_0:] A_ : Optional[Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) A_ : Union[str, Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = torch_device == 'cpu' A_ : Tuple = True A_ : Dict = False self._test_inference_batch_single_identical( test_max_difference=lowercase , relax_max_difference=lowercase , test_mean_pixel_difference=lowercase , ) @skip_mps def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = torch_device == 'cpu' A_ : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=lowercase , test_mean_pixel_difference=lowercase , )
70
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = """RegNetConfig""" # Base docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = """tabby, tabby cat""" _UpperCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : int = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) A_ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[str] = self.convolution(self.padding(lowercase ) ) A_ : List[str] = self.normalization(lowercase ) A_ : List[Any] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = config.num_channels A_ : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) A_ : Optional[int] = self.embedder(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : int = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) A_ : str = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(lowercase ) , training=lowercase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) A_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.pooler(lowercase ) for layer_module in self.attention: A_ : Optional[Any] = layer_module(lowercase ) A_ : Optional[int] = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : str = in_channels != out_channels or stride != 1 A_ : Optional[int] = max(1 , out_channels // config.groups_width ) A_ : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : Optional[int] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] A_ : List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = hidden_state for layer_module in self.layers: A_ : int = layer_module(lowercase ) A_ : Union[str, Any] = self.shortcut(lowercase ) hidden_state += residual A_ : Dict = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : str = in_channels != out_channels or stride != 1 A_ : int = max(1 , out_channels // config.groups_width ) A_ : Optional[int] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : List[str] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] A_ : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = hidden_state for layer_module in self.layers: A_ : Tuple = layer_module(lowercase ) A_ : int = self.shortcut(lowercase ) hidden_state += residual A_ : str = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Tuple = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : Tuple = layer_module(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Dict = hidden_states + (hidden_state,) A_ : List[Any] = stage_module(lowercase ) if output_hidden_states: A_ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[Any] = config A_ : int = TFRegNetEmbeddings(lowercase , name='embedder' ) A_ : str = TFRegNetEncoder(lowercase , name='encoder' ) A_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict A_ : Union[str, Any] = self.embedder(lowercase , training=lowercase ) A_ : Optional[int] = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Dict = encoder_outputs[0] A_ : List[Any] = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules A_ : Union[str, Any] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __A , ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : int = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : Tuple = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __A , ) class UpperCAmelCase ( __A , __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : List[Any] = config.num_labels A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head A_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : List[Any] = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] A_ : List[Any] = self.classifier[0](lowercase ) A_ : Union[str, Any] = self.classifier[1](lowercase ) A_ : List[str] = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: A_ : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
70
1
'''simple docstring''' class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = {} # Mapping from char to TrieNode _A = False def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : list[str] ) -> None: for word in words: self.insert(UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : str ) -> None: _A = self for char in word: if char not in curr.nodes: _A = TrieNode() _A = curr.nodes[char] _A = True def __UpperCAmelCase ( self : str, UpperCamelCase__ : str ) -> bool: _A = self for char in word: if char not in curr.nodes: return False _A = curr.nodes[char] return curr.is_leaf def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : str ) -> None: def _delete(UpperCamelCase__ : TrieNode, UpperCamelCase__ : str, UpperCamelCase__ : int ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False _A = False return len(curr.nodes ) == 0 _A = word[index] _A = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _A = _delete(UpperCamelCase__, UpperCamelCase__, index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self, UpperCamelCase__, 0 ) def _SCREAMING_SNAKE_CASE ( __snake_case : TrieNode , __snake_case : str ): if node.is_leaf: print(__snake_case , end=' ' ) for key, value in node.nodes.items(): print_words(__snake_case , word + key ) def _SCREAMING_SNAKE_CASE ( ): _A = 'banana bananas bandana band apple all beast'.split() _A = TrieNode() root.insert_many(__snake_case ) # print_words(root, "") assert all(root.find(__snake_case ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : bool ): print(str(__snake_case ) , 'works!' if passes else 'doesn\'t work :(' ) def _SCREAMING_SNAKE_CASE ( ): assert test_trie() def _SCREAMING_SNAKE_CASE ( ): print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
107
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase_ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __UpperCAmelCase ( self : Any, UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Any ) -> List[str]: _A = TextaTextGenerationPipeline(model=UpperCamelCase__, tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ) -> List[str]: _A = generator('Something there' ) self.assertEqual(UpperCamelCase__, [{'generated_text': ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _A = generator(['This is great !', 'Something else'], num_return_sequences=2, do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ], ) _A = generator( ['This is great !', 'Something else'], num_return_sequences=2, batch_size=2, do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ], ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _A = pipeline('text2text-generation', model='patrickvonplaten/t5-tiny-random', framework='pt' ) # do_sample=False necessary for reproducibility _A = generator('Something there', do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, [{'generated_text': ''}] ) _A = 3 _A = generator( 'Something there', num_return_sequences=UpperCamelCase__, num_beams=UpperCamelCase__, ) _A = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) _A = generator('This is a test', do_sample=UpperCamelCase__, num_return_sequences=2, return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ) _A = generator.model.config.eos_token_id _A = '<pad>' _A = generator( ['This is a test', 'This is a second test'], do_sample=UpperCamelCase__, num_return_sequences=2, batch_size=2, return_tensors=UpperCamelCase__, ) self.assertEqual( UpperCamelCase__, [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ], ) @require_tf def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _A = pipeline('text2text-generation', model='patrickvonplaten/t5-tiny-random', framework='tf' ) # do_sample=False necessary for reproducibility _A = generator('Something there', do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, [{'generated_text': ''}] )
107
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : List[str] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
595
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : Optional[int] = get_logger(__name__) __A : Dict = Path(__file__).parent / "model_card_template.md" __A : Dict = uuida().hex __A : Union[str, Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __A : List[str] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __A : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def lowercase ( UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A__ : Union[str, Any] =F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(UpperCamelCase , UpperCamelCase ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(UpperCamelCase , UpperCamelCase ): ua += "; " + user_agent return ua def lowercase ( UpperCamelCase : str , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A__ : Tuple =HfFolder.get_token() if organization is None: A__ : Tuple =whoami(UpperCamelCase )["name"] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def lowercase ( UpperCamelCase : List[Any] , UpperCamelCase : str ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(UpperCamelCase , "local_rank" ) and args.local_rank not in [-1, 0]: return A__ : int =args.hub_token if hasattr(UpperCamelCase , "hub_token" ) else None A__ : Dict =get_full_repo_name(UpperCamelCase , token=UpperCamelCase ) A__ : Any =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=UpperCamelCase , model_name=UpperCamelCase , repo_name=UpperCamelCase , dataset_name=args.dataset_name if hasattr(UpperCamelCase , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(UpperCamelCase , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(UpperCamelCase , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(UpperCamelCase , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(UpperCamelCase , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(UpperCamelCase , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(UpperCamelCase , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(UpperCamelCase , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(UpperCamelCase , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) A__ : str =os.path.join(args.output_dir , "README.md" ) model_card.save(UpperCamelCase ) def lowercase ( UpperCamelCase : Optional[str] , UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A__ : Any =str(Path(UpperCamelCase ).as_posix() ) A__ : List[Any] =re.search(R"snapshots/([^/]+)/" , UpperCamelCase ) if search is None: return None A__ : List[Any] =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Optional[Any] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __A : Dict = os.path.join(hf_cache_home, "diffusers") def lowercase ( UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A__ : List[Any] =DIFFUSERS_CACHE if old_cache_dir is None: A__ : Optional[Any] =old_diffusers_cache A__ : int =Path(UpperCamelCase ).expanduser() A__ : Any =Path(UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A__ : List[Any] =new_cache_dir / old_blob_path.relative_to(UpperCamelCase ) new_blob_path.parent.mkdir(parents=UpperCamelCase , exist_ok=UpperCamelCase ) os.replace(UpperCamelCase , UpperCamelCase ) try: os.symlink(UpperCamelCase , UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : List[str] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __A : str = 0 else: with open(cache_version_file) as f: try: __A : Optional[Any] = int(f.read()) except ValueError: __A : List[Any] = 0 if cache_version < 1: __A : str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __A : str = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ "the directory exists and can be written to." ) def lowercase ( UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A__ : Dict =weights_name.split("." ) A__ : List[str] =splits[:-1] + [variant] + splits[-1:] A__ : str =".".join(UpperCamelCase ) return weights_name def lowercase ( UpperCamelCase : List[str] , *, UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any]=None , ): """simple docstring""" A__ : Optional[int] =str(UpperCamelCase ) if os.path.isfile(UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(UpperCamelCase ): if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) ): # Load from a PyTorch checkpoint A__ : Tuple =os.path.join(UpperCamelCase , UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(UpperCamelCase , UpperCamelCase , UpperCamelCase ) ): A__ : str =os.path.join(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A__ : Any =hf_hub_download( UpperCamelCase , filename=_add_variant(UpperCamelCase , UpperCamelCase ) , cache_dir=UpperCamelCase , force_download=UpperCamelCase , proxies=UpperCamelCase , resume_download=UpperCamelCase , local_files_only=UpperCamelCase , use_auth_token=UpperCamelCase , user_agent=UpperCamelCase , subfolder=UpperCamelCase , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , UpperCamelCase , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(UpperCamelCase , UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(UpperCamelCase , UpperCamelCase )}\' so that the correct variant file can be added.''' , UpperCamelCase , ) try: # 2. Load model file as usual A__ : List[Any] =hf_hub_download( UpperCamelCase , filename=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , proxies=UpperCamelCase , resume_download=UpperCamelCase , local_files_only=UpperCamelCase , use_auth_token=UpperCamelCase , user_agent=UpperCamelCase , subfolder=UpperCamelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
595
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPanoramaPipeline __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase_ = DDIMScheduler() torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=0 ): '''simple docstring''' lowercase_ = torch.manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = sd_pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = """french fries""" lowercase_ = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = sd_pipe(**UpperCamelCase__ , view_batch_size=2 ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase_ = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = sd_pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=UpperCamelCase__ ) lowercase_ = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = sd_pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int=0 ): '''simple docstring''' lowercase_ = torch.manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """stabilityai/stable-diffusion-2-base""" lowercase_ = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder="""scheduler""" ) lowercase_ = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = self.get_inputs() lowercase_ = pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowercase_ = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=UpperCamelCase__ ) lowercase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = self.get_inputs() lowercase_ = pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowercase_ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = 0 def callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor ) -> None: lowercase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase_ = latents[0, -3:, -3:, -1] lowercase_ = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase_ = latents[0, -3:, -3:, -1] lowercase_ = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase_ = False lowercase_ = """stabilityai/stable-diffusion-2-base""" lowercase_ = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder="""scheduler""" ) lowercase_ = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = """stabilityai/stable-diffusion-2-base""" lowercase_ = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder="""scheduler""" ) lowercase_ = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase_ = self.get_inputs() lowercase_ = pipe(**UpperCamelCase__ ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
412
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCAmelCase_ ( UpperCAmelCase__ ): return np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase__ : def __init__( self : Any , *, UpperCamelCase__ : float = np.inf , UpperCamelCase__ : str = "linear" , UpperCamelCase__ : float = 0.0 , ): '''simple docstring''' lowercase_ = regularization lowercase_ = gamma if kernel == "linear": lowercase_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) lowercase_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase_ = F'''Unknown kernel: {kernel}''' raise ValueError(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ndarray , UpperCamelCase__ : ndarray ): '''simple docstring''' return np.dot(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : ndarray , UpperCamelCase__ : ndarray ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : list[ndarray] , UpperCamelCase__ : ndarray ): '''simple docstring''' lowercase_ = observations lowercase_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowercase_) , ) = np.shape(UpperCamelCase__ ) def to_minimize(UpperCamelCase__ : ndarray ) -> float: lowercase_ = 0 ((lowercase_) , ) = np.shape(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(UpperCamelCase__ ) lowercase_ = LinearConstraint(UpperCamelCase__ , 0 , 0 ) lowercase_ = Bounds(0 , self.regularization ) lowercase_ = minimize( UpperCamelCase__ , np.ones(UpperCamelCase__ ) , bounds=UpperCamelCase__ , constraints=[ly_contraint] ).x lowercase_ = l_star # calculating mean offset of separation plane to points lowercase_ = 0 for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase_ = s / n def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : ndarray ): '''simple docstring''' lowercase_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCamelCase__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
412
1
'''simple docstring''' from manim import * class lowerCAmelCase ( a ): def lowercase ( self ): lowerCAmelCase : int = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCAmelCase : Any = [mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : str = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : str = VGroup(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Dict = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case__ ) lowerCAmelCase : str = [mem.copy() for i in range(1 )] lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Optional[int] = Text('GPU' , font_size=24 ) lowerCAmelCase : List[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) gpu.align_to(snake_case__ , snake_case__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case__ ) lowerCAmelCase : Dict = [mem.copy() for i in range(6 )] lowerCAmelCase : Dict = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Tuple = Text('Model' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , ) lowerCAmelCase : Tuple = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case__ , run_time=2.5 ) , Write(snake_case__ ) , Write(snake_case__ ) ) self.add(snake_case__ ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for i, rect in enumerate(snake_case__ ): lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(snake_case__ , opacity=0.7 ) cpu_target.move_to(snake_case__ ) cpu_target.generate_target() lowerCAmelCase : str = 0.4_6 / 4 lowerCAmelCase : Optional[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=snake_case__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case__ , buff=0.0 ) cpu_targs.append(snake_case__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case__ ) ) second_animations.append(MoveToTarget(snake_case__ , run_time=1.5 ) ) self.play(*snake_case__ ) self.play(*snake_case__ ) self.wait()
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _A ): return (data["data"], data["target"]) def lowerCamelCase__ ( _A , _A ): a : int = XGBClassifier() classifier.fit(_A , _A ) return classifier def lowerCamelCase__ ( ): a : Optional[int] = load_iris() a , a : Any = data_handling(_A ) a , a , a , a : Union[str, Any] = train_test_split( _A , _A , test_size=0.25 ) a : List[str] = iris['target_names'] # Create an XGBoost Classifier from the training data a : Optional[Any] = xgboost(_A , _A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _A , _A , _A , display_labels=_A , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
_UpperCAmelCase : int = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _snake_case : def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : int=13 ,SCREAMING_SNAKE_CASE__ : Optional[int]=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : str=99 ,SCREAMING_SNAKE_CASE__ : Optional[int]=64 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=5 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,SCREAMING_SNAKE_CASE__ : List[str]=37 ,SCREAMING_SNAKE_CASE__ : int="gelu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : Optional[int]=16 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=3 ,SCREAMING_SNAKE_CASE__ : str=4 ,SCREAMING_SNAKE_CASE__ : Tuple=None ,): SCREAMING_SNAKE_CASE:Optional[int] = parent SCREAMING_SNAKE_CASE:List[Any] = batch_size SCREAMING_SNAKE_CASE:Optional[int] = seq_length SCREAMING_SNAKE_CASE:List[str] = is_training SCREAMING_SNAKE_CASE:Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE:Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE:Dict = use_labels SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Optional[Any] = hidden_size SCREAMING_SNAKE_CASE:Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE:int = num_attention_heads SCREAMING_SNAKE_CASE:Tuple = intermediate_size SCREAMING_SNAKE_CASE:str = hidden_act SCREAMING_SNAKE_CASE:Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Any = max_position_embeddings SCREAMING_SNAKE_CASE:List[Any] = type_vocab_size SCREAMING_SNAKE_CASE:List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE:str = initializer_range SCREAMING_SNAKE_CASE:List[str] = num_labels SCREAMING_SNAKE_CASE:Optional[int] = num_choices SCREAMING_SNAKE_CASE:Dict = scope SCREAMING_SNAKE_CASE:Tuple = vocab_size - 1 def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE:Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE:Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE:int = None if self.use_labels: SCREAMING_SNAKE_CASE:Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE:List[str] = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : Tuple ): return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE:List[str] = True return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Optional[int] = GPTNeoXModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = True SCREAMING_SNAKE_CASE:Dict = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:Any = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:List[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = self.num_labels SCREAMING_SNAKE_CASE:str = GPTNeoXForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:List[str] = self.num_labels SCREAMING_SNAKE_CASE:Dict = GPTNeoXForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:Tuple = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:List[str] = self.num_labels SCREAMING_SNAKE_CASE:Optional[Any] = GPTNeoXForTokenClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:Optional[Any] = True SCREAMING_SNAKE_CASE:Optional[Any] = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE:List[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,use_cache=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE:Optional[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE:Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE:List[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE:str = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = output_from_no_past["hidden_states"][0] SCREAMING_SNAKE_CASE:Tuple = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,past_key_values=SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,)["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE:Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE:Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE:List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = config_and_inputs SCREAMING_SNAKE_CASE:Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _a , _a , _a , unittest.TestCase ): _A : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _A : str = (GPTNeoXForCausalLM,) if is_torch_available() else () _A : Tuple = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = False _A : List[Any] = False _A : int = False _A : Optional[Any] = False def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Optional[int] = GPTNeoXModelTester(self ) SCREAMING_SNAKE_CASE:int = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,hidden_size=64 ,num_attention_heads=8 ) def __UpperCamelCase ( self : Any ): self.config_tester.run_common_tests() def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ): # This regression test was failing with PyTorch < 1.3 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE:Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ): SCREAMING_SNAKE_CASE:List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __UpperCamelCase ( self : List[Any] ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE:Any = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE:Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE:Optional[Any] = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) original_model.to(SCREAMING_SNAKE_CASE__ ) original_model.eval() SCREAMING_SNAKE_CASE:Optional[int] = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state SCREAMING_SNAKE_CASE:List[Any] = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE:str = {"type": scaling_type, "factor": 10.0} SCREAMING_SNAKE_CASE:str = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) scaled_model.to(SCREAMING_SNAKE_CASE__ ) scaled_model.eval() SCREAMING_SNAKE_CASE:str = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state SCREAMING_SNAKE_CASE:Tuple = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-5 ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Union[str, Any] = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: SCREAMING_SNAKE_CASE:Tuple = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = tokenizer("My favorite food is" ,return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 SCREAMING_SNAKE_CASE:Optional[int] = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" SCREAMING_SNAKE_CASE:List[Any] = model.generate(**SCREAMING_SNAKE_CASE__ ,do_sample=SCREAMING_SNAKE_CASE__ ,max_new_tokens=20 ) SCREAMING_SNAKE_CASE:int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
143
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case ): # Load configuration defined in the metadata file with open(snake_case ) as metadata_file: SCREAMING_SNAKE_CASE:str = json.load(snake_case ) SCREAMING_SNAKE_CASE:List[str] = LukeConfig(use_entity_aware_attention=snake_case , **metadata["model_config"] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE:Tuple = torch.load(snake_case , map_location="cpu" ) # Load the entity vocab file SCREAMING_SNAKE_CASE:Dict = load_entity_vocab(snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE:Dict = AddedToken("<ent>" , lstrip=snake_case , rstrip=snake_case ) SCREAMING_SNAKE_CASE:List[Any] = AddedToken("<ent2>" , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(snake_case , snake_case ) SCREAMING_SNAKE_CASE:str = LukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE:Optional[Any] = state_dict["embeddings.word_embeddings.weight"] SCREAMING_SNAKE_CASE:Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE:Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE:Union[str, Any] = F'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE:List[Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE:List[Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE:List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE:str = state_dict["entity_embeddings.entity_embeddings.weight"] SCREAMING_SNAKE_CASE:int = entity_emb[entity_vocab["[MASK]"]] SCREAMING_SNAKE_CASE:str = LukeModel(config=snake_case ).eval() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = model.load_state_dict(snake_case , strict=snake_case ) if not (len(snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(snake_case )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs SCREAMING_SNAKE_CASE:Optional[Any] = LukeTokenizer.from_pretrained(snake_case , task="entity_classification" ) SCREAMING_SNAKE_CASE:Tuple = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) SCREAMING_SNAKE_CASE:List[str] = (39, 42) SCREAMING_SNAKE_CASE:int = tokenizer(snake_case , entity_spans=[span] , add_prefix_space=snake_case , return_tensors="pt" ) SCREAMING_SNAKE_CASE:Any = model(**snake_case ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 42, 1024) ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 42, 768) ) SCREAMING_SNAKE_CASE:int = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE:Union[str, Any] = torch.Size((1, 1, 1024) ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE:Any = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(snake_case ) ) model.save_pretrained(snake_case ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = {} with open(snake_case , "r" , encoding="utf-8" ) as f: for index, line in enumerate(snake_case ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = line.rstrip().split("\t" ) SCREAMING_SNAKE_CASE:str = index return entity_vocab if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) A_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
143
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( a_ ): _lowerCamelCase : torch.FloatTensor class lowercase ( a_, a_ ): @register_to_config def __init__( self , _snake_case = 6_5536 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ) -> List[str]: super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ : List[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Dict = block_out_channels[0] * 4 UpperCAmelCase_ : List[Any] = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : int = nn.ModuleList([]) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = nn.ModuleList([]) UpperCAmelCase_ : Any = None # down UpperCAmelCase_ : Dict = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : int = i == len(_snake_case) - 1 UpperCAmelCase_ : Any = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ : Optional[int] = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ : Union[str, Any] = list(reversed(_snake_case)) UpperCAmelCase_ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Tuple = out_channels else: UpperCAmelCase_ : int = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ : Dict = output_channel UpperCAmelCase_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ : str = i == len(_snake_case) - 1 UpperCAmelCase_ : Union[str, Any] = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ : Any = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case = True , ) -> Union[UNetaDOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ : Tuple = timesteps[None].to(sample.device) UpperCAmelCase_ : Any = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(_snake_case) else: UpperCAmelCase_ : int = timestep_embed[..., None] UpperCAmelCase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : List[Any] = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ : int = down_block_res_samples[-1:] UpperCAmelCase_ : Tuple = down_block_res_samples[:-1] UpperCAmelCase_ : List[Any] = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ : Optional[Any] = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
471
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,) -> List[Any]: if attention_mask is None: UpperCAmelCase_ : Tuple = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: UpperCAmelCase_ : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=16 , _snake_case=2 , _snake_case=4 , _snake_case=4 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=32 , _snake_case=2 , _snake_case=1 , _snake_case=0 , _snake_case=0.02 , ) -> int: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Optional[Any] = eos_token_id UpperCAmelCase_ : Tuple = pad_token_id UpperCAmelCase_ : List[Any] = bos_token_id UpperCAmelCase_ : Optional[int] = initializer_range def _snake_case ( self) -> Any: UpperCAmelCase_ : int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) UpperCAmelCase_ : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) UpperCAmelCase_ : Optional[int] = shift_tokens_right(_snake_case , 1 , 2) UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_snake_case , ) UpperCAmelCase_ : List[Any] = prepare_blenderbot_inputs_dict(_snake_case , _snake_case , _snake_case) return config, inputs_dict def _snake_case ( self) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Tuple: UpperCAmelCase_ : Optional[Any] = 20 UpperCAmelCase_ : str = model_class_name(_snake_case) UpperCAmelCase_ : Dict = model.encode(inputs_dict['input_ids']) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase_ : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , _snake_case , _snake_case) UpperCAmelCase_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4') UpperCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=_snake_case , decoder_position_ids=_snake_case , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') UpperCAmelCase_ : Any = model.decode( decoder_input_ids[:, -1:] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_snake_case , ) UpperCAmelCase_ : Optional[int] = model.decode(_snake_case , _snake_case) UpperCAmelCase_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> int: UpperCAmelCase_ : int = 20 UpperCAmelCase_ : Optional[int] = model_class_name(_snake_case) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict['input_ids']) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase_ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , _snake_case , _snake_case) UpperCAmelCase_ : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=_snake_case , decoder_position_ids=_snake_case , ) UpperCAmelCase_ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , _snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_snake_case , decoder_position_ids=_snake_case , ) UpperCAmelCase_ : Any = model.decode(_snake_case , _snake_case , decoder_attention_mask=_snake_case) UpperCAmelCase_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") @require_flax class lowercase ( unittest.TestCase ): _lowerCamelCase : Union[str, Any]= 99 def _snake_case ( self) -> int: UpperCAmelCase_ : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = self._get_config_and_data() UpperCAmelCase_ : str = FlaxBlenderbotSmallForConditionalGeneration(_snake_case) UpperCAmelCase_ : Union[str, Any] = lm_model(input_ids=_snake_case) UpperCAmelCase_ : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _snake_case) def _snake_case ( self) -> Tuple: UpperCAmelCase_ : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_snake_case) UpperCAmelCase_ : Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) UpperCAmelCase_ : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) UpperCAmelCase_ : List[str] = lm_model(input_ids=_snake_case , decoder_input_ids=_snake_case) UpperCAmelCase_ : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _snake_case) def _snake_case ( self) -> Optional[Any]: UpperCAmelCase_ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) UpperCAmelCase_ : List[str] = shift_tokens_right(_snake_case , 1 , 2) UpperCAmelCase_ : Dict = np.equal(_snake_case , 1).astype(np.floataa).sum() UpperCAmelCase_ : Union[str, Any] = np.equal(_snake_case , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(_snake_case , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class lowercase ( a_, unittest.TestCase, a_ ): _lowerCamelCase : str= True _lowerCamelCase : Union[str, Any]= ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _lowerCamelCase : Optional[int]= (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self) -> Optional[Any]: UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallModelTester(self) def _snake_case ( self) -> str: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_snake_case , _snake_case , _snake_case) def _snake_case ( self) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_snake_case , _snake_case , _snake_case) def _snake_case ( self) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ : Dict = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ : Union[str, Any] = model_class(_snake_case) @jax.jit def encode_jitted(_snake_case , _snake_case=None , **_snake_case): return model.encode(input_ids=_snake_case , attention_mask=_snake_case) with self.subTest('JIT Enabled'): UpperCAmelCase_ : Optional[int] = encode_jitted(**_snake_case).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): UpperCAmelCase_ : Optional[int] = encode_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def _snake_case ( self) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ : Tuple = model_class(_snake_case) UpperCAmelCase_ : Union[str, Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask']) UpperCAmelCase_ : str = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_snake_case , _snake_case , _snake_case): return model.decode( decoder_input_ids=_snake_case , decoder_attention_mask=_snake_case , encoder_outputs=_snake_case , ) with self.subTest('JIT Enabled'): UpperCAmelCase_ : Tuple = decode_jitted(**_snake_case).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) @slow def _snake_case ( self) -> Any: for model_class_name in self.all_model_classes: UpperCAmelCase_ : Any = model_class_name.from_pretrained('facebook/blenderbot_small-90M') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[Any] = np.ones((1, 1)) * model.config.eos_token_id UpperCAmelCase_ : Dict = model(_snake_case) self.assertIsNotNone(_snake_case)
471
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : int = """huggingface/label-files""" A : Optional[int] = """imagenet-1k-id2label.json""" A : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A : Any = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A : Any = {v: k for k, v in idalabel.items()} A : Dict = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A : str = BitConfig( conv_layer=_lowerCAmelCase , num_labels=1000 , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase , ) return config def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" if "stem.conv" in name: A : Tuple = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: A : Optional[int] = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: A : Optional[int] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): A : Tuple = """bit.""" + name if "bit" not in name and "classifier" not in name: A : Dict = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: """simple docstring""" A : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> List[str]: """simple docstring""" A : Optional[Any] = get_config(_lowerCAmelCase ) # load original model from timm A : Dict = create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model A : Optional[int] = timm_model.state_dict() for key in state_dict.copy().keys(): A : List[str] = state_dict.pop(_lowerCAmelCase ) A : List[Any] = val.squeeze() if """head""" in key else val # load HuggingFace model A : List[Any] = BitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # create image processor A : Union[str, Any] = create_transform(**resolve_data_config({} , model=_lowerCAmelCase ) ) A : List[Any] = transform.transforms A : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } A : Tuple = BitImageProcessor( do_resize=_lowerCAmelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCAmelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A : Optional[Any] = prepare_img() A : Optional[Any] = transform(_lowerCAmelCase ).unsqueeze(0 ) A : Optional[Any] = processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) # verify logits with torch.no_grad(): A : List[str] = model(_lowerCAmelCase ) A : Any = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) A : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) SCREAMING_SNAKE_CASE_:int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
662
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE_:Optional[int] = logging.getLogger(__name__) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = bnb_quantization_config.load_in_abit A : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) A : Any = [] # custom device map if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(device_map.keys() ) > 1: A : Optional[int] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A : int = get_keys_to_not_convert(_lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowerCAmelCase ) A : Optional[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A : Dict = [] A : Tuple = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowerCAmelCase ) # compatibility with peft A : Union[str, Any] = load_in_abit A : Tuple = load_in_abit A : List[str] = get_parameter_device(_lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) A : Optional[int] = replace_with_bnb_layers(_lowerCAmelCase , _lowerCAmelCase , modules_to_not_convert=_lowerCAmelCase ) # convert param to the right dtype A : Tuple = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A : Optional[Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) A : int = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowerCAmelCase ): param.to(_lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): A : str = replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , modules_to_not_convert=_lowerCAmelCase ) A : Optional[Any] = get_quantized_model_device_map( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , max_memory=_lowerCAmelCase , no_split_module_classes=_lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A : Tuple = True A : int = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowerCAmelCase , offload_state_dict=_lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowerCAmelCase , device_map=_lowerCAmelCase , offload_dir=_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[int]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): A : Optional[int] = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) A : Tuple = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A : Any = {} A : List[str] = special_dtypes A : Any = no_split_module_classes A : Union[str, Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A : Tuple = get_balanced_memory( _lowerCAmelCase , low_zero=(device_map == """balanced_low_0""") , max_memory=_lowerCAmelCase , **_lowerCAmelCase , ) A : int = max_memory A : Any = infer_auto_device_map(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # check if don't have any quantized module on the cpu A : Optional[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A : Optional[int] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: A : Optional[Any] = [] A , A : Dict = _replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> int: """simple docstring""" A : Optional[int] = False for name, module in model.named_children(): if current_key_name is None: A : int = [] current_key_name.append(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A : Dict = """.""".join(_lowerCAmelCase ) A : Optional[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A : Dict = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A : Optional[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) A : Any = module.weight.data if module.bias is not None: A : Any = module.bias.data bnb_module.requires_grad_(_lowerCAmelCase ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Dict = True if len(list(module.children() ) ) > 0: A , A : Dict = _replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" with init_empty_weights(): A : Tuple = deepcopy(_lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A : Optional[int] = find_tied_parameters(_lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A : Optional[int] = sum(_lowerCAmelCase , [] ) A : Tuple = len(_lowerCAmelCase ) > 0 # Check if it is a base model A : List[str] = False if hasattr(_lowerCAmelCase , """base_model_prefix""" ): A : Optional[Any] = not hasattr(_lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A : str = list(model.named_children() ) A : Tuple = [list_modules[-1][0]] # add last module together with tied weights A : int = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) A : Optional[Any] = list(set(_lowerCAmelCase ) ) + list(_lowerCAmelCase ) # remove ".weight" from the keys A : Union[str, Any] = [""".weight""", """.bias"""] A : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A : List[str] = name.replace(_lowerCAmelCase , """""" ) filtered_module_names.append(_lowerCAmelCase ) return filtered_module_names def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[int]: """simple docstring""" for m in model.modules(): if isinstance(_lowerCAmelCase , bnb.nn.Linearabit ): return True return False def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[int]: """simple docstring""" return next(parameter.parameters() ).device def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_lowerCAmelCase , _lowerCAmelCase , 0 , dtype=_lowerCAmelCase , value=_lowerCAmelCase ) A : Tuple = param_name A : Union[str, Any] = model if "." in tensor_name: A : int = tensor_name.split(""".""" ) for split in splits[:-1]: A : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) A : Optional[Any] = new_module A : List[str] = splits[-1] # offload weights A : Optional[int] = False offload_weight(module._parameters[tensor_name] , _lowerCAmelCase , _lowerCAmelCase , index=_lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _lowerCAmelCase , index=_lowerCAmelCase , ) else: offload_weight(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index=_lowerCAmelCase ) offload_weight(_lowerCAmelCase , param_name.replace("""weight""" , """SCB""" ) , _lowerCAmelCase , index=_lowerCAmelCase ) set_module_tensor_to_device(_lowerCAmelCase , _lowerCAmelCase , """meta""" , dtype=_lowerCAmelCase , value=torch.empty(*param.size() ) )
662
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: str = list(__A ) lowercase__: Optional[Any] = list(__A ) lowercase__: str = 0 for i in range(len(__A ) ): if lista[i] != lista[i]: count += 1 lowercase__: Union[str, Any] = '''_''' if count > 1: return False else: return "".join(__A ) def A( snake_case_ ): """simple docstring""" lowercase__: int = [] while True: lowercase__: Optional[int] = ['''$'''] * len(__A ) lowercase__: int = [] for i in range(len(__A ) ): for j in range(i + 1 , len(__A ) ): lowercase__: str = compare_string(binary[i] , binary[j] ) if k is False: lowercase__: List[str] = '''*''' lowercase__: Any = '''*''' temp.append("X" ) for i in range(len(__A ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__A ) == 0: return pi lowercase__: Union[str, Any] = list(set(__A ) ) def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: str = [] for minterm in minterms: lowercase__: Dict = '''''' for _ in range(__A ): lowercase__: Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__A ) return temp def A( snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" lowercase__: Dict = list(__A ) lowercase__: Tuple = list(__A ) lowercase__: int = 0 for i in range(len(__A ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: Optional[Any] = [] lowercase__: List[str] = [0] * len(__A ) for i in range(len(chart[0] ) ): lowercase__: int = 0 lowercase__: List[Any] = -1 for j in range(len(__A ) ): if chart[j][i] == 1: count += 1 lowercase__: List[Any] = j if count == 1: lowercase__: int = 1 for i in range(len(__A ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__A ) ): lowercase__: Any = 0 temp.append(prime_implicants[i] ) while True: lowercase__: Any = 0 lowercase__: Any = -1 lowercase__: List[str] = 0 for i in range(len(__A ) ): lowercase__: List[Any] = chart[i].count(1 ) if count_n > max_n: lowercase__: Dict = count_n lowercase__: Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__A ) ): lowercase__: int = 0 def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: List[Any] = [[0 for x in range(len(__A ) )] for x in range(len(__A ) )] for i in range(len(__A ) ): lowercase__: Union[str, Any] = prime_implicants[i].count("_" ) for j in range(len(__A ) ): if is_for_table(prime_implicants[i] , binary[j] , __A ): lowercase__: Union[str, Any] = 1 return chart def A( ): """simple docstring""" lowercase__: Union[str, Any] = int(input("Enter the no. of variables\n" ) ) lowercase__: Dict = [ float(__A ) for x in input( "Enter the decimal representation of Minterms \'Spaces Separated\'\n" ).split() ] lowercase__: int = decimal_to_binary(__A , __A ) lowercase__: Tuple = check(__A ) print("Prime Implicants are:" ) print(__A ) lowercase__: Optional[Any] = prime_implicant_chart(__A , __A ) lowercase__: Tuple = selection(__A , __A ) print("Essential Prime Implicants are:" ) print(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( lowercase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ = ConsistencyModelPipeline UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' lowercase__: List[str] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: Any = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def __lowercase ( self , UpperCAmelCase_=False) -> str: '''simple docstring''' if class_cond: lowercase__: List[str] = self.dummy_cond_unet else: lowercase__: List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowercase__: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: Any = { "unet": unet, "scheduler": scheduler, } return components def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=0) -> Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): lowercase__: List[str] = torch.manual_seed(UpperCAmelCase_) else: lowercase__: Optional[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowercase__: Optional[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: List[str] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: List[str] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: List[str] = image[0, -3:, -3:, -1] lowercase__: Union[str, Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> Any: '''simple docstring''' lowercase__: Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: Optional[Any] = self.get_dummy_components(class_cond=UpperCAmelCase_) lowercase__: List[str] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: Union[str, Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = 0 lowercase__: Union[str, Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: Optional[int] = image[0, -3:, -3:, -1] lowercase__: Optional[int] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: str = self.get_dummy_components() lowercase__: Optional[int] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: List[str] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: str = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Any = 1 lowercase__: str = None lowercase__: Dict = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: List[Any] = image[0, -3:, -3:, -1] lowercase__: int = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> str: '''simple docstring''' lowercase__: List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components(class_cond=UpperCAmelCase_) lowercase__: Any = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: int = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = 1 lowercase__: Tuple = None lowercase__: int = 0 lowercase__: str = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: Tuple = image[0, -3:, -3:, -1] lowercase__: Union[str, Any] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , UpperCAmelCase_=0 , UpperCAmelCase_=False , UpperCAmelCase_="cpu" , UpperCAmelCase_=torch.floataa , UpperCAmelCase_=(1, 3, 64, 64)) -> List[Any]: '''simple docstring''' lowercase__: Any = torch.manual_seed(UpperCAmelCase_) lowercase__: Union[str, Any] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: lowercase__: Dict = self.get_fixed_latents(seed=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ , shape=UpperCAmelCase_) lowercase__: Tuple = latents return inputs def __lowercase ( self , UpperCAmelCase_=0 , UpperCAmelCase_="cpu" , UpperCAmelCase_=torch.floataa , UpperCAmelCase_=(1, 3, 64, 64)) -> Tuple: '''simple docstring''' if type(UpperCAmelCase_) == str: lowercase__: Optional[int] = torch.device(UpperCAmelCase_) lowercase__: Any = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowercase__: Optional[int] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) return latents def __lowercase ( self) -> int: '''simple docstring''' lowercase__: int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: List[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Any = self.get_inputs() lowercase__: Any = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = image[0, -3:, -3:, -1] lowercase__: Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: str = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[str] = self.get_inputs() lowercase__: Optional[int] = 1 lowercase__: int = None lowercase__: List[Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: int = image[0, -3:, -3:, -1] lowercase__: List[Any] = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def __lowercase ( self) -> Optional[int]: '''simple docstring''' lowercase__: Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: Dict = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[str] = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): lowercase__: Union[str, Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] lowercase__: Any = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def __lowercase ( self) -> Any: '''simple docstring''' lowercase__: int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: List[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[Any] = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) lowercase__: Optional[Any] = 1 lowercase__: Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): lowercase__: str = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: Any = image[0, -3:, -3:, -1] lowercase__: Any = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
120
0
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=64 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' UpperCamelCase : Dict = parent UpperCamelCase : int = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : int = use_input_mask UpperCamelCase : Optional[Any] = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Any = embedding_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : List[Any] = type_vocab_size UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : List[str] = num_choices UpperCamelCase : Tuple = scope def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : List[str] = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Dict = None UpperCamelCase : Union[str, Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = MegatronBertModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Optional[Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase : Dict = model(A_ , token_type_ids=A_ ) UpperCamelCase : Union[str, Any] = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = MegatronBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Optional[int] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = MegatronBertForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = MegatronBertForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = MegatronBertForPreTraining(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = MegatronBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Union[str, Any] = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.num_labels UpperCamelCase : Optional[int] = MegatronBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : List[str] = MegatronBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[str] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = self.num_choices UpperCamelCase : int = MegatronBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Any = config_and_inputs UpperCamelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True # test_resize_embeddings = False _UpperCAmelCase :Optional[Any] = False def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Any = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): UpperCamelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = MegatronBertModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A_ ) def A_ ( _lowerCAmelCase ) -> int: return torch.tensor( _lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase , ) __lowerCamelCase : Optional[int] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: UpperCamelCase : Union[str, Any] = os.path.join(os.environ["MYDIR"] , A_ ) UpperCamelCase : List[Any] = MegatronBertModel.from_pretrained(A_ ) model.to(A_ ) model.half() UpperCamelCase : Optional[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase : Tuple = model(A_ )[0] UpperCamelCase : Dict = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A_ ) UpperCamelCase : Union[str, Any] = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): UpperCamelCase : List[str] = output[0, ii, jj] UpperCamelCase : List[Any] = expected[3 * ii + jj] UpperCamelCase : Optional[Any] = "ii={} jj={} a={} b={}".format(A_ , A_ , A_ , A_ ) self.assertTrue(math.isclose(A_ , A_ , rel_tol=A_ , abs_tol=A_ ) , msg=A_ )
629
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): UpperCamelCase__ = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: UpperCamelCase__ = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : int = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ : List[str] = numpy_to_pil(snake_case_ ) return images def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if images.ndim == 3: lowercase_ : List[str] = images[None, ...] lowercase_ : int = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ : str = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowercase_ : Tuple = [Image.fromarray(snake_case_ ) for image in images] return pil_images
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
"""simple docstring""" from functools import lru_cache @lru_cache def _lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
0
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __SCREAMING_SNAKE_CASE : Any = '''''' while len(lowercase_ ) % 3 != 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''0''' + bin_string __SCREAMING_SNAKE_CASE : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(lowercase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __SCREAMING_SNAKE_CASE : Tuple = 0 for index, val in enumerate(lowercase_ ): oct_val += int(2 ** (2 - index) * int(lowercase_ ) ) oct_string += str(lowercase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
401
"""simple docstring""" from math import pow, sqrt def lowerCAmelCase_ ( *lowercase_ : float ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = len(lowercase_ ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
401
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE_ = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class snake_case_ ( _lowerCamelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = GPTaTokenizer def __init__( self , a_=None , a_=None , a_=None , a_="<|endoftext|>" , a_="<|endoftext|>" , a_="<|endoftext|>" , a_=False , **a_ , ): super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) a_ : List[str] = kwargs.pop("add_bos_token" , _A ) a_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _A ) != add_prefix_space: a_ : Optional[int] = getattr(_A , pre_tok_state.pop("type" ) ) a_ : List[str] = add_prefix_space a_ : List[Any] = pre_tok_class(**_A ) a_ : Dict = add_prefix_space def snake_case_ ( self , *a_ , **a_ ): a_ : List[str] = kwargs.get("is_split_into_words" , _A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def snake_case_ ( self , *a_ , **a_ ): a_ : Any = kwargs.get("is_split_into_words" , _A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def snake_case_ ( self , a_ , a_ = None ): a_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def snake_case_ ( self , a_ ): a_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: a_ : int = input_ids[-self.model_max_length :] return input_ids
237
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Tuple = AlbertTokenizer _UpperCamelCase : Dict = AlbertTokenizerFast _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = True def __a ( self : int ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : List[Any] = AlbertTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : List[Any] , _A : Tuple ) -> Any: """simple docstring""" lowercase : int = '''this is a test''' lowercase : List[str] = '''this is a test''' return input_text, output_text def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = '''<pad>''' lowercase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __a ( self : int ) -> List[Any]: """simple docstring""" lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_A ) , 30_000 ) def __a ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __a ( self : Optional[int] ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return lowercase : List[Any] = self.get_tokenizer() lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = '''I was born in 92000, and this is falsé.''' lowercase : int = tokenizer.tokenize(_A ) lowercase : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) lowercase : Tuple = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) lowercase : List[Any] = self.get_rust_tokenizer() lowercase : Dict = tokenizer.encode(_A ) lowercase : List[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Union[str, Any] = AlbertTokenizer(_A , keep_accents=_A ) lowercase : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [48, 25, 21, 1_289] ) lowercase : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) lowercase : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowercase : Any = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple = AlbertTokenizer(_A ) lowercase : List[str] = tokenizer.encode('''sequence builders''' ) lowercase : int = tokenizer.encode('''multi-sequence build''' ) lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_A ) lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
217
0
"""simple docstring""" from __future__ import annotations snake_case = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] snake_case = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def snake_case ( lowerCAmelCase_ ) -> list[float]: _snake_case = [] _snake_case = len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _snake_case = -1 for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] < arr[j]: _snake_case = arr[j] break result.append(lowerCAmelCase_ ) return result def snake_case ( lowerCAmelCase_ ) -> list[float]: _snake_case = [] for i, outer in enumerate(lowerCAmelCase_ ): _snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: _snake_case = inner break result.append(lowerCAmelCase_ ) return result def snake_case ( lowerCAmelCase_ ) -> list[float]: _snake_case = len(lowerCAmelCase_ ) _snake_case = [] _snake_case = [-1] * arr_size for index in reversed(range(lowerCAmelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) snake_case = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
710
"""simple docstring""" def snake_case ( lowerCAmelCase_ = 1000 ) -> int: return sum(e for e in range(3 , lowerCAmelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
404
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def snake_case ( ): '''simple docstring''' __lowercase = [randint(-1_000 , 1_000 ) for i in range(10 )] __lowercase = randint(-5_000 , 5_000 ) return (arr, r) __UpperCamelCase : Any = make_dataset() def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' for triplet in permutations(lowerCamelCase , 3 ): if sum(lowerCamelCase ) == target: return tuple(sorted(lowerCamelCase ) ) return (0, 0, 0) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' arr.sort() __lowercase = len(lowerCamelCase ) for i in range(n - 1 ): __lowercase , __lowercase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def snake_case ( ): '''simple docstring''' __lowercase = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ __lowercase = """ triplet_sum1(*dataset) """ __lowercase = """ triplet_sum2(*dataset) """ __lowercase = repeat(setup=lowerCamelCase , stmt=lowerCamelCase , repeat=5 , number=10_000 ) __lowercase = repeat(setup=lowerCamelCase , stmt=lowerCamelCase , repeat=5 , number=10_000 ) return (min(lowerCamelCase ), min(lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase : Tuple = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
80
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __A ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
211
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
from __future__ import annotations from collections.abc import Callable def a ( snake_case__: Callable[[int | float], int | float] , snake_case__: int | float , snake_case__: int | float , snake_case__: int = 100 , ): '''simple docstring''' lowercase_ = x_start lowercase_ = fnc(snake_case__ ) lowercase_ = 0.0 for _ in range(snake_case__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase_ = (x_end - x_start) / steps + xa lowercase_ = fnc(snake_case__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase_ = xa lowercase_ = fxa return area if __name__ == "__main__": def a ( snake_case__: List[Any] ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __a = 1_0 while i <= 1_0_0_0_0_0: print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
409
0
"""simple docstring""" from __future__ import annotations class lowercase__: '''simple docstring''' def __init__( self :Optional[Any] , lowerCamelCase_ :int = 0 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = key def __lowerCAmelCase ( self :int , lowerCamelCase_ :str , lowerCamelCase_ :int ) -> list[str]: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :int ) -> list[str]: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :int = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned SCREAMING_SNAKE_CASE : int = '''''' for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :int = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :int = 0 ) -> bool: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True def __lowerCAmelCase ( self :Any , lowerCamelCase_ :str , lowerCamelCase_ :int ) -> bool: '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE_ () -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
716
'''simple docstring''' import sys import turtle def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) _A : Any =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') _A : Dict =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
631
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
656
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A : Optional[int] = None __A : Union[str, Any] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : str = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A : List[str] = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } __A : Tuple = "▁" class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : Any = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = BigBirdTokenizer __magic_name__ : Any = ["""input_ids""", """attention_mask"""] __magic_name__ : List[int] = [] def __init__( self : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any]="<unk>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[Any]="[SEP]" , UpperCamelCase__ : List[Any]="[MASK]" , UpperCamelCase__ : str="[CLS]" , **UpperCamelCase__ : List[Any] , ): A__ : Optional[int] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A__ : Optional[Any] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A__ : Optional[int] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token A__ : int =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token A__ : str =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A__ : List[Any] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : str =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : List[Any] =vocab_file A__ : Optional[int] =False if not self.vocab_file else True def _UpperCAmelCase ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Tuple =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def _UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : List[str] =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
656
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a__ =tuple[int, int] class snake_case : """simple docstring""" def __init__( self : Tuple , __A : set[int] , __A : Mapping[EdgeT, int] ): __UpperCamelCase = vertices __UpperCamelCase = { (min(__A ), max(__A )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self : Optional[Any] , __A : EdgeT , __A : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __UpperCamelCase = weight def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = Graph({min(self.vertices )} , {} ) __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 while len(subgraph.vertices ) < len(self.vertices ): __UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __UpperCamelCase = edge __UpperCamelCase = weight subgraph.add_edge(__A , __A ) return subgraph def lowercase__ ( __lowercase : str = "p107_network.txt" ) -> int: """simple docstring""" __UpperCamelCase = os.path.abspath(os.path.dirname(__lowercase ) ) __UpperCamelCase = os.path.join(__lowercase , __lowercase ) __UpperCamelCase = {} __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 with open(__lowercase ) as f: __UpperCamelCase = f.read().strip().split('\n' ) __UpperCamelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(__lowercase ) ): for edgea in range(__lowercase ): if adjaceny_matrix[edgea][edgea] != "-": __UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) __UpperCamelCase = Graph(set(range(len(__lowercase ) ) ) , __lowercase ) __UpperCamelCase = graph.prims_algorithm() __UpperCamelCase = sum(graph.edges.values() ) __UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
708
'''simple docstring''' a__ : dict[str, float] ={ "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } a__ : dict[str, float] ={ "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def lowercase__ ( __lowercase : float , __lowercase : str , __lowercase : str ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(__lowercase )}''' ) raise ValueError(__lowercase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
434
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A ( SCREAMING_SNAKE_CASE__ ): def __get__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCAmelCase__ = "__cached_" + self.fget.__name__ lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if cached is None: lowerCAmelCase__ = self.fget(__magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) return cached def A ( UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def A ( UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' if is_torch_fx_proxy(UpperCamelCase_ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : Any ) -> Any: '''simple docstring''' return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return _is_numpy(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.Tensor ) def A ( UpperCamelCase_ : str ) -> Optional[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.device ) def A ( UpperCamelCase_ : Any ) -> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) else: return False return isinstance(UpperCamelCase_ , torch.dtype ) def A ( UpperCamelCase_ : int ) -> Any: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase_ ) def A ( UpperCamelCase_ : str ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(UpperCamelCase_ , tf.Tensor ) def A ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase_ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(UpperCamelCase_ ) return type(UpperCamelCase_ ) == tf.Tensor def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase_ , jnp.ndarray ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' return False if not is_flax_available() else _is_jax(UpperCamelCase_ ) def A ( UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return [to_py_obj(UpperCamelCase_ ) for o in obj] elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ).tolist() elif isinstance(UpperCamelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( UpperCamelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return np.array(UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ) else: return obj class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = fields(self ) # Safety and consistency checks if not len(__magic_name__ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCAmelCase__ = getattr(self , class_fields[0].name ) lowerCAmelCase__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__magic_name__ ): if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = first_field.items() lowerCAmelCase__ = True else: try: lowerCAmelCase__ = iter(__magic_name__ ) lowerCAmelCase__ = True except TypeError: lowerCAmelCase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__magic_name__ ): if ( not isinstance(__magic_name__ , (list, tuple) ) or not len(__magic_name__ ) == 2 or not isinstance(element[0] , __magic_name__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCAmelCase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCAmelCase__ = element[1] elif first_field is not None: lowerCAmelCase__ = first_field else: for field in class_fields: lowerCAmelCase__ = getattr(self , field.name ) if v is not None: lowerCAmelCase__ = v def __delitem__( self : Union[str, Any] , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , *__magic_name__ : List[Any] , **__magic_name__ : List[Any] ): """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Union[str, Any] , __magic_name__ : Optional[int] ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__magic_name__ , __magic_name__ ) super().__setattr__(__magic_name__ , __magic_name__ ) def __setitem__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] ): """simple docstring""" super().__setitem__(__magic_name__ , __magic_name__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __magic_name__ : Optional[int] ): """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :int = 'longest' snake_case__ :Optional[Any] = 'max_length' snake_case__ :str = 'do_not_pad' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'pt' snake_case__ :Union[str, Any] = 'tf' snake_case__ :Any = 'np' snake_case__ :List[str] = 'jax' class A : def __init__( self : Dict , __magic_name__ : List[ContextManager] ): """simple docstring""" lowerCAmelCase__ = context_managers lowerCAmelCase__ = ExitStack() def __enter__( self : str ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__magic_name__ ) def __exit__( self : Dict , *__magic_name__ : Dict , **__magic_name__ : int ): """simple docstring""" self.stack.__exit__(*__magic_name__ , **__magic_name__ ) def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = model_class.__name__ lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( UpperCamelCase_ : MutableMapping , UpperCamelCase_ : str = "" , UpperCamelCase_ : str = "." ) -> List[Any]: '''simple docstring''' def _flatten_dict(UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]="" , UpperCamelCase_ : Any="." ): for k, v in d.items(): lowerCAmelCase__ = str(UpperCamelCase_ ) + delimiter + str(UpperCamelCase_ ) if parent_key else k if v and isinstance(UpperCamelCase_ , UpperCamelCase_ ): yield from flatten_dict(UpperCamelCase_ , UpperCamelCase_ , delimiter=UpperCamelCase_ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) @contextmanager def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : bool = False ) -> Any: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.T if axes is None else array.permute(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.transpose(UpperCamelCase_ , perm=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for transpose: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.reshape(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.reshape(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for reshape: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=None ) -> Optional[int]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for squeeze: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.expand_dims(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.unsqueeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.size(UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.numel() elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.size(UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' for key, value in auto_map.items(): if isinstance(UpperCamelCase_ , (tuple, list) ): lowerCAmelCase__ = [F"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCAmelCase__ = F"""{repo_id}--{value}""" return auto_map def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' for base_class in inspect.getmro(UpperCamelCase_ ): lowerCAmelCase__ = base_class.__module__ lowerCAmelCase__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
48
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A : str = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''AutoTokenizer''' lowerCamelCase__ = ['''tokenizer'''] lowerCamelCase__ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Dict , __magic_name__ : str , __magic_name__ : Tuple=None ) -> Union[str, Any]: super().__init__(__magic_name__ ) SCREAMING_SNAKE_CASE_ = speaker_embeddings @classmethod def __A ( cls : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict="speaker_embeddings_path.json" , **__magic_name__ : str ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE_ = get_file_from_repo( __magic_name__ , __magic_name__ , subfolder=kwargs.pop("subfolder" , __magic_name__ ) , cache_dir=kwargs.pop("cache_dir" , __magic_name__ ) , force_download=kwargs.pop("force_download" , __magic_name__ ) , proxies=kwargs.pop("proxies" , __magic_name__ ) , resume_download=kwargs.pop("resume_download" , __magic_name__ ) , local_files_only=kwargs.pop("local_files_only" , __magic_name__ ) , use_auth_token=kwargs.pop("use_auth_token" , __magic_name__ ) , revision=kwargs.pop("revision" , __magic_name__ ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(__magic_name__ , __magic_name__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) SCREAMING_SNAKE_CASE_ = None else: with open(__magic_name__ ) as speaker_embeddings_json: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__magic_name__ , **__magic_name__ ) return cls(tokenizer=__magic_name__ , speaker_embeddings=__magic_name__ ) def __A ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Dict="speaker_embeddings_path.json" , __magic_name__ : str="speaker_embeddings" , __magic_name__ : bool = False , **__magic_name__ : Dict , ) -> int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__magic_name__ , __magic_name__ , "v2" ) , exist_ok=__magic_name__ ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE_ = self._load_voice_preset(__magic_name__ ) SCREAMING_SNAKE_CASE_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , __magic_name__ , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , F'''{prompt_key}_{key}.npy''' ) SCREAMING_SNAKE_CASE_ = tmp_dict with open(os.path.join(__magic_name__ , __magic_name__ ) , "w" ) as fp: json.dump(__magic_name__ , __magic_name__ ) super().save_pretrained(__magic_name__ , __magic_name__ , **__magic_name__ ) def __A ( self : Any , __magic_name__ : str = None , **__magic_name__ : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) SCREAMING_SNAKE_CASE_ = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , __magic_name__ ) , cache_dir=kwargs.pop("cache_dir" , __magic_name__ ) , force_download=kwargs.pop("force_download" , __magic_name__ ) , proxies=kwargs.pop("proxies" , __magic_name__ ) , resume_download=kwargs.pop("resume_download" , __magic_name__ ) , local_files_only=kwargs.pop("local_files_only" , __magic_name__ ) , use_auth_token=kwargs.pop("use_auth_token" , __magic_name__ ) , revision=kwargs.pop("revision" , __magic_name__ ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) SCREAMING_SNAKE_CASE_ = np.load(__magic_name__ ) return voice_preset_dict def __A ( self : int , __magic_name__ : Optional[dict] = None ) -> List[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any] , __magic_name__ : str=None , __magic_name__ : Optional[int]=None , __magic_name__ : int="pt" , __magic_name__ : List[str]=256 , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=True , __magic_name__ : Dict=False , **__magic_name__ : int , ) -> List[Any]: if voice_preset is not None and not isinstance(__magic_name__ , __magic_name__ ): if ( isinstance(__magic_name__ , __magic_name__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE_ = self._load_voice_preset(__magic_name__ ) else: if isinstance(__magic_name__ , __magic_name__ ) and not voice_preset.endswith(".npz" ): SCREAMING_SNAKE_CASE_ = voice_preset + ".npz" SCREAMING_SNAKE_CASE_ = np.load(__magic_name__ ) if voice_preset is not None: self._validate_voice_preset_dict(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer( __magic_name__ , return_tensors=__magic_name__ , padding="max_length" , max_length=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , ) if voice_preset is not None: SCREAMING_SNAKE_CASE_ = voice_preset return encoded_text
140
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ : Tuple = get_tests_dir('fixtures') class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> str: # A mock response for an HTTP head request to emulate server down __UpperCAmelCase = mock.Mock() __UpperCAmelCase = 500 __UpperCAmelCase = {} __UpperCAmelCase = HTTPError __UpperCAmelCase = {} # Download this model to make sure it's in the cache. __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase__ ) as mock_head: __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ (self ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ (cls ) -> int: __UpperCAmelCase = TOKEN HfFolder.save_token(lowercase__ ) @classmethod def lowerCAmelCase_ (cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase__ , use_auth_token=self._token ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase__ , use_auth_token=self._token ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ (self ) -> int: CustomFeatureExtractor.register_for_auto_class() __UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) __UpperCAmelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=lowercase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
303
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: __UpperCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
303
1
from itertools import product def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: __lowercase : Union[str, Any] = sides_number __lowercase : str = max_face_number * dice_number __lowercase : int = [0] * (max_total + 1) __lowercase : Optional[Any] = 1 __lowercase : List[Any] = range(__lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCAmelCase , repeat=__lowerCAmelCase ): __lowercase : str = sum(__lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def UpperCAmelCase_ ( ) -> float: __lowercase : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowercase : Optional[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowercase : Optional[Any] = 0 __lowercase : Optional[int] = 9 __lowercase : Optional[int] = 4 * 9 __lowercase : List[Any] = 6 for peter_total in range(__lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowercase : str = (4**9) * (6**6) __lowercase : int = peter_wins_count / total_games_number __lowercase : Optional[int] = round(__lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
715
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" A__ : Optional[datasets.Features] = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" A__ : List[str] = PandasConfig def snake_case_ ( self : int ): return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self : int , _snake_case : Optional[int] ): if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __lowercase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_snake_case , (str, list, tuple) ): __lowercase : str = data_files if isinstance(_snake_case , _snake_case ): __lowercase : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Optional[int] = [dl_manager.iter_files(_snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowercase : str = [] for split_name, files in data_files.items(): if isinstance(_snake_case , _snake_case ): __lowercase : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : int = [dl_manager.iter_files(_snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=_snake_case , gen_kwargs={'''files''': files} ) ) return splits def snake_case_ ( self : Optional[int] , _snake_case : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : List[str] = table_cast(_snake_case , self.config.features.arrow_schema ) return pa_table def snake_case_ ( self : int , _snake_case : Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_snake_case ) ): with open(_snake_case , '''rb''' ) as f: __lowercase : Dict = pa.Table.from_pandas(pd.read_pickle(_snake_case ) ) yield i, self._cast_table(_snake_case )
284
0
_lowerCamelCase : Tuple = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _lowerCamelCase : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _lowerCamelCase : Any = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _lowerCamelCase : List[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _lowerCamelCase : List[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _lowerCamelCase : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _lowerCamelCase : Optional[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _lowerCamelCase : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
87
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowercase__ ( lowerCamelCase ): return EnvironmentCommand() class _lowerCAmelCase ( __UpperCAmelCase ): @staticmethod def A ( lowerCAmelCase_ ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = parser.add_parser('env' ) download_parser.set_defaults(func=lowerCAmelCase_ ) def A ( self ) -> Any: _SCREAMING_SNAKE_CASE : int = huggingface_hub.__version__ _SCREAMING_SNAKE_CASE : Optional[Any] = 'not installed' _SCREAMING_SNAKE_CASE : Union[str, Any] = 'NA' if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.__version__ _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.is_available() _SCREAMING_SNAKE_CASE : Union[str, Any] = 'not installed' if is_transformers_available(): import transformers _SCREAMING_SNAKE_CASE : Tuple = transformers.__version__ _SCREAMING_SNAKE_CASE : Optional[int] = 'not installed' if is_accelerate_available(): import accelerate _SCREAMING_SNAKE_CASE : str = accelerate.__version__ _SCREAMING_SNAKE_CASE : str = 'not installed' if is_xformers_available(): import xformers _SCREAMING_SNAKE_CASE : Optional[int] = xformers.__version__ _SCREAMING_SNAKE_CASE : Any = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def A ( lowerCAmelCase_ ) -> int: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
621
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : int lowercase__ : int class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = [[] for _ in range(lowerCamelCase__ )] _lowerCamelCase = size def __getitem__( self , lowerCamelCase__ ): return iter(self._graph[vertex] ) @property def snake_case__ ( self ): return self._size def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase__ , lowerCamelCase__ ) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = deque([start_vertex] ) _lowerCamelCase = [None] * self.size _lowerCamelCase = 0 while queue: _lowerCamelCase = queue.popleft() _lowerCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowerCamelCase = current_distance + edge.weight _lowerCamelCase = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and new_distance >= dest_vertex_distance ): continue _lowerCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
623
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __SCREAMING_SNAKE_CASE : Optional[Any] = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase_( lowercase_ : List[Any] ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def lowerCAmelCase_( lowercase_ : List[str] ) -> List[str]: from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_ )
623
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = StableDiffusionSAGPipeline __UpperCAmelCase : List[str] = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : List[str] = False def __snake_case ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) __snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __snake_case : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) __snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case : Optional[Any] = CLIPTextModel(lowerCamelCase ) __snake_case : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __snake_case ( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]=0 ) -> List[Any]: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Dict = torch.manual_seed(lowerCamelCase ) else: __snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : int = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def __snake_case ( self : int ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[str] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) __snake_case : Tuple = sag_pipe.to(lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : int = "." __snake_case : int = torch.manual_seed(0 ) __snake_case : int = sag_pipe( [prompt] , generator=lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) __snake_case : int = output.images __snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case : List[Any] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __snake_case ( self : str ) -> Dict: __snake_case : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __snake_case : Tuple = sag_pipe.to(lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = "." __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : str = sag_pipe( [prompt] , generator=lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) __snake_case : Tuple = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case : str = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __snake_case ( self : Tuple ) -> List[str]: __snake_case : str = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __snake_case : List[Any] = sag_pipe.to(lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : int = "." __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Any = sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) __snake_case : Tuple = output.images assert image.shape == (1, 512, 768, 3)
81
def lowerCAmelCase_ ( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__lowerCamelCase , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
81
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _lowerCamelCase( _a ): @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Any = '1' _lowercase : List[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Any = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : List[str] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : Any = self.get_env() _lowercase : str = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _lowercase : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _lowercase : int = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : List[str] = self.get_env() _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # next emulate no network _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[Any] = '1' _lowercase : Optional[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import pipeline\n ' _lowercase : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _lowercase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _lowercase : Tuple = self.get_env() _lowercase : Tuple = '1' _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] _lowercase : Tuple = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 1, result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', ''), ) @require_torch def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = '\nfrom transformers import AutoModel\n ' _lowercase : int = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _lowercase : Optional[int] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : int = self.get_env() _lowercase : List[str] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Tuple = '1' _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode())
354
1
import math def __lowerCamelCase (UpperCAmelCase__ : int ): return math.sqrt(UpperCAmelCase__ ) * math.sqrt(UpperCAmelCase__ ) == num def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = n while left <= right: SCREAMING_SNAKE_CASE = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE = mid - 1 else: SCREAMING_SNAKE_CASE = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
403
from __future__ import annotations import math def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : float ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] SCREAMING_SNAKE_CASE = math.log(len(UpperCAmelCase__ ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
403
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( A__ , unittest.TestCase ): """simple docstring""" snake_case =DanceDiffusionPipeline snake_case =UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case =PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } snake_case =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case =False snake_case =False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _UpperCAmelCase =IPNDMScheduler() _UpperCAmelCase ={ "unet": unet, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase ={ "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =DanceDiffusionPipeline(**_snake_case ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =pipe(**_snake_case ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase =np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =torch_device _UpperCAmelCase =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase =np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =torch_device _UpperCAmelCase =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase =np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
592
def lowerCamelCase__ ( _lowerCamelCase = 50 ) ->int: _UpperCAmelCase =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
592
1
SCREAMING_SNAKE_CASE :Union[str, Any] = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE :Tuple = [1, 3, 5, 7, 9] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __A = 0 for digit in range(1_0 ): __A = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , a_ , a_ ) return result __A = 0 for digita in range(1_0 ): __A = digita if (remainder + digita) % 2 == 0: __A = ODD_DIGITS else: __A = EVEN_DIGITS for digita in other_parity_digits: __A = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , a_ , a_ , ) return result def UpperCAmelCase ( a_ = 9 ) -> int: """simple docstring""" __A = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a_ , 0 , [0] * length , a_ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
55
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _lowerCamelCase : List[str] = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize _lowerCamelCase : Dict = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' _lowerCamelCase : str = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' _lowerCamelCase : Union[str, Any] = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__=0.9 , lowercase__=3 , lowercase__=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version('''3.6.5''' ): __A =[ meteor_score.single_meteor_score( word_tokenize(lowercase__ ) , word_tokenize(lowercase__ ) , alpha=lowercase__ , beta=lowercase__ , gamma=lowercase__ ) for ref, pred in zip(lowercase__ , lowercase__ ) ] else: __A =[ meteor_score.single_meteor_score(lowercase__ , lowercase__ , alpha=lowercase__ , beta=lowercase__ , gamma=lowercase__ ) for ref, pred in zip(lowercase__ , lowercase__ ) ] return {"meteor": np.mean(lowercase__ )}
184
0
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> List[str]: _SCREAMING_SNAKE_CASE : Any = 1 _SCREAMING_SNAKE_CASE : str = 2 while i * i <= n: _SCREAMING_SNAKE_CASE : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase_()-> Optional[Any]: _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : Any = 1 while True: i += 1 t_num += i if count_divisors(__SCREAMING_SNAKE_CASE ) > 500: break return t_num if __name__ == "__main__": print(solution())
635
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""") _SCREAMING_SNAKE_CASE : str = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""") model.to(_A) from datasets import load_dataset _SCREAMING_SNAKE_CASE : Any = load_dataset("""nielsr/rvlcdip-demo""") _SCREAMING_SNAKE_CASE : Any = dataset["""train"""][0]["""image"""].convert("""RGB""") _SCREAMING_SNAKE_CASE : str = image_processor(_A , return_tensors="""pt""").to(_A) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Any = model(**_A) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1_6)) self.assertEqual(logits.shape , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=_A , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1e-4))
635
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 3_84 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = """gelu""" _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 5_12 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = 1_28 _UpperCamelCase = 2 _UpperCamelCase = 9 _UpperCamelCase = 1 _UpperCamelCase = None def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self , a , a , a , a , a , a , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = TFConvBertModel(config=snake_case_ ) _UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(snake_case_ ) _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFConvBertForMaskedLM(config=snake_case_ ) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , a , a , a , a , a , a , a ) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFConvBertForSequenceClassification(config=snake_case_ ) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , a , a , a , a , a , a , a ) -> str: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = TFConvBertForMultipleChoice(config=snake_case_ ) _UpperCamelCase = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , a , a , a , a , a , a , a ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFConvBertForTokenClassification(config=snake_case_ ) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFConvBertForQuestionAnswering(config=snake_case_ ) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): UpperCamelCase_ : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : Optional[int] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Union[str, Any] = False def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFConvBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def A_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = True if hasattr(snake_case_ , """use_cache""" ): _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , """key_length""" , snake_case_ ) for model_class in self.all_model_classes: _UpperCamelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCamelCase = model_class(snake_case_ ) _UpperCamelCase = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) _UpperCamelCase = os.path.join(snake_case_ , """saved_model""" , """1""" ) _UpperCamelCase = tf.keras.models.load_model(snake_case_ ) _UpperCamelCase = model(snake_case_ ) if self.is_encoder_decoder: _UpperCamelCase = outputs["""encoder_hidden_states"""] _UpperCamelCase = outputs["""encoder_attentions"""] else: _UpperCamelCase = outputs["""hidden_states"""] _UpperCamelCase = outputs["""attentions"""] self.assertEqual(len(snake_case_ ) , snake_case_ ) _UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(snake_case_ ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , """key_length""" , snake_case_ ) _UpperCamelCase = getattr(self.model_tester , """key_length""" , snake_case_ ) def check_decoder_attentions_output(a ): _UpperCamelCase = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) _UpperCamelCase = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(a ): _UpperCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = model_class(snake_case_ ) _UpperCamelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCamelCase = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: _UpperCamelCase = model_class(snake_case_ ) _UpperCamelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(snake_case_ ) _UpperCamelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(snake_case_ ) _UpperCamelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(snake_case_ )[0] _UpperCamelCase = [1, 6, 7_68] self.assertEqual(output.shape , snake_case_ ) _UpperCamelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-4 )
612
'''simple docstring''' from ...configuration_utils import PretrainedConfig __SCREAMING_SNAKE_CASE :str = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = """tapas""" def __init__( self : Any , snake_case_ : Union[str, Any]=3_0_5_2_2 , snake_case_ : Tuple=7_6_8 , snake_case_ : List[Any]=1_2 , snake_case_ : Tuple=1_2 , snake_case_ : Dict=3_0_7_2 , snake_case_ : Dict="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=1_0_2_4 , snake_case_ : Dict=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , snake_case_ : Dict=0.0_2 , snake_case_ : Optional[int]=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=1_0.0 , snake_case_ : Tuple=0 , snake_case_ : Optional[int]=1.0 , snake_case_ : Optional[Any]=None , snake_case_ : Any=1.0 , snake_case_ : List[str]=False , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=1.0 , snake_case_ : Optional[int]=1.0 , snake_case_ : Tuple=False , snake_case_ : Optional[int]=False , snake_case_ : str="ratio" , snake_case_ : Dict=None , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=6_4 , snake_case_ : Optional[int]=3_2 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : Any=False , snake_case_ : List[Any]=False , snake_case_ : List[Any]=True , snake_case_ : str=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , **snake_case_ : str , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_sizes _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters _UpperCAmelCase = positive_label_weight _UpperCAmelCase = num_aggregation_labels _UpperCAmelCase = aggregation_loss_weight _UpperCAmelCase = use_answer_as_supervision _UpperCAmelCase = answer_loss_importance _UpperCAmelCase = use_normalized_answer_loss _UpperCAmelCase = huber_loss_delta _UpperCAmelCase = temperature _UpperCAmelCase = aggregation_temperature _UpperCAmelCase = use_gumbel_for_cells _UpperCAmelCase = use_gumbel_for_aggregation _UpperCAmelCase = average_approximation_function _UpperCAmelCase = cell_selection_preference _UpperCAmelCase = answer_loss_cutoff _UpperCAmelCase = max_num_rows _UpperCAmelCase = max_num_columns _UpperCAmelCase = average_logits_per_cell _UpperCAmelCase = select_one_column _UpperCAmelCase = allow_empty_column_selection _UpperCAmelCase = init_cell_selection_weights_to_zero _UpperCAmelCase = reset_position_index_per_cell _UpperCAmelCase = disable_per_token_loss # Aggregation hyperparameters _UpperCAmelCase = aggregation_labels _UpperCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case_ ): _UpperCAmelCase = {int(snake_case_ ): v for k, v in aggregation_labels.items()}
236
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ : Dict = '▁' __magic_name__ : Optional[Any] = {'vocab_file': 'spiece.model'} __magic_name__ : int = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __magic_name__ : Optional[Any] = { 'google/pegasus-xsum': 5_1_2, } __magic_name__ : Dict = logging.get_logger(__name__) class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<pad>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<mask_2>" , __UpperCamelCase="<mask_1>" , __UpperCamelCase=None , __UpperCamelCase=103 , __UpperCamelCase = None , **__UpperCamelCase , ): A_ = offset if additional_special_tokens is not None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError( f'additional_special_tokens should be of type {type(__UpperCamelCase )}, but is' f' {type(__UpperCamelCase )}' ) A_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__UpperCamelCase ) , self.offset - 1 ) ] if len(set(__UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) A_ = additional_special_tokens_extended else: A_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , mask_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token_sent=__UpperCamelCase , offset=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) A_ = mask_token_sent A_ = vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) # add special tokens to encoder dict A_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) A_ = {v: k for k, v in self.encoder.items()} @property def lowercase_ ( self ): return len(self.sp_model ) + self.offset def lowercase_ ( self ): A_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A_ = self.__dict__.copy() A_ = None return state def __setstate__( self , __UpperCamelCase ): A_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , __UpperCamelCase ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase_ ( self , __UpperCamelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A_ = self.sp_model.piece_to_id(__UpperCamelCase ) return sp_id + self.offset def lowercase_ ( self , __UpperCamelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase_ ( self , __UpperCamelCase ): A_ = [] A_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token A_ = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def lowercase_ ( self , __UpperCamelCase=False ): return 1 def lowercase_ ( self , __UpperCamelCase ): A_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): if already_has_special_tokens: return self._special_token_mask(__UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
608
import math def lowerCAmelCase ( snake_case__ : float , snake_case__ : float )-> float: return math.pow(snake_case__ , 2 ) - a def lowerCAmelCase ( snake_case__ : float )-> float: return 2 * x def lowerCAmelCase ( snake_case__ : float )-> float: A_ = 2.0 while start <= a: A_ = math.pow(snake_case__ , 2 ) return start def lowerCAmelCase ( snake_case__ : float , snake_case__ : int = 9999 , snake_case__ : float = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 )-> float: if a < 0: raise ValueError("math domain error" ) A_ = get_initial_point(snake_case__ ) for _ in range(snake_case__ ): A_ = value A_ = value - fx(snake_case__ , snake_case__ ) / fx_derivative(snake_case__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
608
1
from __future__ import annotations from random import random class SCREAMING_SNAKE_CASE : def __init__( self : int , __lowercase : str = None ): '''simple docstring''' __a = value __a = random() __a = None __a = None def __repr__( self : Union[str, Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self : List[Any] ): '''simple docstring''' __a = str(self.value ) + """ """ __a = str(self.left or """""" ) __a = str(self.right or """""" ) return value + left + right def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __a , __a = split(root.left , UpperCAmelCase__ ) return left, root else: __a , __a = split(root.right , UpperCAmelCase__ ) return root, right def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __a = merge(left.right , UpperCAmelCase__ ) return left else: __a = merge(UpperCAmelCase__ , right.left ) return right def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = Node(UpperCAmelCase__ ) __a , __a = split(UpperCAmelCase__ , UpperCAmelCase__ ) return merge(merge(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a , __a = split(UpperCAmelCase__ , value - 1 ) __a , __a = split(UpperCAmelCase__ , UpperCAmelCase__ ) return merge(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for arg in args.split(): if arg[0] == "+": __a = insert(UpperCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": __a = erase(UpperCAmelCase__ , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def lowerCAmelCase__ ( ): """simple docstring""" __a = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) __a = input() while args != "q": __a = interact_treap(UpperCAmelCase__ , UpperCAmelCase__ ) print(UpperCAmelCase__ ) __a = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
225
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , UpperCAmelCase__ ).groups()[0] class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , __a , __a=None , __a=None ): '''simple docstring''' lowerCamelCase = file_names lowerCamelCase = image_transform lowerCamelCase = label_to_id def __len__(self ): '''simple docstring''' return len(self.file_names ) def __getitem__(self , __a ): '''simple docstring''' lowerCamelCase = self.file_names[idx] lowerCamelCase = PIL.Image.open(__a ) lowerCamelCase = raw_image.convert("RGB" ) if self.image_transform is not None: lowerCamelCase = self.image_transform(__a ) lowerCamelCase = extract_label(__a ) if self.label_to_id is not None: lowerCamelCase = self.label_to_id[label] return {"image": image, "label": label} def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if args.with_tracking: lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["lr"] lowerCamelCase = int(config["num_epochs"] ) lowerCamelCase = int(config["seed"] ) lowerCamelCase = int(config["batch_size"] ) lowerCamelCase = config["image_size"] if not isinstance(UpperCAmelCase__ , (list, tuple) ): lowerCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": lowerCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCamelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCamelCase = os.path.split(UpperCAmelCase__ )[-1].split("." )[0] accelerator.init_trackers(UpperCAmelCase__ , UpperCAmelCase__ ) # Grab all the image filenames lowerCamelCase = [os.path.join(args.data_dir , UpperCAmelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences lowerCamelCase = [extract_label(UpperCAmelCase__ ) for fname in file_names] lowerCamelCase = list(set(UpperCAmelCase__ ) ) id_to_label.sort() lowerCamelCase = {lbl: i for i, lbl in enumerate(UpperCAmelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCAmelCase__ ) torch.manual_seed(UpperCAmelCase__ ) torch.cuda.manual_seed_all(UpperCAmelCase__ ) # Split our filenames between train and validation lowerCamelCase = np.random.permutation(len(UpperCAmelCase__ ) ) lowerCamelCase = int(0.8 * len(UpperCAmelCase__ ) ) lowerCamelCase = random_perm[:cut] lowerCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCamelCase = Compose([RandomResizedCrop(UpperCAmelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCAmelCase__ , label_to_id=UpperCAmelCase__ ) # For evaluation, we use a deterministic Resize lowerCamelCase = Compose([Resize(UpperCAmelCase__ ), ToTensor()] ) lowerCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCAmelCase__ , label_to_id=UpperCAmelCase__ ) # Instantiate dataloaders. lowerCamelCase = DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) lowerCamelCase = DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = create_model("resnet50d" , pretrained=UpperCAmelCase__ , num_classes=len(UpperCAmelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCamelCase = False for param in model.get_classifier().parameters(): lowerCamelCase = True # We normalize the batches of images to be a bit faster. lowerCamelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) lowerCamelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowerCamelCase = OneCycleLR(optimizer=UpperCAmelCase__ , max_lr=UpperCAmelCase__ , epochs=UpperCAmelCase__ , steps_per_epoch=len(UpperCAmelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly lowerCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCamelCase = os.path.splitext(UpperCAmelCase__ )[0] if "epoch" in training_difference: lowerCamelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 lowerCamelCase = None else: lowerCamelCase = int(training_difference.replace("step_" , "" ) ) lowerCamelCase = resume_step // len(UpperCAmelCase__ ) resume_step -= starting_epoch * len(UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() if args.with_tracking: lowerCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCamelCase = accelerator.skip_first_batches(UpperCAmelCase__ , UpperCAmelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase = (batch["image"] - mean) / std lowerCamelCase = model(UpperCAmelCase__ ) lowerCamelCase = torch.nn.functional.cross_entropy(UpperCAmelCase__ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCamelCase = os.path.join(args.output_dir , UpperCAmelCase__ ) accelerator.save_state(UpperCAmelCase__ ) model.eval() lowerCamelCase = 0 lowerCamelCase = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase = (batch["image"] - mean) / std with torch.no_grad(): lowerCamelCase = model(UpperCAmelCase__ ) lowerCamelCase = outputs.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) lowerCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(UpperCAmelCase__ ), "epoch": epoch, } , step=UpperCAmelCase__ , ) if checkpointing_steps == "epoch": lowerCamelCase = F"""epoch_{epoch}""" if args.output_dir is not None: lowerCamelCase = os.path.join(args.output_dir , UpperCAmelCase__ ) accelerator.save_state(UpperCAmelCase__ ) if args.with_tracking: accelerator.end_training() def __lowercase( ): """simple docstring""" lowerCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=UpperCAmelCase__ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=UpperCAmelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=UpperCAmelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
623
0
def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
711
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCAmelCase_ ( snake_case__ ) -> Optional[int]: """simple docstring""" if "resnet-50" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) lowerCAmelCase__ = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes lowerCAmelCase__ = 'panoptic' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'coco-detection-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase_ ( snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val def UpperCAmelCase_ ( snake_case__ , snake_case__=False ) -> str: """simple docstring""" lowerCAmelCase__ = '' if is_panoptic: lowerCAmelCase__ = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase__ = in_proj_bias_cross_attn[:256] lowerCAmelCase__ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase__ = in_proj_bias_cross_attn[256:512] lowerCAmelCase__ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase__ = in_proj_bias_cross_attn[-256:] def UpperCAmelCase_ ( ) -> Any: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( snake_case__ , snake_case__=None , snake_case__=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_detr_config(snake_case__ ) # load original model from torch hub lowerCAmelCase__ = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(f'Converting model {model_name}...' ) lowerCAmelCase__ = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() lowerCAmelCase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: lowerCAmelCase__ = 'detr.' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image lowerCAmelCase__ = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase__ = DetrImageProcessor(format=snake_case__ ) lowerCAmelCase__ = processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ = encoding['pixel_values'] lowerCAmelCase__ = detr(snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") _lowerCAmelCase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
604
0
'''simple docstring''' import math def _lowercase ( lowerCamelCase__ : Optional[Any] ): assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _a = range(3, int(math.sqrt(__UpperCAmelCase ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Any=1, **lowerCamelCase__ : List[str] ): _a = factor * value _a = value while not is_prime(__UpperCAmelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **__UpperCAmelCase ) return value
131
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __a ( _snake_case ): __UpperCamelCase : str = 'esm' def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : str=None ,lowerCamelCase : Any=None ,lowerCamelCase : Union[str, Any]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : int=12 ,lowerCamelCase : Optional[int]=3072 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : Any=1026 ,lowerCamelCase : str=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : Union[str, Any]="absolute" ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : str=None ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : int=False ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Any=None ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,mask_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = emb_layer_norm_before __SCREAMING_SNAKE_CASE = token_dropout __SCREAMING_SNAKE_CASE = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __SCREAMING_SNAKE_CASE = EsmFoldConfig() elif isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = EsmFoldConfig(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __SCREAMING_SNAKE_CASE = get_default_vocab_list() else: __SCREAMING_SNAKE_CASE = vocab_list else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"""use_esm_attn_map""" ,lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super().to_dict() if isinstance(self.esmfold_config ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = self.esmfold_config.to_dict() return output @dataclass class __a : __UpperCamelCase : str = None __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : float = 0 __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : int = 128 __UpperCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.trunk is None: __SCREAMING_SNAKE_CASE = TrunkConfig() elif isinstance(self.trunk ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.trunk.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 48 __UpperCamelCase : int = 1024 __UpperCamelCase : int = 128 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : float = 0 __UpperCamelCase : float = 0 __UpperCamelCase : bool = False __UpperCamelCase : int = 4 __UpperCamelCase : Optional[int] = 128 __UpperCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.structure_module is None: __SCREAMING_SNAKE_CASE = StructureModuleConfig() elif isinstance(self.structure_module ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __SCREAMING_SNAKE_CASE = self.sequence_state_dim // self.sequence_head_width __SCREAMING_SNAKE_CASE = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.structure_module.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 384 __UpperCamelCase : int = 128 __UpperCamelCase : int = 16 __UpperCamelCase : int = 128 __UpperCamelCase : int = 12 __UpperCamelCase : int = 4 __UpperCamelCase : int = 8 __UpperCamelCase : float = 0.1 __UpperCamelCase : int = 8 __UpperCamelCase : int = 1 __UpperCamelCase : int = 2 __UpperCamelCase : int = 7 __UpperCamelCase : int = 10 __UpperCamelCase : float = 1E-8 __UpperCamelCase : float = 1E5 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return asdict(self ) def __magic_name__ ( ) -> Dict: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
109
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = """owlvit_text_model""" def __init__( self : Optional[int] , __lowerCamelCase : List[Any]=49_408 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=2_048 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=8 , __lowerCamelCase : int=16 , __lowerCamelCase : Optional[int]="quick_gelu" , __lowerCamelCase : str=1E-5 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Optional[Any]=1.0 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Tuple=49_406 , __lowerCamelCase : List[Any]=49_407 , **__lowerCamelCase : int , ): super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Optional[Any] = vocab_size UpperCamelCase :Union[str, Any] = hidden_size UpperCamelCase :str = intermediate_size UpperCamelCase :int = num_hidden_layers UpperCamelCase :Optional[Any] = num_attention_heads UpperCamelCase :Dict = max_position_embeddings UpperCamelCase :Optional[int] = hidden_act UpperCamelCase :int = layer_norm_eps UpperCamelCase :Union[str, Any] = attention_dropout UpperCamelCase :Any = initializer_range UpperCamelCase :int = initializer_factor @classmethod def _A ( cls : List[str] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[Any] ): cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCamelCase :Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : int = """owlvit_vision_model""" def __init__( self : str , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=3_072 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : int=768 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Optional[int]="quick_gelu" , __lowerCamelCase : Any=1E-5 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : List[str]=1.0 , **__lowerCamelCase : str , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Any = intermediate_size UpperCamelCase :Any = num_hidden_layers UpperCamelCase :List[str] = num_attention_heads UpperCamelCase :List[Any] = num_channels UpperCamelCase :int = image_size UpperCamelCase :Optional[int] = patch_size UpperCamelCase :List[Any] = hidden_act UpperCamelCase :List[str] = layer_norm_eps UpperCamelCase :Optional[Any] = attention_dropout UpperCamelCase :str = initializer_range UpperCamelCase :Any = initializer_factor @classmethod def _A ( cls : str , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[Any] ): cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCamelCase :Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = """owlvit""" snake_case__ : Any = True def __init__( self : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Optional[Any]=2.6592 , __lowerCamelCase : List[Any]=True , **__lowerCamelCase : int , ): super().__init__(**__lowerCamelCase ) if text_config is None: UpperCamelCase :int = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCamelCase :Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCamelCase :Tuple = OwlViTTextConfig(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = OwlViTVisionConfig(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = projection_dim UpperCamelCase :Union[str, Any] = logit_scale_init_value UpperCamelCase :List[Any] = return_dict UpperCamelCase :List[Any] = 1.0 @classmethod def _A ( cls : Optional[int] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[int] ): cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _A ( cls : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict , **__lowerCamelCase : int ): UpperCamelCase :List[str] = {} UpperCamelCase :Optional[int] = text_config UpperCamelCase :List[str] = vision_config return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) def _A ( self : str ): UpperCamelCase :Optional[int] = copy.deepcopy(self.__dict__ ) UpperCamelCase :int = self.text_config.to_dict() UpperCamelCase :int = self.vision_config.to_dict() UpperCamelCase :int = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( _a ): @property def _A ( self : int ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _A ( self : Dict ): return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _A ( self : int ): return 1E-4 def _A ( self : Dict , __lowerCamelCase : "ProcessorMixin" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : Optional["TensorType"] = None , ): UpperCamelCase :Union[str, Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , framework=__lowerCamelCase ) UpperCamelCase :Optional[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=__lowerCamelCase , framework=__lowerCamelCase ) return {**text_input_dict, **image_input_dict} @property def _A ( self : Dict ): return 14
590
import random from typing import Any def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list ) -> list[Any]: """simple docstring""" for _ in range(len(__magic_name__ ) ): UpperCamelCase :Dict = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase :List[str] = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase , UpperCamelCase :List[Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : str = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
590
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a ( A__ ) -> int: '''simple docstring''' return EnvironmentCommand() def a ( A__ ) -> int: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : int = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Any , _lowercase : int , *_lowercase : int ): SCREAMING_SNAKE_CASE__ : Any = accelerate_config_file def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE__ : int = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE__ : Any = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" SCREAMING_SNAKE_CASE__ : int = '''not installed''' SCREAMING_SNAKE_CASE__ : List[str] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): SCREAMING_SNAKE_CASE__ : int = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else f"""\t{accelerate_config}""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : int = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Tuple = torch.__version__ SCREAMING_SNAKE_CASE__ : int = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ : int = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE__ : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE__ : List[Any] = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE__ : int = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[str] = '''not installed''' SCREAMING_SNAKE_CASE__ : int = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE__ : Optional[int] = flax.__version__ SCREAMING_SNAKE_CASE__ : Optional[int] = jax.__version__ SCREAMING_SNAKE_CASE__ : int = jaxlib.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Any ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( __a : List[str] ): """simple docstring""" a__ = tmp_path / """file.csv""" a__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def A_ ( __a : Union[str, Any] ): """simple docstring""" a__ = tmp_path / """malformed_file.csv""" a__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def A_ ( __a : Tuple , __a : Union[str, Any] ): """simple docstring""" a__ = tmp_path / """csv_with_image.csv""" a__ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def A_ ( __a : int ): """simple docstring""" a__ = tmp_path / """csv_with_label.csv""" a__ = textwrap.dedent( """\ label good bad good """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def A_ ( __a : Optional[Any] ): """simple docstring""" a__ = tmp_path / """csv_with_int_list.csv""" a__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) def A_ ( __a : Dict , __a : Any , __a : Optional[Any] ): """simple docstring""" a__ = Csv() a__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__a , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__a ) in record.message for record in caplog.records ) @require_pil def A_ ( __a : int ): """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: a__ = f.read().splitlines()[1] a__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) a__ = csv._generate_tables([[csv_file_with_image]] ) a__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() a__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( __a : Optional[Any] ): """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: a__ = f.read().splitlines()[1:] a__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) a__ = csv._generate_tables([[csv_file_with_label]] ) a__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() a__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__a ) for label in labels] def A_ ( __a : str ): """simple docstring""" a__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __a : [int(__a ) for i in x.split()]} ) a__ = csv._generate_tables([[csv_file_with_int_list]] ) a__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) a__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
351
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
351
1
"""simple docstring""" def _snake_case ( snake_case__ : int = 10 ): if not isinstance(snake_case__ , snake_case__ ) or n < 0: raise ValueError('Invalid input' ) A = 10**n A = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
91
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = ['''model.decoder.embed_positions.weights'''] def A__ ( A__ ) -> Any: '''simple docstring''' if "emb" in name: _UpperCAmelCase = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _UpperCAmelCase = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _UpperCAmelCase = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _UpperCAmelCase = name.replace("linear1" , "fc1" ) if "linear2" in name: _UpperCAmelCase = name.replace("linear2" , "fc2" ) if "norm1" in name: _UpperCAmelCase = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _UpperCAmelCase = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _UpperCAmelCase = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _UpperCAmelCase = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _UpperCAmelCase = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCAmelCase = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A__ ( A__ , A__ ) -> Tuple[Dict, Dict]: '''simple docstring''' _UpperCAmelCase = list(state_dict.keys() ) _UpperCAmelCase = {} for key in keys: _UpperCAmelCase = state_dict.pop(A__ ) _UpperCAmelCase = rename_keys(A__ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCAmelCase = val[:hidden_size, :] _UpperCAmelCase = val[hidden_size : 2 * hidden_size, :] _UpperCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCAmelCase = val else: _UpperCAmelCase = val return state_dict, enc_dec_proj_state_dict def A__ ( A__ ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values _UpperCAmelCase = 1024 _UpperCAmelCase = 24 _UpperCAmelCase = 16 elif checkpoint == "medium": _UpperCAmelCase = 1536 _UpperCAmelCase = 48 _UpperCAmelCase = 24 elif checkpoint == "large": _UpperCAmelCase = 2048 _UpperCAmelCase = 48 _UpperCAmelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) _UpperCAmelCase = MusicgenDecoderConfig( hidden_size=A__ , ffn_dim=hidden_size * 4 , num_hidden_layers=A__ , num_attention_heads=A__ , ) return config @torch.no_grad() def A__ ( A__ , A__=None , A__=None , A__="cpu" ) -> Dict: '''simple docstring''' _UpperCAmelCase = MusicGen.get_pretrained(A__ , device=A__ ) _UpperCAmelCase = decoder_config_from_checkpoint(A__ ) _UpperCAmelCase = fairseq_model.lm.state_dict() _UpperCAmelCase , _UpperCAmelCase = rename_state_dict( A__ , hidden_size=decoder_config.hidden_size ) _UpperCAmelCase = TaEncoderModel.from_pretrained("t5-base" ) _UpperCAmelCase = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCAmelCase = MusicgenForCausalLM(A__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCAmelCase , _UpperCAmelCase = decoder.load_state_dict(A__ , strict=A__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(A__ ) if len(A__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(A__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model _UpperCAmelCase = MusicgenForConditionalGeneration(text_encoder=A__ , audio_encoder=A__ , decoder=A__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(A__ ) # check we can do a forward pass _UpperCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _UpperCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _UpperCAmelCase = model(input_ids=A__ , decoder_input_ids=A__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCAmelCase = AutoTokenizer.from_pretrained("t5-base" ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _UpperCAmelCase = MusicgenProcessor(feature_extractor=A__ , tokenizer=A__ ) # set the appropriate bos/pad token ids _UpperCAmelCase = 2048 _UpperCAmelCase = 2048 # set other default generation config params _UpperCAmelCase = int(30 * audio_encoder.config.frame_rate ) _UpperCAmelCase = True _UpperCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(A__ ).mkdir(exist_ok=A__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(A__ ) processor.push_to_hub(A__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
426
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "num_encoder_blocks" ) ) class A__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple=13 , lowerCamelCase__ : List[str]=64 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[Any]=[2, 2, 2, 2] , lowerCamelCase__ : str=[8, 4, 2, 1] , lowerCamelCase__ : Union[str, Any]=[16, 32, 64, 128] , lowerCamelCase__ : int=[1, 4, 8, 16] , lowerCamelCase__ : List[Any]=[1, 2, 4, 8] , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[str]="gelu" , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Optional[Any]=None , ): a__ : List[str] = parent a__ : Any = batch_size a__ : Union[str, Any] = image_size a__ : Optional[int] = num_channels a__ : Union[str, Any] = num_encoder_blocks a__ : List[str] = sr_ratios a__ : str = depths a__ : Any = hidden_sizes a__ : Dict = downsampling_rates a__ : Union[str, Any] = num_attention_heads a__ : Optional[Any] = is_training a__ : Tuple = use_labels a__ : Optional[int] = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : Union[str, Any] = initializer_range a__ : Any = num_labels a__ : Any = scope def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : int = None if self.use_labels: a__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : List[Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase( self : List[str] ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ): a__ : Optional[Any] = SegformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Union[str, Any] = model(lowerCamelCase__ ) a__ : List[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ): a__ : int = self.num_labels a__ : Union[str, Any] = SegformerForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a__ : Any = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ): a__ : Dict = 1 a__ : Dict = SegformerForSemanticSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase__ ) a__ : Dict = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCamelCase( self : int ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__ : List[str] = config_and_inputs a__ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Optional[Any] ): a__ : List[Any] = SegformerModelTester(self ) a__ : List[str] = SegformerConfigTester(self , config_class=lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): self.config_tester.run_common_tests() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : str ): a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def _UpperCamelCase( self : Any ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def _UpperCamelCase( self : Tuple ): pass def _UpperCamelCase( self : List[str] ): a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[int] = True for model_class in self.all_model_classes: a__ : Optional[int] = True a__ : Union[str, Any] = False a__ : Union[str, Any] = True a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) a__ : List[Any] = outputs.attentions a__ : int = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : Tuple = True a__ : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) a__ : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first attentions (first block, first layer) a__ : str = (self.model_tester.image_size // 4) ** 2 a__ : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__ : List[str] = (self.model_tester.image_size // 32) ** 2 a__ : List[str] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__ : int = len(lowerCamelCase__ ) # Check attention is always last and order is fine a__ : Optional[int] = True a__ : Dict = True a__ : List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a__ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase__ ) ) a__ : int = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first attentions (first block, first layer) a__ : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _UpperCamelCase( self : Tuple ): def check_hidden_states_output(lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ): a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a__ : Dict = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) a__ : int = outputs.hidden_states a__ : Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Any = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.model_tester.is_training: return a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ): continue a__ : Optional[int] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Optional[int] = model(**lowerCamelCase__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase( self : Union[str, Any] ): pass @slow def _UpperCamelCase( self : int ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : str = SegformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Union[str, Any]: a__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase( self : Tuple ): # only resize + normalize a__ : List[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) a__ : Dict = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( lowerCamelCase__ ) a__ : Any = prepare_img() a__ : int = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) a__ : Any = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): a__ : Union[str, Any] = model(lowerCamelCase__ ) a__ : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : Any = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Optional[int] ): # only resize + normalize a__ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) a__ : str = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(lowerCamelCase__ ) a__ : Any = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) a__ : int = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): a__ : Tuple = model(lowerCamelCase__ ) a__ : int = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-1 ) ) @slow def _UpperCamelCase( self : str ): # only resize + normalize a__ : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) a__ : List[Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( lowerCamelCase__ ) a__ : Union[str, Any] = prepare_img() a__ : Any = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) a__ : Union[str, Any] = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): a__ : str = model(lowerCamelCase__ ) a__ : List[Any] = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Tuple = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
151
def UpperCamelCase_ ( __a ) -> int: if not isinstance(__a , __a ): raise TypeError("only integers accepted as input" ) else: a__ : Union[str, Any] = str(abs(__a ) ) a__ : Dict = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int("".join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
151
1
snake_case_ : Optional[int] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
691
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
1
'''simple docstring''' from __future__ import annotations from random import choice def _SCREAMING_SNAKE_CASE( snake_case_ : int ) ->str: '''simple docstring''' return choice(__snake_case ) def _SCREAMING_SNAKE_CASE( snake_case_ : Dict , snake_case_ : Any ) ->List[Any]: '''simple docstring''' _lowercase : Any = random_pivot(__snake_case ) # partition based on pivot # linear time _lowercase : str = [e for e in lst if e < pivot] _lowercase : Union[str, Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__snake_case ) < k - 1: return kth_number(__snake_case , k - len(__snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase__ = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
411
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : List[str] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''gpt_bigcode''' a__ = ['''past_key_values'''] a__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :List[Any] , lowerCAmelCase__ :Any=50_257 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=768 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :int=12 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[str]="gelu_pytorch_tanh" , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=50_256 , lowerCAmelCase__ :List[str]=50_256 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=True , **lowerCAmelCase__ :Union[str, Any] , ) -> Any: '''simple docstring''' snake_case_ : List[Any] = vocab_size snake_case_ : Any = n_positions snake_case_ : Any = n_embd snake_case_ : Optional[Any] = n_layer snake_case_ : List[Any] = n_head snake_case_ : Tuple = n_inner snake_case_ : str = activation_function snake_case_ : Union[str, Any] = resid_pdrop snake_case_ : Optional[Any] = embd_pdrop snake_case_ : Any = attn_pdrop snake_case_ : List[Any] = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : int = scale_attn_weights snake_case_ : Union[str, Any] = use_cache snake_case_ : Dict = attention_softmax_in_fpaa snake_case_ : Any = scale_attention_softmax_in_fpaa snake_case_ : List[str] = multi_query snake_case_ : List[str] = bos_token_id snake_case_ : Any = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
653
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def a_ ( _A , _A=False ) -> List[str]: """simple docstring""" try: snake_case__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case__ = default else: # KEY is set, convert it to True or False. try: snake_case__ = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value __UpperCamelCase : Any = parse_flag_from_env("""RUN_SLOW""", default=False) def a_ ( _A ) -> str: """simple docstring""" return unittest.skip('Test was skipped' )(_A ) def a_ ( _A ) -> int: """simple docstring""" return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_A ) def a_ ( _A ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_A ) def a_ ( _A ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_A ) def a_ ( _A ) -> Any: """simple docstring""" return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_A ) def a_ ( _A ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_A ) def a_ ( _A ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_A ) def a_ ( _A ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_A ) def a_ ( _A ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_A ) def a_ ( _A ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_A ) def a_ ( _A ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_A ) def a_ ( _A ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_A ) def a_ ( _A ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_A ) def a_ ( _A ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_A ) def a_ ( _A ) -> Dict: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_A ) def a_ ( _A ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_A ) def a_ ( _A=None , _A=None ) -> Union[str, Any]: """simple docstring""" if test_case is None: return partial(_A , version=_A ) return unittest.skipUnless(is_torch_version('>=' , _A ) , f'''test requires torch version >= {version}''' )(_A ) def a_ ( _A ) -> str: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_A ) def a_ ( _A ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_A ) def a_ ( _A ) -> str: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_A ) __UpperCamelCase : str = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def a_ ( _A ) -> Dict: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_A ) class __SCREAMING_SNAKE_CASE( unittest.TestCase ): _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls: str ) -> int: snake_case__ = tempfile.mkdtemp() @classmethod def lowerCAmelCase_ ( cls: List[str] ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase_ ( self: Dict ) -> int: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase ) class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: List[str] ) -> List[str]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Union[mock.Mock, List[mock.Mock]] ) -> Tuple: snake_case__ = mocks if isinstance(UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def a_ ( _A ) -> Union[str, Any]: """simple docstring""" snake_case__ = AcceleratorState() snake_case__ = tensor[None].clone().to(state.device ) snake_case__ = gather(_A ).cpu() snake_case__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _A ): return False return True class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] ) -> Tuple: snake_case__ = returncode snake_case__ = stdout snake_case__ = stderr async def a_ ( _A , _A ) -> List[Any]: """simple docstring""" while True: snake_case__ = await stream.readline() if line: callback(_A ) else: break async def a_ ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(_A ) ) snake_case__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case__ = [] snake_case__ = [] def tee(_A , _A , _A , _A="" ): snake_case__ = line.decode('utf-8' ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label='stderr:' ) ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def a_ ( _A , _A=None , _A=None , _A=180 , _A=False , _A=True ) -> _RunOutput: """simple docstring""" snake_case__ = asyncio.get_event_loop() snake_case__ = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) snake_case__ = ' '.join(_A ) if result.returncode > 0: snake_case__ = '\n'.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class __SCREAMING_SNAKE_CASE( a_ ): pass def a_ ( _A , _A=False ) -> Dict: """simple docstring""" try: snake_case__ = subprocess.check_output(_A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_A , 'decode' ): snake_case__ = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(_A )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
372
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = ["""names""", """prefix"""] __UpperCamelCase : List[str] = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] __UpperCamelCase : Dict = ["""encoding_errors""", """on_bad_lines"""] __UpperCamelCase : Any = ["""date_format"""] @dataclass class __SCREAMING_SNAKE_CASE( datasets.BuilderConfig ): _UpperCAmelCase = "," _UpperCAmelCase = None _UpperCAmelCase = "infer" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = "." _UpperCAmelCase = None _UpperCAmelCase = '"' _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0 _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = 1_0_0_0_0 _UpperCAmelCase = None _UpperCAmelCase = "strict" _UpperCAmelCase = "error" _UpperCAmelCase = None def lowerCAmelCase_ ( self: Tuple ) -> int: if self.delimiter is not None: snake_case__ = self.delimiter if self.column_names is not None: snake_case__ = self.column_names @property def lowerCAmelCase_ ( self: Optional[int] ) -> List[str]: snake_case__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE( datasets.ArrowBasedBuilder ): _UpperCAmelCase = CsvConfig def lowerCAmelCase_ ( self: str ) -> int: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Dict ) -> int: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase , (str, list, tuple) ): snake_case__ = data_files if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [files] snake_case__ = [dl_manager.iter_files(UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [files] snake_case__ = [dl_manager.iter_files(UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def lowerCAmelCase_ ( self: int , UpperCamelCase: pa.Table ) -> pa.Table: if self.config.features is not None: snake_case__ = self.config.features.arrow_schema if all(not require_storage_cast(UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast snake_case__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case__ = table_cast(UpperCamelCase , UpperCamelCase ) return pa_table def lowerCAmelCase_ ( self: str , UpperCamelCase: Tuple ) -> Tuple: snake_case__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase ) ): snake_case__ = pd.read_csv(UpperCamelCase , iterator=UpperCamelCase , dtype=UpperCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCamelCase ): snake_case__ = pa.Table.from_pandas(UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCamelCase )}: {e}''' ) raise
372
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['input_features', 'is_longer'] def __init__( self , snake_case_=64 , snake_case_=4_8000 , snake_case_=480 , snake_case_=10 , snake_case_=1024 , snake_case_=0.0 , snake_case_=False , snake_case_ = 0 , snake_case_ = 1_4000 , snake_case_ = None , snake_case_ = "fusion" , snake_case_ = "repeatpad" , **snake_case_ , ): super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _A = top_db _A = truncation _A = padding _A = fft_window_size _A = (fft_window_size >> 1) + 1 _A = hop_length _A = max_length_s _A = max_length_s * sampling_rate _A = sampling_rate _A = frequency_min _A = frequency_max _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale='htk' , ) _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm='slaney' , mel_scale='slaney' , ) def lowerCAmelCase__ ( self ): _A = copy.deepcopy(self.__dict__ ) _A = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = spectrogram( snake_case_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel='dB' , ) return log_mel_spectrogram.T def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] # randomly choose index for each part _A = np.random.choice(ranges[0] ) _A = np.random.choice(ranges[1] ) _A = np.random.choice(ranges[2] ) _A = mel[idx_front : idx_front + chunk_frames, :] _A = mel[idx_middle : idx_middle + chunk_frames, :] _A = mel[idx_back : idx_back + chunk_frames, :] _A = torch.tensor(mel[None, None, :] ) _A = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case_ ) _A = mel_shrink[0][0].numpy() _A = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _A = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _A = len(snake_case_ ) - max_length _A = np.random.randint(0 , overflow + 1 ) _A = waveform[idx : idx + max_length] _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _A = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _A = np.stack([mel, mel, mel, mel] , axis=0 ) _A = False else: _A = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) _A = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: _A = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , snake_case_ ) ) _A = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): _A = truncation if truncation is not None else self.truncation _A = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _A = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _A = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): _A = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. _A = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] _A = [] _A = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _A = np.random.randint(0 , len(snake_case_ ) ) _A = True if isinstance(input_mel[0] , snake_case_ ): _A = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _A = [[longer] for longer in is_longer] _A = {'input_features': input_mel, 'is_longer': is_longer} _A = BatchFeature(snake_case_ ) if return_tensors is not None: _A = input_features.convert_to_tensors(snake_case_ ) return input_features
27
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: int =logging.getLogger() def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = os.path.join(snake_case_ , "all_results.json" ) if os.path.exists(snake_case_ ): with open(snake_case_ , "r" ) as f: UpperCAmelCase_ = json.load(snake_case_ ) else: raise ValueError(f"""can't find {path}""" ) return results def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() SCREAMING_SNAKE_CASE_: Any =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): @classmethod def _lowercase (cls : Any ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _lowercase (cls : int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Optional[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCAmelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : int ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : str ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__a , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(__a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "translation_no_trainer" ) ) ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowercase (self : Any ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCAmelCase_ = get_results(__a ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__a , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "image_classification_no_trainer" ) ) )
78
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): SCREAMING_SNAKE_CASE__ = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): SCREAMING_SNAKE_CASE__ = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE__ = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_A )-1}''' ) if "norm" in key: SCREAMING_SNAKE_CASE__ = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE__ = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_A )-1}''' ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE__ = key[key.find('''block''' ) + len('''block''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''block{idx}''' , F'''block.{int(_A )-1}''' ) if "attn.q" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: SCREAMING_SNAKE_CASE__ = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE__ = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) SCREAMING_SNAKE_CASE__ = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE__ = key[key.find('''linear_c''' ) + len('''linear_c''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_A )-1}''' ) if key.startswith('''head''' ): SCREAMING_SNAKE_CASE__ = key.replace('''head''' , '''classifier''' ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE__ = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE__ = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE__ = kv_bias[ config.hidden_sizes[i] : ] def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SegformerConfig() SCREAMING_SNAKE_CASE__ = False # set attributes based on model_name SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' if "segformer" in model_name: SCREAMING_SNAKE_CASE__ = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: SCREAMING_SNAKE_CASE__ = 1_50 SCREAMING_SNAKE_CASE__ = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE__ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = '''cityscapes-id2label.json''' SCREAMING_SNAKE_CASE__ = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_name[4:6] SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(_A ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 2_56 elif size == "b2": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 4, 6, 3] elif size == "b3": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 4, 18, 3] elif size == "b4": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 8, 27, 3] elif size == "b5": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) SCREAMING_SNAKE_CASE__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A ) # prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_A , return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location=torch.device('''cpu''' ) ) else: SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(_A , encoder_only=_A ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_A , _A ) # create HuggingFace model and load state dict if encoder_only: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = SegformerForImageClassification(_A ) else: SCREAMING_SNAKE_CASE__ = SegformerForSemanticSegmentation(_A ) model.load_state_dict(_A ) model.eval() # forward pass SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: SCREAMING_SNAKE_CASE__ = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _A , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
472
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyImgaImgPipeline a = ["prompt", "image_embeds", "negative_image_embeds", "image"] a = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : str ) -> List[str]: return 32 @property def lowercase_ ( self : Optional[int] ) -> int: return 32 @property def lowercase_ ( self : Union[str, Any] ) -> int: return self.time_input_dim @property def lowercase_ ( self : List[str] ) -> int: return self.time_input_dim * 4 @property def lowercase_ ( self : Union[str, Any] ) -> Any: return 100 @property def lowercase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowercase_ ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE__ = MultilingualCLIP(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder.eval() return text_encoder @property def lowercase_ ( self : str ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : Dict ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=0 ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( __lowerCamelCase , image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
472
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
591
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _a (unittest.TestCase): """simple docstring""" def __init__( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = parent def UpperCamelCase ( self ) -> Any: return {} def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" _SCREAMING_SNAKE_CASE = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractionTester(self ) @property def UpperCamelCase ( self ) -> List[str]: return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase ( self ) -> Optional[Any]: # Initialize feature_extractor _SCREAMING_SNAKE_CASE = self.feature_extraction_class() # Test not batched input _SCREAMING_SNAKE_CASE = get_html_strings()[0] _SCREAMING_SNAKE_CASE = feature_extractor(A__ ) # fmt: off _SCREAMING_SNAKE_CASE = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] _SCREAMING_SNAKE_CASE = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , A__ ) self.assertEqual(encoding.xpaths , A__ ) # Test batched _SCREAMING_SNAKE_CASE = get_html_strings() _SCREAMING_SNAKE_CASE = feature_extractor(A__ ) # fmt: off _SCREAMING_SNAKE_CASE = expected_nodes + [["""My First Heading""", """My first paragraph."""]] _SCREAMING_SNAKE_CASE = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A__ ) self.assertEqual(encoding.xpaths , A__ )
591
1
"""simple docstring""" import sys lowercase__ :str = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase_ ( UpperCAmelCase_ = N ) ->int: """simple docstring""" __UpperCAmelCase : Optional[int] = -sys.maxsize - 1 for i in range(len(UpperCAmelCase_ ) - 12 ): __UpperCAmelCase : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: __UpperCAmelCase : str = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
374
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase__ :int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
374
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def A ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[Any]=False ) -> Dict: '''simple docstring''' lowerCAmelCase__ = "backbone." if is_semantic else "" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (F"""{prefix}cls_token""", "beit.embeddings.cls_token"), (F"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (F"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (F"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCAmelCase__ = "backbone." if is_semantic else "" # queries, keys and values lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = q_bias lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" ) lowerCAmelCase__ = gamma_a lowerCAmelCase__ = gamma_a def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : int=False ) -> int: '''simple docstring''' lowerCAmelCase__ = False if "rvlcdip" in checkpoint_url else True lowerCAmelCase__ = BeitConfig(use_absolute_position_embeddings=UpperCamelCase_ , use_mask_token=UpperCamelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCAmelCase__ = 10_24 lowerCAmelCase__ = 40_96 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 # labels if "rvlcdip" in checkpoint_url: lowerCAmelCase__ = 16 lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = "rvlcdip-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , has_lm_head=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , has_lm_head=UpperCamelCase_ ) # load HuggingFace model lowerCAmelCase__ = BeitForMaskedImageModeling(UpperCamelCase_ ) if has_lm_head else BeitForImageClassification(UpperCamelCase_ ) model.eval() model.load_state_dict(UpperCamelCase_ ) # Check outputs on an image lowerCAmelCase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase_ ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) lowerCAmelCase__ = encoding["pixel_values"] lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = outputs.logits # verify logits lowerCAmelCase__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(UpperCamelCase_ ), "Shape of logits not as expected" Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: if has_lm_head: lowerCAmelCase__ = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCAmelCase__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=UpperCamelCase_ , ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=UpperCamelCase_ , ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
48
import argparse _UpperCAmelCase : Union[str, Any] = """docs/source/_static/js/custom.js""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() snake_case_ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 snake_case_ = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _UpperCAmelCase : str = parser.parse_args() update_custom_js(args.version)
362
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase ( lowercase__ : str , lowercase__ : Tuple ): '''simple docstring''' a__ = k_size // 2 a__ , a__ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] a__ = 1 / (2 * pi * sigma) * exp(-(square(lowercase__ ) + square(lowercase__ )) / (2 * square(lowercase__ )) ) return g def UpperCAmelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : List[Any] ): '''simple docstring''' a__ , a__ = image.shape[0], image.shape[1] # dst image height and width a__ = height - k_size + 1 a__ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows a__ = zeros((dst_height * dst_width, k_size * k_size) ) a__ = 0 for i, j in product(range(lowercase__ ) , range(lowercase__ ) ): a__ = ravel(image[i : i + k_size, j : j + k_size] ) a__ = window row += 1 # turn the kernel into shape(k*k, 1) a__ = gen_gaussian_kernel(lowercase__ , lowercase__ ) a__ = ravel(lowercase__ ) # reshape and get the dst image a__ = dot(lowercase__ , lowercase__ ).reshape(lowercase__ , lowercase__ ).astype(lowercase__ ) return dst if __name__ == "__main__": # read original image _lowercase : List[Any] =imread(R"""../image_data/lena.jpg""") # turn image in gray scale value _lowercase : int =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowercase : Optional[int] =gaussian_filter(gray, 3, sigma=1) _lowercase : List[str] =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
412
def UpperCAmelCase ( lowercase__ : float , lowercase__ : float ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
412
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase_ ( lowerCAmelCase__="no" , lowerCAmelCase__ = default_json_config_file , lowerCAmelCase__ = False ): """simple docstring""" _lowerCAmelCase : Any = Path(lowerCAmelCase__ ) path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False _lowerCAmelCase : Union[str, Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) _lowerCAmelCase : Tuple = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): _lowerCAmelCase : str = torch.cuda.device_count() _lowerCAmelCase : Union[str, Any] = num_gpus _lowerCAmelCase : List[str] = False if num_gpus > 1: _lowerCAmelCase : Any = "MULTI_GPU" else: _lowerCAmelCase : str = "NO" elif is_xpu_available() and use_xpu: _lowerCAmelCase : Any = torch.xpu.device_count() _lowerCAmelCase : Union[str, Any] = num_xpus _lowerCAmelCase : str = False if num_xpus > 1: _lowerCAmelCase : str = "MULTI_XPU" else: _lowerCAmelCase : int = "NO" elif is_npu_available(): _lowerCAmelCase : List[Any] = torch.npu.device_count() _lowerCAmelCase : Optional[int] = num_npus _lowerCAmelCase : Optional[Any] = False if num_npus > 1: _lowerCAmelCase : int = "MULTI_NPU" else: _lowerCAmelCase : Tuple = "NO" else: _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Union[str, Any] = "NO" _lowerCAmelCase : Union[str, Any] = ClusterConfig(**lowerCAmelCase__ ) config.to_json_file(lowerCAmelCase__ ) return path def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[int] = parser.add_parser("default" , parents=lowerCAmelCase__ , help=lowerCAmelCase__ , formatter_class=lowerCAmelCase__ ) parser.add_argument( "--config_file" , default=lowerCAmelCase__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowerCAmelCase__ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowerCAmelCase__ ) return parser def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Any = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
424
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
424
1
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
389
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 3_2 , snake_case_ = 6_4 , snake_case_ = 2_0 , snake_case_ = 7_6_8 , snake_case_=7_7 , snake_case_=4 , snake_case_ = 0.0 , snake_case_ = "silu" , snake_case_ = None , snake_case_ = None , snake_case_ = "linear" , snake_case_ = "prd" , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Dict = attention_head_dim UpperCAmelCase_ : int = num_attention_heads * attention_head_dim UpperCAmelCase_ : str = additional_embeddings UpperCAmelCase_ : List[Any] = time_embed_dim or inner_dim UpperCAmelCase_ : Tuple = embedding_proj_dim or embedding_dim UpperCAmelCase_ : Union[str, Any] = clip_embed_dim or embedding_dim UpperCAmelCase_ : Tuple = Timesteps(snake_case_ , snake_case_ , 0 ) UpperCAmelCase_ : Tuple = TimestepEmbedding(snake_case_ , snake_case_ , out_dim=snake_case_ , act_fn=snake_case_ ) UpperCAmelCase_ : Union[str, Any] = nn.Linear(snake_case_ , snake_case_ ) if embedding_proj_norm_type is None: UpperCAmelCase_ : Optional[Any] = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ : Dict = nn.LayerNorm(snake_case_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) if encoder_hid_proj_type is None: UpperCAmelCase_ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case_ ) ) if added_emb_type == "prd": UpperCAmelCase_ : Tuple = nn.Parameter(torch.zeros(1 , 1 , snake_case_ ) ) elif added_emb_type is None: UpperCAmelCase_ : str = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( snake_case_ , snake_case_ , snake_case_ , dropout=snake_case_ , activation_fn='gelu' , attention_bias=snake_case_ , ) for d in range(snake_case_ ) ] ) if norm_in_type == "layer": UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) elif norm_in_type is None: UpperCAmelCase_ : List[str] = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) UpperCAmelCase_ : int = nn.Linear(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case_ , persistent=snake_case_ ) UpperCAmelCase_ : List[Any] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : Any = nn.Parameter(torch.zeros(1 , snake_case_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): UpperCAmelCase_ : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = True , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_states.shape[0] UpperCAmelCase_ : Any = timestep if not torch.is_tensor(snake_case_ ): UpperCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : Optional[Any] = timesteps * torch.ones(snake_case_ , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ : List[str] = self.time_proj(snake_case_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ : List[Any] = self.time_embedding(snake_case_ ) if self.embedding_proj_norm is not None: UpperCAmelCase_ : Union[str, Any] = self.embedding_proj_norm(snake_case_ ) UpperCAmelCase_ : Tuple = self.embedding_proj(snake_case_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ : Tuple = self.encoder_hidden_states_proj(snake_case_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) UpperCAmelCase_ : Optional[int] = self.proj_in(snake_case_ ) UpperCAmelCase_ : Tuple = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ : Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ : str = hidden_states[:, None, :] UpperCAmelCase_ : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case_ , -1 , -1 ) additional_embeds.append(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = torch.cat( snake_case_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ : Optional[int] = F.pad( snake_case_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 UpperCAmelCase_ : Dict = F.pad(snake_case_ , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ : List[str] = self.norm_in(snake_case_ ) for block in self.transformer_blocks: UpperCAmelCase_ : List[str] = block(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = self.norm_out(snake_case_ ) if self.prd_embedding is not None: UpperCAmelCase_ : Optional[Any] = hidden_states[:, -1] else: UpperCAmelCase_ : List[Any] = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ : List[Any] = self.proj_to_clip_embeddings(snake_case_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
389
1
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : torch.FloatTensor class lowerCAmelCase_ ( __snake_case , __snake_case ): @register_to_config def __init__( self , _lowerCAmelCase = 6_5_5_3_6 , _lowerCAmelCase = None , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0 , _lowerCAmelCase = "fourier" , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = 0.0 , _lowerCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _lowerCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _lowerCAmelCase = "UNetMidBlock1D" , _lowerCAmelCase = None , _lowerCAmelCase = (3_2, 3_2, 6_4) , _lowerCAmelCase = None , _lowerCAmelCase = 8 , _lowerCAmelCase = 1 , _lowerCAmelCase = False , ): super().__init__() _lowercase : str = sample_size # time if time_embedding_type == "fourier": _lowercase : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A__ , log=A__ , flip_sin_to_cos=A__ ) _lowercase : Optional[int] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowercase : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=A__ , downscale_freq_shift=A__ ) _lowercase : int = block_out_channels[0] if use_timestep_embedding: _lowercase : Any = block_out_channels[0] * 4 _lowercase : List[Any] = TimestepEmbedding( in_channels=A__ , time_embed_dim=A__ , act_fn=A__ , out_dim=block_out_channels[0] , ) _lowercase : int = nn.ModuleList([] ) _lowercase : Tuple = None _lowercase : List[str] = nn.ModuleList([] ) _lowercase : int = None # down _lowercase : List[str] = in_channels for i, down_block_type in enumerate(A__ ): _lowercase : Optional[Any] = output_channel _lowercase : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowercase : str = i == len(A__ ) - 1 _lowercase : Any = get_down_block( A__ , num_layers=A__ , in_channels=A__ , out_channels=A__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A__ ) # mid _lowercase : List[str] = get_mid_block( A__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A__ , add_downsample=A__ , ) # up _lowercase : Union[str, Any] = list(reversed(A__ ) ) _lowercase : int = reversed_block_out_channels[0] if out_block_type is None: _lowercase : str = out_channels else: _lowercase : Any = block_out_channels[0] for i, up_block_type in enumerate(A__ ): _lowercase : List[str] = output_channel _lowercase : str = ( reversed_block_out_channels[i + 1] if i < len(A__ ) - 1 else final_upsample_channels ) _lowercase : int = i == len(A__ ) - 1 _lowercase : str = get_up_block( A__ , num_layers=A__ , in_channels=A__ , out_channels=A__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A__ ) _lowercase : Dict = output_channel # out _lowercase : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _lowercase : List[Any] = get_out_block( out_block_type=A__ , num_groups_out=A__ , embed_dim=block_out_channels[0] , out_channels=A__ , act_fn=A__ , fc_dim=block_out_channels[-1] // 4 , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ): _lowercase : Any = timestep if not torch.is_tensor(A__ ): _lowercase : Tuple = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: _lowercase : Optional[Any] = timesteps[None].to(sample.device ) _lowercase : List[str] = self.time_proj(A__ ) if self.config.use_timestep_embedding: _lowercase : Tuple = self.time_mlp(A__ ) else: _lowercase : Optional[int] = timestep_embed[..., None] _lowercase : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowercase : Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowercase : List[str] = () for downsample_block in self.down_blocks: _lowercase : str = downsample_block(hidden_states=A__ , temb=A__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowercase : Any = self.mid_block(A__ , A__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowercase : int = down_block_res_samples[-1:] _lowercase : str = down_block_res_samples[:-1] _lowercase : List[Any] = upsample_block(A__ , res_hidden_states_tuple=A__ , temb=A__ ) # 5. post-process if self.out_block: _lowercase : str = self.out_block(A__ , A__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A__ )
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0