code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: _UpperCAmelCase = model.config _UpperCAmelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) _UpperCAmelCase = MBartConfig( is_decoder=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=snake_case , add_final_layer_norm=snake_case , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( snake_case ) -> Any: if "encoder.model" in name: _UpperCAmelCase = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: _UpperCAmelCase = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: _UpperCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: _UpperCAmelCase = """encoder.""" + name if "attn.proj" in name: _UpperCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: _UpperCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _UpperCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": _UpperCAmelCase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": _UpperCAmelCase = """encoder.layernorm.bias""" return name def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(snake_case ) if "qkv" in key: _UpperCAmelCase = key.split(""".""" ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = int(key_split[5] ) _UpperCAmelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[dim : dim * 2, :] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[dim : dim * 2] _UpperCAmelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _UpperCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case , snake_case=None , snake_case=False ) -> List[Any]: # load original model _UpperCAmelCase = DonutModel.from_pretrained(snake_case ).eval() # load HuggingFace model _UpperCAmelCase , _UpperCAmelCase = get_configs(snake_case ) _UpperCAmelCase = DonutSwinModel(snake_case ) _UpperCAmelCase = MBartForCausalLM(snake_case ) _UpperCAmelCase = VisionEncoderDecoderModel(encoder=snake_case , decoder=snake_case ) model.eval() _UpperCAmelCase = original_model.state_dict() _UpperCAmelCase = convert_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case ) # verify results on scanned document _UpperCAmelCase = load_dataset("""hf-internal-testing/example-documents""" ) _UpperCAmelCase = dataset["""test"""][0]["""image"""].convert("""RGB""" ) _UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained(snake_case , from_slow=snake_case ) _UpperCAmelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _UpperCAmelCase = DonutProcessor(snake_case , snake_case ) _UpperCAmelCase = processor(snake_case , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _UpperCAmelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _UpperCAmelCase = """When is the coffee break?""" _UpperCAmelCase = task_prompt.replace("""{user_input}""" , snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _UpperCAmelCase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _UpperCAmelCase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _UpperCAmelCase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _UpperCAmelCase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _UpperCAmelCase = """hello world""" else: raise ValueError("""Model name not supported""" ) _UpperCAmelCase = original_model.decoder.tokenizer(snake_case , add_special_tokens=snake_case , return_tensors="""pt""" )[ """input_ids""" ] _UpperCAmelCase = original_model.encoder.model.patch_embed(snake_case ) _UpperCAmelCase , _UpperCAmelCase = model.encoder.embeddings(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) # verify encoder hidden states _UpperCAmelCase = original_model.encoder(snake_case ) _UpperCAmelCase = model.encoder(snake_case ).last_hidden_state assert torch.allclose(snake_case , snake_case , atol=1E-2 ) # verify decoder hidden states _UpperCAmelCase = original_model(snake_case , snake_case , snake_case ).logits _UpperCAmelCase = model(snake_case , decoder_input_ids=snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) a = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
518
a = 8.3_144_598 def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a = 300 a = 28 a = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
518
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Dict = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer a__ : Dict = logging.getLogger(__name__) def A__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name', type=__lowerCamelCase, default='wikitext', help='Name of the training. Explore datasets at: hf.co/datasets.', ) parser.add_argument( '--dataset_config', type=__lowerCamelCase, default='wikitext-103-raw-v1', help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path', type=__lowerCamelCase, default='sayakpaul/unigram-tokenizer-wikitext', help='Tokenizer identifier. Can be a local filepath or a Hub identifier.', ) parser.add_argument( '--shard_size', type=__lowerCamelCase, default=1_0_0_0, help='Number of entries to go in a single shard.', ) parser.add_argument('--split', type=__lowerCamelCase, default='train', choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit', default=__lowerCamelCase, type=__lowerCamelCase, help='Limit the number of shards (used for debugging).', ) parser.add_argument( '--max_length', type=__lowerCamelCase, default=5_1_2, help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.', ) parser.add_argument( '--output_dir', default='tf-tpu', type=__lowerCamelCase, help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.', ) _lowerCAmelCase = parser.parse_args() return args def A__ ( __lowerCamelCase ): """simple docstring""" def fn(__lowerCamelCase ): return tokenizer(examples['text'] ) return fn def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _lowerCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _lowerCAmelCase = tf.train.Features(feature=__lowerCamelCase ) _lowerCAmelCase = tf.train.Example(features=__lowerCamelCase ) _lowerCAmelCase = example.SerializeToString() records.append(__lowerCamelCase ) return records def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: _lowerCAmelCase = min(len(__lowerCamelCase ), args.limit ) _lowerCAmelCase = dataset.select(range(__lowerCamelCase ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCAmelCase = os.path.join(args.output_dir, args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: _lowerCAmelCase = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. _lowerCAmelCase = tokenize_function(__lowerCamelCase ) _lowerCAmelCase = dataset.map(__lowerCamelCase, batched=__lowerCamelCase, num_proc=4, remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCamelCase ): # Concatenate all texts. _lowerCAmelCase = {k: sum(examples[k], [] ) for k in examples.keys()} _lowerCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCAmelCase = { k: [t[i : i + args.max_length] for i in range(0, __lowerCamelCase, args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCAmelCase = dataset_tokenized.map(__lowerCamelCase, batched=__lowerCamelCase, batch_size=1_0_0_0, num_proc=4 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 for shard in range(0, len(__lowerCamelCase ), args.shard_size ): _lowerCAmelCase = grouped_dataset[shard : shard + args.shard_size] _lowerCAmelCase = len(dataset_snapshot['input_ids'] ) _lowerCAmelCase = os.path.join(__lowerCamelCase, F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _lowerCAmelCase = get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): _lowerCAmelCase = serialized_examples[i] out_file.write(__lowerCamelCase ) print('Wrote file {} containing {} records'.format(__lowerCamelCase, __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''', 'w' ) as f: print(F'''Total {args.split} records: {total_records}''', file=__lowerCamelCase ) if __name__ == "__main__": a__ : str = parse_args() main(args)
309
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore _A = namedtuple("covid_data", "cases deaths recovered") def lowercase (_snake_case = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' __UpperCamelCase = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(_snake_case ).content ).xpath(_snake_case ) ) _A = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _A = { "RUCAIBox/mvp": 1_024, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = ['input_ids', 'attention_mask'] _snake_case : Any = MvpTokenizer def __init__( self : str , A_ : int=None , A_ : List[Any]=None , A_ : Optional[Any]=None , A_ : int="replace" , A_ : int="<s>" , A_ : Any="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Optional[int]="<unk>" , A_ : Optional[int]="<pad>" , A_ : Union[str, Any]="<mask>" , A_ : str=False , A_ : List[str]=True , **A_ : Union[str, Any] , )-> Any: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = getattr(A_ , pre_tok_state.pop("type" ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**A_ ) __UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase = "post_processor" __UpperCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state["sep"] ) if "cls" in state: __UpperCamelCase = tuple(state["cls"] ) __UpperCamelCase = False if state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get("trim_offsets" , A_ ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(A_ , state.pop("type" ) ) __UpperCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def A ( self : List[str] )-> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Any , A_ : List[Any] )-> List[Any]: __UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __UpperCamelCase = value def A ( self : str , *A_ : Dict , **A_ : Dict )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def A ( self : Tuple , *A_ : str , **A_ : List[str] )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def A ( self : Optional[int] , A_ : str , A_ : Optional[str] = None )-> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def A ( self : Any , A_ : Dict , A_ : Dict=None )-> Union[str, Any]: __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None )-> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
505
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case_ : List[Any] ='''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) snake_case_ : int =[ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' __A = SavedModel() __A = [] with open(os.path.join(_SCREAMING_SNAKE_CASE , "utils" , "tf_ops" , "onnx.json" ) ) as f: __A = json.load(_SCREAMING_SNAKE_CASE )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_SCREAMING_SNAKE_CASE )] ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as f: saved_model.ParseFromString(f.read() ) __A = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __A = sorted(_SCREAMING_SNAKE_CASE ) __A = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_SCREAMING_SNAKE_CASE ) if strict and len(_SCREAMING_SNAKE_CASE ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_SCREAMING_SNAKE_CASE ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*_SCREAMING_SNAKE_CASE , sep="\n" ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": snake_case_ : Optional[int] =argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) snake_case_ : int =parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
701
class a__ : def __init__( self ) -> str: __A = 0 __A = 0 __A = {} def _lowerCamelCase ( self , lowercase__ ) -> List[Any]: if vertex not in self.adjacency: __A = {} self.num_vertices += 1 def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: self.add_vertex(lowercase__ ) self.add_vertex(lowercase__ ) if head == tail: return __A = weight __A = weight def _lowerCamelCase ( self ) -> List[str]: __A = self.get_edges() for edge in edges: __A , __A , __A = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase__ ) ): __A = list(edges[i] ) edges.sort(key=lambda lowercase__ : e[2] ) for i in range(len(lowercase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __A = edges[i][2] + 1 for edge in edges: __A , __A , __A = edge __A = weight __A = weight def __str__( self ) -> Union[str, Any]: __A = "" for tail in self.adjacency: for head in self.adjacency[tail]: __A = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip("\n" ) def _lowerCamelCase ( self ) -> Union[str, Any]: __A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _lowerCamelCase ( self ) -> Tuple: return self.adjacency.keys() @staticmethod def _lowerCamelCase ( lowercase__=None , lowercase__=None ) -> Any: __A = Graph() if vertices is None: __A = [] if edges is None: __A = [] for vertex in vertices: g.add_vertex(lowercase__ ) for edge in edges: g.add_edge(*lowercase__ ) return g class a__ : def __init__( self ) -> List[str]: __A = {} __A = {} def __len__( self ) -> Union[str, Any]: return len(self.parent ) def _lowerCamelCase ( self , lowercase__ ) -> Any: if item in self.parent: return self.find(lowercase__ ) __A = item __A = 0 return item def _lowerCamelCase ( self , lowercase__ ) -> str: if item not in self.parent: return self.make_set(lowercase__ ) if item != self.parent[item]: __A = self.find(self.parent[item] ) return self.parent[item] def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> List[Any]: __A = self.find(lowercase__ ) __A = self.find(lowercase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __A = roota return roota if self.rank[roota] < self.rank[roota]: __A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __A = roota return roota return None @staticmethod def _lowerCamelCase ( lowercase__ ) -> Any: __A = graph.num_vertices __A = Graph.UnionFind() __A = [] while num_components > 1: __A = {} for vertex in graph.get_vertices(): __A = -1 __A = graph.get_edges() for edge in edges: __A , __A , __A = edge edges.remove((tail, head, weight) ) for edge in edges: __A , __A , __A = edge __A = union_find.find(lowercase__ ) __A = union_find.find(lowercase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __A , __A , __A = cheap_edge[vertex] if union_find.find(lowercase__ ) != union_find.find(lowercase__ ): union_find.union(lowercase__ , lowercase__ ) mst_edges.append(cheap_edge[vertex] ) __A = num_components - 1 __A = Graph.build(edges=lowercase__ ) return mst
205
0
from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase_ ( UpperCAmelCase__ = 2_000_000 ): """simple docstring""" a_ = [0] a_ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a_ = 0 # the area corresponding to the grid that gives the product closest to target a_ = 0 # an estimate of b, using the quadratic formula a_ = 42 # the largest integer less than b_estimate a_ = 42 # the largest integer less than b_estimate a_ = 42 # the triangle number corresponding to b_floor a_ = 42 # the triangle number corresponding to b_ceil a_ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a_ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a_ = floor(__a ) a_ = ceil(__a ) a_ = triangle_numbers[b_floor] a_ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a_ = triangle_b_first_guess * triangle_a a_ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a_ = triangle_b_second_guess * triangle_a a_ = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
483
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE_ : Any = max_length SCREAMING_SNAKE_CASE_ : List[str] = vocab SCREAMING_SNAKE_CASE_ : Any = merges SCREAMING_SNAKE_CASE_ : List[str] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Dict , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowercase_ : Union[str, os.PathLike] , *lowercase_ : str , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , lowercase_ : int): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
512
0
from __future__ import annotations class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_UpperCAmelCase ) != 0: snake_case_ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_UpperCAmelCase ) != cols: raise error for value in row: if not isinstance(_UpperCAmelCase , (int, float) ): raise error snake_case_ = rows else: snake_case_ = [] def UpperCamelCase__ ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCamelCase__ ( self ): return len(self.rows ) @property def UpperCamelCase__ ( self ): return len(self.rows[0] ) @property def UpperCamelCase__ ( self ): return (self.num_rows, self.num_columns) @property def UpperCamelCase__ ( self ): return self.order[0] == self.order[1] def UpperCamelCase__ ( self ): snake_case_ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_UpperCAmelCase ) def UpperCamelCase__ ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCamelCase__ ( self ): return bool(self.determinant() ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_UpperCAmelCase ).determinant() def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): if (row + column) % 2 == 0: return self.get_minor(_UpperCAmelCase , _UpperCAmelCase ) return -1 * self.get_minor(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self ): return Matrix( [ [self.get_minor(_UpperCAmelCase , _UpperCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCamelCase__ ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCamelCase__ ( self ): snake_case_ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_UpperCAmelCase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): snake_case_ = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise type_error for value in row: if not isinstance(_UpperCAmelCase , (int, float) ): raise type_error if len(_UpperCAmelCase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_UpperCAmelCase ) else: snake_case_ = self.rows[0:position] + [row] + self.rows[position:] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): snake_case_ = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise type_error for value in column: if not isinstance(_UpperCAmelCase , (int, float) ): raise type_error if len(_UpperCAmelCase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: snake_case_ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: snake_case_ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__( self , _UpperCAmelCase ): return not self == other def __neg__( self ): return self * -1 def __add__( self , _UpperCAmelCase ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _UpperCAmelCase ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_UpperCAmelCase , _UpperCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) snake_case_ = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCamelCase__ ( cls , _UpperCAmelCase , _UpperCAmelCase ): return sum(row[i] * column[i] for i in range(len(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
531
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None )-> Any: """simple docstring""" assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) snake_case_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = weights[0][0][0] snake_case_ = np.asarray(layer_norm_a[0] ) snake_case_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # lsh weights + output snake_case_ = weights[0][1] if len(SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) # intermediate weighs snake_case_ = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE ) == 4: snake_case_ = intermediate_weights[2] # layernorm 2 snake_case_ = np.asarray(intermediate_weights[0][0] ) snake_case_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate dense snake_case_ = np.asarray(intermediate_weights[1][0] ) snake_case_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate out snake_case_ = np.asarray(intermediate_weights[4][0] ) snake_case_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = torch_model.reformer # word embeds snake_case_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE ): snake_case_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE ) ) snake_case_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # output layer norm snake_case_ = np.asarray(weights[7][0] ) snake_case_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # output embeddings snake_case_ = np.asarray(weights[9][0] ) snake_case_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case_ = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: snake_case_ = pickle.load(SCREAMING_SNAKE_CASE )['''weights'''] set_model_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
531
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A : Optional[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] A : Union[str, Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] A : List[Any] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) A : str = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) A : str = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> int: """simple docstring""" for tf_name, hf_name in patterns: lowercase__ = k.replace(__magic_name__ , __magic_name__ ) return k def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : dict ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" lowercase__ = BigBirdPegasusConfig(**__magic_name__ ) lowercase__ = BigBirdPegasusForConditionalGeneration(__magic_name__ ) lowercase__ = torch_model.state_dict() lowercase__ = {} # separating decoder weights lowercase__ = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowercase__ = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): lowercase__ = [k.endswith(__magic_name__ ) for ending in KEYS_TO_IGNORE] if any(__magic_name__ ): continue lowercase__ = DECODER_PATTERNS lowercase__ = rename_state_dict_key(__magic_name__ , __magic_name__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase__ = v.T lowercase__ = torch.from_numpy(__magic_name__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): lowercase__ = [k.endswith(__magic_name__ ) for ending in KEYS_TO_IGNORE] if any(__magic_name__ ): continue lowercase__ = REMAINING_PATTERNS lowercase__ = rename_state_dict_key(__magic_name__ , __magic_name__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase__ = v.T lowercase__ = torch.from_numpy(__magic_name__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' lowercase__ = mapping["""model.embed_positions.weight"""] lowercase__ = mapping.pop("""model.embed_positions.weight""" ) lowercase__ , lowercase__ = torch_model.load_state_dict(__magic_name__ , strict=__magic_name__ ) lowercase__ = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __magic_name__ : Tuple ) -> Dict: """simple docstring""" lowercase__ = tf.train.list_variables(__magic_name__ ) lowercase__ = {} lowercase__ = ["""global_step"""] for name, shape in tqdm(__magic_name__ , desc="""converting tf checkpoint to dict""" ): lowercase__ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase__ = tf.train.load_variable(__magic_name__ , __magic_name__ ) lowercase__ = array return tf_weights def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : dict ) -> int: """simple docstring""" lowercase__ = get_tf_weights_as_numpy(__magic_name__ ) lowercase__ = convert_bigbird_pegasus(__magic_name__ , __magic_name__ ) torch_model.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') A : Any = parser.parse_args() A : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
15
def a__ ( snake_case__ : int , snake_case__ : int ): return x if y == 0 else greatest_common_divisor(snake_case__ , x % y ) def a__ ( snake_case__ : int , snake_case__ : int ): return (x * y) // greatest_common_divisor(snake_case__ , snake_case__ ) def a__ ( snake_case__ : int = 20 ): _UpperCAmelCase : Union[str, Any] = 1 for i in range(1 , n + 1 ): _UpperCAmelCase : Dict = lcm(snake_case__ , snake_case__ ) return g if __name__ == "__main__": print(F'{solution() = }')
643
0
"""simple docstring""" def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def A__ ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
704
"""simple docstring""" import os import string import sys lowerCamelCase : Any = 1 << 8 lowerCamelCase : Optional[int] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } lowerCamelCase : str = KEYMAP["""up"""] lowerCamelCase : List[str] = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase : Dict = [] lowerCamelCase : Optional[int] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): lowerCamelCase : Tuple = ord(str(i)) def A__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt _SCREAMING_SNAKE_CASE = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase__ ) == 0: # Read the keystroke _SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCamelCase__ ) if ord(UpperCamelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _SCREAMING_SNAKE_CASE = chr(KEYMAP['''esc'''] ) except KeyError: _SCREAMING_SNAKE_CASE = cha[1] else: _SCREAMING_SNAKE_CASE = ch.decode(UpperCamelCase__ ) else: _SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _SCREAMING_SNAKE_CASE = sys.stdin.fileno() _SCREAMING_SNAKE_CASE = termios.tcgetattr(UpperCamelCase__ ) try: tty.setraw(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase__ , termios.TCSADRAIN , UpperCamelCase__ ) return ch def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase__ ) == KEYMAP["esc"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) == KEYMAP["mod_int"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
168
0
__snake_case = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __snake_case = frozenset(["""prompt""", """negative_prompt"""]) __snake_case = frozenset([]) __snake_case = frozenset(["""image"""]) __snake_case = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __snake_case = frozenset(["""image"""]) __snake_case = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __snake_case = frozenset(["""prompt""", """image""", """negative_prompt"""]) __snake_case = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __snake_case = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __snake_case = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __snake_case = frozenset(["""image""", """mask_image"""]) __snake_case = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __snake_case = frozenset(["""example_image""", """image""", """mask_image"""]) __snake_case = frozenset(["""class_labels"""]) __snake_case = frozenset(["""class_labels"""]) __snake_case = frozenset(["""batch_size"""]) __snake_case = frozenset([]) __snake_case = frozenset(["""batch_size"""]) __snake_case = frozenset([]) __snake_case = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __snake_case = frozenset(["""prompt""", """negative_prompt"""]) __snake_case = frozenset(["""input_tokens"""]) __snake_case = frozenset(["""input_tokens"""])
658
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: return None class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: return None class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =[ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> int: from transformers import BertModel UpperCamelCase :int = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) vocab_file.flush() UpperCamelCase :Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase :Union[str, Any] = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE_ ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , SCREAMING_SNAKE_CASE_ ) @require_tf @slow def UpperCAmelCase ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :Tuple = self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = quantize(Path(SCREAMING_SNAKE_CASE_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :str = self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = quantize(SCREAMING_SNAKE_CASE_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase :Union[str, Any] = Path(SCREAMING_SNAKE_CASE_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE_ ) @require_torch @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[str]: from transformers import BertModel UpperCamelCase :List[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''pt''' ) @require_tf @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[Any]: from transformers import TFBertModel UpperCamelCase :Optional[Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :Optional[Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''tf''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :Tuple = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = infer_shapes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] UpperCamelCase :Tuple = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} UpperCamelCase , UpperCamelCase :Any = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE_ ) , set(SCREAMING_SNAKE_CASE_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase , UpperCamelCase :Tuple = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :str = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
658
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowercase ( snake_case, snake_case, snake_case=1E-1_2 ): """simple docstring""" __magic_name__ :Tuple = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__A, axis=1 ), a_min=__A ) ).T __magic_name__ :Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__A, axis=1 ), a_min=__A ) ).T return jnp.matmul(__A, norm_emb_a.T ) class lowerCamelCase_ ( nn.Module ): a__ = 42 a__ = jnp.floataa def A ( self ): """simple docstring""" __magic_name__ :List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __magic_name__ :Dict = nn.Dense(self.config.projection_dim , use_bias=_UpperCamelCase , dtype=self.dtype ) __magic_name__ :str = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) __magic_name__ :int = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __magic_name__ :Any = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) __magic_name__ :Dict = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = self.vision_model(_UpperCamelCase )[1] __magic_name__ :int = self.visual_projection(_UpperCamelCase ) __magic_name__ :int = jax_cosine_distance(_UpperCamelCase , self.special_care_embeds ) __magic_name__ :Dict = jax_cosine_distance(_UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __magic_name__ :Optional[Any] = 0.0 __magic_name__ :List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __magic_name__ :List[str] = jnp.round(_UpperCamelCase , 3 ) __magic_name__ :Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCamelCase ) # Use a lower threshold if an image has any special care concept __magic_name__ :List[Any] = is_special_care * 0.01 __magic_name__ :str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __magic_name__ :Optional[Any] = jnp.round(_UpperCamelCase , 3 ) __magic_name__ :Union[str, Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCamelCase_ ( __lowerCAmelCase ): a__ = CLIPConfig a__ = '''clip_input''' a__ = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = jnp.floataa , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" if input_shape is None: __magic_name__ :int = (1, 2_2_4, 2_2_4, 3) __magic_name__ :Union[str, Any] = self.module_class(config=_UpperCamelCase , dtype=_UpperCamelCase , **_UpperCamelCase ) super().__init__(_UpperCamelCase , _UpperCamelCase , input_shape=_UpperCamelCase , seed=_UpperCamelCase , dtype=_UpperCamelCase , _do_init=_do_init ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :List[Any] = jax.random.normal(_UpperCamelCase , _UpperCamelCase ) __magic_name__ :Optional[Any] = jax.random.split(_UpperCamelCase ) __magic_name__ :Tuple = {"""params""": params_rng, """dropout""": dropout_rng} __magic_name__ :Tuple = self.module.init(_UpperCamelCase , _UpperCamelCase )["""params"""] return random_params def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" __magic_name__ :List[Any] = jnp.transpose(_UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(_UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
715
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput SCREAMING_SNAKE_CASE__ : Any = 8 def __lowercase ( snake_case, snake_case=BITS ): """simple docstring""" __magic_name__ :int = x.device __magic_name__ :Optional[Any] = (x * 2_5_5).int().clamp(0, 2_5_5 ) __magic_name__ :Dict = 2 ** torch.arange(bits - 1, -1, -1, device=snake_case ) __magic_name__ :Any = rearrange(snake_case, '''d -> d 1 1''' ) __magic_name__ :Dict = rearrange(snake_case, '''b c h w -> b c 1 h w''' ) __magic_name__ :Optional[Any] = ((x & mask) != 0).float() __magic_name__ :List[str] = rearrange(snake_case, '''b c d h w -> b (c d) h w''' ) __magic_name__ :List[Any] = bits * 2 - 1 return bits def __lowercase ( snake_case, snake_case=BITS ): """simple docstring""" __magic_name__ :Optional[int] = x.device __magic_name__ :Dict = (x > 0).int() __magic_name__ :int = 2 ** torch.arange(bits - 1, -1, -1, device=snake_case, dtype=torch.intaa ) __magic_name__ :Optional[Any] = rearrange(snake_case, '''d -> d 1 1''' ) __magic_name__ :Union[str, Any] = rearrange(snake_case, '''b (c d) h w -> b c d h w''', d=8 ) __magic_name__ :Optional[Any] = reduce(x * mask, '''b c d h w -> b c h w''', '''sum''' ) return (dec / 2_5_5).clamp(0.0, 1.0 ) def __lowercase ( self, snake_case, snake_case, snake_case, snake_case = 0.0, snake_case = True, snake_case=None, snake_case = True, ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __magic_name__ :Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __magic_name__ :Optional[Any] = self.alphas_cumprod[timestep] __magic_name__ :List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __magic_name__ :Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ :List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __magic_name__ :Optional[int] = self.bit_scale if self.config.clip_sample: __magic_name__ :Dict = torch.clamp(snake_case, -scale, snake_case ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __magic_name__ :Optional[Any] = self._get_variance(snake_case, snake_case ) __magic_name__ :Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __magic_name__ :int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ :Tuple = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ :str = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __magic_name__ :List[str] = model_output.device if torch.is_tensor(snake_case ) else '''cpu''' __magic_name__ :Tuple = torch.randn(model_output.shape, dtype=model_output.dtype, generator=snake_case ).to(snake_case ) __magic_name__ :Optional[Any] = self._get_variance(snake_case, snake_case ) ** 0.5 * eta * noise __magic_name__ :List[Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case, pred_original_sample=snake_case ) def __lowercase ( self, snake_case, snake_case, snake_case, snake_case="epsilon", snake_case=None, snake_case = True, ): """simple docstring""" __magic_name__ :int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __magic_name__ , __magic_name__ :Dict = torch.split(snake_case, sample.shape[1], dim=1 ) else: __magic_name__ :Any = None # 1. compute alphas, betas __magic_name__ :List[str] = self.alphas_cumprod[t] __magic_name__ :List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one __magic_name__ :Any = 1 - alpha_prod_t __magic_name__ :Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __magic_name__ :str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __magic_name__ :List[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" __magic_name__ :List[str] = self.bit_scale if self.config.clip_sample: __magic_name__ :int = torch.clamp(snake_case, -scale, snake_case ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __magic_name__ :str = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ :int = 0 if t > 0: __magic_name__ :Any = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=snake_case ).to(model_output.device ) __magic_name__ :int = (self._get_variance(snake_case, predicted_variance=snake_case ) ** 0.5) * noise __magic_name__ :int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case, pred_original_sample=snake_case ) class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , ): """simple docstring""" super().__init__() __magic_name__ :Any = bit_scale __magic_name__ :List[Any] = ( ddim_bit_scheduler_step if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 2_5_6 , __lowerCAmelCase = 2_5_6 , __lowerCAmelCase = 5_0 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :List[str] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowerCAmelCase , ) __magic_name__ :List[str] = decimal_to_bits(__lowerCAmelCase ) * self.bit_scale __magic_name__ :int = latents.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __magic_name__ :List[Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __magic_name__ :Any = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample __magic_name__ :str = bits_to_decimal(__lowerCAmelCase ) if output_type == "pil": __magic_name__ :Any = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
180
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A__: Tuple = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' A__: Optional[int] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' A__: int = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCAmelCase ( self :Any ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=None , SCREAMING_SNAKE_CASE :List[Any]="auto" , SCREAMING_SNAKE_CASE :int=-1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.9 , SCREAMING_SNAKE_CASE :List[Any]=5 , SCREAMING_SNAKE_CASE :Optional[int]=5_0_0 , SCREAMING_SNAKE_CASE :Optional[int]="gpt2-large" , SCREAMING_SNAKE_CASE :int=-1 , SCREAMING_SNAKE_CASE :str=1_0_2_4 , SCREAMING_SNAKE_CASE :Any=2_5 , SCREAMING_SNAKE_CASE :Any=5 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :List[Any]=2_5 , ) -> Optional[Any]: '''simple docstring''' _a : Dict =compute_mauve( p_text=SCREAMING_SNAKE_CASE , q_text=SCREAMING_SNAKE_CASE , p_features=SCREAMING_SNAKE_CASE , q_features=SCREAMING_SNAKE_CASE , p_tokens=SCREAMING_SNAKE_CASE , q_tokens=SCREAMING_SNAKE_CASE , num_buckets=SCREAMING_SNAKE_CASE , pca_max_data=SCREAMING_SNAKE_CASE , kmeans_explained_var=SCREAMING_SNAKE_CASE , kmeans_num_redo=SCREAMING_SNAKE_CASE , kmeans_max_iter=SCREAMING_SNAKE_CASE , featurize_model_name=SCREAMING_SNAKE_CASE , device_id=SCREAMING_SNAKE_CASE , max_text_length=SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=SCREAMING_SNAKE_CASE , mauve_scaling_factor=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE , ) return out
694
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') snake_case : Union[str, Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) snake_case : List[str] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) snake_case : Optional[int] = BeautifulSoup(res.text, 'html.parser') snake_case : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
566
'''simple docstring''' import numpy as np def lowercase__ ( __UpperCamelCase : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
566
1
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( lowerCAmelCase : str ): '''simple docstring''' return x + 2 class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Dict = "x = 3" UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : int = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) UpperCAmelCase__ : Optional[Any] = "x = y" UpperCAmelCase__ : Optional[int] = {"y": 5} UpperCAmelCase__ : Any = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 5, "y": 5} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : Optional[Any] = "y = add_two(x)" UpperCAmelCase__ : List[str] = {"x": 3} UpperCAmelCase__ : Tuple = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : Any = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = "x = 3" UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : Dict = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : List[str] = "test_dict = {'x': x, 'y': add_two(x)}" UpperCAmelCase__ : Optional[Any] = {"x": 3} UpperCAmelCase__ : int = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[int] = "x = 3\ny = 5" UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : List[str] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Union[str, Any] = "text = f'This is x: {x}.'" UpperCAmelCase__ : Any = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__UpperCamelCase , {"x": 3, "text": "This is x: 3."} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 2} ) UpperCAmelCase__ : Tuple = {"x": 8} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 8, "y": 5} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Tuple = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [3, 5] ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : int = "y = x" UpperCAmelCase__ : Optional[int] = {"x": 3} UpperCAmelCase__ : Optional[int] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 3} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Any = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCAmelCase__ : Tuple = {"x": 3} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) UpperCAmelCase__ : List[Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" UpperCAmelCase__ : Union[str, Any] = {"x": 3} UpperCAmelCase__ : Optional[int] = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Any = "x = 0\nfor i in range(3):\n x = i" UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {"range": range} , state=__UpperCamelCase ) assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 2, "i": 2} )
660
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowercase__ : List[str] = "" lowercase__ : Tuple = "" lowercase__ : Optional[int] = "" lowercase__ : int = 1 # (0 is vertical, 1 is horizontal) def __lowercase ( ): snake_case_, snake_case_ : Dict = get_dataset(__A , __A ) print('''Processing...''' ) snake_case_, snake_case_, snake_case_ : List[str] = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ : List[str] = random_chars(32 ) snake_case_ : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] snake_case_ : Union[str, Any] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(__A )} with {file_name}" ) snake_case_ : Union[str, Any] = [] for anno in new_annos[index]: snake_case_ : Union[str, Any] = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(f"/{file_root}.txt" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __lowercase ( _a , _a ): snake_case_ : List[str] = [] snake_case_ : Dict = [] for label_file in glob.glob(os.path.join(__A , '''*.txt''' ) ): snake_case_ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__A ) as in_file: snake_case_ : str = in_file.readlines() snake_case_ : str = os.path.join(__A , f"{label_name}.jpg" ) snake_case_ : int = [] for obj_list in obj_lists: snake_case_ : Dict = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def __lowercase ( _a , _a , _a = 1 ): snake_case_ : Union[str, Any] = [] snake_case_ : Union[str, Any] = [] snake_case_ : Union[str, Any] = [] for idx in range(len(__A ) ): snake_case_ : Dict = [] snake_case_ : Optional[int] = img_list[idx] path_list.append(__A ) snake_case_ : Any = anno_list[idx] snake_case_ : Union[str, Any] = cva.imread(__A ) if flip_type == 1: snake_case_ : str = cva.flip(__A , __A ) for bbox in img_annos: snake_case_ : Tuple = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case_ : Dict = cva.flip(__A , __A ) for bbox in img_annos: snake_case_ : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def __lowercase ( _a = 32 ): assert number_char > 1, "The number of character should greater than 1" snake_case_ : str = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print('''DONE ✅''')
123
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """dandelin/vilt-b32-finetuned-vqa""" __lowercase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __lowercase = """image_qa""" __lowercase = AutoProcessor __lowercase = AutoModelForVisualQuestionAnswering __lowercase = ["""image""", """text"""] __lowercase = ["""text"""] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='pt' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCAmelCase_ ).logits def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
495
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A_ ( __lowerCAmelCase ): def __init__( self: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Dict = None ,__lowerCAmelCase: Dict = True ,__lowerCAmelCase: Optional[Any] = None ,__lowerCAmelCase: int = False ,__lowerCAmelCase: List[str] = None ,__lowerCAmelCase: Tuple = True ,__lowerCAmelCase: List[Any] = "arrow" ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' super().__init__( split=lowerCAmelCase_ ,features=lowerCAmelCase_ ,cache_dir=lowerCAmelCase_ ,keep_in_memory=lowerCAmelCase_ ,streaming=lowerCAmelCase_ ,**lowerCAmelCase_ ,) _lowerCamelCase : Union[str, Any] = load_from_cache_file _lowerCamelCase : Optional[Any] = file_format _lowerCamelCase : List[str] = Spark( df=lowerCAmelCase_ ,features=lowerCAmelCase_ ,cache_dir=lowerCAmelCase_ ,working_dir=lowerCAmelCase_ ,**lowerCAmelCase_ ,) def _lowercase ( self: Dict ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _lowerCamelCase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
717
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class A_ ( _a ): lowerCAmelCase__ = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'image': Image()} ) lowerCAmelCase__ = Features({'labels': ClassLabel} ) lowerCAmelCase__ = "image" lowerCAmelCase__ = "labels" def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,__lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _lowerCamelCase : List[Any] = copy.deepcopy(self ) _lowerCamelCase : Union[str, Any] = self.label_schema.copy() _lowerCamelCase : Optional[int] = features[self.label_column] _lowerCamelCase : Tuple = label_schema return task_template @property def _lowercase ( self: int ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
386
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def snake_case__ ( self): torch.manual_seed(0) UpperCAmelCase__ : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def snake_case__ ( self): UpperCAmelCase__ : int = self.dummy_uncond_unet UpperCAmelCase__ : Dict = KarrasVeScheduler() UpperCAmelCase__ : str = KarrasVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) UpperCAmelCase__ : Any = torch.manual_seed(0) UpperCAmelCase__ : Any = pipe(num_inference_steps=2 , generator=_lowerCamelCase , output_type="""numpy""").images UpperCAmelCase__ : List[Any] = torch.manual_seed(0) UpperCAmelCase__ : str = pipe(num_inference_steps=2 , generator=_lowerCamelCase , output_type="""numpy""" , return_dict=_lowerCamelCase)[0] UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] UpperCAmelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[int] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : int = """google/ncsnpp-celebahq-256""" UpperCAmelCase__ : Optional[Any] = UNetaDModel.from_pretrained(_lowerCamelCase) UpperCAmelCase__ : Dict = KarrasVeScheduler() UpperCAmelCase__ : Dict = KarrasVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) UpperCAmelCase__ : str = torch.manual_seed(0) UpperCAmelCase__ : int = pipe(num_inference_steps=20 , generator=_lowerCamelCase , output_type="""numpy""").images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ : Any = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
407
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( a__ ): lowerCAmelCase :UNetaDModel lowerCAmelCase :ScoreSdeVeScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2000 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = self.unet.config.sample_size UpperCAmelCase__ : Any = (batch_size, 3, img_size, img_size) UpperCAmelCase__ : Optional[int] = self.unet UpperCAmelCase__ : Any = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase) * self.scheduler.init_noise_sigma UpperCAmelCase__ : Optional[int] = sample.to(self.device) self.scheduler.set_timesteps(_lowerCamelCase) self.scheduler.set_sigmas(_lowerCamelCase) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): UpperCAmelCase__ : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): UpperCAmelCase__ : List[str] = self.unet(_lowerCamelCase , _lowerCamelCase).sample UpperCAmelCase__ : List[Any] = self.scheduler.step_correct(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase).prev_sample # prediction step UpperCAmelCase__ : Any = model(_lowerCamelCase , _lowerCamelCase).sample UpperCAmelCase__ : Union[str, Any] = self.scheduler.step_pred(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ : Optional[Any] = sample_mean.clamp(0 , 1) UpperCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase__ : str = self.numpy_to_pil(_lowerCamelCase) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCamelCase)
407
1
"""simple docstring""" from PIL import Image def lowercase__ ( lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = image.size UpperCAmelCase = 0 UpperCAmelCase = image.load() for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): UpperCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase ): for i in range(lowerCAmelCase ): UpperCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
717
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=4 , ) -> Dict: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def a_ ( self ) -> int: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a_ ( self ) -> List[str]: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def a_ ( self ) -> List[Any]: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : int = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def a_ ( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowercase_ ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): @slow def a_ ( self ) -> Tuple: UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowercase_ ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase_ )[0] UpperCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowercase_ ) # compare the actual values for a slice. UpperCAmelCase = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def a_ ( self ) -> int: UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowercase_ ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
183
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = torch.load(_UpperCAmelCase, map_location='cpu' ) lowerCAmelCase : int = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCAmelCase : Optional[int] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase : Optional[Any] = v else: lowerCAmelCase : int = v lowerCAmelCase : List[str] = chkpt['params'] lowerCAmelCase : Dict = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase, (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase : Any = chkpt['dico_word2id'] lowerCAmelCase : List[Any] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@', '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase : str = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase : int = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase : Dict = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(_UpperCAmelCase, _UpperCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase, indent=2 ) + '\n' ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase, indent=2 ) + '\n' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
class __A : def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = name lowerCAmelCase : int = val def __str__( self : str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): return self.val < other.val class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = {} lowerCAmelCase : Optional[Any] = self.build_heap(UpperCAmelCase_ ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.get_value(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): return (idx - 1) // 2 def lowercase__ ( self : int , UpperCAmelCase_ : str ): return idx * 2 + 1 def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return idx * 2 + 2 def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ): return self.heap_dict[key] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Union[str, Any] = self.get_parent_idx(UpperCAmelCase_ ) for idx, i in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = idx lowerCAmelCase : Union[str, Any] = i.val for i in range(UpperCAmelCase_ , -1 , -1 ): self.sift_down(UpperCAmelCase_ , UpperCAmelCase_ ) return array def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): while True: lowerCAmelCase : Optional[int] = self.get_left_child_idx(UpperCAmelCase_ ) # noqa: E741 lowerCAmelCase : Union[str, Any] = self.get_right_child_idx(UpperCAmelCase_ ) lowerCAmelCase : Any = idx if l < len(UpperCAmelCase_ ) and array[l] < array[idx]: lowerCAmelCase : Tuple = l if r < len(UpperCAmelCase_ ) and array[r] < array[smallest]: lowerCAmelCase : Any = r if smallest != idx: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : List[str] = smallest else: break def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) def lowercase__ ( self : str ): return self.heap[0] def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): self.heap.append(UpperCAmelCase_ ) lowerCAmelCase : str = len(self.heap ) - 1 lowerCAmelCase : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self : Optional[int] ): return len(self.heap ) == 0 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : Optional[int] = new_value lowerCAmelCase : str = new_value self.sift_up(self.idx_of_element[node] ) __A : Tuple = Node('''R''', -1) __A : int = Node('''B''', 6) __A : int = Node('''A''', 3) __A : Optional[Any] = Node('''X''', 1) __A : List[str] = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
343
1
"""simple docstring""" def a__ ( lowerCAmelCase : str ): UpperCAmelCase__ : Optional[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase__ : str = set() return any( node not in visited and depth_first_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for node in graph ) def a__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): visited.add(_lowerCAmelCase ) rec_stk.add(_lowerCAmelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_lowerCAmelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : Optional[Any] ) -> List[str]: _lowerCamelCase = 0 _lowerCamelCase = len(lowercase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None _lowerCamelCase = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCamelCase = left _lowerCamelCase = point elif point > right: _lowerCamelCase = right _lowerCamelCase = point else: if item < current_item: _lowerCamelCase = point - 1 else: _lowerCamelCase = point + 1 return None def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Any ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) elif point > right: return interpolation_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase_ , lowercase_ , lowercase_ , point - 1 ) else: return interpolation_search_by_recursion( lowercase_ , lowercase_ , point + 1 , lowercase_ ) def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: if collection != sorted(lowercase_ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys __SCREAMING_SNAKE_CASE : int = 0 if debug == 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') __SCREAMING_SNAKE_CASE : Tuple = 6_7 __SCREAMING_SNAKE_CASE : List[str] = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
661
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
661
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( __a , __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase : Tuple = frozenset([] ) def lowerCAmelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , ) _UpperCamelCase: List[str] = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) _UpperCamelCase: List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCamelCase: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) _UpperCamelCase: Optional[int] = CLIPTextModel(_lowercase ) _UpperCamelCase: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase: Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase ( self : Optional[int] , _lowercase : Any , _lowercase : int=0 ): """simple docstring""" _UpperCamelCase: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) _UpperCamelCase: Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase: Optional[int] = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((64, 64) ) _UpperCamelCase: Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_lowercase ).startswith('''mps''' ): _UpperCamelCase: Dict = torch.manual_seed(_lowercase ) else: _UpperCamelCase: Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _UpperCamelCase: List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase: str = self.get_dummy_components() _UpperCamelCase: Any = StableDiffusionInpaintPipeline(**_lowercase ) _UpperCamelCase: Any = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: Tuple = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: List[Any] = sd_pipe(**_lowercase ).images _UpperCamelCase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase: List[str] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() _UpperCamelCase: List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: List[Any] = torch.manual_seed(0 ) _UpperCamelCase: str = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , ) _UpperCamelCase: Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _UpperCamelCase: Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: int = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , safety_checker=_lowercase , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() _UpperCamelCase: Optional[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: Dict = torch.manual_seed(0 ) _UpperCamelCase: int = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type='''np''' , ) _UpperCamelCase: Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase ( self : Any ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase: Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase: Optional[int] = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase: Union[str, Any] = PNDMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) _UpperCamelCase: Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , scheduler=_lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase: Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase: Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase: Union[str, Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase: Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
264
from __future__ import annotations class __magic_name__ : """simple docstring""" def __init__( self : Any , _lowercase : Dict=None ): """simple docstring""" _UpperCamelCase: Tuple = data _UpperCamelCase: int = None def __repr__( self : Dict ): """simple docstring""" _UpperCamelCase: int = [] _UpperCamelCase: str = self while temp: string_rep.append(f"""{temp.data}""" ) _UpperCamelCase: Optional[Any] = temp.next return "->".join(_lowercase ) def lowerCAmelCase_ ( lowercase: list ) -> Optional[int]: '''simple docstring''' if not elements_list: raise Exception('''The Elements List is empty''' ) _UpperCamelCase: Optional[Any] = Node(elements_list[0] ) for i in range(1 , len(lowercase ) ): _UpperCamelCase: Union[str, Any] = Node(elements_list[i] ) _UpperCamelCase: Optional[int] = current.next return head def lowerCAmelCase_ ( lowercase: Node ) -> None: '''simple docstring''' if head_node is not None and isinstance(lowercase , lowercase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' from doctest import testmod testmod() _UpperCamelCase: Any = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(lowercase ) print('''Elements in Reverse:''' ) print_reverse(lowercase ) if __name__ == "__main__": main()
264
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCAmelCase ( UpperCamelCase__ : dict ): """simple docstring""" return (data["data"], data["target"]) def lowerCAmelCase ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ): """simple docstring""" __UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(UpperCamelCase__ , UpperCamelCase__ ) # Predict target for test data __UpperCAmelCase = xgb.predict(UpperCamelCase__ ) __UpperCAmelCase = predictions.reshape(len(UpperCamelCase__ ) , 1 ) return predictions def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = fetch_california_housing() __UpperCAmelCase , __UpperCAmelCase = data_handling(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split( UpperCamelCase__ , UpperCamelCase__ , test_size=0.25 , random_state=1 ) __UpperCAmelCase = xgboost(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) print(f"""Mean Square Error : {mean_squared_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
262
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class A : def __init__( self : List[str] , __a : Any , __a : int=9_9 , __a : Any=1_3 , __a : Tuple=7 , __a : Tuple=9 , __a : Tuple=True , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Optional[Any]=3_2 , __a : str=5 , __a : Optional[int]=4 , __a : Union[str, Any]=3_7 , __a : List[str]=8 , __a : Optional[int]=0.1 , __a : List[str]=0.0_0_2 , __a : List[Any]=1 , __a : str=0 , __a : Dict=0 , __a : int=None , __a : List[Any]=None , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = encoder_seq_length __UpperCAmelCase = decoder_seq_length # For common tests __UpperCAmelCase = self.decoder_seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_attention_mask __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = d_ff __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = dropout_rate __UpperCAmelCase = initializer_factor __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = decoder_start_token_id __UpperCAmelCase = None __UpperCAmelCase = decoder_layers def snake_case__ ( self : Union[str, Any] ) -> int: return TaConfig.from_pretrained('''google/umt5-base''' ) def snake_case__ ( self : List[Any] , __a : List[str] , __a : str , __a : Optional[int] , __a : List[Any]=None , __a : List[Any]=None , __a : Any=None , __a : str=None , __a : Any=None , ) -> List[Any]: if attention_mask is None: __UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a ) if decoder_head_mask is None: __UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a ) if cross_attn_head_mask is None: __UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case__ ( self : List[str] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = config.num_attention_heads __UpperCAmelCase = self.prepare_inputs_dict(__a , __a , __a ) return config, input_dict def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : int ) -> Optional[int]: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__ ( self : Optional[int] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__ ( self : int , __a : Any , __a : Union[str, Any] , __a : List[Any] , __a : Dict , __a : Optional[Any] , __a : int , ) -> List[Any]: __UpperCAmelCase = UMTaModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) __UpperCAmelCase = model(input_ids=__a , decoder_input_ids=__a ) __UpperCAmelCase = result.last_hidden_state __UpperCAmelCase = result.past_key_values __UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def snake_case__ ( self : List[str] , __a : Any , __a : Tuple , __a : List[str] , __a : Optional[Any] , __a : Dict , __a : Any , ) -> Optional[Any]: __UpperCAmelCase = UMTaModel(config=__a ).get_decoder().to(__a ).eval() # first forward pass __UpperCAmelCase = model(__a , use_cache=__a ) __UpperCAmelCase = model(__a ) __UpperCAmelCase = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = model(__a )['''last_hidden_state'''] __UpperCAmelCase = model(__a , past_key_values=__a )['''last_hidden_state'''] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case__ ( self : List[Any] , __a : Union[str, Any] , __a : Dict , ) -> Optional[int]: __UpperCAmelCase = UMTaModel(config=__a ).to(__a ).half().eval() __UpperCAmelCase = model(**__a )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__a ).any().item() ) @require_torch class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ = (UMTaForConditionalGeneration,) if is_torch_available() else () a_ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = True a_ = True # The small UMT5 model needs higher percentages for CPU/MP tests a_ = [0.8, 0.9] def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__a , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a ) def snake_case__ ( self : List[Any] ) -> str: __UpperCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = config_and_inputs[0] __UpperCAmelCase = UMTaForConditionalGeneration(__a ).eval() model.to(__a ) __UpperCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__a ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), } for attn_name, (name, mask) in zip(__a , head_masking.items() ): __UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__a ) __UpperCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step __UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def snake_case__ ( self : Optional[int] ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__a ).to(__a ) __UpperCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__a , legacy=__a ) __UpperCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __UpperCAmelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a ).input_ids # fmt: off __UpperCAmelCase = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__a , __a ) __UpperCAmelCase = model.generate(input_ids.to(__a ) ) __UpperCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __UpperCAmelCase = tokenizer.batch_decode(__a ) self.assertEqual(__a , __a )
262
1
import os def snake_case () -> Optional[Any]: '''simple docstring''' _snake_case : Tuple = os.path.dirname(os.path.realpath(__lowercase ) ) _snake_case : Optional[Any] = os.path.join(__lowercase , "triangle.txt" ) with open(__lowercase ) as f: _snake_case : Tuple = f.readlines() _snake_case : List[Any] = [] for line in triangle: _snake_case : List[Any] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__lowercase ) ) a.append(__lowercase ) for i in range(1 , len(__lowercase ) ): for j in range(len(a[i] ) ): _snake_case : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _snake_case : Union[str, Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__lowercase , __lowercase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
580
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ): _snake_case : Any = parent _snake_case : int = out_indices if out_indices is not None else [4] _snake_case : Any = stage_names _snake_case : Optional[Any] = out_features _snake_case : Dict = backbone _snake_case : List[str] = batch_size _snake_case : Optional[int] = image_size _snake_case : str = num_channels _snake_case : Optional[Any] = use_pretrained_backbone _snake_case : str = is_training def UpperCamelCase ( self ): _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[str] = self.get_config() return config, pixel_values def UpperCamelCase ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Dict = TimmBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase ( self ): _snake_case : Dict = self.prepare_config_and_inputs() _snake_case ,_snake_case : List[Any] = config_and_inputs _snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TimmBackbone,) if is_torch_available() else () _lowerCamelCase = {'feature-extraction': TimmBackbone} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : Dict = TimmBackboneModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCamelCase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): _snake_case : Dict = "resnet18" _snake_case : Tuple = "microsoft/resnet-18" _snake_case : Tuple = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ ) _snake_case : List[str] = AutoBackbone.from_pretrained(lowercase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _snake_case : List[str] = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3] ) _snake_case : Optional[int] = AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def UpperCamelCase ( self ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def UpperCamelCase ( self ): pass @unittest.skip("Safetensors is not supported by timm." ) def UpperCamelCase ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): _snake_case ,_snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(lowercase_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Union[str, Any] = [*signature.parameters.keys()] _snake_case : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = True _snake_case : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality _snake_case : Dict = self.all_model_classes[0] _snake_case : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) _snake_case : List[str] = self._prepare_for_class(lowercase_ , lowercase_ ) _snake_case : List[Any] = model(**lowercase_ ) _snake_case : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models _snake_case : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _snake_case : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCamelCase ( self ): _snake_case ,_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : Any = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _snake_case : Union[str, Any] = copy.deepcopy(lowercase_ ) _snake_case : int = None _snake_case : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : int = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _snake_case : Dict = copy.deepcopy(lowercase_ ) _snake_case : Dict = False _snake_case : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : Any = model(**lowercase_ )
580
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class __SCREAMING_SNAKE_CASE ( __a): __SCREAMING_SNAKE_CASE : List[Any] = 'switch_transformers' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : List[Any] , __UpperCamelCase : Optional[int]=32_128 , __UpperCamelCase : Union[str, Any]=768 , __UpperCamelCase : Optional[Any]=64 , __UpperCamelCase : int=2_048 , __UpperCamelCase : Optional[Any]=64 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Dict=12 , __UpperCamelCase : str=3 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : int=8 , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=0.01 , __UpperCamelCase : int="float32" , __UpperCamelCase : Tuple=False , __UpperCamelCase : Tuple=32 , __UpperCamelCase : List[Any]=128 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Optional[int]=1e-6 , __UpperCamelCase : Any=0.001 , __UpperCamelCase : int=0.001 , __UpperCamelCase : List[str]=1.0 , __UpperCamelCase : str="relu" , __UpperCamelCase : str=True , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Union[str, Any]=1 , **__UpperCamelCase : Union[str, Any] , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_sparse_encoder_layers _UpperCAmelCase = num_layers _UpperCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase = num_heads _UpperCAmelCase = num_experts _UpperCAmelCase = expert_capacity _UpperCAmelCase = router_bias _UpperCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _UpperCAmelCase = router_dtype _UpperCAmelCase = router_ignore_padding_tokens _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = feed_forward_proj _UpperCAmelCase = use_cache _UpperCAmelCase = add_router_probs _UpperCAmelCase = router_z_loss_coef _UpperCAmelCase = router_aux_loss_coef _UpperCAmelCase = self.feed_forward_proj.split("-" ) _UpperCAmelCase = act_info[-1] _UpperCAmelCase = act_info[0] == "gated" if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase = "gelu_new" super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase , )
684
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class __UpperCAmelCase : def __init__( self ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 ): if self.graph.get(_lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCAmelCase_ = [[w, v]] if not self.graph.get(_lowerCamelCase ): lowerCAmelCase_ = [] def UpperCAmelCase_ ( self ): return list(self.graph ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): if s == d: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def UpperCAmelCase_ ( self , _lowerCamelCase=-1 ): if c == -1: lowerCAmelCase_ = floor(random() * 1_0000 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 ): lowerCAmelCase_ = deque() lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: lowerCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase_ ( self , _lowerCamelCase ): return len(self.graph[u] ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = s lowerCAmelCase_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return sorted_nodes def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(_lowerCamelCase ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(_lowerCamelCase ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def UpperCAmelCase_ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): lowerCAmelCase_ = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = time() return end - begin def UpperCAmelCase_ ( self , _lowerCamelCase=-2 ): lowerCAmelCase_ = time() self.bfs(_lowerCamelCase ) lowerCAmelCase_ = time() return end - begin class __UpperCAmelCase : def __init__( self ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 ): # check if the u exists if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCAmelCase_ = [[w, v]] # add the other way if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCAmelCase_ = [[w, u]] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) # the other way round if self.graph.get(_lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): if s == d: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def UpperCAmelCase_ ( self , _lowerCamelCase=-1 ): if c == -1: lowerCAmelCase_ = floor(random() * 1_0000 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 ): lowerCAmelCase_ = deque() lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: lowerCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ ( self , _lowerCamelCase ): return len(self.graph[u] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(_lowerCamelCase ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(_lowerCamelCase ) != 0: lowerCAmelCase_ = stack[len(_lowerCamelCase ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(_lowerCamelCase ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def UpperCAmelCase_ ( self ): return list(self.graph ) def UpperCAmelCase_ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): lowerCAmelCase_ = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = time() return end - begin def UpperCAmelCase_ ( self , _lowerCamelCase=-2 ): lowerCAmelCase_ = time() self.bfs(_lowerCamelCase ) lowerCAmelCase_ = time() return end - begin
274
0
def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase : int = 100 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : int = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Optional[int] = pre_numerator UpperCAmelCase__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : List[Any] = cur_numerator UpperCAmelCase__ : str = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
"""simple docstring""" import datasets from .evaluate import evaluate snake_case = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' snake_case = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' snake_case = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} _snake_case = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] _snake_case = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
103
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLDMaDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) lowerCAmelCase_ : Any = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) lowerCAmelCase_ : Optional[int] = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=0 ) -> Dict: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) lowerCAmelCase_ : Tuple = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : str = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = output.rgb, output.depth lowerCAmelCase_ : str = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = depth_slice_a[0, -3:, -1] lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ : str = ldmad_pipe.tokenizer( lowerCAmelCase__ ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase__ ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = text_inputs["input_ids"].to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] lowerCAmelCase_ : Optional[int] = prompt_embeds # forward lowerCAmelCase_ : str = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : str = output.rgb, output.depth lowerCAmelCase_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = "french fries" lowerCAmelCase_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.rgb, output.depth lowerCAmelCase_ : Any = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) lowerCAmelCase_ : Union[str, Any] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : Union[str, Any]=torch.floataa ,lowerCAmelCase__ : List[str]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ : List[str] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = output.rgb, output.depth lowerCAmelCase_ : List[str] = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ : Optional[int] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) lowerCAmelCase_ : int = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) lowerCAmelCase_ : Optional[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : List[str]=torch.floataa ,lowerCAmelCase__ : Optional[int]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = 0.495_586 lowerCAmelCase_ : Optional[Any] = 0.33_795_515 lowerCAmelCase_ : Any = 112.48_518 lowerCAmelCase_ : List[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = output.rgb, output.depth lowerCAmelCase_ : List[str] = 0.4_194_127 lowerCAmelCase_ : List[str] = 0.35_375_586 lowerCAmelCase_ : str = 0.5_638_502 lowerCAmelCase_ : Optional[Any] = 0.34_686_103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
659
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :int = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , SCREAMING_SNAKE_CASE ).groups()[0] class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' def __init__( self , A , A=None , A=None ) ->Any: UpperCAmelCase__ :int = file_names UpperCAmelCase__ :List[str] = image_transform UpperCAmelCase__ :Optional[int] = label_to_id def __len__( self ) ->str: return len(self.file_names ) def __getitem__( self , A ) ->Tuple: UpperCAmelCase__ :str = self.file_names[idx] UpperCAmelCase__ :Optional[Any] = PIL.Image.open(A ) UpperCAmelCase__ :Tuple = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase__ :int = self.image_transform(A ) UpperCAmelCase__ :Tuple = extract_label(A ) if self.label_to_id is not None: UpperCAmelCase__ :str = self.label_to_id[label] return {"image": image, "label": label} def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if args.with_tracking: UpperCAmelCase__ :Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase__ :Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ :Union[str, Any] = config['lr'] UpperCAmelCase__ :Optional[int] = int(config['num_epochs'] ) UpperCAmelCase__ :Union[str, Any] = int(config['seed'] ) UpperCAmelCase__ :Optional[int] = int(config['batch_size'] ) UpperCAmelCase__ :Dict = config['image_size'] if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): UpperCAmelCase__ :List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase__ :int = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase__ :Optional[int] = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase__ :Tuple = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase__ :Optional[int] = os.path.split(SCREAMING_SNAKE_CASE )[-1].split('.' )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Grab all the image filenames UpperCAmelCase__ :int = [os.path.join(args.data_dir , SCREAMING_SNAKE_CASE ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase__ :List[str] = [extract_label(SCREAMING_SNAKE_CASE ) for fname in file_names] UpperCAmelCase__ :List[str] = list(set(SCREAMING_SNAKE_CASE ) ) id_to_label.sort() UpperCAmelCase__ :Tuple = {lbl: i for i, lbl in enumerate(SCREAMING_SNAKE_CASE )} # Set the seed before splitting the data. np.random.seed(SCREAMING_SNAKE_CASE ) torch.manual_seed(SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE ) # Split our filenames between train and validation UpperCAmelCase__ :Dict = np.random.permutation(len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :int = int(0.8 * len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :Tuple = random_perm[:cut] UpperCAmelCase__ :List[str] = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase__ :str = Compose([RandomResizedCrop(SCREAMING_SNAKE_CASE , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase__ :Union[str, Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=SCREAMING_SNAKE_CASE , label_to_id=SCREAMING_SNAKE_CASE ) # For evaluation, we use a deterministic Resize UpperCAmelCase__ :int = Compose([Resize(SCREAMING_SNAKE_CASE ), ToTensor()] ) UpperCAmelCase__ :Any = PetsDataset([file_names[i] for i in eval_split] , image_transform=SCREAMING_SNAKE_CASE , label_to_id=SCREAMING_SNAKE_CASE ) # Instantiate dataloaders. UpperCAmelCase__ :Tuple = DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , num_workers=4 ) UpperCAmelCase__ :Dict = DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ :Dict = create_model('resnet50d' , pretrained=SCREAMING_SNAKE_CASE , num_classes=len(SCREAMING_SNAKE_CASE ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ :Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase__ :List[Any] = False for param in model.get_classifier().parameters(): UpperCAmelCase__ :Any = True # We normalize the batches of images to be a bit faster. UpperCAmelCase__ :Any = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase__ :int = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ :Tuple = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase__ :List[Any] = OneCycleLR(optimizer=SCREAMING_SNAKE_CASE , max_lr=SCREAMING_SNAKE_CASE , epochs=SCREAMING_SNAKE_CASE , steps_per_epoch=len(SCREAMING_SNAKE_CASE ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ :Optional[int] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ :Dict = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase__ :str = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ :Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase__ :int = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase__ :int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase__ :Union[str, Any] = os.path.splitext(SCREAMING_SNAKE_CASE )[0] if "epoch" in training_difference: UpperCAmelCase__ :str = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase__ :Dict = None else: UpperCAmelCase__ :Optional[int] = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase__ :List[str] = resume_step // len(SCREAMING_SNAKE_CASE ) resume_step -= starting_epoch * len(SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() if args.with_tracking: UpperCAmelCase__ :str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase__ :Union[str, Any] = accelerator.skip_first_batches(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase__ :Optional[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase__ :Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase__ :List[Any] = (batch['image'] - mean) / std UpperCAmelCase__ :Dict = model(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :str = torch.nn.functional.cross_entropy(SCREAMING_SNAKE_CASE , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Union[str, Any] = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase__ :Tuple = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ :List[Any] = 0 UpperCAmelCase__ :Optional[int] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase__ :Optional[int] = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase__ :Optional[int] = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase__ :Dict = model(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = outputs.argmax(dim=-1 ) UpperCAmelCase__ :List[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase__ :Dict = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase__ :Dict = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(SCREAMING_SNAKE_CASE ), 'epoch': epoch, } , step=SCREAMING_SNAKE_CASE , ) if checkpointing_steps == "epoch": UpperCAmelCase__ :Union[str, Any] = f"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase__ :List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) if args.with_tracking: accelerator.end_training() def A ( ): """simple docstring""" UpperCAmelCase__ :List[str] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=SCREAMING_SNAKE_CASE , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=SCREAMING_SNAKE_CASE , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase__ :Optional[int] = parser.parse_args() UpperCAmelCase__ :str = {'lr': 3E-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
707
import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self , A ) ->None: UpperCAmelCase__ :Dict = data # Initialize hash values UpperCAmelCase__ :str = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants UpperCAmelCase__ :str = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] UpperCAmelCase__ :Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def A__ ( A ) ->bytes: UpperCAmelCase__ :List[Any] = b'\x80' + (b'\x00' * (63 - (len(A ) + 8) % 64)) UpperCAmelCase__ :Optional[int] = struct.pack('>Q' , (len(A ) * 8) ) return data + padding + big_endian_integer def A__ ( self ) ->None: # Convert into blocks of 64 bytes UpperCAmelCase__ :List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase__ :Any = list(struct.unpack('>16L' , A ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase__ :Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase__ :Any = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase__ :str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression UpperCAmelCase__ :Tuple = self.ror(A , 6 ) ^ self.ror(A , 11 ) ^ self.ror(A , 25 ) UpperCAmelCase__ :int = (e & f) ^ ((~e & 0xff_fff_fff) & g) UpperCAmelCase__ :str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 UpperCAmelCase__ :Optional[int] = self.ror(A , 2 ) ^ self.ror(A , 13 ) ^ self.ror(A , 22 ) UpperCAmelCase__ :Optional[int] = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase__ :Optional[int] = (sa + maj) % 0x100_000_000 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Tuple = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) UpperCAmelCase__ :str = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase__ :Tuple = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] UpperCAmelCase__ :Dict = ''.join([hex(A )[2:].zfill(8 ) for value in self.hashes] ) def A__ ( self , A , A ) ->int: return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->None: import hashlib UpperCAmelCase__ :Optional[Any] = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(A ).hash , hashlib.shaaaa(A ).hexdigest() ) def A ( ): """simple docstring""" import doctest doctest.testmod() UpperCAmelCase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) UpperCAmelCase__ :List[Any] = parser.parse_args() UpperCAmelCase__ :List[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: UpperCAmelCase__ :Optional[Any] = f.read() else: UpperCAmelCase__ :Any = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
433
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
from __future__ import annotations def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ) -> list[list[str]]: '''simple docstring''' _lowercase : Dict = word_bank or [] # create a table _lowercase : int = len(_UpperCAmelCase ) + 1 _lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value _lowercase : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: _lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
461
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _A = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ = "dhaka" , SCREAMING_SNAKE_CASE_ = 5 ): lowercase_ : Optional[int] = min(SCREAMING_SNAKE_CASE_ , 50 ) # Prevent abuse! lowercase_ : Union[str, Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } lowercase_ : Union[str, Any] = requests.get('https://www.google.com/search' , params=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = BeautifulSoup(html.text , 'html.parser' ) lowercase_ : List[Any] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) lowercase_ : Union[str, Any] = json.dumps(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = json.loads(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , SCREAMING_SNAKE_CASE_ , ) if not matched_google_image_data: return 0 lowercase_ : str = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(SCREAMING_SNAKE_CASE_ ) , ) lowercase_ : Union[str, Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , SCREAMING_SNAKE_CASE_ , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_ ): if index >= max_images: return index lowercase_ : List[str] = bytes(SCREAMING_SNAKE_CASE_ , 'ascii' ).decode( 'unicode-escape' ) lowercase_ : Union[str, Any] = bytes(SCREAMING_SNAKE_CASE_ , 'ascii' ).decode( 'unicode-escape' ) lowercase_ : Any = urllib.request.build_opener() lowercase_ : Any = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE_ ) lowercase_ : Dict = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE_ , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: _A = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
702
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : Any = '''mra''' def __init__(self , _a=50_265 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=1 , _a=0.02 , _a=1e-5 , _a="absolute" , _a=4 , _a="full" , _a=0 , _a=0 , _a=1 , _a=0 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Any = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : Any = block_per_row lowercase_ : Optional[int] = approx_mode lowercase_ : int = initial_prior_first_n_blocks lowercase_ : str = initial_prior_diagonal_n_blocks
438
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __lowerCAmelCase ( _A ,_A=() ,_A=None ,_A="no" ,_A="29500" ): """simple docstring""" _lowercase = False _lowercase = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): _lowercase = True elif "IPython" in sys.modules: _lowercase = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: _lowercase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" ,UpperCAmelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: _lowercase = 8 _lowercase = PrepareForLaunch(UpperCAmelCase_ ,distributed_type="""TPU""" ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCAmelCase_ ,args=UpperCAmelCase_ ,nprocs=UpperCAmelCase_ ,start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*UpperCAmelCase_ ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase_ ,master_addr="""127.0.01""" ,master_port=UpperCAmelCase_ ,mixed_precision=UpperCAmelCase_ ): _lowercase = PrepareForLaunch(UpperCAmelCase_ ,distributed_type="""MULTI_GPU""" ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCAmelCase_ ,args=UpperCAmelCase_ ,nprocs=UpperCAmelCase_ ,start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowercase = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*UpperCAmelCase_ ) def __lowerCAmelCase ( _A ,_A=() ,_A=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase_ ,master_addr="""127.0.01""" ,master_port="""29500""" ,accelerate_mixed_precision="""no""" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="""yes""" ,): _lowercase = PrepareForLaunch(UpperCAmelCase_ ,debug=UpperCAmelCase_ ) start_processes(UpperCAmelCase_ ,args=UpperCAmelCase_ ,nprocs=UpperCAmelCase_ ,start_method="""fork""" )
398
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Any = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class __snake_case ( __magic_name__ ): __lowerCAmelCase = '''xlm''' __lowerCAmelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , UpperCamelCase_=3_0145 , UpperCamelCase_=2048 , UpperCamelCase_=12 , UpperCamelCase_=16 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=1 , UpperCamelCase_=True , UpperCamelCase_=512 , UpperCamelCase_=2048**-0.5 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=5 , UpperCamelCase_=True , UpperCamelCase_="first" , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=5 , UpperCamelCase_=5 , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=0 , **UpperCamelCase_ , ) -> List[str]: snake_case__ = vocab_size snake_case__ = emb_dim snake_case__ = n_layers snake_case__ = n_heads snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = gelu_activation snake_case__ = sinusoidal_embeddings snake_case__ = causal snake_case__ = asm snake_case__ = n_langs snake_case__ = use_lang_emb snake_case__ = layer_norm_eps snake_case__ = bos_index snake_case__ = eos_index snake_case__ = pad_index snake_case__ = unk_index snake_case__ = mask_index snake_case__ = is_encoder snake_case__ = max_position_embeddings snake_case__ = embed_init_std snake_case__ = init_std snake_case__ = summary_type snake_case__ = summary_use_proj snake_case__ = summary_activation snake_case__ = summary_proj_to_labels snake_case__ = summary_first_dropout snake_case__ = start_n_top snake_case__ = end_n_top snake_case__ = mask_token_id snake_case__ = lang_id if "n_words" in kwargs: snake_case__ = kwargs['n_words'] super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) class __snake_case ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
368
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __UpperCamelCase : lowerCamelCase : Optional[int] =42 lowerCamelCase : Union[str, Any] =42 class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> Tuple: a : list[list[Edge]] = [[] for _ in range(__lowerCamelCase )] a : int = size def __getitem__( self , lowerCAmelCase__ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __a ( self ) -> Tuple: return self._size def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__lowerCamelCase , __lowerCamelCase ) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int | None: a : List[Any] = deque([start_vertex] ) a : list[int | None] = [None] * self.size a : str = 0 while queue: a : Union[str, Any] = queue.popleft() a : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: a : Tuple = current_distance + edge.weight a : str = distances[edge.destination_vertex] if ( isinstance(__lowerCamelCase , __lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue a : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->bytes: '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : bytes ) ->str: '''simple docstring''' return baseaa.aaadecode(_lowercase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE__ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} SCREAMING_SNAKE_CASE__ = features.copy() SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: List[Any] ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = jsonl_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = [jsonl_path] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] ): if split: SCREAMING_SNAKE_CASE__ = {split: jsonl_path} else: SCREAMING_SNAKE_CASE__ = """train""" SCREAMING_SNAKE_CASE__ = {"""train""": jsonl_path, """test""": jsonl_path} SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return json.load(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): return [json.loads(UpperCamelCase__ ) for line in buffer] class UpperCamelCase_ : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self :str , __A :int , __A :Optional[Any] , __A :Dict ) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__A ) assert isinstance(__A , __A ) assert isinstance(exported_content[0] , __A ) assert len(__A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self :Optional[int] , __A :Union[str, Any] , __A :Tuple , __A :int , __A :str , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , orient=__A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__A ) assert isinstance(__A , __A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__A ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self :Union[str, Any] , __A :Tuple , __A :Dict , __A :Any ) -> int: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__A ) assert isinstance(__A , __A ) assert isinstance(exported_content[0] , __A ) assert len(__A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self :int , __A :List[str] , __A :List[Any] , __A :List[Any] , __A :str , __A :List[Any] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , orient=__A , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__A ) assert isinstance(__A , __A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__A ) == 10 def _snake_case ( self :Union[str, Any] , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" with pytest.raises(__A ): with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _snake_case ( self :Dict , __A :List[Any] , __A :Any , __A :str , __A :Tuple , __A :Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}''' SCREAMING_SNAKE_CASE__ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(__A , __A , compression=__A ).write() with fsspec.open(__A , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() with fsspec.open(__A , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert exported_content == original_content
6
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
563
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _lowerCAmelCase ( A__: Dict ): '''simple docstring''' UpperCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _lowerCAmelCase ( A__: Dict ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = emb.weight.shape UpperCAmelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) UpperCAmelCase = emb.weight.data return lin_layer def _lowerCAmelCase ( A__: Union[str, Any] , A__: Any="facebook/mbart-large-en-ro" , A__: List[Any]=False , A__: Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase = torch.load(__snake_case , map_location='''cpu''' )['''model'''] remove_ignore_keys_(__snake_case ) UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase = MBartConfig.from_pretrained(__snake_case , vocab_size=__snake_case ) if mbart_aa and finetuned: UpperCAmelCase = '''relu''' UpperCAmelCase = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase = MBartForConditionalGeneration(__snake_case ) model.model.load_state_dict(__snake_case ) if finetuned: UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __magic_name__ = parser.parse_args() __magic_name__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
707
def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase = str(bin(A__ ) ) binary_number += "0" * shift_amount return binary_number def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase = str(bin(A__ ) )[2:] if shift_amount >= len(A__ ): return "0b0" UpperCAmelCase = binary_number[: len(A__ ) - shift_amount] return "0b" + shifted_binary_number def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase = '''0''' + str(bin(A__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase = len(bin(A__ )[3:] ) # Find 2's complement of number UpperCAmelCase = bin(abs(A__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase = ( '''1''' + '''0''' * (binary_number_length - len(A__ )) + binary_number ) if shift_amount >= len(A__ ): return "0b" + binary_number[0] * len(A__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(A__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
391
0
'''simple docstring''' from itertools import count def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
405
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" return str(_UpperCamelCase ) == str(_UpperCamelCase )[::-1] def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" return int(_UpperCamelCase ) + int(str(_UpperCamelCase )[::-1] ) def _lowerCAmelCase ( _UpperCamelCase : int = 1_00_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for num in range(1 , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =num while iterations < 50: _SCREAMING_SNAKE_CASE =sum_reverse(_UpperCamelCase ) iterations += 1 if is_palindrome(_UpperCamelCase ): break else: lychrel_nums.append(_UpperCamelCase ) return len(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
405
1
def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowercase = [p / w for p, w in zip(snake_case_ , snake_case_ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowercase = sorted(snake_case_ ) # declaring useful variables _lowercase = len(snake_case_ ) _lowercase = 0 _lowercase = 0 _lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowercase = sorted_profit_by_weight[length - i - 1] _lowercase = profit_by_weight.index(snake_case_ ) _lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _lowerCamelCase = [int(x) for x in input('Input profits separated by spaces: ').split()] _lowerCamelCase = [int(x) for x in input('Input weights separated by spaces: ').split()] _lowerCamelCase = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
711
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( snake_case_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
572
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( __magic_name__ , unittest.TestCase ): __lowerCAmelCase = KandinskyVaaPriorPipeline __lowerCAmelCase = ['''prompt'''] __lowerCAmelCase = ['''prompt''', '''negative_prompt'''] __lowerCAmelCase = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __lowerCAmelCase = False @property def _snake_case ( self ) -> List[Any]: return 32 @property def _snake_case ( self ) -> int: return 32 @property def _snake_case ( self ) -> Dict: return self.time_input_dim @property def _snake_case ( self ) -> Dict: return self.time_input_dim * 4 @property def _snake_case ( self ) -> List[str]: return 100 @property def _snake_case ( self ) -> Optional[Any]: snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _snake_case ( self ) -> Any: torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def _snake_case ( self ) -> Any: torch.manual_seed(0 ) snake_case__ = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } snake_case__ = PriorTransformer(**UpperCamelCase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 snake_case__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _snake_case ( self ) -> Any: torch.manual_seed(0 ) snake_case__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) snake_case__ = CLIPVisionModelWithProjection(UpperCamelCase_ ) return model @property def _snake_case ( self ) -> Tuple: snake_case__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def _snake_case ( self ) -> str: snake_case__ = self.dummy_prior snake_case__ = self.dummy_image_encoder snake_case__ = self.dummy_text_encoder snake_case__ = self.dummy_tokenizer snake_case__ = self.dummy_image_processor snake_case__ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=UpperCamelCase_ , clip_sample_range=1_0.0 , ) snake_case__ = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any: if str(UpperCamelCase_ ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase_ ) else: snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) snake_case__ = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _snake_case ( self ) -> int: snake_case__ = 'cpu' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**UpperCamelCase_ ) snake_case__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) snake_case__ = output.image_embeds snake_case__ = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] snake_case__ = image[0, -10:] snake_case__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) snake_case__ = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _snake_case ( self ) -> str: snake_case__ = torch_device == 'cpu' snake_case__ = True snake_case__ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , test_mean_pixel_difference=UpperCamelCase_ , ) @skip_mps def _snake_case ( self ) -> List[Any]: snake_case__ = torch_device == 'cpu' snake_case__ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase_ , test_mean_pixel_difference=UpperCamelCase_ , )
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> str: snake_case__ = 1 snake_case__ = 3 snake_case__ = (32, 32) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=UpperCamelCase_ , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case__ = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> List[str]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _snake_case ( self ) -> str: snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case__ = unet.half() snake_case__ = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='np' , ).images snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[int]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _snake_case ( self ) -> List[Any]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _snake_case ( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , output_type='np' , ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
368
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) lowerCAmelCase__ = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__ , """dataset_info.json""" ) ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCAmelCase__ = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase__ = yaml.safe_dump(lowerCamelCase__ ) lowerCAmelCase__ = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = DatasetInfo() lowerCAmelCase__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__ , """README.md""" ) )
709
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): '''simple docstring''' _lowercase = IFInpaintingPipeline _lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} _lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def __lowerCamelCase ( self ): return self._get_dummy_components() def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): if str(__UpperCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : str =torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : List[Any] =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCamelCase ( self ): self._test_save_load_local() def __lowerCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
220
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __SCREAMING_SNAKE_CASE = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 'ernie_m' _lowercase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __UpperCAmelCase = 250_002 , __UpperCAmelCase = 768 , __UpperCAmelCase = 12 , __UpperCAmelCase = 12 , __UpperCAmelCase = 3_072 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 514 , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1 , __UpperCAmelCase = 1E-05 , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =vocab_size SCREAMING_SNAKE_CASE_ : str =hidden_size SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_ : int =num_attention_heads SCREAMING_SNAKE_CASE_ : str =intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] =hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] =max_position_embeddings SCREAMING_SNAKE_CASE_ : int =initializer_range SCREAMING_SNAKE_CASE_ : List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] =classifier_dropout SCREAMING_SNAKE_CASE_ : List[str] =is_decoder SCREAMING_SNAKE_CASE_ : Tuple =act_dropout
220
1
'''simple docstring''' class a : """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: Tuple = 0 __UpperCAmelCase: Tuple = 0 __UpperCAmelCase: Any = {} def lowercase_ ( self , snake_case_ ): '''simple docstring''' if vertex not in self.adjacency: __UpperCAmelCase: List[str] = {} self.num_vertices += 1 def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return __UpperCAmelCase: Dict = weight __UpperCAmelCase: Dict = weight def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.get_edges() for edge in edges: __UpperCAmelCase: Any = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): __UpperCAmelCase: Optional[Any] = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCAmelCase: Any = edges[i][2] + 1 for edge in edges: __UpperCAmelCase: int = edge __UpperCAmelCase: int = weight __UpperCAmelCase: List[Any] = weight def __str__( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = "" for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCAmelCase: str = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase_ ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def lowercase_ ( snake_case_=None , snake_case_=None ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = Graph() if vertices is None: __UpperCAmelCase: Union[str, Any] = [] if edges is None: __UpperCAmelCase: Dict = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class a : """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: str = {} __UpperCAmelCase: List[Any] = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' if item in self.parent: return self.find(snake_case_ ) __UpperCAmelCase: Union[str, Any] = item __UpperCAmelCase: List[Any] = 0 return item def lowercase_ ( self , snake_case_ ): '''simple docstring''' if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: __UpperCAmelCase: Any = self.find(self.parent[item] ) return self.parent[item] def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.find(snake_case_ ) __UpperCAmelCase: Optional[Any] = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCAmelCase: List[Any] = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCAmelCase: Union[str, Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCAmelCase: Optional[int] = roota return roota return None @staticmethod def lowercase_ ( snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = graph.num_vertices __UpperCAmelCase: int = Graph.UnionFind() __UpperCAmelCase: str = [] while num_components > 1: __UpperCAmelCase: Union[str, Any] = {} for vertex in graph.get_vertices(): __UpperCAmelCase: List[Any] = -1 __UpperCAmelCase: Dict = graph.get_edges() for edge in edges: __UpperCAmelCase: Tuple = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCAmelCase: Union[str, Any] = edge __UpperCAmelCase: Optional[int] = union_find.find(snake_case_ ) __UpperCAmelCase: int = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCAmelCase: Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCAmelCase: Optional[int] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCAmelCase: int = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) __UpperCAmelCase: str = num_components - 1 __UpperCAmelCase: str = Graph.build(edges=snake_case_ ) return mst
704
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake SCREAMING_SNAKE_CASE_ = numpy.array([0, 0]) SCREAMING_SNAKE_CASE_ = numpy.array([0.5, 0.866_0254]) SCREAMING_SNAKE_CASE_ = numpy.array([1, 0]) SCREAMING_SNAKE_CASE_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] , _lowercase : int ) -> list[numpy.ndarray]: __UpperCAmelCase: int = initial_vectors for _ in range(_lowercase ): __UpperCAmelCase: Any = iteration_step(_lowercase ) return vectors def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> list[numpy.ndarray]: __UpperCAmelCase: Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): __UpperCAmelCase: Union[str, Any] = vectors[i + 1] new_vectors.append(_lowercase ) __UpperCAmelCase: Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase__ ( _lowercase : numpy.ndarray , _lowercase : float ) -> numpy.ndarray: __UpperCAmelCase: Tuple = numpy.radians(_lowercase ) __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = numpy.cos(_lowercase ), numpy.sin(_lowercase ) __UpperCAmelCase: Tuple = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowercase , _lowercase ) def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> None: __UpperCAmelCase: Union[str, Any] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __UpperCAmelCase, __UpperCAmelCase: Dict = zip(*_lowercase ) plt.plot(_lowercase , _lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
466
0
from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCamelCase__ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCamelCase__ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowerCamelCase ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="uniform_average" , __lowerCAmelCase=True ): UpperCamelCase__ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
619
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase__ = re.compile(r'''\s+''') def lowerCamelCase__ ( __A :int ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__A ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = [len(__A ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__A ), "line_max": max(__A )} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase__ ( __A :str ,__A :int ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCamelCase__ ( __A :Optional[int] ,__A :int=5 ): """simple docstring""" __snake_case = ["""auto-generated""", """autogenerated""", """automatically generated"""] __snake_case = example["""content"""].splitlines() for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase__ ( __A :int ,__A :int=5 ,__A :str=0.05 ): """simple docstring""" __snake_case = ["""unit tests""", """test file""", """configuration file"""] __snake_case = example["""content"""].splitlines() __snake_case = 0 __snake_case = 0 # first test for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case = example["""content"""].count("""\n""" ) __snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase__ ( __A :Dict ): """simple docstring""" __snake_case = ["""def """, """class """, """for """, """while """] __snake_case = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase__ ( __A :Dict ,__A :List[str]=4 ): """simple docstring""" __snake_case = example["""content"""].splitlines() __snake_case = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase__ ( __A :str ): """simple docstring""" __snake_case = tokenizer(example["""content"""] ,truncation=__A )["""input_ids"""] __snake_case = len(example["""content"""] ) / len(__A ) return {"ratio": ratio} def lowerCamelCase__ ( __A :Optional[Any] ): """simple docstring""" __snake_case = {} results.update(get_hash(__A ) ) results.update(line_stats(__A ) ) results.update(alpha_stats(__A ) ) results.update(char_token_ratio(__A ) ) results.update(is_autogenerated(__A ) ) results.update(is_config_or_test(__A ) ) results.update(has_no_keywords(__A ) ) results.update(has_few_assignments(__A ) ) return results def lowerCamelCase__ ( __A :int ,__A :str ,__A :Dict ): """simple docstring""" if not check_uniques(__A ,__A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase__ ( __A :str ): """simple docstring""" with open(__A ,"""rb""" ) as f_in: with gzip.open(str(__A ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__A ,__A ) os.unlink(__A ) # Settings UpperCamelCase__ = HfArgumentParser(PreprocessingArguments) UpperCamelCase__ = parser.parse_args() if args.num_workers is None: UpperCamelCase__ = multiprocessing.cpu_count() UpperCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase__ = time.time() UpperCamelCase__ = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing UpperCamelCase__ = time.time() UpperCamelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes UpperCamelCase__ = set(ds.unique('''hash''')) UpperCamelCase__ = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics UpperCamelCase__ = time.time() UpperCamelCase__ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase__ = time.time() UpperCamelCase__ ,UpperCamelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file UpperCamelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) UpperCamelCase__ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) UpperCamelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase__ = str(data_dir / F'file-{file_number+1:012}.json') UpperCamelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
268
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case_ : Optional[Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def __snake_case ( _UpperCAmelCase : Any): UpperCamelCase = {} state_dict.pop('''pixel_mean''', _UpperCAmelCase) state_dict.pop('''pixel_std''', _UpperCAmelCase) UpperCamelCase = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase = key.replace(_UpperCAmelCase, _UpperCAmelCase) if re.match(_UpperCAmelCase, _UpperCAmelCase): UpperCamelCase = int(re.match(_UpperCAmelCase, _UpperCAmelCase).group(2)) if layer_nb == 0: UpperCamelCase = key.replace('''layers.0''', '''proj_in''') elif layer_nb == 1: UpperCamelCase = key.replace('''layers.1''', '''layers.0''') elif layer_nb == 2: UpperCamelCase = key.replace('''layers.2''', '''proj_out''') UpperCamelCase = value UpperCamelCase = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __snake_case ( _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple, _UpperCAmelCase : Tuple="ybelkada/segment-anything"): UpperCamelCase = hf_hub_download(_UpperCAmelCase, f'checkpoints/{model_name}.pth') if "sam_vit_b" in model_name: UpperCamelCase = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) UpperCamelCase = SamConfig( vision_config=_UpperCAmelCase, ) elif "sam_vit_h" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) UpperCamelCase = SamConfig( vision_config=_UpperCAmelCase, ) UpperCamelCase = torch.load(_UpperCAmelCase, map_location='''cpu''') UpperCamelCase = replace_keys(_UpperCAmelCase) UpperCamelCase = SamImageProcessor() UpperCamelCase = SamProcessor(image_processor=_UpperCAmelCase) UpperCamelCase = SamModel(_UpperCAmelCase) hf_model.load_state_dict(_UpperCAmelCase) UpperCamelCase = hf_model.to('''cuda''') UpperCamelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' UpperCamelCase = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase).raw).convert('''RGB''') UpperCamelCase = [[[400, 650]]] UpperCamelCase = [[1]] UpperCamelCase = processor(images=np.array(_UpperCAmelCase), return_tensors='''pt''').to('''cuda''') with torch.no_grad(): UpperCamelCase = hf_model(**_UpperCAmelCase) UpperCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 UpperCamelCase = processor( images=np.array(_UpperCAmelCase), input_points=_UpperCAmelCase, input_labels=_UpperCAmelCase, return_tensors='''pt''').to('''cuda''') with torch.no_grad(): UpperCamelCase = hf_model(**_UpperCAmelCase) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 UpperCamelCase = ((75, 275, 1725, 850),) UpperCamelCase = processor(images=np.array(_UpperCAmelCase), input_boxes=_UpperCAmelCase, return_tensors='''pt''').to('''cuda''') with torch.no_grad(): UpperCamelCase = hf_model(**_UpperCAmelCase) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. UpperCamelCase = [[[400, 650], [800, 650]]] UpperCamelCase = [[1, 1]] UpperCamelCase = processor( images=np.array(_UpperCAmelCase), input_points=_UpperCAmelCase, input_labels=_UpperCAmelCase, return_tensors='''pt''').to('''cuda''') with torch.no_grad(): UpperCamelCase = hf_model(**_UpperCAmelCase) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() snake_case_ : Dict = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) snake_case_ : int = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
703
'''simple docstring''' def __snake_case ( _UpperCAmelCase : list[list[float]]): UpperCamelCase = [] for data in source_data: for i, el in enumerate(_UpperCAmelCase): if len(_UpperCAmelCase) < i + 1: data_lists.append([]) data_lists[i].append(float(_UpperCAmelCase)) return data_lists def __snake_case ( _UpperCAmelCase : list[list[float]], _UpperCAmelCase : list[int]): UpperCamelCase = [] for dlist, weight in zip(_UpperCAmelCase, _UpperCAmelCase): UpperCamelCase = min(_UpperCAmelCase) UpperCamelCase = max(_UpperCAmelCase) UpperCamelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: UpperCamelCase = f'Invalid weight of {weight:f} provided' raise ValueError(_UpperCAmelCase) score_lists.append(_UpperCAmelCase) return score_lists def __snake_case ( _UpperCAmelCase : list[list[float]]): UpperCamelCase = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(_UpperCAmelCase): UpperCamelCase = final_scores[j] + ele return final_scores def __snake_case ( _UpperCAmelCase : list[list[float]], _UpperCAmelCase : list[int]): UpperCamelCase = get_data(_UpperCAmelCase) UpperCamelCase = calculate_each_score(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = generate_final_scores(_UpperCAmelCase) # append scores to source data for i, ele in enumerate(_UpperCAmelCase): source_data[i].append(_UpperCAmelCase) return source_data
350
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : Optional[int] = (PNDMScheduler,) UpperCamelCase__ : str = (('''num_inference_steps''', 5_0),) def UpperCAmelCase_ ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[Any] ) -> List[str]: snake_case__ = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**a__ ) return config def UpperCAmelCase_ ( self : Optional[Any] , lowerCAmelCase__ : int=0 , **lowerCAmelCase__ : Any ) -> Optional[Any]: snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop("""num_inference_steps""" , a__ ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config(**a__ ) snake_case__ = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) snake_case__ = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample snake_case__ = new_scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample snake_case__ = new_scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: pass def UpperCAmelCase_ ( self : List[Any] , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : Any ) -> Dict: snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop("""num_inference_steps""" , a__ ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) snake_case__ = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample snake_case__ = new_scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample snake_case__ = new_scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : Tuple , **lowerCAmelCase__ : Optional[Any] ) -> int: snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(**a__ ) snake_case__ = scheduler_class(**a__ ) snake_case__ = 10 snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case__ = model(a__ , a__ ) snake_case__ = scheduler.step_prk(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case__ = model(a__ , a__ ) snake_case__ = scheduler.step_plms(a__ , a__ , a__ ).prev_sample return sample def UpperCAmelCase_ ( self : str ) -> Dict: snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop("""num_inference_steps""" , a__ ) for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**a__ ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , """set_timesteps""" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , """set_timesteps""" ): snake_case__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step_prk(a__ , 0 , a__ , **a__ ).prev_sample snake_case__ = scheduler.step_prk(a__ , 1 , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case__ = scheduler.step_plms(a__ , 0 , a__ , **a__ ).prev_sample snake_case__ = scheduler.step_plms(a__ , 1 , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a__ ) snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(steps_offset=1 ) snake_case__ = scheduler_class(**a__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def UpperCAmelCase_ ( self : int ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def UpperCAmelCase_ ( self : List[str] ) -> int: for t in [1, 5, 10]: self.check_over_forward(time_step=a__ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: snake_case__ = 27 for scheduler_class in self.scheduler_classes: snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case__ = scheduler.step_prk(a__ , a__ , a__ ).prev_sample def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: with self.assertRaises(a__ ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**a__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self : Optional[int] ) -> Any: snake_case__ = self.full_loop() snake_case__ = torch.sum(torch.abs(a__ ) ) snake_case__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def UpperCAmelCase_ ( self : Any ) -> Optional[int]: snake_case__ = self.full_loop(prediction_type="""v_prediction""" ) snake_case__ = torch.sum(torch.abs(a__ ) ) snake_case__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: snake_case__ = self.full_loop(set_alpha_to_one=a__ , beta_start=0.01 ) snake_case__ = torch.sum(torch.abs(a__ ) ) snake_case__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: snake_case__ = self.full_loop(set_alpha_to_one=a__ , beta_start=0.01 ) snake_case__ = torch.sum(torch.abs(a__ ) ) snake_case__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
214
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' A_ = tempfile.mkdtemp() A_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } A_ = os.path.join(self.tmpdirname , a__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(a__ , a__ ) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self , **a__ ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self , **a__ ) -> List[str]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_slow.save_pretrained(self.tmpdirname ) A_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=a__ ) A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_fast.save_pretrained(self.tmpdirname ) A_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a__ ) self.assertIsInstance(processor_fast.tokenizer , a__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a__ ) self.assertIsInstance(processor_fast.image_processor , a__ ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) A_ = self.get_image_processor(do_normalize=a__ ) A_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=a__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = self.prepare_image_inputs() A_ = image_processor(a__ , return_tensors='''np''' ) A_ = processor(images=a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = processor(text=a__ ) A_ = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = self.prepare_image_inputs() A_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(a__ ) A_ = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = self.prepare_image_inputs() A_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
141
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase_ ( A__=32 , A__=10 , A__=100 , A__=1026 , A__=True , A__="data/tokenized_stories_train_wikitext103.jbl" , A__="igf_context_pairs.jbl" , ) -> Optional[Any]: """simple docstring""" set_seed(3 ) # generate train_data and objective_set snake_case = generate_datasets( A__ , A__ , number=A__ , min_len=1026 , trim=A__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model snake_case = load_gpta("gpt2" ).to(A__ ) print("computing perplexity on objective set" ) snake_case = compute_perplexity(A__ , A__ , A__ ).item() print("perplexity on objective set:" , A__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase_ ( A__ , A__=15 , A__=128 , A__=100 , A__="igf_model.pt" , ) -> Dict: """simple docstring""" set_seed(42 ) # Load pre-trained model snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model snake_case = SecondaryLearner(A__ ) # Train secondary learner snake_case = train_secondary_learner( A__ , A__ , max_epochs=A__ , batch_size=A__ , eval_freq=100 , igf_model_path=A__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase_ ( A__ , A__ , A__ , A__=32 , A__=1000 , A__=16 , A__=1.0 , A__=recopy_gpta , A__=None , A__=10 , A__="gpt2_finetuned.pt" , ) -> Dict: """simple docstring""" snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) snake_case = RandomSampler(A__ ) snake_case = DataLoader(A__ , sampler=A__ ) snake_case = max_steps // (len(A__ )) + 1 snake_case = 0 snake_case = torch.zeros((1, context_len) , dtype=torch.long , device=A__ ) snake_case = recopy_model(A__ , A__ , A__ ) model.train() if secondary_learner is not None: secondary_learner.to(A__ ) secondary_learner.eval() snake_case = [] snake_case = 0 snake_case = [] snake_case = [] # Compute the performance of the transformer model at the beginning snake_case = compute_perplexity(A__ , A__ , A__ ) test_perps.append(A__ ) print("Test perplexity, step" , A__ , ":" , A__ ) for epoch in range(int(A__ ) ): for step, example in enumerate(A__ ): torch.cuda.empty_cache() snake_case = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case = model(A__ , labels=A__ ) snake_case = True if secondary_learner is not None: snake_case = secondary_learner.forward( torch.tensor(A__ , dtype=torch.long , device=A__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case = -1 if predicted_q < threshold: snake_case = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case = compute_perplexity(A__ , A__ , A__ ) test_perps.append(A__ ) print("Test perplexity, step" , A__ , ":" , A__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase_ ( ) -> Dict: """simple docstring""" snake_case = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=A__ , type=A__ , required=A__ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=A__ , type=A__ , required=A__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=A__ , default=A__ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=A__ , default=A__ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=A__ , type=A__ , required=A__ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=A__ , type=A__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=A__ , default=A__ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=A__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=A__ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=A__ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=A__ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=A__ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=A__ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=A__ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=A__ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=A__ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=A__ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=A__ , type=A__ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=A__ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=A__ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=A__ , type=A__ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=A__ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner snake_case = joblib.load("data/IGF_values.jbl" ) # Train secondary learner snake_case = training_secondary_learner( A__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=A__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A__ , A__ , A__ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=A__ , secondary_learner=A__ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
717
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Any = "poolformer" def __init__(self : Optional[int] , _A : Optional[Any]=3 , _A : Optional[int]=1_6 , _A : Dict=1_6 , _A : Tuple=3 , _A : Tuple=4.0 , _A : int=[2, 2, 6, 2] , _A : Dict=[6_4, 1_2_8, 3_2_0, 5_1_2] , _A : int=[7, 3, 3, 3] , _A : List[str]=[4, 2, 2, 2] , _A : str=[2, 1, 1, 1] , _A : List[Any]=4 , _A : Any=0.0 , _A : Optional[Any]="gelu" , _A : Optional[Any]=True , _A : List[str]=1E-5 , _A : List[str]=0.02 , **_A : str , ) -> Tuple: snake_case = num_channels snake_case = patch_size snake_case = stride snake_case = padding snake_case = pool_size snake_case = hidden_sizes snake_case = mlp_ratio snake_case = depths snake_case = patch_sizes snake_case = strides snake_case = num_encoder_blocks snake_case = drop_path_rate snake_case = hidden_act snake_case = use_layer_scale snake_case = layer_scale_init_value snake_case = initializer_range super().__init__(**_A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = version.parse("1.11" ) @property def UpperCAmelCase(self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : int ) -> float: return 2E-3
294
0
from math import factorial, pi def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] = 30 ): if not isinstance(UpperCamelCase__ ,(int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowerCAmelCase__ : List[str] = float(UpperCamelCase__ ) lowerCAmelCase__ : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCamelCase__ ) ) def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : str = 30 ): if not isinstance(UpperCamelCase__ ,(int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowerCAmelCase__ : List[str] = float(UpperCamelCase__ ) lowerCAmelCase__ : str = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
233
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = [] for line in lines: UpperCAmelCase = re.sub(R'''#.*''' , '''''' , UpperCamelCase__ ) # remove comments if line: filtered_lines.append(UpperCamelCase__ ) UpperCAmelCase = '''\n'''.join(UpperCamelCase__ ) # Make a hash from all this code UpperCAmelCase = full_str.encode('''utf-8''' ) return shaaaa(UpperCamelCase__ ).hexdigest() # get importable module names and hash for caching __A : List[str] = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __A : Tuple = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __A : int = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name __A : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
130
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self ,__UpperCAmelCase = 1 ,__UpperCAmelCase = None ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = 50 ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,__UpperCAmelCase ): A__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A__ = randn_tensor(__UpperCAmelCase ,generator=__UpperCAmelCase ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(__UpperCAmelCase ,__UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,eta=__UpperCAmelCase ,use_clipped_model_output=__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample A__ = (image / 2 + 0.5).clamp(0 ,1 ) A__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
536
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCamelCase__( unittest.TestCase ): def __init__( self ,__UpperCAmelCase ) -> str: A__ = parent def snake_case__ ( self ) -> int: return {} def UpperCAmelCase ( ): """simple docstring""" A__ = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' A__ = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case__ ( self ) -> Dict: A__ = MarkupLMFeatureExtractionTester(self ) @property def snake_case__ ( self ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case__ ( self ) -> Any: # Initialize feature_extractor A__ = self.feature_extraction_class() # Test not batched input A__ = get_html_strings()[0] A__ = feature_extractor(__UpperCAmelCase ) # fmt: off A__ = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] A__ = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes ,__UpperCAmelCase ) self.assertEqual(encoding.xpaths ,__UpperCAmelCase ) # Test batched A__ = get_html_strings() A__ = feature_extractor(__UpperCAmelCase ) # fmt: off A__ = expected_nodes + [['My First Heading', 'My first paragraph.']] A__ = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,__UpperCAmelCase ) self.assertEqual(encoding.xpaths ,__UpperCAmelCase )
536
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=16 , __magic_name__ : Optional[Any]=13 , __magic_name__ : List[str]=7 , __magic_name__ : Union[str, Any]=14 , __magic_name__ : Any=10 , __magic_name__ : Tuple=19 , __magic_name__ : int=5 , __magic_name__ : Any=4 , __magic_name__ : Tuple=True , __magic_name__ : int=16 , __magic_name__ : Any=2 , __magic_name__ : List[str]=4 , __magic_name__ : str=4 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[int]=[1, 2, 3, 4, 5] , __magic_name__ : Union[str, Any]=25 , __magic_name__ : Union[str, Any]=5 , ) -> List[Any]: """simple docstring""" __snake_case : Dict = d_model __snake_case : int = parent __snake_case : str = batch_size __snake_case : Optional[Any] = prediction_length __snake_case : str = context_length __snake_case : str = cardinality __snake_case : List[Any] = num_time_features __snake_case : Union[str, Any] = lags_sequence __snake_case : str = embedding_dimension __snake_case : Optional[int] = is_training __snake_case : Tuple = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Any = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : str = context_length __snake_case : int = prediction_length + label_length __snake_case : Optional[Any] = label_length __snake_case : List[str] = moving_average __snake_case : str = autocorrelation_factor def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[Any] = config.context_length + max(config.lags_sequence ) __snake_case : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : List[str] = floats_tensor([self.batch_size, _past_length] ) __snake_case : List[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : Union[str, Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_config() __snake_case : Any = self.prepare_autoformer_inputs_dict(__magic_name__ ) return config, inputs_dict def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case , __snake_case : str = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = AutoformerModel(config=__magic_name__ ).to(__magic_name__ ).eval() __snake_case : Tuple = model(**__magic_name__ ) __snake_case : Optional[int] = outputs.encoder_last_hidden_state __snake_case : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = model.get_encoder() encoder.save_pretrained(__magic_name__ ) __snake_case : List[str] = AutoformerEncoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = model.create_network_inputs(**__magic_name__ ) __snake_case , __snake_case : List[str] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=__magic_name__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : Any = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Optional[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : Optional[int] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = model.get_decoder() decoder.save_pretrained(__magic_name__ ) __snake_case : Dict = AutoformerDecoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) __snake_case : str = decoder( trend=__magic_name__ , inputs_embeds=__magic_name__ , encoder_hidden_states=__magic_name__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__: int = (AutoformerForPrediction,) if is_torch_available() else () lowercase__: int = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowercase__: int = False lowercase__: Optional[int] = False lowercase__: Dict = False lowercase__: List[str] = False lowercase__: int = False lowercase__: List[str] = False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : List[str] = AutoformerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : int = model_class(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) __snake_case , __snake_case : str = model_class.from_pretrained(__magic_name__ , output_loading_info=__magic_name__ ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__magic_name__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = inspect.signature(getattr(__magic_name__ , """forward""" ) ) # The main input is the name of the argument after `self` __snake_case : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __magic_name__ ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(__magic_name__ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Tuple = [*signature.parameters.keys()] __snake_case : Any = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__magic_name__ )] , __magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = True __snake_case : Union[str, Any] = getattr(self.model_tester , """seq_length""" , __magic_name__ ) __snake_case : str = getattr(self.model_tester , """decoder_seq_length""" , __magic_name__ ) __snake_case : Tuple = getattr(self.model_tester , """encoder_seq_length""" , __magic_name__ ) __snake_case : Tuple = getattr(self.model_tester , """d_model""" , __magic_name__ ) __snake_case : str = getattr(self.model_tester , """num_attention_heads""" , __magic_name__ ) __snake_case : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : Optional[int] = True __snake_case : List[Any] = False __snake_case : Optional[Any] = True __snake_case : List[str] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Optional[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[Any] = outputs.encoder_attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : Union[str, Any] = len(__magic_name__ ) __snake_case : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__magic_name__ , __magic_name__ ) # decoder attentions __snake_case : Union[str, Any] = outputs.decoder_attentions self.assertIsInstance(__magic_name__ , (list, tuple) ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : str = outputs.cross_attentions self.assertIsInstance(__magic_name__ , (list, tuple) ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : str = True __snake_case : int = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 2 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase__ ( self : List[str] ) -> int: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _a ( _lowerCamelCase="train-batch.pt" ) -> Dict: """simple docstring""" __snake_case : Tuple = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCamelCase , repo_type="""dataset""" ) __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : int = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : str = prepare_batch() with torch.no_grad(): __snake_case : Any = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __snake_case : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Any = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : Optional[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : Optional[int] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __snake_case : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : Tuple = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : Any = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __snake_case : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __magic_name__ ) __snake_case : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__magic_name__ ) __snake_case : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __magic_name__ , rtol=1E-1 ) )
26
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : List[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) _lowercase : List[Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_lowerCAmelCase ) from datasets import load_dataset _lowercase : Union[str, Any] = load_dataset('nielsr/rvlcdip-demo' ) _lowercase : Any = dataset['train'][0]['image'].convert('RGB' ) _lowercase : List[str] = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : Dict = model(**_lowerCAmelCase ) _lowercase : Any = outputs.logits _lowercase : str = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , _lowerCAmelCase ) _lowercase : Union[str, Any] = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=_lowerCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
66
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = 4_2 A__ = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = 4_2 A__ = 4_2 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
708
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } A_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __UpperCamelCase ( a, a, a, a, a) ->Dict: for attribute in key.split("."): lowerCamelCase__ = getattr(a, a) if weight_type is not None: lowerCamelCase__ = getattr(a, a).shape else: lowerCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}") if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value elif weight_type == "running_mean": lowerCamelCase__ = value elif weight_type == "running_var": lowerCamelCase__ = value elif weight_type == "num_batches_tracked": lowerCamelCase__ = value elif weight_type == "inv_freq": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def __UpperCamelCase ( a, a, a) ->Optional[int]: lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( a, a, a, a, hf_model.config.feat_extract_norm == "group", ) lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(a)[0].split(".")[-2] lowerCamelCase__ = mapped_key.replace("*", a) if "pos_bias_u" in name: lowerCamelCase__ = None elif "pos_bias_v" in name: lowerCamelCase__ = None elif "weight_g" in name: lowerCamelCase__ = "weight_g" elif "weight_v" in name: lowerCamelCase__ = "weight_v" elif "bias" in name: lowerCamelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ = "weight" elif "running_mean" in name: lowerCamelCase__ = "running_mean" elif "inv_freq" in name: lowerCamelCase__ = "inv_freq" elif "running_var" in name: lowerCamelCase__ = "running_var" elif "num_batches_tracked" in name: lowerCamelCase__ = "num_batches_tracked" else: lowerCamelCase__ = None set_recursively(a, a, a, a, a) continue if not is_used: unused_weights.append(a) logger.warning(f"Unused weights: {unused_weights}") def __UpperCamelCase ( a, a, a, a, a) ->str: lowerCamelCase__ = full_name.split("conv_layers.")[-1] lowerCamelCase__ = name.split(".") lowerCamelCase__ = int(items[0]) lowerCamelCase__ = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(a) @torch.no_grad() def __UpperCamelCase ( a, a, a=None, a=None, a=True) ->Optional[Any]: if config_path is not None: lowerCamelCase__ = WavaVecaConformerConfig.from_pretrained(a, hidden_act="swish") else: lowerCamelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase__ = "rotary" if is_finetuned: if dict_path: lowerCamelCase__ = Dictionary.load(a) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ = target_dict.pad_index lowerCamelCase__ = target_dict.bos_index lowerCamelCase__ = target_dict.eos_index lowerCamelCase__ = len(target_dict.symbols) lowerCamelCase__ = os.path.join(a, "vocab.json") if not os.path.isdir(a): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(a)) return os.makedirs(a, exist_ok=a) lowerCamelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ = 0 lowerCamelCase__ = 1 with open(a, "w", encoding="utf-8") as vocab_handle: json.dump(a, a) lowerCamelCase__ = WavaVecaCTCTokenizer( a, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=a, ) lowerCamelCase__ = True if config.feat_extract_norm == "layer" else False lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=a, return_attention_mask=a, ) lowerCamelCase__ = WavaVecaProcessor(feature_extractor=a, tokenizer=a) processor.save_pretrained(a) lowerCamelCase__ = WavaVecaConformerForCTC(a) else: lowerCamelCase__ = WavaVecaConformerForPreTraining(a) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) else: lowerCamelCase__ = argparse.Namespace(task="audio_pretraining") lowerCamelCase__ = fairseq.tasks.setup_task(a) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=a) lowerCamelCase__ = model[0].eval() recursively_load_weights(a, a, not is_finetuned) hf_wavavec.save_pretrained(a) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A_ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
360
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=24 , snake_case__=2 , snake_case__=6 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=1_000 , ): """simple docstring""" lowerCAmelCase : Dict = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[str] = seq_length lowerCAmelCase : Any = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Any = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : str = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : int = range_bbox def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase : List[Any] = bbox[i, j, 3] lowerCAmelCase : Optional[Any] = bbox[i, j, 1] lowerCAmelCase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase : Optional[Any] = bbox[i, j, 2] lowerCAmelCase : str = bbox[i, j, 0] lowerCAmelCase : List[Any] = t lowerCAmelCase : List[str] = None if self.use_input_mask: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase : List[Any] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Any = None lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = LiltModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , bbox=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ , bbox=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : List[str] = self.num_labels lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : str = LiltForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : str = config_and_inputs lowerCAmelCase : int = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a : Any =( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) a : List[Any] =False a : Union[str, Any] =False def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return True def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = LiltModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : int = type self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = LiltModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case__ ) lowerCAmelCase : str = torch.tensor([[1, 2]] , device=snake_case__ ) lowerCAmelCase : Tuple = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(input_ids=snake_case__ , bbox=snake_case__ ) lowerCAmelCase : str = torch.Size([1, 2, 768] ) lowerCAmelCase : List[str] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case__ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case__ , atol=1e-3 ) )
645
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] =CanineTokenizer lowercase : Union[str, Any] =False def UpperCamelCase ( self ): super().setUp() lowercase_ :Union[str, Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self ): return CanineTokenizer.from_pretrained('''google/canine-s''' ) def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :int = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) lowercase_ :int = 1024 return tokenizer @require_torch def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.canine_tokenizer lowercase_ :int = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowercase_ :str = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowercase_ :List[Any] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''pt''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :List[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCamelCase ( self ): lowercase_ :List[Any] = self.canine_tokenizer lowercase_ :Dict = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowercase_ :Tuple = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , UpperCamelCase_ ) self.assertIn('''attention_mask''' , UpperCamelCase_ ) self.assertIn('''token_type_ids''' , UpperCamelCase_ ) @require_torch def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.canine_tokenizer lowercase_ :str = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowercase_ :Tuple = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='''max_length''' , truncation=UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowercase_ :str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase_ :int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ :int = tempfile.mkdtemp() lowercase_ :str = ''' He is very happy, UNwant\u00E9d,running''' lowercase_ :str = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) lowercase_ :Tuple = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) lowercase_ :List[Any] = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) lowercase_ :Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ :List[Any] = tempfile.mkdtemp() lowercase_ :List[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowercase_ :List[str] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowercase_ :Optional[int] = chr(0XE007 ) additional_special_tokens.append(UpperCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase_ :List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) lowercase_ :Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) lowercase_ :Optional[int] = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn(UpperCamelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase_ :Any = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase_ , lowercase_ :Optional[int] = self.get_clean_sequence(UpperCamelCase_ ) # a special token for Canine can be defined as follows: lowercase_ :List[Any] = 0XE005 lowercase_ :Any = chr(UpperCamelCase_ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowercase_ :Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) lowercase_ :Tuple = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCamelCase_ ) lowercase_ :Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowercase_ :Any = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowercase_ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , input_encoded + special_token_id ) lowercase_ :int = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertTrue(special_token not in decoded ) def UpperCamelCase ( self ): lowercase_ :str = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase_ :Optional[int] = chr(0XE005 ) lowercase_ :Tuple = chr(0XE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCamelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) lowercase_ :Any = tokenizer.tokenize(UpperCamelCase_ ) lowercase_ :str = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) self.assertEqual(token_a[0] , UpperCamelCase_ ) self.assertEqual(token_a[0] , UpperCamelCase_ ) @require_tokenizers def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: lowercase_ :int = 0XE006 lowercase_ :Optional[Any] = chr(UpperCamelCase_ ) lowercase_ :Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(UpperCamelCase_ ) tokenizer.from_pretrained(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowercase_ :Dict = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowercase_ :int = json.load(UpperCamelCase_ ) # a special token for Canine can be defined as follows: lowercase_ :List[Any] = 0XE006 lowercase_ :List[str] = chr(UpperCamelCase_ ) lowercase_ :List[Any] = [new_token_a] lowercase_ :List[str] = [new_token_a] with open(os.path.join(UpperCamelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase_ :Optional[int] = tokenizer_class.from_pretrained(UpperCamelCase_ , extra_ids=0 ) self.assertIn(UpperCamelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowercase_ :str = 0XE007 lowercase_ :Any = chr(UpperCamelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase_ :Optional[Any] = [AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ )] lowercase_ :Union[str, Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , extra_ids=0 ) self.assertIn(UpperCamelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCamelCase ( self ): lowercase_ :Dict = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase_ :str = '''hello world''' if self.space_between_special_tokens: lowercase_ :Tuple = '''[CLS] hello world [SEP]''' else: lowercase_ :Optional[int] = input lowercase_ :Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowercase_ :int = tokenizer.decode(UpperCamelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(UpperCamelCase_ , [output, output.lower()] ) def UpperCamelCase ( self ): lowercase_ :Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase_ :int = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowercase_ :int = '''a''' lowercase_ :Union[str, Any] = ord(UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '''_id''' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '''_id''' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '''_id''' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '''_id''' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , '''additional_special_tokens_ids''' ) , [] ) lowercase_ :Union[str, Any] = 0XE006 lowercase_ :Dict = chr(UpperCamelCase_ ) setattr(UpperCamelCase_ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(UpperCamelCase_ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(UpperCamelCase_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass
441
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
441
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : int=None, lowercase : List[str]=None ) -> Any: """simple docstring""" if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(lowercase_, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : """simple docstring""" _snake_case : int = OPTConfig _snake_case : Any = {} _snake_case : List[Any] = 'gelu' def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : Tuple=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=20 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : str=16 , lowerCAmelCase__ : int=16 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = embed_dim _UpperCamelCase = word_embed_proj_dim _UpperCamelCase = False def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) _UpperCamelCase = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = TFOPTModel(config=lowercase_ ) _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ )[0] _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class __lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _snake_case : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () _snake_case : List[Any] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _snake_case : int = False _snake_case : int = False _snake_case : Optional[int] = False _snake_case : int = 1_0 def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFOPTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): if hasattr(lowercase_ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCamelCase = model_class(config=lowercase_ ) _UpperCamelCase = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _UpperCamelCase = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) _UpperCamelCase = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _UpperCamelCase = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _UpperCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing _UpperCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) _UpperCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase = False self.assertTrue(lowercase_ ) def a__ ( lowercase : Dict ) -> Optional[int]: """simple docstring""" return tf.constant(lowercase_, dtype=tf.intaa ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : int = 9_9 def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _UpperCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) _UpperCamelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _UpperCamelCase = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): _UpperCamelCase = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state _UpperCamelCase = (1, 11, 512) self.assertEqual(output.shape , lowercase_ ) _UpperCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) _UpperCamelCase = tf.function(lowercase_ , jit_compile=lowercase_ ) _UpperCamelCase = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' super().setUp() _UpperCamelCase = '''facebook/opt-350m''' def snake_case__ ( self : List[str] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _UpperCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCamelCase = tokenizer(lowercase_ , return_tensors='''tf''' , padding=lowercase_ , add_special_tokens=lowercase_ ) _UpperCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _UpperCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) _UpperCamelCase = tf.function(lowercase_ , jit_compile=lowercase_ ) _UpperCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case__ ( self : Dict ) -> Tuple: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = '''facebook/opt-125m''' _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCamelCase = [] _UpperCamelCase = GPTaTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _UpperCamelCase = tokenizer(lowercase_ , return_tensors='''tf''' ).input_ids _UpperCamelCase = model.generate(lowercase_ , max_length=10 ) _UpperCamelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''facebook/opt-350m''' _UpperCamelCase = GPTaTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowercase_ ) _UpperCamelCase = '''left''' # use different length sentences to test batching _UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCamelCase = tokenizer(lowercase_ , return_tensors='''tf''' , padding=lowercase_ ) _UpperCamelCase = inputs['''input_ids'''] _UpperCamelCase = model.generate(input_ids=lowercase_ , attention_mask=inputs['''attention_mask'''] ) _UpperCamelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _UpperCamelCase = model.generate(input_ids=lowercase_ ) _UpperCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) _UpperCamelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _UpperCamelCase = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) _UpperCamelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _UpperCamelCase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = '''facebook/opt-350m''' _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCamelCase = [] _UpperCamelCase = GPTaTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _UpperCamelCase = tokenizer(lowercase_ , return_tensors='''tf''' ).input_ids _UpperCamelCase = model.generate(lowercase_ , max_length=10 ) _UpperCamelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
98
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A (__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = MgpstrTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = False def __a ( self ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off _snake_case : int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _snake_case : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) def __a ( self , **lowercase_ ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[Any] = '''tester''' _snake_case : List[str] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __a ( self ) -> Any: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' _snake_case : List[str] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _snake_case : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) _snake_case : Union[str, Any] = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case , _snake_case : int = self.get_input_output_texts(lowercase_ ) _snake_case : Optional[Any] = tokenizer.tokenize(lowercase_ ) _snake_case : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) _snake_case : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertNotEqual(len(lowercase_ ) , 0 ) _snake_case : str = tokenizer.decode(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowercase_ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __a ( self ) -> str: '''simple docstring''' pass
326
0
import math def UpperCamelCase (lowercase_: Dict ) -> List[str]: A__ : Any = 0 A__ : List[Any] = 0 while num > 0: A__ : Union[str, Any] = num % 8 A__ : Tuple = octal + (remainder * math.floor(math.pow(10 , _snake_case ) )) counter += 1 A__ : Union[str, Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(_snake_case )}""" def UpperCamelCase () -> Dict: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
707
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase (lowercase_: np.ndarray , lowercase_: np.ndarray , lowercase_: np.ndarray , lowercase_: int , lowercase_: int ) -> np.ndarray: A__ : Any = cva.getAffineTransform(lowercase_ , lowercase_ ) return cva.warpAffine(lowercase_ , lowercase_ , (rows, cols) ) if __name__ == "__main__": # read original image A_ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A_ : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ , A_ : Optional[Any] = gray_img.shape # set different points to rotate image A_ : str = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A_ : Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A_ : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A_ : Optional[int] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A_ : Dict = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Union[str, Any] = plt.figure(1) A_ : Union[str, Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
64
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" if isinstance(__a , collections.abc.Iterable ): return x return (x, x) @require_flax class lowercase_ : """simple docstring""" def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): """simple docstring""" a_ = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) a_ = FlaxVisionTextDualEncoderModel(lowercase_ ) a_ = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): """simple docstring""" a_ = self.get_vision_text_model(lowercase_ , lowercase_ ) a_ = {'''vision_model''': vision_model, '''text_model''': text_model} a_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) a_ = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): """simple docstring""" a_ = self.get_vision_text_model(lowercase_ , lowercase_ ) a_ = {'''vision_model''': vision_model, '''text_model''': text_model} a_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) a_ = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) a_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) a_ = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) a_ = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) a_ = after_output[0] a_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1e-3 ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): """simple docstring""" a_ = self.get_vision_text_model(lowercase_ , lowercase_ ) a_ = {'''vision_model''': vision_model, '''text_model''': text_model} a_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) a_ = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) a_ = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a_ = to_atuple(vision_model.config.image_size ) a_ = to_atuple(vision_model.config.patch_size ) a_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a_ = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs a_ = inputs_dict a_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): a_ = pt_model(**lowercase_ ).to_tuple() a_ = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) a_ = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) a_ = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) a_ = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): a_ = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4e-2 ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) a_ = VisionTextDualEncoderModel(lowercase_ ) a_ = FlaxVisionTextDualEncoderModel(lowercase_ ) a_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) a_ = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) a_ = VisionTextDualEncoderModel(lowercase_ ) a_ = FlaxVisionTextDualEncoderModel(lowercase_ ) a_ = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() a_ = config_inputs_dict.pop("""vision_config""" ) a_ = config_inputs_dict.pop("""text_config""" ) a_ = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def lowercase__ ( self ): """simple docstring""" a_ = self.get_pretrained_model_and_inputs() a_ = model_a(**lowercase_ ) a_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) a_ = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) a_ = model_a(**lowercase_ ) a_ = after_outputs[0] a_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1e-5 ) @require_flax class lowercase_ ( UpperCAmelCase__ ,unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" a_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) a_ = 13 a_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a_ = random_attention_mask([batch_size, 4] ) a_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = FlaxViTModel(lowercase_ ) a_ = FlaxBertModel(lowercase_ ) return vision_model, text_model def lowercase__ ( self ): """simple docstring""" a_ = FlaxViTModelTester(self ) a_ = FlaxBertModelTester(self ) a_ = vit_model_tester.prepare_config_and_inputs() a_ = bert_model_tester.prepare_config_and_inputs() a_ = vision_config_and_inputs a_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowercase_ ( UpperCAmelCase__ ,unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" a_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) a_ = 13 a_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a_ = random_attention_mask([batch_size, 4] ) a_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = FlaxCLIPVisionModel(lowercase_ ) a_ = FlaxBertModel(lowercase_ ) return vision_model, text_model def lowercase__ ( self ): """simple docstring""" a_ = FlaxCLIPVisionModelTester(self ) a_ = FlaxBertModelTester(self ) a_ = clip_model_tester.prepare_config_and_inputs() a_ = bert_model_tester.prepare_config_and_inputs() a_ = vision_config_and_inputs a_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowercase_ ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" a_ = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) a_ = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) a_ = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) a_ = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a_ = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1e-3 ) )
483
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE_ : Any = max_length SCREAMING_SNAKE_CASE_ : List[str] = vocab SCREAMING_SNAKE_CASE_ : Any = merges SCREAMING_SNAKE_CASE_ : List[str] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Dict , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowercase_ : Union[str, os.PathLike] , *lowercase_ : str , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , lowercase_ : int): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
512
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = "deformable_detr" SCREAMING_SNAKE_CASE__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: Union[str, Any] , _lowerCamelCase: List[Any]=True , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: str=3 , _lowerCamelCase: Optional[Any]=3_00 , _lowerCamelCase: Dict=10_24 , _lowerCamelCase: List[Any]=6 , _lowerCamelCase: Tuple=10_24 , _lowerCamelCase: Union[str, Any]=8 , _lowerCamelCase: Union[str, Any]=6 , _lowerCamelCase: List[str]=10_24 , _lowerCamelCase: Optional[Any]=8 , _lowerCamelCase: Any=0.0 , _lowerCamelCase: Union[str, Any]=True , _lowerCamelCase: Optional[int]="relu" , _lowerCamelCase: str=2_56 , _lowerCamelCase: str=0.1 , _lowerCamelCase: Union[str, Any]=0.0 , _lowerCamelCase: Optional[Any]=0.0 , _lowerCamelCase: Union[str, Any]=0.02 , _lowerCamelCase: Optional[Any]=1.0 , _lowerCamelCase: Any=True , _lowerCamelCase: Any=False , _lowerCamelCase: List[str]="sine" , _lowerCamelCase: Any="resnet50" , _lowerCamelCase: List[Any]=True , _lowerCamelCase: Dict=False , _lowerCamelCase: Optional[int]=4 , _lowerCamelCase: Dict=4 , _lowerCamelCase: List[str]=4 , _lowerCamelCase: Optional[int]=False , _lowerCamelCase: Dict=3_00 , _lowerCamelCase: Optional[int]=False , _lowerCamelCase: Tuple=1 , _lowerCamelCase: Optional[Any]=5 , _lowerCamelCase: Union[str, Any]=2 , _lowerCamelCase: int=1 , _lowerCamelCase: List[Any]=1 , _lowerCamelCase: Optional[int]=5 , _lowerCamelCase: int=2 , _lowerCamelCase: int=0.1 , _lowerCamelCase: Tuple=0.25 , _lowerCamelCase: List[str]=False , **_lowerCamelCase: Tuple , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # deformable attributes SCREAMING_SNAKE_CASE_ = num_feature_levels SCREAMING_SNAKE_CASE_ = encoder_n_points SCREAMING_SNAKE_CASE_ = decoder_n_points SCREAMING_SNAKE_CASE_ = two_stage SCREAMING_SNAKE_CASE_ = two_stage_num_proposals SCREAMING_SNAKE_CASE_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient SCREAMING_SNAKE_CASE_ = focal_alpha SCREAMING_SNAKE_CASE_ = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _A ( self: List[Any] ): return self.encoder_attention_heads @property def _A ( self: int ): return self.d_model def _A ( self: int ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
89
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = FlaxAutoencoderKL @property def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ = jax.random.uniform(_lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict
89
1
import torch from diffusers import DiffusionPipeline class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case ): super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) def __call__( self ): lowercase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowercase = 1 lowercase = self.unet(snake_case , snake_case ).sample lowercase = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample lowercase = scheduler_output - scheduler_output + torch.ones_like(snake_case ) return result
84
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = ["""image_processor""", """tokenizer"""] _UpperCamelCase : Any = """OwlViTImageProcessor""" _UpperCamelCase : Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case=None , snake_case=None , **snake_case ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) def __call__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="max_length" , snake_case="np" , **snake_case ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(snake_case , snake_case ) or (isinstance(snake_case , snake_case ) and not isinstance(text[0] , snake_case )): lowercase = [self.tokenizer(snake_case , padding=snake_case , return_tensors=snake_case , **snake_case )] elif isinstance(snake_case , snake_case ) and isinstance(text[0] , snake_case ): lowercase = [] # Maximum number of queries across batch lowercase = max([len(snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case ) != max_num_queries: lowercase = t + [' '] * (max_num_queries - len(snake_case )) lowercase = self.tokenizer(snake_case , padding=snake_case , return_tensors=snake_case , **snake_case ) encodings.append(snake_case ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowercase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowercase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowercase = BatchEncoding() lowercase = input_ids lowercase = attention_mask if query_images is not None: lowercase = BatchEncoding() lowercase = self.image_processor( snake_case , return_tensors=snake_case , **snake_case ).pixel_values lowercase = query_pixel_values if images is not None: lowercase = self.image_processor(snake_case , return_tensors=snake_case , **snake_case ) if text is not None and images is not None: lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) , tensor_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process_object_detection(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process_image_guided_detection(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.tokenizer.batch_decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.tokenizer.decode(*snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
84
1
from typing import Any import numpy as np def __magic_name__ ( __a : np.ndarray ): '''simple docstring''' return np.array_equal(__a , matrix.conjugate().T ) def __magic_name__ ( __a : np.ndarray , __a : np.ndarray ): '''simple docstring''' UpperCamelCase__ = v.conjugate().T UpperCamelCase__ = v_star.dot(__a ) assert isinstance(__a , np.ndarray ) return (v_star_dot.dot(__a )) / (v_star.dot(__a )) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCamelCase__ = np.array([[1], [2], [3]] ) assert is_hermitian(__a ), f"{a} is not hermitian." print(rayleigh_quotient(__a , __a ) ) UpperCamelCase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__a ), f"{a} is not hermitian." assert rayleigh_quotient(__a , __a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
712
def __magic_name__ ( __a : int = 50 ): '''simple docstring''' UpperCamelCase__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
86
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : List[Any] = logging.get_logger(__name__) snake_case : Optional[int] = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class UpperCamelCase__ ( a_ , a_): """simple docstring""" __UpperCAmelCase = """dinat""" __UpperCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : List[Any]=6_4 , UpperCamelCase_ : int=[3, 4, 6, 5] , UpperCamelCase_ : Optional[Any]=[2, 4, 8, 1_6] , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCamelCase_ : str=3.0 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=1e-5 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : str , ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = len(UpperCamelCase_ ) __magic_name__ = num_heads __magic_name__ = kernel_size __magic_name__ = dilations __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = layer_norm_eps __magic_name__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) __magic_name__ = layer_scale_init_value __magic_name__ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(UpperCamelCase_ ) + 1 )] __magic_name__ , __magic_name__ = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names )
545
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm snake_case : Tuple = 2_0_4_8 snake_case : str = 4_0_9_6 snake_case : int = 4_2 snake_case : List[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") snake_case : List[str] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def A ( __snake_case: Any ) -> Optional[int]: """simple docstring""" def choose_first(__snake_case: Union[str, Any] , __snake_case: List[str]=False ): assert isinstance(__snake_case , __snake_case ) if len(__snake_case ) == 1: __magic_name__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __magic_name__ = {'id': example['id']} __magic_name__ = example['annotations'] __magic_name__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ = ['yes'] if 1 in yes_no_answer else ['no'] __magic_name__ = __magic_name__ = [] __magic_name__ = __magic_name__ = [] __magic_name__ = ['<cls>'] else: __magic_name__ = ['short'] __magic_name__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __magic_name__ = ['long'] __magic_name__ = choose_first(annotation['long_answer'] , is_long_answer=__snake_case ) __magic_name__ = [] answer.update(__snake_case ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ = True else: __magic_name__ = False __magic_name__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , __snake_case ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def A ( __snake_case: Any , __snake_case: str=False ) -> Optional[Any]: """simple docstring""" __magic_name__ = _get_single_answer(__snake_case ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ = example['document']['tokens'] __magic_name__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(__snake_case ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ = example['document']['tokens'] __magic_name__ = answer['start_token'] __magic_name__ = answer['end_token'] __magic_name__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ = doc['is_html'][answer['start_token'] : answer['end_token']] __magic_name__ = doc['token'][answer['start_token'] : answer['end_token']] __magic_name__ = ' '.join([old[i] for i in range(len(__snake_case ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , __snake_case , end='\n' ) print('Old:' , __snake_case , end='\n\n' ) return { "context": " ".join(__snake_case ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def A ( __snake_case: List[Any] , __snake_case: int , __snake_case: Tuple=2_0_4_8 , __snake_case: List[str]=4_0_9_6 , __snake_case: Optional[int]=True ) -> Any: """simple docstring""" __magic_name__ = get_context_and_ans(__snake_case , assertion=__snake_case ) __magic_name__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ = tokenizer(example['question']['text'] , out['context'] ).input_ids __magic_name__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ = [] __magic_name__ = [] __magic_name__ = input_ids[:q_len] __magic_name__ = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ = i + max_length - q_len __magic_name__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__snake_case ), "end_token": [-1_0_0] * len(__snake_case ), "category": category, }, } __magic_name__ = out['context'].split() __magic_name__ = splitted_context[answer['end_token']] __magic_name__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=__snake_case , ).input_ids ) __magic_name__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=__snake_case ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ = len(tokenizer(__snake_case , add_special_tokens=__snake_case ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __magic_name__ = answer['start_token'] __magic_name__ = answer['end_token'] if assertion: __magic_name__ = tokenizer.decode(__snake_case ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , __snake_case , end='\n\n' ) if len(__snake_case ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ = input_ids[:q_len] __magic_name__ = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ = i + max_length - q_len __magic_name__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ = start_token - i + q_len __magic_name__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __magic_name__ = -1_0_0 __magic_name__ = -1_0_0 answers_category.append('null' ) __magic_name__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(__snake_case ) answers_end_token.append(__snake_case ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(__snake_case ) ) print('Old:' , tokenizer.decode(__snake_case ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def A ( __snake_case: Tuple , __snake_case: Dict , __snake_case: Any=2_0_4_8 , __snake_case: List[Any]=4_0_9_6 , __snake_case: Any=False ) -> Tuple: """simple docstring""" __magic_name__ = get_strided_contexts_and_ans( __snake_case , __snake_case , doc_stride=__snake_case , max_length=__snake_case , assertion=__snake_case , ) return example def A ( __snake_case: Optional[int] , __snake_case: Union[str, Any] ) -> Dict: """simple docstring""" with jsonlines.open(__snake_case , 'a' ) as writer: for example in tqdm(__snake_case , total=len(__snake_case ) , desc='Saving samples ... ' ): __magic_name__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case : Any = load_dataset("""natural_questions""") snake_case : List[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") snake_case : Tuple = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] snake_case : List[Any] = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } snake_case : List[str] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case : int = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) snake_case : Union[str, Any] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
545
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int=2 , lowercase_ : str=8 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=99 , lowercase_ : Any=16 , lowercase_ : int=5 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]=36 , lowercase_ : Any="gelu" , lowercase_ : Dict=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : Union[str, Any]=512 , lowercase_ : Any=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : int=0.02 , lowercase_ : List[str]=3 , lowercase_ : str=4 , lowercase_ : List[str]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def A_ ( self : Any ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : List[str] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def A_ ( self : Dict ): snake_case_ = self.get_config() snake_case_ = 300 return config def A_ ( self : List[Any] ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A_ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): snake_case_ = MraModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) snake_case_ = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , ): snake_case_ = True snake_case_ = MraModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) snake_case_ = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , ) snake_case_ = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : int , lowercase_ : Any ): snake_case_ = MraForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Tuple ): snake_case_ = MraForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int] ): snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int ): snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple ): snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def A_ ( self : Optional[Any] ): snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : int ): self.config_tester.run_common_tests() def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def A_ ( self : Tuple ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='''MRA does not output attentions''' ) def A_ ( self : Tuple ): return @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : Optional[Any] ): snake_case_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(lowercase_ )[0] snake_case_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def A_ ( self : Optional[int] ): snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(lowercase_ )[0] snake_case_ = 5_0265 snake_case_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def A_ ( self : List[str] ): snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) snake_case_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(lowercase_ )[0] snake_case_ = 5_0265 snake_case_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
718
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a : int = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a : str = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ), dtype=__UpperCAmelCase )[0] @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(rows * cols * num_images ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) snake_case_ = data.reshape(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, 1 ) return data @deprecated(__UpperCAmelCase, '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = labels_dense.shape[0] snake_case_ = numpy.arange(__UpperCAmelCase ) * num_classes snake_case_ = numpy.zeros((num_labels, num_classes) ) snake_case_ = 1 return labels_one_hot @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=10 ) -> Dict: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(__UpperCAmelCase ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__UpperCAmelCase, __UpperCAmelCase ) return labels class a : @deprecated( lowercase_ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=False , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=dtypes.floataa , lowercase_ : Any=True , lowercase_ : Optional[int]=None , ): snake_case_ ,snake_case_ = random_seed.get_seed(lowercase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case_ = dtypes.as_dtype(lowercase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: snake_case_ = 1_0000 snake_case_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" snake_case_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case_ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case_ = images.astype(numpy.floataa ) snake_case_ = numpy.multiply(lowercase_ , 1.0 / 255.0 ) snake_case_ = images snake_case_ = labels snake_case_ = 0 snake_case_ = 0 @property def A_ ( self : int ): return self._images @property def A_ ( self : Tuple ): return self._labels @property def A_ ( self : str ): return self._num_examples @property def A_ ( self : List[str] ): return self._epochs_completed def A_ ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=False , lowercase_ : Dict=True ): if fake_data: snake_case_ = [1] * 784 snake_case_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase_ )], [fake_label for _ in range(lowercase_ )], ) snake_case_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perma] snake_case_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case_ = self._num_examples - start snake_case_ = self._images[start : self._num_examples] snake_case_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perm] snake_case_ = self.labels[perm] # Start next epoch snake_case_ = 0 snake_case_ = batch_size - rest_num_examples snake_case_ = self._index_in_epoch snake_case_ = self._images[start:end] snake_case_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size snake_case_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__UpperCAmelCase, '''Please write your own downloading logic.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(__UpperCAmelCase ): gfile.MakeDirs(__UpperCAmelCase ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if not gfile.Exists(__UpperCAmelCase ): urllib.request.urlretrieve(__UpperCAmelCase, __UpperCAmelCase ) # noqa: S310 with gfile.GFile(__UpperCAmelCase ) as f: snake_case_ = f.size() print('''Successfully downloaded''', __UpperCAmelCase, __UpperCAmelCase, '''bytes.''' ) return filepath @deprecated( __UpperCAmelCase, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=False, __UpperCAmelCase=dtypes.floataa, __UpperCAmelCase=True, __UpperCAmelCase=5000, __UpperCAmelCase=None, __UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=__UpperCAmelCase, one_hot=__UpperCAmelCase, dtype=__UpperCAmelCase, seed=__UpperCAmelCase ) snake_case_ = fake() snake_case_ = fake() snake_case_ = fake() return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase ) if not source_url: # empty string check snake_case_ = DEFAULT_SOURCE_URL snake_case_ = '''train-images-idx3-ubyte.gz''' snake_case_ = '''train-labels-idx1-ubyte.gz''' snake_case_ = '''t10k-images-idx3-ubyte.gz''' snake_case_ = '''t10k-labels-idx1-ubyte.gz''' snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) if not 0 <= validation_size <= len(__UpperCAmelCase ): snake_case_ = ( '''Validation size should be between 0 and ''' F"{len(__UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(__UpperCAmelCase ) snake_case_ = train_images[:validation_size] snake_case_ = train_labels[:validation_size] snake_case_ = train_images[validation_size:] snake_case_ = train_labels[validation_size:] snake_case_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase )
593
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'vit_mae' def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=0.75 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : int = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : str = num_channels UpperCAmelCase : Any = qkv_bias UpperCAmelCase : Any = decoder_num_attention_heads UpperCAmelCase : Tuple = decoder_hidden_size UpperCAmelCase : List[Any] = decoder_num_hidden_layers UpperCAmelCase : Dict = decoder_intermediate_size UpperCAmelCase : str = mask_ratio UpperCAmelCase : Optional[Any] = norm_pix_loss
160
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: Dict = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis SCREAMING_SNAKE_CASE_ = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] SCREAMING_SNAKE_CASE_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowerCAmelCase__ ,1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE_ = primes[:idx] break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE_ = False for r in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = pow(lowerCAmelCase__ ,d * 2**r ,lowerCAmelCase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
294
0
"""simple docstring""" import unittest import numpy as np def a ( __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray | None = None , ) -> np.ndarray: __magic_name__: Union[str, Any] = np.shape(__UpperCAmelCase ) __magic_name__: Optional[Any] = np.shape(__UpperCAmelCase ) __magic_name__: Any = np.shape(__UpperCAmelCase ) if shape_a[0] != shape_b[0]: __magic_name__: Optional[Any] = ( """Expected the same number of rows for A and B. """ f'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__UpperCAmelCase ) if shape_b[1] != shape_c[1]: __magic_name__: Union[str, Any] = ( """Expected the same number of columns for B and C. """ f'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__UpperCAmelCase ) __magic_name__: Dict = pseudo_inv if a_inv is None: try: __magic_name__: Optional[Any] = np.linalg.inv(__UpperCAmelCase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> None: __magic_name__: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__: Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__: Any = np.array([[2, 1], [6, 3]] ) __magic_name__: List[str] = schur_complement(__snake_case , __snake_case , __snake_case ) __magic_name__: List[str] = np.block([[a, b], [b.T, c]] ) __magic_name__: List[Any] = np.linalg.det(__snake_case ) __magic_name__: Union[str, Any] = np.linalg.det(__snake_case ) __magic_name__: Dict = np.linalg.det(__snake_case ) self.assertAlmostEqual(__snake_case , det_a * det_s ) def lowerCamelCase__ ( self : Union[str, Any] ) -> None: __magic_name__: List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__: Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__: Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) def lowerCamelCase__ ( self : List[Any] ) -> None: __magic_name__: Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__: int = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__: Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
213
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCamelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ) -> Union[str, Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a ( __UpperCAmelCase : int ) -> Tuple: __magic_name__: int = _TestCommandArgs(dataset=__UpperCAmelCase , all_configs=__UpperCAmelCase , save_infos=__UpperCAmelCase ) __magic_name__: List[str] = TestCommand(*__UpperCAmelCase ) test_command.run() __magic_name__: Union[str, Any] = os.path.join(__UpperCAmelCase , """README.md""" ) assert os.path.exists(__UpperCAmelCase ) __magic_name__: str = DatasetInfosDict.from_directory(__UpperCAmelCase ) __magic_name__: Optional[int] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __magic_name__, __magic_name__: Tuple = getattr(dataset_infos["""default"""] , __UpperCAmelCase ), getattr(expected_dataset_infos["""default"""] , __UpperCAmelCase ) if key == "num_bytes": assert is_apercent_close(__UpperCAmelCase , __UpperCAmelCase ) elif key == "splits": assert list(__UpperCAmelCase ) == list(__UpperCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
213
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( lowercase_ ): '''simple docstring''' lowerCAmelCase = '''fnet''' def __init__( self , a=3_20_00 , a=7_68 , a=12 , a=30_72 , a="gelu_new" , a=0.1 , a=5_12 , a=4 , a=0.02 , a=1E-12 , a=False , a=5_12 , a=3 , a=1 , a=2 , **a , ) -> Dict: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_tpu_fourier_optimizations snake_case_ = tpu_short_seq_length
198
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __SCREAMING_SNAKE_CASE =CLIPImageProcessor() __SCREAMING_SNAKE_CASE =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __SCREAMING_SNAKE_CASE =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
425
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[int] = 32 def lowercase (_A , _A = 1_6 , _A = "bert-base-cased" ): """simple docstring""" _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(_A ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase : List[Any] = datasets.map( _A , batched=_A , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_A , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(_A , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowerCAmelCase : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=_A , collate_fn=_A , batch_size=_A ) _lowerCAmelCase : str = DataLoader( tokenized_datasets['validation'] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader def lowercase (_A , _A , _A , _A ): """simple docstring""" model.eval() _lowerCAmelCase : List[str] = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Any = model(**_A ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase : List[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_A ) - 1: _lowerCAmelCase : List[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_A , references=_A , ) _lowerCAmelCase : List[str] = metric.compute() return eval_metric["accuracy"] def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : str = config['lr'] _lowerCAmelCase : int = int(config['num_epochs'] ) _lowerCAmelCase : Tuple = int(config['seed'] ) _lowerCAmelCase : int = int(config['batch_size'] ) _lowerCAmelCase : int = args.model_name_or_path set_seed(_A ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_dataloaders(_A , _A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : int = AutoModelForSequenceClassification.from_pretrained(_A , return_dict=_A ) # Instantiate optimizer _lowerCAmelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_A ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase : str = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowerCAmelCase : str = 1 _lowerCAmelCase : List[Any] = (len(_A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase : str = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=0 , num_training_steps=_A , ) else: _lowerCAmelCase : Any = DummyScheduler(_A , total_num_steps=_A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.prepare( _A , _A , _A , _A , _A ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase : List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Optional[Any] = evaluate.load('glue' , 'mrpc' ) _lowerCAmelCase : List[Any] = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase : Any = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase : str = args.resume_from_checkpoint.split('epoch_' )[1] _lowerCAmelCase : str = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase : Any = int(_A ) + 1 _lowerCAmelCase : str = evaluation_loop(_A , _A , _A , _A ) accelerator.print('resumed checkpoint performance:' , _A ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , 'r' ) as f: _lowerCAmelCase : Tuple = json.load(_A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase : Tuple = {} for epoch in range(_A , _A ): model.train() for step, batch in enumerate(_A ): _lowerCAmelCase : Any = model(**_A ) _lowerCAmelCase : str = outputs.loss _lowerCAmelCase : Any = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase : Dict = f'epoch_{epoch}' _lowerCAmelCase : List[Any] = os.path.join(args.output_dir , _A ) accelerator.save_state(_A ) _lowerCAmelCase : List[str] = evaluation_loop(_A , _A , _A , _A ) _lowerCAmelCase : str = accuracy _lowerCAmelCase : Union[str, Any] = lr_scheduler.get_lr()[0] _lowerCAmelCase : Optional[int] = optimizer.param_groups[0]['lr'] _lowerCAmelCase : Dict = epoch _lowerCAmelCase : Optional[int] = overall_step accelerator.print(f'epoch {epoch}:' , _A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , 'w' ) as f: json.dump(_A , _A ) def lowercase (): """simple docstring""" _lowerCAmelCase : List[str] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_A , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_A , ) parser.add_argument( '--output_dir' , type=_A , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_A , default=_A , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=_A , default=_A , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=_A , default=2 , help='Number of train epochs.' , ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : List[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(_A , _A ) if __name__ == "__main__": main()
630
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Any = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
630
1
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> bool: if num < 0: return False lowerCamelCase_ = num lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
42
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase (A__ ): lowerCamelCase__ : List[str] = 'EncodecFeatureExtractor' lowerCamelCase__ : Dict = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> Optional[int]: super().__init__(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feature_extractor SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=True ) -> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase ) def __call__( self : Optional[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : int ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""sampling_rate""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""text""" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ = args[0] SCREAMING_SNAKE_CASE__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if audio is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: SCREAMING_SNAKE_CASE__ = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: SCREAMING_SNAKE_CASE__ = audio_inputs["""padding_mask"""] return inputs def SCREAMING_SNAKE_CASE ( self : int , *__UpperCAmelCase : int , **__UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""padding_mask""" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ = args[0] SCREAMING_SNAKE_CASE__ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCAmelCase , padding_mask=__UpperCAmelCase ) else: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : int ) -> str: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional = None ) -> List[np.ndarray]: SCREAMING_SNAKE_CASE__ = to_numpy(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = audio_values.shape if padding_mask is None: return list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = to_numpy(__UpperCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) SCREAMING_SNAKE_CASE__ = seq_len - padding_mask.shape[-1] SCREAMING_SNAKE_CASE__ = 1 - self.feature_extractor.padding_value SCREAMING_SNAKE_CASE__ = np.pad(__UpperCAmelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = audio_values.tolist() for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] SCREAMING_SNAKE_CASE__ = sliced_audio.reshape(__UpperCAmelCase , -1 ) return audio_values
616
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'unispeech' def __init__( self : Union[str, Any] , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : Tuple=1_2 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : Optional[Any]=3_0_7_2 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=1e-5 , __UpperCAmelCase : List[Any]="group" , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCAmelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase : int=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase : str=False , __UpperCAmelCase : Any=1_2_8 , __UpperCAmelCase : str=1_6 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Union[str, Any]=0.05 , __UpperCAmelCase : str=1_0 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=1_0 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=3_2_0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Any=1_0_0 , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=2_5_6 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]="mean" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=8_0 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=0.5 , **__UpperCAmelCase : List[str] , ) -> Tuple: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = feat_extract_norm SCREAMING_SNAKE_CASE__ = feat_extract_activation SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = conv_bias SCREAMING_SNAKE_CASE__ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = feat_proj_dropout SCREAMING_SNAKE_CASE__ = final_dropout SCREAMING_SNAKE_CASE__ = layerdrop SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_ctc_classes SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = do_stable_layer_norm SCREAMING_SNAKE_CASE__ = use_weighted_layer_sum SCREAMING_SNAKE_CASE__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ = apply_spec_augment SCREAMING_SNAKE_CASE__ = mask_time_prob SCREAMING_SNAKE_CASE__ = mask_time_length SCREAMING_SNAKE_CASE__ = mask_time_min_masks SCREAMING_SNAKE_CASE__ = mask_feature_prob SCREAMING_SNAKE_CASE__ = mask_feature_length SCREAMING_SNAKE_CASE__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ = num_codevectors_per_group SCREAMING_SNAKE_CASE__ = num_codevector_groups SCREAMING_SNAKE_CASE__ = contrastive_logits_temperature SCREAMING_SNAKE_CASE__ = feat_quantizer_dropout SCREAMING_SNAKE_CASE__ = num_negatives SCREAMING_SNAKE_CASE__ = codevector_dim SCREAMING_SNAKE_CASE__ = proj_codevector_dim SCREAMING_SNAKE_CASE__ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ = ctc_loss_reduction SCREAMING_SNAKE_CASE__ = ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
616
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = KandinskyVaaPipeline lowercase_ = [ """image_embeds""", """negative_image_embeds""", ] lowercase_ = ["""image_embeds""", """negative_image_embeds"""] lowercase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ = False @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_0_0 @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A =UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): '''simple docstring''' __A =self.dummy_unet __A =self.dummy_movq __A =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __A ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self , lowercase__ , lowercase__=0 ): '''simple docstring''' __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __A =torch.manual_seed(lowercase__ ) else: __A =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __A ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cpu''' __A =self.get_dummy_components() __A =self.pipeline_class(**lowercase__ ) __A =pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A =pipe(**self.get_dummy_inputs(lowercase__ ) ) __A =output.images __A =pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] __A =image[0, -3:, -3:, -1] __A =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __A =np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): '''simple docstring''' __A =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __A =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) __A =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __A =pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __A ='''red cat, 4k photo''' __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A , __A =pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A =pipeline( image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , output_type='''np''' , ) __A =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
184
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """LayoutLMv2ImageProcessor""" lowercase_ = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __A =kwargs.pop('''feature_extractor''' ) __A =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __A =self.image_processor(images=lowercase__ , return_tensors=lowercase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__ ): __A =[text] # add batch dimension (as the image processor always adds a batch dimension) __A =features['''words'''] __A =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __A =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __A =self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) __A =images return encoded_inputs def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowercase__ )} and {len(lowercase__ )}''' ) return images_with_overflow def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
184
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,): lowercase = {} if train_file is not None: lowercase = [train_file] if eval_file is not None: lowercase = [eval_file] if test_file is not None: lowercase = [test_file] lowercase = datasets.load_dataset("""csv""" ,data_files=lowerCAmelCase__ ) lowercase = list(ds[list(files.keys() )[0]].features.keys() ) lowercase = features_name.pop(lowerCAmelCase__ ) lowercase = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowercase = {label: i for i, label in enumerate(lowerCAmelCase__ )} lowercase = tokenizer.model_input_names lowercase = {} if len(lowerCAmelCase__ ) == 1: for k in files.keys(): lowercase = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="""max_length""" ) ,batched=lowerCAmelCase__ ,) elif len(lowerCAmelCase__ ) == 2: for k in files.keys(): lowercase = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="""max_length""" ,) ,batched=lowerCAmelCase__ ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowercase = {k: v for k, v in ex.items() if k in input_names} lowercase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowercase = {k: v for k, v in ex.items() if k in input_names} lowercase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowercase = {k: v for k, v in ex.items() if k in input_names} lowercase = labelaid[ex[label_name]] yield (d, label) lowercase = ( tf.data.Dataset.from_generator( lowerCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowercase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowercase = ( tf.data.Dataset.from_generator( lowerCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowercase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowercase = ( tf.data.Dataset.from_generator( lowerCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowercase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __SCREAMING_SNAKE_CASE : Union[str, Any] =logging.getLogger(__name__) @dataclass class A_ : _A = field(metadata={'''help''': '''Which column contains the label'''} ) _A = field(default=__a , metadata={'''help''': '''The path of the training file'''} ) _A = field(default=__a , metadata={'''help''': '''The path of the development file'''} ) _A = field(default=__a , metadata={'''help''': '''The path of the test file'''} ) _A = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A_ : _A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A = field(default=__a , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def UpperCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO ,) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowercase , lowercase , lowercase , lowercase = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=lowerCAmelCase__ ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(lowerCAmelCase__ ) ,labelaid=lowerCAmelCase__ ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="""text-classification""" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): lowercase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(""".bin""" in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,) def compute_metrics(lowerCAmelCase__ ) -> Dict: lowercase = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowercase = TFTrainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=lowerCAmelCase__ ,eval_dataset=lowerCAmelCase__ ,compute_metrics=lowerCAmelCase__ ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate() lowercase = os.path.join(training_args.output_dir ,"""eval_results.txt""" ) with open(lowerCAmelCase__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(lowerCAmelCase__ ) return results if __name__ == "__main__": main()
709
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Any =logging.get_logger('''transformers.models.speecht5''') __SCREAMING_SNAKE_CASE : Optional[Any] ={ '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __SCREAMING_SNAKE_CASE : Optional[int] ={ '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __SCREAMING_SNAKE_CASE : Optional[Any] ={ '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __SCREAMING_SNAKE_CASE : Optional[int] ={ '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __SCREAMING_SNAKE_CASE : List[Any] ={ '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __SCREAMING_SNAKE_CASE : List[Any] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : List[str] ={ **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : Optional[int] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE : Dict =[] __SCREAMING_SNAKE_CASE : List[str] =[ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __SCREAMING_SNAKE_CASE : List[str] =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE : Any =IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE : Any =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for attribute in key.split(""".""" ): lowercase = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if weight_type is not None: lowercase = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ).shape else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "running_mean": lowercase = value elif weight_type == "running_var": lowercase = value elif weight_type == "num_batches_tracked": lowercase = value else: lowercase = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase , lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [] if task == "s2t": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2T lowercase = IGNORE_KEYS_S2T elif task == "t2s": lowercase = None lowercase = MAPPING_T2S lowercase = IGNORE_KEYS_T2S elif task == "s2s": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2S lowercase = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ ,lowerCAmelCase__ ): logger.info(f"""{name} was ignored""" ) continue lowercase = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,hf_model.config.feat_extract_norm == """group""" ,) lowercase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase , lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: lowercase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase = True if "*" in mapped_key: lowercase = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" ,lowerCAmelCase__ ) if "weight_g" in name: lowercase = """weight_g""" elif "weight_v" in name: lowercase = """weight_v""" elif "bias" in name: lowercase = """bias""" elif "weight" in name: lowercase = """weight""" elif "running_mean" in name: lowercase = """running_mean""" elif "running_var" in name: lowercase = """running_var""" elif "num_batches_tracked" in name: lowercase = """num_batches_tracked""" else: lowercase = None set_recursively(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,): if config_path is not None: lowercase = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = SpeechTaConfig() if task == "s2t": lowercase = config.max_text_positions lowercase = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": lowercase = 1_876 lowercase = 600 lowercase = config.max_speech_positions lowercase = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": lowercase = 1_876 lowercase = config.max_speech_positions lowercase = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowercase = SpeechTaTokenizer(lowerCAmelCase__ ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase = AddedToken("""<mask>""" ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) lowercase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowercase = SpeechTaFeatureExtractor() lowercase = SpeechTaProcessor(tokenizer=lowerCAmelCase__ ,feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowercase = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint["""model"""] ,lowerCAmelCase__ ,lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] =argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] =parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
72
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''sew''' def __init__( self : int , A_ : Optional[Any]=32 , A_ : str=768 , A_ : Any=12 , A_ : Optional[Any]=12 , A_ : str=3072 , A_ : Union[str, Any]=2 , A_ : Union[str, Any]="gelu" , A_ : Dict=0.1 , A_ : Optional[int]=0.1 , A_ : Optional[int]=0.1 , A_ : List[str]=0.0 , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : Any=0.02 , A_ : Tuple=1E-5 , A_ : Optional[Any]="group" , A_ : Union[str, Any]="gelu" , A_ : List[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A_ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A_ : List[str]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A_ : str=False , A_ : int=128 , A_ : Optional[Any]=16 , A_ : List[Any]=True , A_ : List[str]=0.05 , A_ : List[str]=10 , A_ : int=2 , A_ : Union[str, Any]=0.0 , A_ : List[Any]=10 , A_ : Dict=0 , A_ : List[str]="mean" , A_ : Optional[Any]=False , A_ : Union[str, Any]=False , A_ : Optional[int]=256 , A_ : Optional[Any]=0 , A_ : List[Any]=1 , A_ : Optional[int]=2 , **A_ : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = squeeze_factor lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # sequence classification lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size @property def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
70
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_A , _A ) ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' if point: if isinstance(_A , _A ): for item in point: if not isinstance(_A , (int, float) ): snake_case_ = ( "Expected a list of numbers as input, found " f"{type(_A ).__name__}" ) raise TypeError(_A ) else: snake_case_ = f"Expected a list of numbers as input, found {type(_A ).__name__}" raise TypeError(_A ) else: raise ValueError("Missing an input" ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_A , _A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( a_ , a_ , **a_ ) -> Dict: """simple docstring""" A_ : Tuple = AutoConfig.from_pretrained(a_ , **a_ ) A_ : int = AutoModelForSeqaSeqLM.from_config(a_ ) model.save_pretrained(a_ ) AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
705
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = 'ybelkada/fonts' def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" requires_backends(a_ , ["""torch"""] ) _check_torch_version() A_ : List[Any] = image_tensor.unsqueeze(0 ) A_ : str = torch.nn.functional.unfold(a_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) A_ : int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , a_ , a_ , -1 ) A_ : Dict = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( a_ , a_ = 3_6 , a_ = "black" , a_ = "white" , a_ = 5 , a_ = 5 , a_ = 5 , a_ = 5 , a_ = None , a_ = None , ) -> Image.Image: """simple docstring""" requires_backends(a_ , """vision""" ) # Add new lines so that each line is no more than 80 characters. A_ : List[str] = textwrap.TextWrapper(width=8_0 ) A_ : str = wrapper.wrap(text=a_ ) A_ : Dict = """\n""".join(a_ ) if font_bytes is not None and font_path is None: A_ : Any = io.BytesIO(a_ ) elif font_path is not None: A_ : Optional[int] = font_path else: A_ : int = hf_hub_download(a_ , """Arial.TTF""" ) A_ : List[Any] = ImageFont.truetype(a_ , encoding="""UTF-8""" , size=a_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. A_ : int = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , a_ ) ) A_ , A_ , A_ , A_ : Optional[Any] = temp_draw.textbbox((0, 0) , a_ , a_ ) # Create the actual image with a bit of padding around the text. A_ : str = text_width + left_padding + right_padding A_ : List[str] = text_height + top_padding + bottom_padding A_ : Optional[Any] = Image.new("""RGB""" , (image_width, image_height) , a_ ) A_ : Union[str, Any] = ImageDraw.Draw(a_ ) draw.text(xy=(left_padding, top_padding) , text=a_ , fill=a_ , font=a_ ) return image def UpperCAmelCase ( a_ , a_ , **a_ ) -> List[Any]: """simple docstring""" requires_backends(a_ , """vision""" ) # Convert to PIL image if necessary A_ : Union[str, Any] = to_pil_image(a_ ) A_ : Tuple = render_text(a_ , **a_ ) A_ : int = max(header_image.width , image.width ) A_ : Union[str, Any] = int(image.height * (new_width / image.width) ) A_ : Dict = int(header_image.height * (new_width / header_image.width) ) A_ : List[Any] = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary A_ : Tuple = to_numpy_array(a_ ) if infer_channel_dimension_format(a_ ) == ChannelDimension.LAST: A_ : Union[str, Any] = to_channel_dimension_format(a_ , ChannelDimension.LAST ) return new_image class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''flattened_patches'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 2048 , _lowerCamelCase = False , **_lowerCamelCase , ) -> None: super().__init__(**_lowerCamelCase ) A_ : List[str] = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} A_ : Union[str, Any] = do_normalize A_ : Any = do_convert_rgb A_ : int = max_patches A_ : Dict = is_vqa def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> np.ndarray: requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch A_ : List[str] = to_channel_dimension_format(_lowerCamelCase , ChannelDimension.FIRST ) A_ : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) A_ , A_ : Optional[int] = patch_size["""height"""], patch_size["""width"""] A_ , A_ : List[Any] = get_image_size(_lowerCamelCase ) # maximize scale s.t. A_ : Union[str, Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) A_ : List[Any] = max(min(math.floor(scale * image_height / patch_height ) , _lowerCamelCase ) , 1 ) A_ : int = max(min(math.floor(scale * image_width / patch_width ) , _lowerCamelCase ) , 1 ) A_ : Optional[Any] = max(num_feasible_rows * patch_height , 1 ) A_ : Any = max(num_feasible_cols * patch_width , 1 ) A_ : Any = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=_lowerCamelCase , antialias=_lowerCamelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] A_ : str = torch_extract_patches(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : int = patches.shape A_ : Optional[Any] = patches_shape[1] A_ : Optional[int] = patches_shape[2] A_ : Any = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] A_ : Any = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] A_ : Union[str, Any] = torch.arange(_lowerCamelCase ).reshape([rows, 1] ).repeat(1 , _lowerCamelCase ).reshape([rows * columns, 1] ) A_ : Optional[Any] = torch.arange(_lowerCamelCase ).reshape([1, columns] ).repeat(_lowerCamelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] A_ : str = row_ids.to(torch.floataa ) A_ : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] A_ : Tuple = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] A_ : List[str] = torch.nn.functional.pad(_lowerCamelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() A_ : Any = to_numpy_array(_lowerCamelCase ) return result def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ) -> np.ndarray: if image.dtype == np.uinta: A_ : Union[str, Any] = image.astype(np.floataa ) # take mean across the whole `image` A_ : str = np.mean(_lowerCamelCase ) A_ : Union[str, Any] = np.std(_lowerCamelCase ) A_ : List[str] = max(_lowerCamelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) -> ImageInput: A_ : Dict = do_normalize if do_normalize is not None else self.do_normalize A_ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : Optional[Any] = patch_size if patch_size is not None else self.patch_size A_ : Union[str, Any] = max_patches if max_patches is not None else self.max_patches A_ : Dict = self.is_vqa if kwargs.get("""data_format""" , _lowerCamelCase ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) A_ : int = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Tuple = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_lowerCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) A_ : List[str] = kwargs.pop("""font_bytes""" , _lowerCamelCase ) A_ : Optional[int] = kwargs.pop("""font_path""" , _lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [header_text] * len(_lowerCamelCase ) A_ : Dict = [ render_header(_lowerCamelCase , header_text[i] , font_bytes=_lowerCamelCase , font_path=_lowerCamelCase ) for i, image in enumerate(_lowerCamelCase ) ] if do_normalize: A_ : str = [self.normalize(image=_lowerCamelCase ) for image in images] # convert to torch tensor and permute A_ : Union[str, Any] = [ self.extract_flattened_patches(image=_lowerCamelCase , max_patches=_lowerCamelCase , patch_size=_lowerCamelCase ) for image in images ] # create attention mask in numpy A_ : Optional[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] A_ : Union[str, Any] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=_lowerCamelCase ) return encoded_outputs
385
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {} class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="llama" SCREAMING_SNAKE_CASE_ : Union[str, Any] =["past_key_values"] def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str]=3_20_00 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Dict=1_10_08 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]="silu" , SCREAMING_SNAKE_CASE__ : Tuple=20_48 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1e-6 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = intermediate_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCamelCase = num_attention_heads UpperCamelCase = num_key_value_heads UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = rms_norm_eps UpperCamelCase = pretraining_tp UpperCamelCase = use_cache UpperCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : str ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) UpperCamelCase = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
282
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
282
1
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 3, SCREAMING_SNAKE_CASE__ : int = 7, SCREAMING_SNAKE_CASE__ : int = 1000000 ) -> int: UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Tuple = 1 for current_denominator in range(1, limit + 1 ): UpperCAmelCase_ : Optional[int] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : int = current_numerator UpperCAmelCase_ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
644
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case ( A__ ): UpperCAmelCase_ : Optional[int] = filter(lambda A__ : p.requires_grad ,model.parameters() ) UpperCAmelCase_ : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase_ = logging.getLogger(__name__) def snake_case ( A__ ,A__ ): if metric == "rouge2": UpperCAmelCase_ : int = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase_ : Optional[Any] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase_ : Tuple = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) UpperCAmelCase_ : Dict = ModelCheckpoint( dirpath=A__ ,filename=A__ ,monitor=F"""val_{metric}""" ,mode="max" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def snake_case ( A__ ,A__ ): return EarlyStopping( monitor=F"""val_{metric}""" ,mode="min" if "loss" in metric else "max" ,patience=A__ ,verbose=A__ ,) class UpperCamelCase_ (pl.Callback ): def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : Dict = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCAmelCase_ : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase_ : int = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ : List[str] = od / "test_results.txt" UpperCAmelCase_ : Any = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ : Union[str, Any] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCAmelCase_ : List[str] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , "a+" ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ : Any = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): UpperCAmelCase_ : Optional[Any] = val.item() UpperCAmelCase_ : str = f"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ : str = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCAmelCase_ ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Dict: try: UpperCAmelCase_ : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ : Optional[Any] = pl_module.model.num_parameters() UpperCAmelCase_ : Tuple = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , "test" ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : List[Any] ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
95
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a : Dict = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a : Optional[int] = concatenate_datasets a : List[Any] = DownloadConfig a : List[Any] = DownloadManager a : str = DownloadMode a : int = DownloadConfig a : List[str] = DownloadMode a : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
639
0
'''simple docstring''' def _A ( snake_case__ : int = 10 , snake_case__ : int = 22 ): snake_case__ : Union[str, Any] = range(1 , snake_case__ ) snake_case__ : Optional[Any] = range(1 , snake_case__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(1_0, 2_2) = }''')
694
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
1
"""simple docstring""" import argparse from collections import defaultdict import yaml __UpperCamelCase : List[str] = '''docs/source/en/_toctree.yml''' def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : str = defaultdict(_A ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase__ : Tuple = [key for key, value in counts.items() if value > 1] lowerCAmelCase__ : Optional[Any] = [] for duplicate_key in duplicates: lowerCAmelCase__ : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_A ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_A , key=lambda A_ : s["title"].lower() ) def __SCREAMING_SNAKE_CASE ( A_=False ): with open(_A , encoding='''utf-8''' ) as f: lowerCAmelCase__ : str = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase__ : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase__ : int = content[api_idx]['''sections'''] # Then to the model doc lowerCAmelCase__ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase__ : Optional[Any] = api_doc[model_idx]['''sections'''] lowerCAmelCase__ : int = [(idx, section) for idx, section in enumerate(_A ) if '''sections''' in section] lowerCAmelCase__ : Optional[int] = False for idx, modality_doc in modalities_docs: lowerCAmelCase__ : Tuple = modality_doc['''sections'''] lowerCAmelCase__ : int = clean_model_doc_toc(_A ) if old_modality_doc != new_modality_doc: lowerCAmelCase__ : List[Any] = True if overwrite: lowerCAmelCase__ : Any = new_modality_doc if diff: if overwrite: lowerCAmelCase__ : List[Any] = model_doc lowerCAmelCase__ : List[str] = api_doc with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCamelCase : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
450
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = None , _A = None , ): '''simple docstring''' if config_name_or_path is None: SCREAMING_SNAKE_CASE__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = question_encoder_name_or_path SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = gen_config SCREAMING_SNAKE_CASE__ = question_encoder_config SCREAMING_SNAKE_CASE__ = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
493
0
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' snake_case__ : Optional[Union[str, Path]] = None snake_case__ : bool = False snake_case__ : bool = False snake_case__ : bool = False snake_case__ : Optional[Dict] = None snake_case__ : Optional[str] = None snake_case__ : bool = False snake_case__ : bool = False snake_case__ : bool = False snake_case__ : bool = True snake_case__ : Optional[int] = None snake_case__ : int = 1 snake_case__ : Optional[Union[str, bool]] = None snake_case__ : bool = False snake_case__ : Optional[Dict] = None snake_case__ : Optional[str] = None def _UpperCamelCase ( self :Optional[int] ) -> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(__magic_name__ ) for k, v in self.__dict__.items()} )
158
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :List[str]=13 , __magic_name__ :Tuple=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :str=True , __magic_name__ :Optional[Any]=True , __magic_name__ :int=True , __magic_name__ :Optional[Any]=99 , __magic_name__ :Optional[int]=32 , __magic_name__ :str=5 , __magic_name__ :List[Any]=4 , __magic_name__ :str=37 , __magic_name__ :List[str]="gelu" , __magic_name__ :str=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Any=512 , __magic_name__ :int=16 , __magic_name__ :Tuple=2 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :List[str]=False , __magic_name__ :List[Any]=True , __magic_name__ :List[Any]="None" , __magic_name__ :str=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :Dict=None , ) -> Union[str, Any]: '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = relative_attention a__ = position_biased_input a__ = pos_att_type a__ = scope def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self :int ) -> str: '''simple docstring''' a__ = self.get_config() a__ = 300 return config def _UpperCamelCase ( self :str , __magic_name__ :str ) -> List[Any]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Dict , __magic_name__ :Tuple , __magic_name__ :Optional[Any] ) -> Tuple: '''simple docstring''' a__ = DebertaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )[0] a__ = model(__magic_name__ , token_type_ids=__magic_name__ )[0] a__ = model(__magic_name__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Any , __magic_name__ :int , __magic_name__ :List[Any] , __magic_name__ :List[Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] ) -> str: '''simple docstring''' a__ = DebertaForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self :Any , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :str , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Tuple ) -> str: '''simple docstring''' a__ = self.num_labels a__ = DebertaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__magic_name__ ) def _UpperCamelCase ( self :int , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ) -> List[str]: '''simple docstring''' a__ = self.num_labels a__ = DebertaForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self :str , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Tuple ) -> Tuple: '''simple docstring''' a__ = DebertaForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : Optional[Any] = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True snake_case__ : Any = False snake_case__ : List[str] = False snake_case__ : Any = False snake_case__ : Dict = False def _UpperCamelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' a__ = DebertaModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def _UpperCamelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__magic_name__ ) def _UpperCamelCase ( self :Any ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__magic_name__ ) def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__magic_name__ ) def _UpperCamelCase ( self :Any ) -> Optional[int]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__magic_name__ ) def _UpperCamelCase ( self :str ) -> int: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__magic_name__ ) @slow def _UpperCamelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = DebertaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass @slow def _UpperCamelCase ( self :Tuple ) -> str: '''simple docstring''' a__ = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) a__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) a__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ = model(__magic_name__ , attention_mask=__magic_name__ )[0] # compare the actual values for a slice. a__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
158
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowercase_ = parser.parse_args() lowercase_ = '''cpu''' lowercase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowercase_ = '''path-to-your-trained-model''' lowercase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase_ = pipe.to(device) # to channels last lowercase_ = pipe.unet.to(memory_format=torch.channels_last) lowercase_ = pipe.vae.to(memory_format=torch.channels_last) lowercase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase_ = torch.randn(2, 4, 64, 64) lowercase_ = torch.rand(1) * 999 lowercase_ = torch.randn(2, 77, 768) lowercase_ = (sample, timestep, encoder_hidden_status) try: lowercase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase_ = 666 lowercase_ = torch.Generator(device).manual_seed(seed) lowercase_ = {'''generator''': generator} if args.steps is not None: lowercase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
154
"""simple docstring""" __SCREAMING_SNAKE_CASE : Any = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on __SCREAMING_SNAKE_CASE : List[str] = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCAmelCase_( lowercase_ : str ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCAmelCase_( lowercase_ : str ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCAmelCase_( ) -> None: _lowerCamelCase = '''Morse code here!''' print(lowercase_ ) _lowerCamelCase = encrypt(lowercase_ ) print(lowercase_ ) _lowerCamelCase = decrypt(lowercase_ ) print(lowercase_ ) if __name__ == "__main__": main()
661
0
"""simple docstring""" import unittest from transformers import DonutProcessor __UpperCamelCase = '''naver-clova-ix/donut-base''' class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> int: SCREAMING_SNAKE_CASE = DonutProcessor.from_pretrained(lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } SCREAMING_SNAKE_CASE = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) SCREAMING_SNAKE_CASE = self.processor.tokenajson(lowerCAmelCase__ ) self.assertDictEqual(lowerCAmelCase__ , lowerCAmelCase__ )
327
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_50_00_00 ) -> int: SCREAMING_SNAKE_CASE = defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE_ , 2 ): if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
327
1
'''simple docstring''' from __future__ import annotations from typing import Any class __UpperCamelCase : def __init__( self , __a = 6 ): '''simple docstring''' __a : Tuple = None __a : Any = None self.create_linked_list(__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = Node() __a : List[str] = current_node __a : Tuple = current_node __a : Optional[Any] = current_node for _ in range(1 , __a ): __a : List[str] = Node() __a : Any = current_node __a : List[str] = previous_node __a : Dict = current_node __a : Any = self.front __a : Dict = previous_node def __UpperCAmelCase ( self ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __UpperCAmelCase ( self ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def __UpperCAmelCase ( self , __a ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): __a : Optional[int] = self.rear.next if self.rear: __a : List[str] = data def __UpperCAmelCase ( self ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __a : List[str] = self.front.data __a : Dict = None return data __a : Any = self.front __a : Optional[int] = old_front.next __a : Optional[int] = old_front.data __a : int = None return data def __UpperCAmelCase ( self ): '''simple docstring''' if self.is_empty(): raise Exception('Empty Queue' ) def __UpperCAmelCase ( self ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class __UpperCamelCase : def __init__( self ): '''simple docstring''' __a : Union[str, Any] = None __a : Optional[int] = None __a : Union[str, Any] = None if __name__ == "__main__": import doctest doctest.testmod()
476
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase__ =version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def UpperCamelCase_ ( A__ , A__ , A__ , A__ = False ): a_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a_ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: a_ = """cpu""" a_ = Path(A__ ) # VAE DECODER a_ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) a_ = vae_decoder.config.latent_channels # forward only through the decoder part a_ = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowercase__ =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
263
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) - 1 def __A ( self , lowerCAmelCase__ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowerCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCAmelCase__ ) , 5 ) == 1 return output_values def __A ( self , lowerCAmelCase__ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE = self.basis_function(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , lowerCAmelCase__ = 0.01 ) -> Union[str, Any]: from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE = 0.0 while t <= 1: SCREAMING_SNAKE_CASE = self.bezier_curve_function(lowerCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE = [i[1] for i in self.list_of_points] plt.plot( lowerCAmelCase__ , lowerCAmelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(lowerCAmelCase__ , lowerCAmelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
327
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase () -> List[Any]: raise RuntimeError('CUDA out of memory.' ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def __A ( self , lowerCAmelCase__ ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [128, 64, 32, 16, 8] ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def __A ( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ) -> List[Any]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ) -> str: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def __A ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
327
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase ( _UpperCamelCase ): a__: List[str] = 'visual_bert' def __init__( self : Dict , lowerCAmelCase : Optional[int]=3_0522 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : int=12 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Dict=3072 , lowerCAmelCase : str="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : int=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : List[Any]=1E-12 , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Optional[Any]=2 , **lowerCAmelCase : Dict , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase : List[str] = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : Tuple = hidden_size lowercase : int = visual_embedding_dim lowercase : Union[str, Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Optional[int] = hidden_act lowercase : int = hidden_dropout_prob lowercase : List[str] = attention_probs_dropout_prob lowercase : List[str] = initializer_range lowercase : Union[str, Any] = type_vocab_size lowercase : List[Any] = layer_norm_eps lowercase : Optional[int] = bypass_transformer lowercase : Dict = special_visual_initialize
583
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase ): @property def __lowercase ( self : int ): torch.manual_seed(0 ) _a : int = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model @property def __lowercase ( self : Any ): torch.manual_seed(0 ) _a : int = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=3 ,) return model @property def __lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : Union[str, Any] = self.dummy_uncond_unet _a : Union[str, Any] = DDIMScheduler() _a : Union[str, Any] = self.dummy_vq_model _a : List[Any] = LDMPipeline(unet=_UpperCAmelCase ,vqvae=_UpperCAmelCase ,scheduler=_UpperCAmelCase ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _a : Dict = torch.manual_seed(0 ) _a : int = ldm(generator=_UpperCAmelCase ,num_inference_steps=2 ,output_type='numpy' ).images _a : Tuple = torch.manual_seed(0 ) _a : List[Any] = ldm(generator=_UpperCAmelCase ,num_inference_steps=2 ,output_type='numpy' ,return_dict=_UpperCAmelCase )[0] _a : Any = image[0, -3:, -3:, -1] _a : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Union[str, Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _a : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : Optional[int] ): _a : Dict = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _a : str = torch.manual_seed(0 ) _a : Optional[Any] = ldm(generator=_UpperCAmelCase ,num_inference_steps=5 ,output_type='numpy' ).images _a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Union[str, Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _a : List[str] = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
358
0
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _SCREAMING_SNAKE_CASE = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) _SCREAMING_SNAKE_CASE = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } _SCREAMING_SNAKE_CASE = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) _SCREAMING_SNAKE_CASE = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) _SCREAMING_SNAKE_CASE = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" _SCREAMING_SNAKE_CASE = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _SCREAMING_SNAKE_CASE = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" assert ReadMe.from_string(_lowerCAmelCase , _lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" with pytest.raises(_lowerCAmelCase , match=re.escape(expected_error.format(path="root" ) ) ): __snake_case = ReadMe.from_string(_lowerCAmelCase , _lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" with pytest.raises(_lowerCAmelCase , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" ReadMe.from_string(_lowerCAmelCase , _lowerCAmelCase , suppress_parsing_errors=_lowerCAmelCase ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = Path(_lowerCAmelCase ) / "README.md" with open(_lowerCAmelCase , "w+" ) as readme_file: readme_file.write(_lowerCAmelCase ) __snake_case = ReadMe.from_readme(_lowerCAmelCase , _lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = Path(_lowerCAmelCase ) / "README.md" with open(_lowerCAmelCase , "w+" ) as readme_file: readme_file.write(_lowerCAmelCase ) __snake_case = expected_error.format(path=_lowerCAmelCase ) with pytest.raises(_lowerCAmelCase , match=re.escape(_lowerCAmelCase ) ): __snake_case = ReadMe.from_readme(_lowerCAmelCase , _lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = Path(_lowerCAmelCase ) / "README.md" with open(_lowerCAmelCase , "w+" ) as readme_file: readme_file.write(_lowerCAmelCase ) __snake_case = expected_error.format(path=_lowerCAmelCase ) with pytest.raises(_lowerCAmelCase , match=re.escape(_lowerCAmelCase ) ): ReadMe.from_readme(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = Path(_lowerCAmelCase ) / "README.md" with open(_lowerCAmelCase , "w+" ) as readme_file: readme_file.write(_lowerCAmelCase ) ReadMe.from_readme(_lowerCAmelCase , _lowerCAmelCase , suppress_parsing_errors=_lowerCAmelCase )
716
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _SCREAMING_SNAKE_CASE = ["""text""", """image""", """audio"""] def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(SCREAMING_SNAKE_CASE ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = [] for output in outputs: if isinstance(SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append("text" ) elif isinstance(SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __magic_name__ : def lowerCAmelCase ( self : Optional[int] ): self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) __snake_case = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __snake_case = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase ( self : int ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __snake_case = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowerCAmelCase ( self : Union[str, Any] ): self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase ( self : Any ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __snake_case = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __snake_case = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowerCAmelCase ( self : Tuple ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __snake_case = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __snake_case = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
614
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any , snake_case_ : str = "▁" , snake_case_ : bool = True , snake_case_ : Union[str, AddedToken] = "<unk>" , snake_case_ : Union[str, AddedToken] = "</s>" , snake_case_ : Union[str, AddedToken] = "<pad>" , ): snake_case__ : Any = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case__ : Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case__ : Any = token_dict["""token"""] snake_case__ : Optional[Any] = Tokenizer(Unigram() ) snake_case__ : Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case__ : Dict = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=snake_case_ , add_prefix_space=snake_case_ ), pre_tokenizers.Digits(individual_digits=snake_case_ ), pre_tokenizers.Punctuation(), ] ) snake_case__ : Union[str, Any] = decoders.Metaspace(replacement=snake_case_ , add_prefix_space=snake_case_ ) snake_case__ : int = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case__ : Optional[Any] = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : Union[str, List[str]] , snake_case_ : int = 8_000 , snake_case_ : bool = True , ): snake_case__ : List[Any] = trainers.UnigramTrainer( vocab_size=snake_case_ , special_tokens=self.special_tokens_list , show_progress=snake_case_ , ) if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = [files] self._tokenizer.train(snake_case_ , trainer=snake_case_ ) self.add_unk_id() def lowerCamelCase ( self : str , snake_case_ : Union[Iterator[str], Iterator[Iterator[str]]] , snake_case_ : int = 8_000 , snake_case_ : bool = True , ): snake_case__ : List[str] = trainers.UnigramTrainer( vocab_size=snake_case_ , special_tokens=self.special_tokens_list , show_progress=snake_case_ , ) self._tokenizer.train_from_iterator(snake_case_ , trainer=snake_case_ ) self.add_unk_id() def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = json.loads(self._tokenizer.to_str() ) snake_case__ : Union[str, Any] = self.special_tokens["""unk"""]["""id"""] snake_case__ : List[Any] = Tokenizer.from_str(json.dumps(snake_case_ ) )
374
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __a = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
374
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase_ = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None ) -> Tuple: require_version(deps[pkg] , lowerCAmelCase__ )
65
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowercase ( lowerCAmelCase__ : List[Any] ) -> str: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main __a = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase__ , id=lowerCAmelCase__ )
65
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Dict , *_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = eval_examples lowercase__ = post_process_function lowercase__ = quant_trainer_args lowercase__ = 128 # default number of calibration samples def lowerCamelCase__ (self : int , _UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) lowercase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase__ = self._remove_unused_columns(_UpperCAmelCase , description="""Calibration""" ) return DataLoader( _UpperCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Dict=None ) -> Optional[int]: """simple docstring""" lowercase__ = self.train_dataset if calib_dataset is None else calib_dataset lowercase__ = self.get_calib_dataloader(_UpperCAmelCase ) lowercase__ = self.model quant_trainer.configure_model(_UpperCAmelCase , self.quant_trainer_args , calib=_UpperCAmelCase ) model.eval() quant_trainer.enable_calibration(_UpperCAmelCase ) logger.info("""***** Running calibration *****""" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_UpperCAmelCase ): # Prediction step lowercase__ , lowercase__ , lowercase__ = self.prediction_step(_UpperCAmelCase , _UpperCAmelCase , prediction_loss_only=_UpperCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_UpperCAmelCase , self.quant_trainer_args ) lowercase__ = model def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ) -> List[Any]: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(_UpperCAmelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( _UpperCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , ) finally: lowercase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase__ = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) lowercase__ = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase__ = metrics.pop(_UpperCAmelCase ) self.log(_UpperCAmelCase ) else: lowercase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : str = "test" ) -> int: """simple docstring""" lowercase__ = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( _UpperCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , ) finally: lowercase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , """predict""" ) lowercase__ = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase__ = metrics.pop(_UpperCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str]="./" ) -> List[str]: """simple docstring""" lowercase__ = self.eval_dataset lowercase__ = self.get_eval_dataloader(_UpperCAmelCase ) lowercase__ = next(iter(_UpperCAmelCase ) ) # saving device - to make it consistent lowercase__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple lowercase__ = tuple(v.to(_UpperCAmelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer lowercase__ = True lowercase__ = self.model.to(_UpperCAmelCase ) model.eval() model.float() lowercase__ = model.module if hasattr(_UpperCAmelCase , """module""" ) else model quant_trainer.configure_model(_UpperCAmelCase , self.quant_trainer_args ) lowercase__ = os.path.join(_UpperCAmelCase , """model.onnx""" ) logger.info(f'''exporting model to {output_model_file}''' ) lowercase__ = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , export_params=_UpperCAmelCase , opset_version=13 , do_constant_folding=_UpperCAmelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=_UpperCAmelCase , ) logger.info("""onnx export finished""" )
15
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return x.sum() def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class _lowercase : _UpperCAmelCase = 42 _UpperCAmelCase = 42 class _lowercase ( UpperCAmelCase__ ): def A ( self : str ) -> Union[str, Any]: """simple docstring""" a = {} a = [] a = 1 a = [1, 2] a = {"a": 1, "b": 2} a = {"a": [1, 2], "b": [3, 4]} a = {"a": {"1": 1}, "b": 2} a = {"a": 1, "b": 2, "c": 3, "d": 4} a = {} a = [] a = 2 a = [2, 3] a = {"a": 2, "b": 3} a = {"a": [2, 3], "b": [4, 5]} a = {"a": {"1": 2}, "b": 3} a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) a = 2 self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} a = {"a": 2, "b": 0, "c": 2} a = { "a": np.eye(2 ).astype(__lowerCAmelCase ), "b": np.zeros(3 ).astype(__lowerCAmelCase ), "c": np.ones(2 ).astype(__lowerCAmelCase ), } self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase , num_proc=__lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda __lowerCAmelCase : x + 1 , __lowerCAmelCase , num_proc=__lowerCAmelCase ) def A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" a = {"a": 1, "b": 2} a = {"a": 3, "b": 4} a = {"a": 5, "b": 6} a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) , __lowerCAmelCase ) def A ( self : Dict ) -> Dict: """simple docstring""" class _lowercase : _UpperCAmelCase = '''bar''' a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__lowerCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCAmelCase__ ( UpperCAmelCase__ :Any , UpperCAmelCase__ :str , UpperCAmelCase__ :str ): '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: a = {F"""{i}""": i for i in range(UpperCAmelCase__ )} a = map_nested(lambda UpperCAmelCase__ : x + 10 , UpperCAmelCase__ , num_proc=UpperCAmelCase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowercase ( UpperCAmelCase__ ): @require_tf def A ( self : Dict ) -> Optional[Any]: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers a = layers.Dense(2 ) def gen_random_output(): a = tf.random.uniform((1, 3) ) return model(__lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=__lowerCAmelCase ): a = gen_random_output() with temp_seed(42 , set_tensorflow=__lowerCAmelCase ): a = gen_random_output() a = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A ( self : Dict ) -> Tuple: """simple docstring""" import torch def gen_random_output(): a = torch.nn.Linear(3 , 2 ) a = torch.rand(1 , 3 ) return model(__lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=__lowerCAmelCase ): a = gen_random_output() with temp_seed(42 , set_pytorch=__lowerCAmelCase ): a = gen_random_output() a = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A ( self : Tuple ) -> List[Any]: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): a = gen_random_output() with temp_seed(42 ): a = gen_random_output() a = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ): '''simple docstring''' a = NestedDataStructure(UpperCAmelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Any ): '''simple docstring''' a = NestedDataStructure(UpperCAmelCase__ ).flatten() assert output == expected_output def UpperCAmelCase__ ( ): '''simple docstring''' a = A(x=1 , y="foobar" ) a = {"x": 1, "y": "foobar"} assert asdict(UpperCAmelCase__ ) == expected_output a = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(UpperCAmelCase__ ) == expected_output with pytest.raises(UpperCAmelCase__ ): asdict([1, A(x=10 , y="foo" )] ) def UpperCAmelCase__ ( UpperCAmelCase__ :str ): '''simple docstring''' return text.split() def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[Any] ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCAmelCase__ ( ): '''simple docstring''' with Pool(2 ) as pool: a = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(UpperCAmelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: a = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(UpperCAmelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: a = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(UpperCAmelCase__ ) == 4
32
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (('''num_inference_steps''', 25),) def A ( self : List[Any] , **__lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" a = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCAmelCase ) return config def A ( self : List[Any] , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) a = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[: new_scheduler.config.solver_order] a , a = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : List[Any] , __lowerCAmelCase : Optional[Any]=0 , **__lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) a = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) a = dummy_past_residuals[: new_scheduler.config.solver_order] a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : str , __lowerCAmelCase : Any=None , **__lowerCAmelCase : List[str] ) -> Any: """simple docstring""" if scheduler is None: a = self.scheduler_classes[0] a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) a = self.scheduler_classes[0] a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): a = model(__lowerCAmelCase , __lowerCAmelCase ) a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A ( self : Any ) -> int: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__lowerCAmelCase ) a = self.dummy_sample a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , "set_timesteps" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , "set_timesteps" ): a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] a = dummy_past_residuals[: scheduler.config.solver_order] a = scheduler.timesteps[5] a = scheduler.timesteps[6] a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = UniPCMultistepScheduler(**self.get_scheduler_config() ) a = self.full_loop(scheduler=__lowerCAmelCase ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a = DEISMultistepScheduler.from_config(scheduler.config ) a = DPMSolverMultistepScheduler.from_config(scheduler.config ) a = UniPCMultistepScheduler.from_config(scheduler.config ) a = self.full_loop(scheduler=__lowerCAmelCase ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def A ( self : List[Any] ) -> Dict: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def A ( self : Optional[Any] ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A ( self : Optional[Any] ) -> Any: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) a = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def A ( self : Optional[int] ) -> Any: """simple docstring""" self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def A ( self : Dict ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def A ( self : Dict ) -> int: """simple docstring""" a = self.full_loop() a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def A ( self : Optional[int] ) -> int: """simple docstring""" a = self.full_loop(prediction_type="v_prediction" ) a = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def A ( self : Union[str, Any] ) -> str: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) a = scheduler_class(**__lowerCAmelCase ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): a = model(__lowerCAmelCase , __lowerCAmelCase ) a = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def A ( self : List[str] , **__lowerCAmelCase : int ) -> Dict: """simple docstring""" for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__lowerCAmelCase ) a = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
32
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) SCREAMING_SNAKE_CASE_ : int = components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) SCREAMING_SNAKE_CASE_ : Tuple = components[:-1] + [test_fn.replace('.py' , '' )] SCREAMING_SNAKE_CASE_ : int = '.'.join(lowerCamelCase_ ) return test_module_path def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = get_module_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = importlib.import_module(lowerCamelCase_ ) return test_module def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : str = get_test_module(lowerCamelCase_ ) for attr in dir(lowerCamelCase_ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # sort with class names return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x.__name__ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Optional[int] = get_test_module(lowerCamelCase_ ) for attr in dir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCamelCase_ , lowerCamelCase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE_ : List[Any] = getattr(lowerCamelCase_ , 'all_model_classes' , [] ) if len(lowerCamelCase_ ) > 0: test_classes.append(lowerCamelCase_ ) # sort with class names return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x.__name__ ) def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_test_classes(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x.__name__ ) def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = test_class() if hasattr(lowerCamelCase_ , 'setUp' ): test.setUp() SCREAMING_SNAKE_CASE_ : str = None if hasattr(lowerCamelCase_ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE_ : List[Any] = test.model_tester.__class__ return model_tester def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = get_test_classes(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCamelCase_ ) # sort with class names return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x.__name__ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_test_classes_for_model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for test_class in test_classes: SCREAMING_SNAKE_CASE_ : List[str] = get_model_tester_from_test_class(lowerCamelCase_ ) if tester_class is not None: tester_classes.append(lowerCamelCase_ ) # sort with class names return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x.__name__ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_test_classes(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = {test_class: get_model_tester_from_test_class(lowerCamelCase_ ) for test_class in test_classes} return test_tester_mapping def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_model_classes(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = { model_class: get_test_classes_for_model(lowerCamelCase_ , lowerCamelCase_ ) for model_class in model_classes } return model_test_mapping def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_model_classes(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { model_class: get_tester_classes_for_model(lowerCamelCase_ , lowerCamelCase_ ) for model_class in model_classes } return model_to_tester_mapping def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> str: """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): return o elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): return o.__name__ elif isinstance(lowerCamelCase_ , (list, tuple) ): return [to_json(lowerCamelCase_ ) for x in o] elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): return {to_json(lowerCamelCase_ ): to_json(lowerCamelCase_ ) for k, v in o.items()} else: return o
105
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCamelCase__ : Optional[Any] = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> int: """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Any = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} import re SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Tuple = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_encoder_block_conv_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : str = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : str = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_decoder_block_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Dict = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_decoder_block_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Any = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = re_prior_cond_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[str] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[int] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Dict = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_prior_cond_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # keep original key else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_key SCREAMING_SNAKE_CASE_ : Optional[Any] = replace_key(lowerCamelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : str = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : Dict = original_key SCREAMING_SNAKE_CASE_ : int = original_key SCREAMING_SNAKE_CASE_ : int = value return new_dict @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : int=None , lowerCamelCase_ : int=None ) -> Dict: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : int = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = JukeboxConfig.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = JukeboxModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = {} for i, dict_name in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : int = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : int = old_dic[k] else: SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'vqvae' if i == 0 else F'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Any = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ ) weight_dict.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) return weight_dict if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCamelCase__ : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
105
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __A = 637_8137.0 __A = 635_6752.31_4245 __A = 6_3_7_8_1_3_7 def _SCREAMING_SNAKE_CASE ( A : float , A : float , A : float , A : float ) -> float: """simple docstring""" __snake_case : List[Any] = (AXIS_A - AXIS_B) / AXIS_A __snake_case : Dict = atan((1 - flattening) * tan(radians(A ) ) ) __snake_case : str = atan((1 - flattening) * tan(radians(A ) ) ) __snake_case : List[Any] = radians(A ) __snake_case : str = radians(A ) # Equation __snake_case : str = sin((phi_a - phi_a) / 2 ) __snake_case : Union[str, Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __snake_case : str = sqrt(sin_sq_phi + (cos(A ) * cos(A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(A ) if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
61
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCAmelCase = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase : Any , lowercase : Tuple , lowercase : Optional[int] ) ->List[Any]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def _lowerCAmelCase ( lowercase : np.ndarray , lowercase : Optional[str] , lowercase : Optional[str] = None ) ->Union[str, Any]: """simple docstring""" lowercase__ = tesseract_config if tesseract_config is not None else '''''' # apply OCR lowercase__ = to_pil_image(lowercase ) lowercase__ , lowercase__ = pil_image.size lowercase__ = pytesseract.image_to_data(lowercase , lang=lowercase , output_type='''dict''' , config=lowercase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase__ = [idx for idx, word in enumerate(lowercase ) if not word.strip()] lowercase__ = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase__ = [] for x, y, w, h in zip(lowercase , lowercase , lowercase , lowercase ): lowercase__ = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes lowercase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase , lowercase , lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __A ( a ): """simple docstring""" A_ = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = "" , **_lowerCamelCase , )-> None: super().__init__(**_lowerCamelCase ) lowercase__ = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowercase__ = get_size_dict(_lowerCamelCase ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = apply_ocr lowercase__ = ocr_lang lowercase__ = tesseract_config def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , )-> np.ndarray: lowercase__ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ = (size['''height'''], size['''width''']) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , )-> PIL.Image.Image: lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_lowerCamelCase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase__ = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_lowerCamelCase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase__ = [] lowercase__ = [] for image in images: lowercase__ , lowercase__ = apply_tesseract(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) words_batch.append(_lowerCamelCase ) boxes_batch.append(_lowerCamelCase ) if do_resize: lowercase__ = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase__ = [flip_channel_order(_lowerCamelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] lowercase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=_lowerCamelCase ) if apply_ocr: lowercase__ = words_batch lowercase__ = boxes_batch return data
161
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCAmelCase = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowerCAmelCase = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def snake_case_( self )-> Dict: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , )-> List[Any]: lowercase__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] lowercase__ = TER( normalized=_lowerCamelCase , no_punct=_lowerCamelCase , asian_support=_lowerCamelCase , case_sensitive=_lowerCamelCase , ) lowercase__ = sb_ter.corpus_score(_lowerCamelCase , _lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
161
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase_ : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" snake_case = 1_00_00 snake_case = None snake_case = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case = ParquetConfig def lowerCamelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Any ) -> Optional[int]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_snake_case , (str, list, tuple) ): A_ = data_files if isinstance(_snake_case , _snake_case ): A_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ = [dl_manager.iter_files(_snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] A_ = [] for split_name, files in data_files.items(): if isinstance(_snake_case , _snake_case ): A_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ = [dl_manager.iter_files(_snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_snake_case ): with open(_snake_case , "rb" ) as f: A_ = datasets.Features.from_arrow_schema(pq.read_schema(_snake_case ) ) break splits.append(datasets.SplitGenerator(name=_snake_case , gen_kwargs={"files": files} ) ) return splits def lowerCamelCase__ ( self : Tuple , _snake_case : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A_ = table_cast(_snake_case , self.info.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self : Optional[int] , _snake_case : Dict ) -> Optional[Any]: """simple docstring""" A_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case ) ): with open(_snake_case , "rb" ) as f: A_ = pq.ParquetFile(_snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): A_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(_snake_case ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(_snake_case )}: {e}' ) raise
704
"""simple docstring""" from __future__ import annotations import math UpperCamelCase_ : List[str] = '''2020.9.26''' UpperCamelCase_ : List[Any] = '''xcodz-dot, cclaus, dhruvmanila''' def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not all(isinstance(__a , (float, int) ) for val in locals().values() ): A_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__a ) A_ = ((x * distance) / (z + distance)) * scale A_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("Axis must be a str" ) A_ = locals() del input_variables["axis"] if not all(isinstance(__a , (float, int) ) for val in input_variables.values() ): A_ = ( "Input values except axis must either be float or int: " f'{list(input_variables.values() )}' ) raise TypeError(__a ) A_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": A_ = x * math.cos(__a ) - y * math.sin(__a ) A_ = y * math.cos(__a ) + x * math.sin(__a ) A_ = z elif axis == "x": A_ = y * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + y * math.sin(__a ) A_ = x elif axis == "y": A_ = x * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + x * math.sin(__a ) A_ = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
482
0
from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(size + 1)] for _ in range(_a)] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float for row in range(_a): for col in range(_a): SCREAMING_SNAKE_CASE : List[Any] = matrix[row][col] SCREAMING_SNAKE_CASE : int = vector[row][0] SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE : List[str] = max((abs(augmented[rowa][col]), rowa) for rowa in range(_a , _a))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _a): SCREAMING_SNAKE_CASE : Dict = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE : int = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _a): for row in range(_a): SCREAMING_SNAKE_CASE : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(_a , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(_a) ] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(_a)] for _ in range(_a)] SCREAMING_SNAKE_CASE : Matrix = [[0] for _ in range(_a)] SCREAMING_SNAKE_CASE : Matrix SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for x_val, y_val in enumerate(_a): for col in range(_a): SCREAMING_SNAKE_CASE : Any = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE : Tuple = y_val SCREAMING_SNAKE_CASE : Any = solve(_a , _a) def interpolated_func(_a) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(_a)) return interpolated_func def lowerCamelCase__ ( _a): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _a = question_function , _a = 10): SCREAMING_SNAKE_CASE : list[int] = [func(_a) for x_val in range(1 , order + 1)] SCREAMING_SNAKE_CASE : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Callable[[int], int] SCREAMING_SNAKE_CASE : int for poly in polynomials: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while func(_a) == poly(_a): x_val += 1 ret += poly(_a) return ret if __name__ == "__main__": print(F'''{solution() = }''')
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCAmelCase : Tuple = CycleDiffusionPipeline __UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __UpperCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) __UpperCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_0_0_0 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(__snake_case ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Any: _a = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) _a = image / 2 + 0.5 if str(__snake_case ).startswith("mps" ): _a = torch.manual_seed(__snake_case ) else: _a = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _a = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = CycleDiffusionPipeline(**__snake_case ) _a = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a = self.get_dummy_inputs(__snake_case ) _a = pipe(**__snake_case ) _a = output.images _a = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _a = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , "half" ): _a = module.half() _a = CycleDiffusionPipeline(**__snake_case ) _a = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a = self.get_dummy_inputs(__snake_case ) _a = pipe(**__snake_case ) _a = output.images _a = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _a = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCAmelCase ( self ) -> Any: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def __lowerCAmelCase ( self ) -> Any: return super().test_inference_batch_single_identical() @skip_mps def __lowerCAmelCase ( self ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowerCAmelCase ( self ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self ) -> Tuple: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> List[str]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) _a = init_image.resize((5_1_2, 5_1_2) ) _a = '''CompVis/stable-diffusion-v1-4''' _a = DDIMScheduler.from_pretrained(__snake_case , subfolder="scheduler" ) _a = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _a = '''A black colored car''' _a = '''A blue colored car''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type="np" , ) _a = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __lowerCAmelCase ( self ) -> Optional[int]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) _a = init_image.resize((5_1_2, 5_1_2) ) _a = '''CompVis/stable-diffusion-v1-4''' _a = DDIMScheduler.from_pretrained(__snake_case , subfolder="scheduler" ) _a = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _a = '''A black colored car''' _a = '''A blue colored car''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type="np" , ) _a = output.images assert np.abs(image - expected_image ).max() < 2E-2
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def lowerCamelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
167
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1.0 , lowercase_=None , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __UpperCAmelCase : str = global_rng __UpperCAmelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=4_0_0 , lowercase__=2_0_0_0 , lowercase__=2_0_4_8 , lowercase__=1_2_8 , lowercase__=1 , lowercase__=5_1_2 , lowercase__=3_0 , lowercase__=4_4_1_0_0 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : int = min_seq_length __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Any = spectrogram_length __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Union[str, Any] = num_audio_channels __UpperCAmelCase : Optional[int] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = sampling_rate def A( self): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A( self , lowercase__=False , lowercase__=False): def _flatten(lowercase__): return list(itertools.chain(*lowercase__)) if equal_length: __UpperCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[str] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(lowercase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = TvltFeatureExtractor def A( self): __UpperCAmelCase : Dict = TvltFeatureExtractionTester(self) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowercase__ , '''spectrogram_length''')) self.assertTrue(hasattr(lowercase__ , '''feature_size''')) self.assertTrue(hasattr(lowercase__ , '''num_audio_channels''')) self.assertTrue(hasattr(lowercase__ , '''hop_length''')) self.assertTrue(hasattr(lowercase__ , '''chunk_length''')) self.assertTrue(hasattr(lowercase__ , '''sampling_rate''')) def A( self): __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) __UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Union[str, Any] = dict_first.pop('''mel_filters''') __UpperCAmelCase : Union[str, Any] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase__) __UpperCAmelCase : str = self.feature_extraction_class.from_json_file(lowercase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Tuple = dict_first.pop('''mel_filters''') __UpperCAmelCase : List[str] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): # Initialize feature_extractor __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __UpperCAmelCase : int = [np.asarray(lowercase__) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched __UpperCAmelCase : List[str] = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking __UpperCAmelCase : Tuple = feature_extractor( lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Any = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase : Optional[Any] = np.asarray(lowercase__) __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def A( self , lowercase__): __UpperCAmelCase : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech __UpperCAmelCase : int = ds.sort('''id''').select(range(lowercase__))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A( self): __UpperCAmelCase : Optional[Any] = self._load_datasamples(1) __UpperCAmelCase : Tuple = TvltFeatureExtractor() __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) __UpperCAmelCase : int = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4))
462
0
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 10 , snake_case__ :int = 22 ) -> int: _lowercase = range(1 , snake_case__ ) _lowercase = range(1 , snake_case__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(1_0, 2_2) = }""")
706
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE__ ( ) -> Generator[int, None, None]: _lowercase = {} _lowercase = 2 while True: _lowercase = factor_map.pop(snake_case__ , snake_case__ ) if factor: _lowercase = factor + prime while x in factor_map: x += factor _lowercase = factor else: _lowercase = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float = 1E10 ) -> int: _lowercase = sieve() _lowercase = 1 while True: _lowercase = next(snake_case__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case__ ) n += 2 if __name__ == "__main__": print(solution())
535
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return getitem, k def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return setitem, k, v def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" return delitem, k def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ) -> Dict: """simple docstring""" try: return fun(__lowerCAmelCase , *__lowerCAmelCase ), None except Exception as e: return None, e A__ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) A__ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] A__ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] A__ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] A__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] A__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = HashMap(initial_block_size=4 ) snake_case__ : Dict = {} for _, (fun, *args) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : List[Any] = _run_operation(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ) snake_case__ , snake_case__ : Union[str, Any] = _run_operation(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ) assert my_res == py_res assert str(__lowerCAmelCase ) == str(__lowerCAmelCase ) assert set(__lowerCAmelCase ) == set(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" def is_public(__lowerCAmelCase ) -> bool: return not name.startswith('''_''' ) snake_case__ : Union[str, Any] = {name for name in dir({} ) if is_public(__lowerCAmelCase )} snake_case__ : str = {name for name in dir(HashMap() ) if is_public(__lowerCAmelCase )} assert dict_public_names > hash_public_names
252
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _A = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) -> Optional[int]: '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_SCREAMING_SNAKE_CASE ) ,version.parse(_SCREAMING_SNAKE_CASE ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def lowercase (_snake_case ,_snake_case = None ) -> None: '''simple docstring''' __UpperCamelCase = f"""\n{hint}""" if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" ,_SCREAMING_SNAKE_CASE ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = requirement, None, None else: __UpperCamelCase = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" ,_SCREAMING_SNAKE_CASE ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f""" got {requirement}""" ) __UpperCamelCase , __UpperCamelCase = match[0] __UpperCamelCase = want_full.split("," ) # there could be multiple requirements __UpperCamelCase = {} for w in want_range: __UpperCamelCase = re.findall(r"^([\s!=<>]{1,2})(.+)" ,_SCREAMING_SNAKE_CASE ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f""" but got {requirement}""" ) __UpperCamelCase , __UpperCamelCase = match[0] __UpperCamelCase = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __UpperCamelCase = ".".join([str(_SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return # check if any version is installed try: __UpperCamelCase = importlib.metadata.version(_SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def lowercase (_snake_case ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = "Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main" return require_version(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
701
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _A = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _A = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase (_snake_case ,_snake_case ,_snake_case ) -> Any: '''simple docstring''' __UpperCamelCase = SavedModel() __UpperCamelCase = [] with open(os.path.join(_snake_case ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: __UpperCamelCase = json.load(_snake_case )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"rb" ) as f: saved_model.ParseFromString(f.read() ) __UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCamelCase = sorted(_snake_case ) __UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_snake_case ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*_snake_case ,sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) _A = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
228
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : int = 13 _lowerCAmelCase : Dict = 7 _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[Any] = 99 _lowerCAmelCase : List[Any] = 32 _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : int = 4 _lowerCAmelCase : List[Any] = 37 _lowerCAmelCase : Union[str, Any] = 'gelu' _lowerCAmelCase : Optional[int] = 0.1 _lowerCAmelCase : Optional[int] = 0.1 _lowerCAmelCase : Dict = 512 _lowerCAmelCase : List[Any] = 16 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : int = 0.02 _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : List[str] = None def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Any = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : str = None if self.use_labels: _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFRoFormerModel(config=__UpperCamelCase ) _lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase : int = [input_ids, input_mask] _lowerCAmelCase : Optional[Any] = model(__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = TFRoFormerForCausalLM(config=__UpperCamelCase ) _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Any = model(__UpperCamelCase )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = TFRoFormerForMaskedLM(config=__UpperCamelCase ) _lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : Optional[int] = TFRoFormerForSequenceClassification(config=__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.num_choices _lowerCAmelCase : int = TFRoFormerForMultipleChoice(config=__UpperCamelCase ) _lowerCAmelCase : List[Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : int = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowerCAmelCase : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : List[Any] = TFRoFormerForTokenClassification(config=__UpperCamelCase ) _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = TFRoFormerForQuestionAnswering(config=__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[str] = config_and_inputs _lowerCAmelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFRoFormerModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : int = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : List[Any] = model(__UpperCamelCase )[0] # TODO Replace vocab size _lowerCAmelCase : List[Any] = 5_0000 _lowerCAmelCase : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCAmelCase : Dict = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 1E-4 def a ( self ): '''simple docstring''' _lowerCAmelCase : int = tf.constant([[4, 10]] ) _lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _lowerCAmelCase : Union[str, Any] = emba(input_ids.shape ) _lowerCAmelCase : Dict = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _lowerCAmelCase : List[str] = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 1E-4 def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _lowerCAmelCase : Optional[int] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _lowerCAmelCase : Any = embed_positions([2, 16, 768] )[None, None, :, :] _lowerCAmelCase , _lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase : Optional[int] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCAmelCase : int = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance )
444
"""simple docstring""" import math import unittest def _UpperCamelCase ( _A ) -> bool: """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a_ ( unittest.TestCase ): def _snake_case ( self : int ) ->Optional[int]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
555
0
'''simple docstring''' a : dict[tuple[int, int, int], int] = {} def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase : List[Any] = _calculate(days - 1 , __magic_name__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase : Any = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase : List[Any] = _calculate(days - 1 , __magic_name__ , 0 ) UpperCAmelCase : Dict = state_late + state_absent + state_ontime UpperCAmelCase : Optional[int] = prizestrings return prizestrings def lowercase ( __magic_name__ = 30 ): '''simple docstring''' return _calculate(__magic_name__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
609
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = XLNetTokenizer SCREAMING_SNAKE_CASE__ : int = XLNetTokenizerFast SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Any = True def A_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : List[str] = XLNetTokenizer(snake_case , keep_accents=snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = "<s>" UpperCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case ) , 1_0_0_6 ) def A_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = XLNetTokenizer(snake_case , keep_accents=snake_case ) UpperCAmelCase : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) UpperCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLNetTokenizer(snake_case , do_lower_case=snake_case ) UpperCAmelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = XLNetTokenizer(snake_case , do_lower_case=snake_case ) UpperCAmelCase : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCAmelCase : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=snake_case ) UpperCAmelCase : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(snake_case ) UpperCAmelCase : str = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = {"input_ids": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
609
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self : Tuple ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) @slow def __a ( self : Any ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
582
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :List[str] ="""biogpt""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_2_3_8_4 , SCREAMING_SNAKE_CASE__ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE__ : List[str]=2_4 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : List[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : str=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : int=2 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = scale_embedding __a = use_cache __a = layerdrop __a = activation_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
582
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[Any] = """realm""" def __init__( self : Dict , lowercase_ : int=30522 , lowercase_ : List[Any]=768 , lowercase_ : Any=128 , lowercase_ : int=12 , lowercase_ : List[Any]=12 , lowercase_ : Optional[Any]=8 , lowercase_ : Optional[Any]=3072 , lowercase_ : str="gelu_new" , lowercase_ : Any=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : List[Any]=512 , lowercase_ : int=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : Any=256 , lowercase_ : int=10 , lowercase_ : Optional[int]=1E-3 , lowercase_ : Optional[int]=5 , lowercase_ : List[str]=320 , lowercase_ : List[str]=13353718 , lowercase_ : List[str]=5000 , lowercase_ : int=1 , lowercase_ : int=0 , lowercase_ : Dict=2 , **lowercase_ : List[str] , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) # Common config snake_case_ : Any = vocab_size snake_case_ : Tuple = max_position_embeddings snake_case_ : List[str] = hidden_size snake_case_ : Union[str, Any] = retriever_proj_size snake_case_ : Any = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Dict = num_candidates snake_case_ : Tuple = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[str] = type_vocab_size snake_case_ : Dict = layer_norm_eps # Reader config snake_case_ : str = span_hidden_size snake_case_ : List[Any] = max_span_width snake_case_ : Union[str, Any] = reader_layer_norm_eps snake_case_ : Any = reader_beam_size snake_case_ : Any = reader_seq_len # Retrieval config snake_case_ : Any = num_block_records snake_case_ : Optional[Any] = searcher_beam_size
485
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _UpperCAmelCase : _lowerCAmelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The column name of the images in the files."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the training data."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the validation data."""}) _lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : Union[str, Any] ): snake_case_ : List[Any] = {} if self.train_dir is not None: snake_case_ : str = self.train_dir if self.validation_dir is not None: snake_case_ : Union[str, Any] = self.validation_dir snake_case_ : Tuple = data_files if data_files else None @dataclass class _UpperCAmelCase : _lowerCAmelCase : str = field( default=lowerCAmelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""}) _lowerCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCAmelCase : str = field(default=lowerCAmelCase__ , metadata={"""help""": """Name or path of preprocessor config."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _lowerCAmelCase : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""}) @dataclass class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""}) def __lowercase ( _a ): snake_case_ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[str] = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. snake_case_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. snake_case_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : List[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) snake_case_ : Tuple = split['''train'''] snake_case_ : str = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Dict = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Optional[int] = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case_ : Tuple = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case_ : Tuple = ViTMAEForPreTraining(_a ) if training_args.do_train: snake_case_ : List[str] = ds['''train'''].column_names else: snake_case_ : Optional[Any] = ds['''validation'''].column_names if data_args.image_column_name is not None: snake_case_ : Tuple = data_args.image_column_name elif "image" in column_names: snake_case_ : Tuple = '''image''' elif "img" in column_names: snake_case_ : str = '''img''' else: snake_case_ : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case_ : str = image_processor.size['''shortest_edge'''] else: snake_case_ : Dict = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case_ : str = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): snake_case_ : Tuple = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: snake_case_ : List[str] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: snake_case_ : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate snake_case_ : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case_ : str = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Any = None if training_args.resume_from_checkpoint is not None: snake_case_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : List[str] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub snake_case_ : Optional[int] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def __lowercase ( _a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
485
1