code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=0.999 , __lowerCAmelCase : str="cosine" , ) -> Dict: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __lowerCamelCase = [] for i in range(lowerCAmelCase_ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase_ ) / alpha_bar_fn(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) return torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) class lowerCAmelCase__ ( _UpperCamelCase , _UpperCamelCase ): a__ : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] a__ : Optional[Any] = 2 @register_to_config def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int = 10_00 , SCREAMING_SNAKE_CASE__ : float = 0.00085 , SCREAMING_SNAKE_CASE__ : float = 0.012 , SCREAMING_SNAKE_CASE__ : str = "linear" , SCREAMING_SNAKE_CASE__ : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE__ : str = "epsilon" , SCREAMING_SNAKE_CASE__ : str = "linspace" , SCREAMING_SNAKE_CASE__ : int = 0 , ) -> Dict: if trained_betas is not None: __lowerCamelCase = torch.tensor(A__ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(A__ , A__ , A__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(A__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A__ , A__ , A__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> str: if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(A__ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(A__ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def __A ( self : Dict ) -> Optional[int]: if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __lowerCamelCase = self.index_for_timestep(A__ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> int: __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , A__ , dtype=A__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , A__ ) * step_ratio).round()[::-1].copy().astype(A__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(A__ , 0 , -step_ratio )).round().copy().astype(A__ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(A__ ) ).to(A__ ) __lowerCamelCase = np.interp(A__ , np.arange(0 , len(A__ ) ) , A__ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(A__ ).to(device=A__ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A__ ).startswith('''mps''' ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(A__ ).to(A__ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(A__ ).to(A__ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(A__ ).to(A__ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(A__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> str: __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def __A ( self : int ) -> str: return self.sample is None def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE__ : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: __lowerCamelCase = self.index_for_timestep(A__ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(A__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , ) -> torch.FloatTensor: __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A__ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(A__ , A__ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self : str ) -> List[Any]: return self.config.num_train_timesteps
298
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase = logging.get_logger(__name__) class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : str = ["pixel_values"] def __init__( self : List[Any] , A__ : bool = True , A__ : Optional[Dict[str, int]] = None , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : bool = True , A__ : Dict[str, int] = None , A__ : bool = True , A__ : Union[int, float] = 1 / 2_55 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , **A__ : int , ) -> None: '''simple docstring''' super().__init__(**A__ ) snake_case_ : Optional[int] = size if size is not None else {"shortest_edge": 2_56} snake_case_ : Dict = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case_ : Any = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : int = do_resize snake_case_ : Optional[Any] = size snake_case_ : Optional[Any] = resample snake_case_ : Optional[int] = do_center_crop snake_case_ : List[Any] = crop_size snake_case_ : List[Any] = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : str , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case_ : Any = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__ ) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : int , A__ : np.ndarray , A__ : Dict[str, int] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' snake_case_ : Tuple = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : float , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Tuple , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Dict , ) -> np.ndarray: '''simple docstring''' return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Union[str, Any] , A__ : ImageInput , A__ : Optional[bool] = None , A__ : Dict[str, int] = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : Dict[str, int] = None , A__ : Optional[bool] = None , A__ : Optional[float] = None , A__ : Optional[bool] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A__ : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Tuple = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : List[str] = image_std if image_std is not None else self.image_std snake_case_ : Dict = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Tuple = [to_numpy_array(A__ ) for image in images] if do_resize: snake_case_ : Any = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_center_crop: snake_case_ : List[str] = [self.center_crop(image=A__ , size=A__ ) for image in images] if do_rescale: snake_case_ : Any = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: snake_case_ : Union[str, Any] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] snake_case_ : Optional[Any] = [to_channel_dimension_format(A__ , A__ ) for image in images] snake_case_ : Any = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : Dict , A__ : List[Tuple] = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A__ ) != len(A__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A__ ): snake_case_ : Dict = target_sizes.numpy() snake_case_ : int = [] for idx in range(len(A__ ) ): snake_case_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A__ ) snake_case_ : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A__ ) else: snake_case_ : List[Any] = logits.argmax(dim=1 ) snake_case_ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
666
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case : @staticmethod def __lowercase( *a_ : Union[str, Any] , **a_ : int )-> Tuple: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class snake_case ( unittest.TestCase ): lowercase_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowercase( self : str , a_ : List[str] , a_ : int , a_ : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ObjectDetectionPipeline(model=a_ , image_processor=a_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowercase( self : Any , a_ : Tuple , a_ : List[str] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(a_ ) , 0 ) for detected_object in outputs: self.assertEqual( a_ , { 'score': ANY(a_ ), 'label': ANY(a_ ), 'box': {'xmin': ANY(a_ ), 'ymin': ANY(a_ ), 'xmax': ANY(a_ ), 'ymax': ANY(a_ )}, } , ) import datasets SCREAMING_SNAKE_CASE__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) SCREAMING_SNAKE_CASE__ : List[str] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] SCREAMING_SNAKE_CASE__ : str = object_detector(a_ , threshold=0.0 ) self.assertEqual(len(a_ ) , len(a_ ) ) for outputs in batch_outputs: self.assertGreater(len(a_ ) , 0 ) for detected_object in outputs: self.assertEqual( a_ , { 'score': ANY(a_ ), 'label': ANY(a_ ), 'box': {'xmin': ANY(a_ ), 'ymin': ANY(a_ ), 'xmax': ANY(a_ ), 'ymax': ANY(a_ )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowercase( self : Dict )-> Any: """simple docstring""" pass @require_torch def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3' SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoModelForObjectDetection.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Any = AutoFeatureExtractor.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : str = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) SCREAMING_SNAKE_CASE__ : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'facebook/detr-resnet-50' SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForObjectDetection.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def __lowercase( self : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 'facebook/detr-resnet-50' SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline('object-detection' , model=a_ ) SCREAMING_SNAKE_CASE__ : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def __lowercase( self : List[str] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.9985 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'facebook/detr-resnet-50' SCREAMING_SNAKE_CASE__ : Any = pipeline('object-detection' , model=a_ ) SCREAMING_SNAKE_CASE__ : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=a_ ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowercase( self : Optional[Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = 'Narsil/layoutlmv3-finetuned-funsd' SCREAMING_SNAKE_CASE__ : str = 0.9993 SCREAMING_SNAKE_CASE__ : List[str] = pipeline('object-detection' , model=a_ , threshold=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
636
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False , lowercase__ : str=False , lowercase__ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _a ( lowercase__ : List[str] , lowercase__ : Dict ): '''simple docstring''' for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = val @torch.no_grad() def _a ( lowercase__ : Dict , lowercase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if "vqa" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : str = 31_29 SCREAMING_SNAKE_CASE__ : Optional[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : int = 'vqa2-id2label.json' SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = idalabel SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Dict = {0: 'False', 1: 'True'} SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config.idalabel.items()} SCREAMING_SNAKE_CASE__ : Tuple = 3 SCREAMING_SNAKE_CASE__ : int = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : str = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = ViltForMaskedLM(lowercase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict'] SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ ) if mlm_model or irtr_model: SCREAMING_SNAKE_CASE__ : Any = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor SCREAMING_SNAKE_CASE__ : str = ViltImageProcessor(size=3_84 ) SCREAMING_SNAKE_CASE__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE__ : List[Any] = ViltProcessor(lowercase__ , lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: SCREAMING_SNAKE_CASE__ : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[str] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw ) if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'a bunch of [MASK] laying on a [MASK].' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'How many cats are there?' SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : str = model(**lowercase__ ) # Verify outputs if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 11, 3_05_22] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify masked token prediction equals "cats" SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 31_29] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify vqa prediction equals "2" SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 2] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
636
1
SCREAMING_SNAKE_CASE : Union[str, Any] = tuple[float, float, float] SCREAMING_SNAKE_CASE : Dict = tuple[float, float, float] def __A ( _A , _A ): """simple docstring""" __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __A ( _A , _A ): """simple docstring""" __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __A ( _A , _A ): """simple docstring""" return tuple(round(_A , _A ) for x in vector ) == (0, 0, 0) def __A ( _A , _A , _A , _A = 10 ): """simple docstring""" __a = create_vector(_A , _A ) __a = create_vector(_A , _A ) return is_zero_vector(get_ad_vectors_cross(_A , _A ) , _A )
197
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = """T5Config""" class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig
197
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ : str ) -> int: """simple docstring""" return "".join(chr(ord(_SCREAMING_SNAKE_CASE ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __SCREAMING_SNAKE_CASE : Union[str, Any] =datasets.utils.logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] =['''names''', '''prefix'''] __SCREAMING_SNAKE_CASE : int =['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __SCREAMING_SNAKE_CASE : Any =['''encoding_errors''', '''on_bad_lines'''] __SCREAMING_SNAKE_CASE : Any =['''date_format'''] @dataclass class A_ ( datasets.BuilderConfig ): _A :str = "," _A :Optional[str] = None _A :Optional[Union[int, List[int], str]] = "infer" _A :Optional[List[str]] = None _A :Optional[List[str]] = None _A :Optional[Union[int, str, List[int], List[str]]] = None _A :Optional[Union[List[int], List[str]]] = None _A :Optional[str] = None _A :bool = True _A :Optional[Literal["c", "python", "pyarrow"]] = None _A :Dict[Union[int, str], Callable[[Any], Any]] = None _A :Optional[list] = None _A :Optional[list] = None _A :bool = False _A :Optional[Union[int, List[int]]] = None _A :Optional[int] = None _A :Optional[Union[str, List[str]]] = None _A :bool = True _A :bool = True _A :bool = False _A :bool = True _A :Optional[str] = None _A :str = "." _A :Optional[str] = None _A :str = '"' _A :int = 0 _A :Optional[str] = None _A :Optional[str] = None _A :Optional[str] = None _A :Optional[str] = None _A :bool = True _A :bool = True _A :int = 0 _A :bool = True _A :bool = False _A :Optional[str] = None _A :int = 1_0000 _A :Optional[datasets.Features] = None _A :Optional[str] = "strict" _A :Literal["error", "warn", "skip"] = "error" _A :Optional[str] = None def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): if self.delimiter is not None: lowercase = self.delimiter if self.column_names is not None: lowercase = self.column_names @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ ( datasets.ArrowBasedBuilder ): _A :Tuple = CsvConfig def SCREAMING_SNAKE_CASE__ ( self : int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : int ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowercase = data_files if isinstance(snake_case__ , snake_case__ ): lowercase = [files] lowercase = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowercase = [files] lowercase = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : pa.Table ): if self.config.features is not None: lowercase = self.config.features.arrow_schema if all(not require_storage_cast(snake_case__ ) for feature in self.config.features.values() ): # cheaper cast lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase = table_cast(snake_case__ , snake_case__ ) return pa_table def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Union[str, Any] ): lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): lowercase = pd.read_csv(snake_case__ , iterator=snake_case__ , dtype=snake_case__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case__ ): lowercase = pa.Table.from_pandas(snake_case__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
428
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( __a , __a , unittest.TestCase ): _A :List[Any] = VQModel _A :Any = '''sample''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : int=(32, 32) ): lowercase = 4 lowercase = 3 lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : str ): return (3, 32, 32) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return (3, 32, 32) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase , lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(snake_case__ ) lowercase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase = image.to(snake_case__ ) with torch.no_grad(): lowercase = model(snake_case__ ).sample lowercase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
428
1
from math import factorial def __UpperCamelCase ( _A : int , _A : int , _A : float ) ->float: """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A , _A ) or not isinstance(_A , _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCamelCase_ =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCamelCase_ =float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
75
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
1
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0_0 ) -> int: __magic_name__: int = 2**power __magic_name__: Any = 0 while n: __magic_name__, __magic_name__: int = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
96
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase ): UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase ): UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = FlaxBertModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase ): return model(**lowerCAmelCase ) eval(**lowerCAmelCase ).block_until_ready() @slow def A__ ( self ): for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = FlaxRobertaModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase ): return model(**lowerCAmelCase ) eval(**lowerCAmelCase ).block_until_ready() def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("bert-base" ) def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase , revision="aaaaaa" ) def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def A__ ( self ): with self.assertRaisesRegex(lowerCAmelCase , "Use `from_pt=True` to load this model" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
23
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowercase ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase = tempfile.mkdtemp() # fmt: off lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def __a ( self : Optional[int] , **__lowerCamelCase : Optional[int] ) -> Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __a ( self : int , **__lowerCamelCase : int ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __a ( self : Any ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __a ( self : Any ) -> Tuple: '''simple docstring''' lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self : List[str] ) -> Dict: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = self.get_image_processor() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __a ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) lowercase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __a ( self : Any ) -> str: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(__lowerCamelCase , return_tensors='''np''' ) lowercase = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) lowercase = '''lower newer''' lowercase = processor(text=__lowerCamelCase ) lowercase = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def __a ( self : Any ) -> Dict: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(__lowerCamelCase ) lowercase = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __a ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
604
import argparse from collections import defaultdict def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[Any]: """simple docstring""" lowercase = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(UpperCAmelCase, '''r''' ) as f: lowercase = f.readlines() lowercase = f'class {class_name}(' lowercase = f'{4 * " "}def {test_name}(' lowercase = f'{8 * " "}{correct_line.split()[0]}' lowercase = f'{16 * " "}{correct_line.split()[0]}' lowercase = False lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = 0 lowercase = [] for line in lines: if line.startswith(UpperCAmelCase ): lowercase = True elif in_class and line.startswith(UpperCAmelCase ): lowercase = True elif in_class and in_func and (line.startswith(UpperCAmelCase ) or line.startswith(UpperCAmelCase )): lowercase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowercase = True if in_class and in_func and in_line: if ")" not in line: continue else: lowercase = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) lowercase = lowercase = lowercase = lowercase = False else: new_lines.append(UpperCAmelCase ) with open(UpperCAmelCase, '''w''' ) as f: for line in new_lines: f.write(UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=None )-> str: """simple docstring""" if fail is not None: with open(UpperCAmelCase, '''r''' ) as f: lowercase = {l.strip() for l in f.readlines()} else: lowercase = None with open(UpperCAmelCase, '''r''' ) as f: lowercase = f.readlines() lowercase = defaultdict(UpperCAmelCase ) for line in correct_lines: lowercase ,lowercase ,lowercase ,lowercase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) A_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
604
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _a ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase__ = 'mvp' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , UpperCAmelCase_=50_267 , UpperCAmelCase_=1_024 , UpperCAmelCase_=12 , UpperCAmelCase_=4_096 , UpperCAmelCase_=16 , UpperCAmelCase_=12 , UpperCAmelCase_=4_096 , UpperCAmelCase_=16 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_="gelu" , UpperCAmelCase_=1_024 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.02 , UpperCAmelCase_=0.0 , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_=True , UpperCAmelCase_=2 , UpperCAmelCase_=2 , UpperCAmelCase_=False , UpperCAmelCase_=100 , UpperCAmelCase_=800 , **UpperCAmelCase_ , ) -> Union[str, Any]: '''simple docstring''' lowercase__: Optional[Any] = vocab_size lowercase__: List[str] = max_position_embeddings lowercase__: str = d_model lowercase__: Any = encoder_ffn_dim lowercase__: Dict = encoder_layers lowercase__: int = encoder_attention_heads lowercase__: Any = decoder_ffn_dim lowercase__: List[Any] = decoder_layers lowercase__: Union[str, Any] = decoder_attention_heads lowercase__: List[Any] = dropout lowercase__: List[str] = attention_dropout lowercase__: int = activation_dropout lowercase__: List[str] = activation_function lowercase__: int = init_std lowercase__: str = encoder_layerdrop lowercase__: str = decoder_layerdrop lowercase__: List[str] = classifier_dropout lowercase__: Any = use_cache lowercase__: List[Any] = encoder_layers lowercase__: Tuple = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__: int = use_prompt lowercase__: List[str] = prompt_length lowercase__: List[str] = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , _lowercase): lowercase__: Any = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed.")
707
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = """ernie_m""" UpperCamelCase__ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCAmelCase_ = 250_002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3_072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.02 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-0_5 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: List[Any] = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Tuple = max_position_embeddings lowercase__: str = initializer_range lowercase__: List[Any] = layer_norm_eps lowercase__: List[str] = classifier_dropout lowercase__: Optional[Any] = is_decoder lowercase__: Tuple = act_dropout
120
0
"""simple docstring""" from torch import nn def a_ ( __a ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
571
"""simple docstring""" def a_ ( __a ): assert ( isinstance(__a , __a ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A__ , A__ = 1, 1 for _ in range(number_of_steps - 1 ): A__ , A__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
571
1
'''simple docstring''' class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Optional[Any] = val lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : str = None def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if self.val: if val < self.val: if self.left is None: lowerCAmelCase__ : List[str] = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: lowerCAmelCase__ : List[Any] = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: lowerCAmelCase__ : List[Any] = val def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if root: inorder(root.left , UpperCamelCase ) res.append(root.val ) inorder(root.right , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if len(UpperCamelCase ) == 0: return arr lowerCAmelCase__ : Union[str, Any] = Node(arr[0] ) for i in range(1 , len(UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase__ : Optional[int] = [] inorder(UpperCamelCase , UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
709
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''vocab.txt'''} _lowerCAmelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } _lowerCAmelCase = { '''openbmb/cpm-ant-10b''': 1024, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = collections.OrderedDict() with open(UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: lowerCAmelCase__ : Optional[int] = reader.readlines() for index, token in enumerate(UpperCamelCase ): lowerCAmelCase__ : Tuple = token.rstrip("""\n""" ) lowerCAmelCase__ : int = index return vocab class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase=200 ) -> int: lowerCAmelCase__ : Dict = vocab lowerCAmelCase__ : Dict = unk_token lowerCAmelCase__ : Tuple = max_input_chars_per_word def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Tuple = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[int] = [] while start < len(__UpperCAmelCase ): lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = None while start < end: lowerCAmelCase__ : int = """""".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase__ : Optional[int] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = end return sub_tokens class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] __lowercase : Tuple = False def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<d>" ,__UpperCAmelCase="</d>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="</n>" ,__UpperCAmelCase="</_>" ,__UpperCAmelCase="left" ,**__UpperCAmelCase ,) -> Dict: requires_backends(self ,["""jieba"""] ) super().__init__( bod_token=__UpperCAmelCase ,eod_token=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,line_token=__UpperCAmelCase ,space_token=__UpperCAmelCase ,padding_side=__UpperCAmelCase ,**__UpperCAmelCase ,) lowerCAmelCase__ : int = bod_token lowerCAmelCase__ : Optional[Any] = eod_token lowerCAmelCase__ : Union[str, Any] = load_vocab(__UpperCAmelCase ) lowerCAmelCase__ : int = self.encoder[space_token] lowerCAmelCase__ : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __UpperCAmelCase : x[1] ) ) lowerCAmelCase__ : Optional[int] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : Optional[Any] = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.encoder[self.bod_token] @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.encoder[self.eod_token] @property def UpperCAmelCase_ ( self ) -> int: return self.encoder["\n"] @property def UpperCAmelCase_ ( self ) -> int: return len(self.encoder ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Dict = [] for x in jieba.cut(__UpperCAmelCase ,cut_all=__UpperCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCAmelCase ) ) return output_tokens def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase__ : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return token in self.encoder def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return "".join(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: return self.encoder.get(__UpperCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: return self.decoder.get(__UpperCAmelCase ,self.unk_token ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if os.path.isdir(__UpperCAmelCase ): lowerCAmelCase__ : Any = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCAmelCase__ : Tuple = (filename_prefix + """-""" if filename_prefix else """""") + save_directory lowerCAmelCase__ : List[Any] = 0 if " " in self.encoder: lowerCAmelCase__ : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase__ : List[Any] = self.encoder["""\n"""] del self.encoder["\n"] lowerCAmelCase__ : Dict = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __UpperCAmelCase : x[1] ) ) with open(__UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase__ : Tuple = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase ))
160
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase = 1_0 _UpperCAmelCase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) _UpperCAmelCase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __a: int = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Dict: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" _UpperCAmelCase = FILE_CONTENT with open(__snake_case , """w""" ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[int]: import bza _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" _UpperCAmelCase = bytes(__snake_case , """utf-8""" ) with bza.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) _UpperCAmelCase = bytes(__snake_case , """utf-8""" ) with gzip.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[int]: if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" _UpperCAmelCase = bytes(__snake_case , """utf-8""" ) with lza.frame.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__snake_case , """w""" ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: import tarfile _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__snake_case , """w""" ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: import lzma _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" _UpperCAmelCase = bytes(__snake_case , """utf-8""" ) with lzma.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Dict: import zipfile _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Tuple: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" _UpperCAmelCase = bytes(__snake_case , """utf-8""" ) with zstd.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" _UpperCAmelCase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__snake_case , """w""" ) as f: f.write(__snake_case ) return filename __a: Dict = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __a: Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __a: List[str] = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __a: int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __a: Tuple = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = datasets.Dataset.from_dict(__snake_case ) _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[int]: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: _UpperCAmelCase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__snake_case , """w""" , newline="""""" ) as f: _UpperCAmelCase = csv.DictWriter(__snake_case , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Tuple: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__snake_case , """w""" , newline="""""" ) as f: _UpperCAmelCase = csv.DictWriter(__snake_case , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: import bza _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__snake_case , """rb""" ) as f: _UpperCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[Any]: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> int: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) _UpperCAmelCase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__snake_case , """wb""" ) as f: _UpperCAmelCase = pq.ParquetWriter(__snake_case , schema=__snake_case ) _UpperCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Dict: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _UpperCAmelCase = {"""data""": DATA} with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Dict: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _UpperCAmelCase = {"""data""": DATA_DICT_OF_LISTS} with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Tuple: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__snake_case , """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Any: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__snake_case , """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__snake_case , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Dict: _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__snake_case , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> str: import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__snake_case , """rb""" ) as orig_file: with gzip.open(__snake_case , """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> str: import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__snake_case , """rb""" ) as orig_file: with gzip.open(__snake_case , """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Dict: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.join("""nested""" , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> int: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__snake_case , """w""" ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__snake_case , """w""" ) as f: f.add(__snake_case , arcname=os.path.join("""nested""" , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__snake_case , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__snake_case , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__snake_case , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Any: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join("""main_dir""" , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> str: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__snake_case , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) _UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__snake_case , """w""" ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
108
import os import sys __a: Union[str, Any] = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __a: Union[str, Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Union[str, Any]: return AutoConfig.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Any: return AutoTokenizer.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModel.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModelForCausalLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[Any]: return AutoModelForQuestionAnswering.from_pretrained(*__snake_case , **__snake_case )
108
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase = '''UperNetConfig''' class __A( nn.Module ): def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Union[int, Tuple[int, int]] , __UpperCamelCase : Union[int, Tuple[int, int], str] = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 , ): super().__init__() lowerCamelCase_ = nn.Convad( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , bias=__UpperCamelCase , dilation=__UpperCamelCase , ) lowerCamelCase_ = nn.BatchNormad(__UpperCamelCase ) lowerCamelCase_ = nn.ReLU() def lowercase__ ( self : Any , __UpperCamelCase : torch.Tensor ): lowerCamelCase_ = self.conv(__UpperCamelCase ) lowerCamelCase_ = self.batch_norm(__UpperCamelCase ) lowerCamelCase_ = self.activation(__UpperCamelCase ) return output class __A( nn.Module ): def __init__( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): super().__init__() lowerCamelCase_ = [ nn.AdaptiveAvgPoolad(__UpperCamelCase ), UperNetConvModule(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : torch.Tensor ): lowerCamelCase_ = input for layer in self.layers: lowerCamelCase_ = layer(__UpperCamelCase ) return hidden_state class __A( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : Tuple[int, ...] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool ): super().__init__() lowerCamelCase_ = pool_scales lowerCamelCase_ = align_corners lowerCamelCase_ = in_channels lowerCamelCase_ = channels lowerCamelCase_ = [] for i, pool_scale in enumerate(__UpperCamelCase ): lowerCamelCase_ = UperNetPyramidPoolingBlock(pool_scale=__UpperCamelCase , in_channels=__UpperCamelCase , channels=__UpperCamelCase ) self.blocks.append(__UpperCamelCase ) self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : torch.Tensor ): lowerCamelCase_ = [] for ppm in self.blocks: lowerCamelCase_ = ppm(__UpperCamelCase ) lowerCamelCase_ = nn.functional.interpolate( __UpperCamelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__UpperCamelCase ) return ppm_outs class __A( nn.Module ): def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : List[Any] ): super().__init__() lowerCamelCase_ = config lowerCamelCase_ = config.pool_scales # e.g. (1, 2, 3, 6) lowerCamelCase_ = in_channels lowerCamelCase_ = config.hidden_size lowerCamelCase_ = False lowerCamelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCamelCase_ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCamelCase_ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCamelCase_ = nn.ModuleList() lowerCamelCase_ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCamelCase_ = UperNetConvModule(__UpperCamelCase , self.channels , kernel_size=1 ) lowerCamelCase_ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCamelCase ) self.fpn_convs.append(__UpperCamelCase ) lowerCamelCase_ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase__ ( self : Optional[Any] ): self.apply(self._init_weights ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[int] ): if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = inputs[-1] lowerCamelCase_ = [x] psp_outs.extend(self.psp_modules(__UpperCamelCase ) ) lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=1 ) lowerCamelCase_ = self.bottleneck(__UpperCamelCase ) return output def lowercase__ ( self : Tuple , __UpperCamelCase : torch.Tensor ): # build laterals lowerCamelCase_ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCamelCase ) ) # build top-down path lowerCamelCase_ = len(__UpperCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase_ = laterals[i - 1].shape[2:] lowerCamelCase_ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCamelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowerCamelCase_ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase_ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=1 ) lowerCamelCase_ = self.fpn_bottleneck(__UpperCamelCase ) lowerCamelCase_ = self.classifier(__UpperCamelCase ) return output class __A( nn.Module ): def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 3 , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 ): super().__init__() lowerCamelCase_ = config lowerCamelCase_ = config.auxiliary_in_channels lowerCamelCase_ = config.auxiliary_channels lowerCamelCase_ = config.auxiliary_num_convs lowerCamelCase_ = config.auxiliary_concat_input lowerCamelCase_ = in_index lowerCamelCase_ = (kernel_size // 2) * dilation lowerCamelCase_ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) if self.num_convs == 0: lowerCamelCase_ = nn.Identity() else: lowerCamelCase_ = nn.Sequential(*__UpperCamelCase ) if self.concat_input: lowerCamelCase_ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCamelCase , padding=kernel_size // 2 ) lowerCamelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase__ ( self : List[Any] ): self.apply(self._init_weights ) def lowercase__ ( self : int , __UpperCamelCase : Tuple ): if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : torch.Tensor ): # just take the relevant feature maps lowerCamelCase_ = encoder_hidden_states[self.in_index] lowerCamelCase_ = self.convs(__UpperCamelCase ) if self.concat_input: lowerCamelCase_ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCamelCase_ = self.classifier(__UpperCamelCase ) return output class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = UperNetConfig SCREAMING_SNAKE_CASE = '''pixel_values''' SCREAMING_SNAKE_CASE = True def lowercase__ ( self : str , __UpperCamelCase : Dict ): if isinstance(__UpperCamelCase , __UpperCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase__ ( self : Optional[int] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any]=False ): if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = value lowercase = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , UpperCAmelCase , ) class __A( UpperCAmelCase ): def __init__( self : str , __UpperCamelCase : Any ): super().__init__(__UpperCamelCase ) lowerCamelCase_ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCamelCase_ = UperNetHead(__UpperCamelCase , in_channels=self.backbone.channels ) lowerCamelCase_ = UperNetFCNHead(__UpperCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC ) def lowercase__ ( self : int , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , ): lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions lowerCamelCase_ = self.backbone.forward_with_filtered_kwargs( __UpperCamelCase , output_hidden_states=__UpperCamelCase , output_attentions=__UpperCamelCase ) lowerCamelCase_ = outputs.feature_maps lowerCamelCase_ = self.decode_head(__UpperCamelCase ) lowerCamelCase_ = nn.functional.interpolate(__UpperCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__UpperCamelCase ) lowerCamelCase_ = None if self.auxiliary_head is not None: lowerCamelCase_ = self.auxiliary_head(__UpperCamelCase ) lowerCamelCase_ = nn.functional.interpolate( __UpperCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__UpperCamelCase ) lowerCamelCase_ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowerCamelCase_ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCamelCase_ = loss_fct(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = loss_fct(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCamelCase_ = (logits,) + outputs[1:] else: lowerCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
103
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A: def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : Any=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Union[str, Any]=0 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRContextEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDPRReader(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCamelCase_ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(__UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCAmelCase : Tuple = 1 for n in range(m + 1 ): for k in range(1 , UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: A = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: A = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
77
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=[10, 20, 30, 40] , UpperCamelCase_ : Tuple=[1, 1, 2, 1] , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict="relu" , UpperCamelCase_ : str=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Union[str, Any] = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : Dict = depths __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : str = num_labels __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Dict = len(UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values def a_ ( self : Dict): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[str] = FlaxRegNetModel(config=UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Tuple = FlaxRegNetForImageClassification(config=UpperCamelCase_) __UpperCAmelCase : str = model(UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = FlaxRegNetModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Tuple): """simple docstring""" return def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) @unittest.skip(reason="RegNet does not use inputs_embeds") def a_ ( self : Union[str, Any]): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings") def a_ ( self : Optional[int]): """simple docstring""" pass def a_ ( self : str): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : int): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]): __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_) , expected_num_stages + 1) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __UpperCAmelCase : List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_) @jax.jit def model_jitted(UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int]): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_) with self.subTest("JIT Enabled"): __UpperCAmelCase : Optional[Any] = model_jitted(**UpperCamelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): __UpperCAmelCase : Dict = model_jitted(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_) , len(UpperCamelCase_)) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCamelCase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Dict = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : Dict = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : Any = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4))
77
1
from collections.abc import Sequence def _snake_case (_snake_case : Sequence[int] | None = None) -> int: if nums is None or not nums: raise ValueError('Input sequence should not be empty') _lowercase =nums[0] for i in range(1 , len(_snake_case)): _lowercase =nums[i] _lowercase =max(_snake_case , ans + num , _snake_case) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _SCREAMING_SNAKE_CASE = int(input("Enter number of elements : ").strip()) _SCREAMING_SNAKE_CASE = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
720
def _snake_case (_snake_case : str , _snake_case : str) -> float: def get_matched_characters(_snake_case : str , _snake_case : str) -> str: _lowercase =[] _lowercase =min(len(_stra) , len(_stra)) // 2 for i, l in enumerate(_stra): _lowercase =int(max(0 , i - limit)) _lowercase =int(min(i + limit + 1 , len(_stra))) if l in _stra[left:right]: matched.append(_snake_case) _lowercase =f'''{_stra[0:_stra.index(_snake_case)]} {_stra[_stra.index(_snake_case) + 1:]}''' return "".join(_snake_case) # matching characters _lowercase =get_matched_characters(_snake_case , _snake_case) _lowercase =get_matched_characters(_snake_case , _snake_case) _lowercase =len(_snake_case) # transposition _lowercase =( len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case) if ca != ca]) // 2 ) if not match_count: _lowercase =0.0 else: _lowercase =( 1 / 3 * ( match_count / len(_snake_case) + match_count / len(_snake_case) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowercase =0 for ca, ca in zip(stra[:4] , stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
557
0
import os from math import logaa def __a ( __UpperCAmelCase = "base_exp.txt" ): a__ = 0 a__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): a__ , a__ = list(map(__UpperCAmelCase , line.split(''',''' ) ) ) if x * logaa(__UpperCAmelCase ) > largest: a__ = x * logaa(__UpperCAmelCase ) a__ = i + 1 return result if __name__ == "__main__": print(solution())
194
from __future__ import annotations import requests def __a ( __UpperCAmelCase ): a__ = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(__UpperCAmelCase ).json() def __a ( __UpperCAmelCase = 10 ): a__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' a__ = requests.get(__UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(__UpperCAmelCase ) for story_id in story_ids] def __a ( __UpperCAmelCase = 10 ): a__ = hackernews_top_stories(__UpperCAmelCase ) return "\n".join('''* [{title}]({url})'''.format(**__UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
194
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _UpperCamelCase ( UpperCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" if not is_accelerate_available(): return method lowerCAmelCase__ = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCAmelCase__ ) < version.parse('0.17.0' ): return method def wrapper(self : List[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCAmelCase__ , **UpperCAmelCase__ ) return wrapper
710
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __snake_case : List[str] = True from torch.cuda.amp import autocast __snake_case : Union[str, Any] = logging.getLogger(__name__) def _UpperCamelCase ( UpperCamelCase_ : Any=None , UpperCamelCase_ : str=None ) -> Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''}) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''}) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) _SCREAMING_SNAKE_CASE : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : WavaVecaProcessor _SCREAMING_SNAKE_CASE : Union[bool, str] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self , _UpperCamelCase ): """simple docstring""" # split inputs and labels since they have to be of different lenghts and need # different padding methods lowerCAmelCase__ = [{'input_values': feature['input_values']} for feature in features] lowerCAmelCase__ = [{'input_ids': feature['labels']} for feature in features] lowerCAmelCase__ = self.processor.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowerCAmelCase__ = self.processor.pad( labels=_UpperCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly lowerCAmelCase__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) lowerCAmelCase__ = labels return batch class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" model.train() lowerCAmelCase__ = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): lowerCAmelCase__ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: lowerCAmelCase__ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase__ = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() return loss.detach() def _UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , UpperCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCAmelCase__ = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) lowerCAmelCase__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer lowerCAmelCase__ = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(UpperCamelCase_ : Any ): lowerCAmelCase__ = re.sub(UpperCamelCase_ , '' , batch['sentence'] ).lower() + ' ' return batch lowerCAmelCase__ = train_dataset.map(UpperCamelCase_ , remove_columns=['sentence'] ) lowerCAmelCase__ = eval_dataset.map(UpperCamelCase_ , remove_columns=['sentence'] ) def extract_all_chars(UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = ' '.join(batch['text'] ) lowerCAmelCase__ = list(set(UpperCamelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , batch_size=-1 , keep_in_memory=UpperCamelCase_ , remove_columns=train_dataset.column_names , ) lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , batch_size=-1 , keep_in_memory=UpperCamelCase_ , remove_columns=eval_dataset.column_names , ) lowerCAmelCase__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) lowerCAmelCase__ = {v: k for k, v in enumerate(UpperCamelCase_ )} lowerCAmelCase__ = vocab_dict[' '] del vocab_dict[" "] lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = len(UpperCamelCase_ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_train_samples ) lowerCAmelCase__ = train_dataset.select(range(UpperCamelCase_ ) ) if data_args.max_val_samples is not None: lowerCAmelCase__ = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCAmelCase__ = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCamelCase_ : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = torchaudio.load(batch['path'] ) lowerCAmelCase__ = resampler(UpperCamelCase_ ).squeeze().numpy() lowerCAmelCase__ = 1_6000 lowerCAmelCase__ = batch['text'] return batch lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase__ = eval_dataset.map( UpperCamelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCamelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." lowerCAmelCase__ = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(UpperCamelCase_ ) return batch lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase__ = eval_dataset.map( UpperCamelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric lowerCAmelCase__ = datasets.load_metric('wer' ) def compute_metrics(UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = pred.predictions lowerCAmelCase__ = np.argmax(UpperCamelCase_ , axis=-1 ) lowerCAmelCase__ = processor.tokenizer.pad_token_id lowerCAmelCase__ = processor.batch_decode(UpperCamelCase_ ) # we do not want to group tokens when computing the metrics lowerCAmelCase__ = processor.batch_decode(pred.label_ids , group_tokens=UpperCamelCase_ ) lowerCAmelCase__ = wer_metric.compute(predictions=UpperCamelCase_ , references=UpperCamelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCAmelCase__ = DataCollatorCTCWithPadding(processor=UpperCamelCase_ , padding=UpperCamelCase_ ) # Initialize our Trainer lowerCAmelCase__ = CTCTrainer( model=UpperCamelCase_ , data_collator=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase__ = model_args.model_name_or_path else: lowerCAmelCase__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() lowerCAmelCase__ = train_result.metrics lowerCAmelCase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ ) ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('train' , UpperCamelCase_ ) trainer.save_metrics('train' , UpperCamelCase_ ) trainer.save_state() # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCamelCase_ ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('eval' , UpperCamelCase_ ) trainer.save_metrics('eval' , UpperCamelCase_ ) return results if __name__ == "__main__": main()
365
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase ( snake_case__): """simple docstring""" lowerCAmelCase_ = """vivit""" def __init__( self : Optional[int] , UpperCamelCase__ : List[str]=224 , UpperCamelCase__ : str=32 , UpperCamelCase__ : Any=[2, 16, 16] , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : int=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : Optional[Any]=3072 , UpperCamelCase__ : Dict="gelu_fast" , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[str]=1E-06 , UpperCamelCase__ : Any=True , **UpperCamelCase__ : Any , ) -> int: _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =initializer_range _UpperCamelCase =layer_norm_eps _UpperCamelCase =image_size _UpperCamelCase =num_frames _UpperCamelCase =tubelet_size _UpperCamelCase =num_channels _UpperCamelCase =qkv_bias super().__init__(**lowerCamelCase_ )
404
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : List[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : List[Any] = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : Dict = (1 - _cos) / 2 _a : Any = 1 - _cos _a : Any = 1 + alpha _a : int = -2 * _cos _a : str = 1 - alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : int = tau * frequency / samplerate _a : int = sin(A ) _a : Union[str, Any] = cos(A ) _a : int = _sin / (2 * q_factor) _a : Dict = (1 + _cos) / 2 _a : int = -1 - _cos _a : Optional[int] = 1 + alpha _a : str = -2 * _cos _a : Dict = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : str = tau * frequency / samplerate _a : Dict = sin(A ) _a : int = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = _sin / 2 _a : List[str] = 0 _a : Dict = -ba _a : List[Any] = 1 + alpha _a : Union[str, Any] = -2 * _cos _a : List[Any] = 1 - alpha _a : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : Optional[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Tuple = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = 1 - alpha _a : int = -2 * _cos _a : List[Any] = 1 + alpha _a : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Union[str, Any] = tau * frequency / samplerate _a : str = sin(A ) _a : str = cos(A ) _a : List[Any] = _sin / (2 * q_factor) _a : Optional[Any] = 1_0 ** (gain_db / 4_0) _a : Dict = 1 + alpha * big_a _a : str = -2 * _cos _a : Tuple = 1 - alpha * big_a _a : Tuple = 1 + alpha / big_a _a : str = -2 * _cos _a : Union[str, Any] = 1 - alpha / big_a _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Optional[int] = tau * frequency / samplerate _a : List[str] = sin(A ) _a : Tuple = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[str] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : Dict = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(A ) * alpha _a : Any = big_a * (pmc + aaa) _a : Optional[int] = 2 * big_a * mpc _a : Dict = big_a * (pmc - aaa) _a : List[str] = ppmc + aaa _a : int = -2 * pmpc _a : Tuple = ppmc - aaa _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Dict = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Any = cos(A ) _a : int = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : List[Any] = (big_a + 1) - (big_a - 1) * _cos _a : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : List[str] = (big_a - 1) + (big_a + 1) * _cos _a : Union[str, Any] = 2 * sqrt(A ) * alpha _a : Optional[Any] = big_a * (ppmc + aaa) _a : List[str] = -2 * big_a * pmpc _a : Any = big_a * (ppmc - aaa) _a : List[Any] = pmc + aaa _a : Tuple = 2 * mpc _a : List[Any] = pmc - aaa _a : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
650
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
560
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->Optional[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __lowerCAmelCase : Tuple = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , A_ , standard_warn=A_ ) __lowerCAmelCase : List[str] = dict(scheduler.config ) __lowerCAmelCase : str = 1 __lowerCAmelCase : Optional[Any] = FrozenDict(A_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __lowerCAmelCase : List[str] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , A_ , standard_warn=A_ ) __lowerCAmelCase : Any = dict(scheduler.config ) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : int = FrozenDict(A_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=A_ , segmentation_processor=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , ) def UpperCamelCase__ ( self , A_ = "auto" ) ->Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.enable_attention_slicing(A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowerCAmelCase : Union[str, Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 50 , A_ = 7.5 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __lowerCAmelCase : List[str] = self.segmentation_model(**A_ ) __lowerCAmelCase : Tuple = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowerCAmelCase : Dict = self.numpy_to_pil(A_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowerCAmelCase : List[str] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=A_ , image=A_ , mask_image=A_ , height=A_ , width=A_ , num_inference_steps=A_ , guidance_scale=A_ , negative_prompt=A_ , num_images_per_prompt=A_ , eta=A_ , generator=A_ , latents=A_ , output_type=A_ , return_dict=A_ , callback=A_ , callback_steps=A_ , )
492
0
"""simple docstring""" lowercase__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __magic_name__ ( ): __a : Dict = input("""Enter message: """ ) __a : Union[str, Any] = input("""Enter key [alphanumeric]: """ ) __a : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __a : int = """encrypt""" __a : str = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __a : Optional[Any] = """decrypt""" __a : Optional[Any] = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str ): return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str ): return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str ): __a : Optional[int] = [] __a : str = 0 __a : Union[str, Any] = key.upper() for symbol in message: __a : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __a : Optional[int] = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
718
"""simple docstring""" import os def __magic_name__ ( _lowerCamelCase : Dict ): __a : List[str] = len(grid[0] ) __a : int = len(_lowerCamelCase ) __a : Tuple = 0 __a : List[Any] = 0 __a : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCamelCase ): for j in range(n_rows - 3 ): __a : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __a : Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __a : List[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __a : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __a : str = max( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if max_product > largest: __a : Optional[Any] = max_product return largest def __magic_name__ ( ): __a : Tuple = [] with open(os.path.dirname(_lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) __a : Tuple = [[int(_lowerCamelCase ) for i in grid[j]] for j in range(len(_lowerCamelCase ) )] return largest_product(_lowerCamelCase ) if __name__ == "__main__": print(solution())
63
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = 1 __lowercase = 3 __lowercase = (32, 32) __lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' def extract(*lowerCAmelCase__ , **lowerCAmelCase__ ): class _UpperCamelCase : """simple docstring""" def __init__( self ) -> Optional[Any]: '''simple docstring''' __lowercase = torch.ones([0] ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __lowercase = 77 __lowercase = self.dummy_image.to(lowerCAmelCase__ ) __lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __lowercase = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) __lowercase = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __lowercase = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase__ , ) __lowercase = output.images __lowercase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __lowercase = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __lowercase = 77 __lowercase = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 __lowercase = unet.half() __lowercase = vae.half() __lowercase = bert.half() # make sure here that pndm scheduler skips prk __lowercase = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) __lowercase = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __lowercase = init_image.resize((7_60, 5_04) ) __lowercase = '''BAAI/AltDiffusion''' __lowercase = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __lowercase = '''A fantasy landscape, trending on artstation''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='''np''' , ) __lowercase = output.images[0] __lowercase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) __lowercase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowercase = init_image.resize((7_68, 5_12) ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __lowercase = '''BAAI/AltDiffusion''' __lowercase = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __lowercase = '''A fantasy landscape, trending on artstation''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='''np''' , ) __lowercase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
534
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() __a : Any = logging.get_logger(__name__) __a : Union[str, Any] = """Hello, World!""" __a : Optional[int] = """en_XX""" def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = Path('''data_bin''' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase ).parent ) , checkpoint_file=Path(lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(lowercase ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , lowercase ) __lowercase = XmodForSequenceClassification(lowercase ) if classification_head else XmodForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['''mnli'''].dense.weight __lowercase = xmod.model.classification_heads['''mnli'''].dense.bias __lowercase = xmod.model.classification_heads['''mnli'''].out_proj.weight __lowercase = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase ) __lowercase = model(lowercase )[0] if classification_head: __lowercase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(lowercase ) ) else: __lowercase = xmod.model(lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __lowercase = torch.allclose(lowercase , lowercase , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
534
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'timm_backbone' def __init__( self , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , )-> Union[str, Any]: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : int = backbone UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : List[Any] = features_only UpperCAmelCase__ : str = use_pretrained_backbone UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[str] = out_indices if out_indices is not None else (-1,)
660
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case : Tuple = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = PegasusTokenizer UpperCAmelCase__ : List[str] = PegasusTokenizerFast UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[int] = True def lowerCamelCase__( self :Any ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing a__ = PegasusTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__( self :str ) -> List[str]: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowerCamelCase__( self :List[Any] ,**__snake_case :Optional[int] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> int: return ("This is a test", "This is a test") def lowerCamelCase__( self :Tuple ) -> int: a__ = '</s>' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) ,__snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(__snake_case ) ,11_03 ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,11_03 ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) a__ = rust_tokenizer([raw_input_str] ,return_tensors=__snake_case ,add_special_tokens=__snake_case ).input_ids[0] a__ = py_tokenizer([raw_input_str] ,return_tensors=__snake_case ,add_special_tokens=__snake_case ).input_ids[0] self.assertListEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a__ = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' a__ = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] a__ = tokenizer([raw_input_str] ,return_tensors=__snake_case ).input_ids[0] self.assertListEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Any ) -> Any: a__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 a__ = 'To ensure a smooth flow of bank resolutions.' a__ = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] a__ = tokenizer([raw_input_str] ,return_tensors=__snake_case ).input_ids[0] self.assertListEqual(__snake_case ,__snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = ['This is going to be way too long.' * 1_50, 'short example'] a__ = ['not super long but more than 5 tokens', 'tiny'] a__ = self._large_tokenizer(__snake_case ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) a__ = self._large_tokenizer( text_target=__snake_case ,max_length=5 ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__snake_case ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__( self :Optional[Any] ) -> str: # fmt: off a__ = {'input_ids': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = PegasusTokenizer UpperCAmelCase__ : Dict = PegasusTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = True def lowerCamelCase__( self :Dict ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing a__ = PegasusTokenizer(__snake_case ,offset=0 ,mask_token_sent=__snake_case ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__( self :List[str] ) -> List[Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowerCamelCase__( self :List[Any] ,**__snake_case :Tuple ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ) -> Union[str, Any]: return ("This is a test", "This is a test") def lowerCamelCase__( self :List[str] ) -> List[str]: a__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) a__ = rust_tokenizer([raw_input_str] ,return_tensors=__snake_case ,add_special_tokens=__snake_case ).input_ids[0] a__ = py_tokenizer([raw_input_str] ,return_tensors=__snake_case ,add_special_tokens=__snake_case ).input_ids[0] self.assertListEqual(__snake_case ,__snake_case ) @require_torch def lowerCamelCase__( self :Optional[int] ) -> str: a__ = ['This is going to be way too long.' * 10_00, 'short example'] a__ = ['not super long but more than 5 tokens', 'tiny'] a__ = self._large_tokenizer(__snake_case ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) a__ = self._large_tokenizer( text_target=__snake_case ,max_length=5 ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__snake_case ) == 2 # input_ids, attention_mask. def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) a__ = self._large_tokenizer(__snake_case ).input_ids self.assertListEqual( __snake_case ,[1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] ,)
335
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case : str = logging.get_logger(__name__) snake_case : List[str] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = '''deformable_detr''' UpperCAmelCase__ : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self :Optional[int] ,__snake_case :List[Any]=True ,__snake_case :str=None ,__snake_case :Optional[Any]=3 ,__snake_case :int=3_00 ,__snake_case :Optional[int]=10_24 ,__snake_case :Union[str, Any]=6 ,__snake_case :Optional[int]=10_24 ,__snake_case :List[str]=8 ,__snake_case :Optional[Any]=6 ,__snake_case :int=10_24 ,__snake_case :List[str]=8 ,__snake_case :List[str]=0.0 ,__snake_case :Optional[int]=True ,__snake_case :Any="relu" ,__snake_case :List[str]=2_56 ,__snake_case :List[str]=0.1 ,__snake_case :Dict=0.0 ,__snake_case :Optional[int]=0.0 ,__snake_case :List[Any]=0.02 ,__snake_case :Union[str, Any]=1.0 ,__snake_case :List[str]=True ,__snake_case :Union[str, Any]=False ,__snake_case :List[Any]="sine" ,__snake_case :Tuple="resnet50" ,__snake_case :Dict=True ,__snake_case :Tuple=False ,__snake_case :str=4 ,__snake_case :Union[str, Any]=4 ,__snake_case :List[Any]=4 ,__snake_case :Optional[Any]=False ,__snake_case :str=3_00 ,__snake_case :Tuple=False ,__snake_case :Union[str, Any]=1 ,__snake_case :str=5 ,__snake_case :str=2 ,__snake_case :Dict=1 ,__snake_case :Any=1 ,__snake_case :Union[str, Any]=5 ,__snake_case :Tuple=2 ,__snake_case :Any=0.1 ,__snake_case :str=0.25 ,__snake_case :int=False ,**__snake_case :Optional[int] ,) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) a__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__snake_case ,__snake_case ): a__ = backbone_config.get('model_type' ) a__ = CONFIG_MAPPING[backbone_model_type] a__ = config_class.from_dict(__snake_case ) a__ = use_timm_backbone a__ = backbone_config a__ = num_channels a__ = num_queries a__ = max_position_embeddings a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = init_xavier_std a__ = encoder_layerdrop a__ = auxiliary_loss a__ = position_embedding_type a__ = backbone a__ = use_pretrained_backbone a__ = dilation # deformable attributes a__ = num_feature_levels a__ = encoder_n_points a__ = decoder_n_points a__ = two_stage a__ = two_stage_num_proposals a__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher a__ = class_cost a__ = bbox_cost a__ = giou_cost # Loss coefficients a__ = mask_loss_coefficient a__ = dice_loss_coefficient a__ = bbox_loss_coefficient a__ = giou_loss_coefficient a__ = eos_coefficient a__ = focal_alpha a__ = disable_custom_kernels super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__( self :int ) -> int: return self.d_model def lowerCamelCase__( self :List[str] ) -> str: a__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a__ = self.backbone_config.to_dict() a__ = self.__class__.model_type return output
335
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( _snake_case ): def _UpperCAmelCase ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowercase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase__ , """hidden_sizes""")) self.parent.assertTrue(hasattr(lowercase__ , """num_attention_heads""")) class __a : def __init__( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple=13 , lowercase__ : int=64 , lowercase__ : Tuple=3 , lowercase__ : Optional[int]=3 , lowercase__ : Union[str, Any]=2 , lowercase__ : Optional[int]=1 , lowercase__ : int=16 , lowercase__ : Any=[1_28, 2_56, 3_84] , lowercase__ : List[Any]=[4, 6, 8] , lowercase__ : Dict=[2, 3, 4] , lowercase__ : Optional[Any]=[16, 16, 16] , lowercase__ : Optional[Any]=0 , lowercase__ : Optional[Any]=[2, 2, 2] , lowercase__ : Optional[int]=[2, 2, 2] , lowercase__ : int=0.02 , lowercase__ : int=True , lowercase__ : Tuple=True , lowercase__ : List[Any]=2 , ) ->str: """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = kernel_size _lowercase = stride _lowercase = padding _lowercase = hidden_sizes _lowercase = num_attention_heads _lowercase = depths _lowercase = key_dim _lowercase = drop_path_rate _lowercase = patch_size _lowercase = attention_ratio _lowercase = mlp_ratio _lowercase = initializer_range _lowercase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowercase = is_training _lowercase = use_labels _lowercase = num_labels _lowercase = initializer_range def _UpperCAmelCase ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] , self.num_labels) _lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[int]) ->List[Any]: """simple docstring""" _lowercase = LevitModel(config=lowercase__) model.to(lowercase__) model.eval() _lowercase = model(lowercase__) _lowercase = (self.image_size, self.image_size) _lowercase , _lowercase = image_size[0], image_size[1] for _ in range(4): _lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) _lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int]) ->List[str]: """simple docstring""" _lowercase = self.num_labels _lowercase = LevitForImageClassification(lowercase__) model.to(lowercase__) model.eval() _lowercase = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any]) ->Dict: """simple docstring""" _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( _snake_case ,_snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def _UpperCAmelCase ( self : List[str]) ->Tuple: """simple docstring""" _lowercase = LevitModelTester(self) _lowercase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37) def _UpperCAmelCase ( self : str) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""") def _UpperCAmelCase ( self : Any) ->str: """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""") def _UpperCAmelCase ( self : Tuple) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""") def _UpperCAmelCase ( self : Tuple) ->Dict: """simple docstring""" pass def _UpperCAmelCase ( self : Dict) ->int: """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(lowercase__) _lowercase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__) def _UpperCAmelCase ( self : Tuple) ->int: """simple docstring""" def check_hidden_states_output(lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any]): _lowercase = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(lowercase__ , lowercase__)) _lowercase = outputs.hidden_states _lowercase = len(self.model_tester.depths) + 1 self.assertEqual(len(lowercase__) , lowercase__) _lowercase = (self.model_tester.image_size, self.model_tester.image_size) _lowercase , _lowercase = image_size[0], image_size[1] for _ in range(4): _lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) _lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" pass def _UpperCAmelCase ( self : int , lowercase__ : Dict , lowercase__ : str , lowercase__ : Tuple=False) ->Dict: """simple docstring""" _lowercase = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self : Optional[int]) ->Dict: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def _UpperCAmelCase ( self : int) ->Tuple: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) def _UpperCAmelCase ( self : Dict) ->Tuple: """simple docstring""" if not self.model_tester.is_training: return _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase__) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowercase = model_class(lowercase__) model.to(lowercase__) model.train() _lowercase = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) _lowercase = model(**lowercase__).loss loss.backward() def _UpperCAmelCase ( self : Union[str, Any]) ->Any: """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowercase = False _lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowercase = model_class(lowercase__) model.gradient_checkpointing_enable() model.to(lowercase__) model.train() _lowercase = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) _lowercase = model(**lowercase__).loss loss.backward() def _UpperCAmelCase ( self : str) ->Tuple: """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase__), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}"""): _lowercase = problem_type["""title"""] _lowercase = problem_type["""num_labels"""] _lowercase = model_class(lowercase__) model.to(lowercase__) model.train() _lowercase = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if problem_type["num_labels"] > 1: _lowercase = inputs["""labels"""].unsqueeze(1).repeat(1 , problem_type["""num_labels"""]) _lowercase = inputs["""labels"""].to(problem_type["""dtype"""]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase__) as warning_list: _lowercase = model(**lowercase__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def _UpperCAmelCase ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = LevitModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def _SCREAMING_SNAKE_CASE ( ): _lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : List[str]) ->Dict: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _UpperCAmelCase ( self : Union[str, Any]) ->int: """simple docstring""" _lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase__) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=lowercase__ , return_tensors="""pt""").to(lowercase__) # forward pass with torch.no_grad(): _lowercase = model(**lowercase__) # verify the logits _lowercase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , lowercase__) _lowercase = torch.tensor([1.0448, -0.3745, -1.8317]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
704
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ = 100 ): _lowercase = set() _lowercase = 0 _lowercase = n + 1 # maximum limit for a in range(2 , snake_case_ ): for b in range(2 , snake_case_ ): _lowercase = a**b # calculates the current power collect_powers.add(snake_case_ ) # adds the result to the set return len(snake_case_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
572
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCAmelCase_ ( _lowerCamelCase: List[Any]=None ): if subparsers is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = subparsers.add_parser("""test""" ) else: __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=_lowerCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: __SCREAMING_SNAKE_CASE : Tuple = script_name else: __SCREAMING_SNAKE_CASE : Any = F"--config_file={args.config_file} {script_name}" __SCREAMING_SNAKE_CASE : str = ["""accelerate-launch"""] + test_args.split() __SCREAMING_SNAKE_CASE : Any = execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = test_command_parser() __SCREAMING_SNAKE_CASE : Any = parser.parse_args() test_command(_lowerCamelCase ) if __name__ == "__main__": main()
578
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : int = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ['''PoolFormerFeatureExtractor'''] UpperCamelCase__ : Tuple = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
578
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = 0 def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(snake_case_, snake_case_ ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Dict = Path(snake_case_ ) / "preprocessor_config.json" UpperCamelCase__ : List[str] = Path(snake_case_ ) / "config.json" json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(snake_case_, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(snake_case_, '''w''' ) ) UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_, snake_case_ ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : str = Path(snake_case_ ) / "preprocessor_config.json" UpperCamelCase__ : Dict = Path(snake_case_ ) / "config.json" json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(snake_case_, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(snake_case_, '''w''' ) ) UpperCamelCase__ : Dict = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_, snake_case_ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Tuple = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCamelCase__ : Any = Path(snake_case_ ) / "preprocessor_config.json" UpperCamelCase__ : Dict = Path(snake_case_ ) / "config.json" json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(snake_case_, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(snake_case_, '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCamelCase__ : int = AutoImageProcessor.from_pretrained(snake_case_ ).to_dict() config_dict.pop('''image_processor_type''' ) UpperCamelCase__ : Dict = CLIPImageProcessor(**snake_case_ ) # save in new folder model_config.save_pretrained(snake_case_ ) config.save_pretrained(snake_case_ ) UpperCamelCase__ : List[Any] = AutoImageProcessor.from_pretrained(snake_case_ ) # make sure private variable is not incorrectly saved UpperCamelCase__ : Union[str, Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(snake_case_, snake_case_ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Tuple = Path(snake_case_ ) / "preprocessor_config.json" json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(snake_case_, '''w''' ), ) UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_, snake_case_ ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( snake_case_, '''clip-base is not a local folder and is not a valid model identifier''' ): UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''' ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" with self.assertRaisesRegex( snake_case_, R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCamelCase__ : List[str] = AutoImageProcessor.from_pretrained(snake_case_, revision='''aaaaaa''' ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( snake_case_, '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''', ): UpperCamelCase__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case_ ): UpperCamelCase__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case_ ): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=snake_case_ ) UpperCamelCase__ : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case_ ) UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(snake_case_, trust_remote_code=snake_case_ ) self.assertEqual(reloaded_image_processor.__class__.__name__, '''NewImageProcessor''' ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" try: AutoConfig.register('''custom''', snake_case_ ) AutoImageProcessor.register(snake_case_, snake_case_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case_ ): AutoImageProcessor.register(snake_case_, snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(snake_case_ ) / "preprocessor_config.json" UpperCamelCase__ : Dict = Path(snake_case_ ) / "config.json" json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(snake_case_, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(snake_case_, '''w''' ) ) UpperCamelCase__ : Tuple = CustomImageProcessor.from_pretrained(snake_case_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case_ ) UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_, snake_case_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" class lowercase__ ( _snake_case ): '''simple docstring''' a : str = True try: AutoConfig.register('''custom''', snake_case_ ) AutoImageProcessor.register(snake_case_, snake_case_ ) # If remote code is not set, the default is to use local UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(not hasattr(snake_case_, '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
721
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : List[str] = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern UpperCamelCase__ ,UpperCamelCase__ : Dict = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ : Optional[int] = failure[j - 1] continue i += 1 return False def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> list[int]: UpperCamelCase__ : Union[str, Any] = [0] UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Tuple = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ : str = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = 'abc1abc12' UpperCAmelCase_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' UpperCAmelCase_ = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = 'ABABX' UpperCAmelCase_ = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = 'AAAB' UpperCAmelCase_ = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = 'abcdabcy' UpperCAmelCase_ = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
369
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , __lowerCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[Features] = None , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Dict , ) -> Any: """simple docstring""" super().__init__(features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , **__lowerCAmelCase ) A__ = Sql( cache_dir=__lowerCAmelCase , features=__lowerCAmelCase , sql=__lowerCAmelCase , con=__lowerCAmelCase , **__lowerCAmelCase , ) def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , ) # Build dataset for splits A__ = self.builder.as_dataset( split="""train""" , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class A : '''simple docstring''' def __init__( self : Optional[int] , __lowerCAmelCase : Dataset , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : List[Any] , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) A__ = dataset A__ = name A__ = con A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = to_sql_kwargs def a_ ( self : Any ) -> int: """simple docstring""" A__ = self.to_sql_kwargs.pop("""sql""" , __lowerCAmelCase ) A__ = self.to_sql_kwargs.pop("""con""" , __lowerCAmelCase ) A__ = self.to_sql_kwargs.pop("""index""" , __lowerCAmelCase ) A__ = self._write(index=__lowerCAmelCase , **self.to_sql_kwargs ) return written def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ , A__ , A__ = args A__ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs A__ = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas() A__ = df.to_sql(self.name , self.con , index=__lowerCAmelCase , **__lowerCAmelCase ) return num_rows or len(__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Tuple , **__lowerCAmelCase : Dict ) -> int: """simple docstring""" A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
176
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __UpperCAmelCase (_snake_case ): __snake_case : str = "lxmert" __snake_case : str = {} def __init__( self: int , UpperCAmelCase_: Any=30_522 , UpperCAmelCase_: List[str]=768 , UpperCAmelCase_: Union[str, Any]=12 , UpperCAmelCase_: List[Any]=9_500 , UpperCAmelCase_: Any=1_600 , UpperCAmelCase_: Union[str, Any]=400 , UpperCAmelCase_: Tuple=3_072 , UpperCAmelCase_: Dict="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: int=512 , UpperCAmelCase_: List[str]=2 , UpperCAmelCase_: List[str]=0.02 , UpperCAmelCase_: str=1E-12 , UpperCAmelCase_: str=9 , UpperCAmelCase_: int=5 , UpperCAmelCase_: Optional[int]=5 , UpperCAmelCase_: List[Any]=2_048 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Dict=6.67 , UpperCAmelCase_: Any=True , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Tuple=True , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = num_qa_labels _SCREAMING_SNAKE_CASE = num_object_labels _SCREAMING_SNAKE_CASE = num_attr_labels _SCREAMING_SNAKE_CASE = l_layers _SCREAMING_SNAKE_CASE = x_layers _SCREAMING_SNAKE_CASE = r_layers _SCREAMING_SNAKE_CASE = visual_feat_dim _SCREAMING_SNAKE_CASE = visual_pos_dim _SCREAMING_SNAKE_CASE = visual_loss_normalizer _SCREAMING_SNAKE_CASE = task_matched _SCREAMING_SNAKE_CASE = task_mask_lm _SCREAMING_SNAKE_CASE = task_obj_predict _SCREAMING_SNAKE_CASE = task_qa _SCREAMING_SNAKE_CASE = visual_obj_loss _SCREAMING_SNAKE_CASE = visual_attr_loss _SCREAMING_SNAKE_CASE = visual_feat_loss _SCREAMING_SNAKE_CASE = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**lowerCAmelCase__ )
701
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _SCREAMING_SNAKE_CASE = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids _SCREAMING_SNAKE_CASE = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids _SCREAMING_SNAKE_CASE = shift_tokens_right(UpperCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ).logits _SCREAMING_SNAKE_CASE = optax.softmax_cross_entropy(UpperCAmelCase_ , onehot(UpperCAmelCase_ , logits.shape[-1] ) ).mean() _SCREAMING_SNAKE_CASE = -(labels.shape[-1] * loss.item()) _SCREAMING_SNAKE_CASE = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
569
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): lowerCAmelCase_ : Any = StableDiffusionSAGPipeline lowerCAmelCase_ : Any = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : int = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : Any = False def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) snake_case_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ = CLIPTextModel(A_ ) snake_case_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase__ ( self , a__ , a__=0 ) -> List[Any]: '''simple docstring''' if str(A_ ).startswith("mps" ): snake_case_ = torch.manual_seed(A_ ) else: snake_case_ = torch.Generator(device=A_ ).manual_seed(A_ ) snake_case_ = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) snake_case_ = sag_pipe.to(A_ ) sag_pipe.set_progress_bar_config(disable=A_ ) snake_case_ = "." snake_case_ = torch.manual_seed(0 ) snake_case_ = sag_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case_ = sag_pipe.to(A_ ) sag_pipe.set_progress_bar_config(disable=A_ ) snake_case_ = "." snake_case_ = torch.manual_seed(0 ) snake_case_ = sag_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case_ = sag_pipe.to(A_ ) sag_pipe.set_progress_bar_config(disable=A_ ) snake_case_ = "." snake_case_ = torch.manual_seed(0 ) snake_case_ = sag_pipe( [prompt] , width=768 , height=512 , generator=A_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) snake_case_ = output.images assert image.shape == (1, 512, 768, 3)
400
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'text': Value('string' )} ) _snake_case : ClassVar[Features] = Features({'summary': Value('string' )} ) _snake_case : str = "text" _snake_case : str = "summary" @property def A ( self : Any )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
505
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) __UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( snake_case_ : int ) -> Tuple: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE : Dict = model_type_to_module_name(snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '__name__' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE : Any = importlib.import_module('transformers' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : Tuple = None , snake_case_ : int = False , snake_case_ : Any = False , snake_case_ : Optional[int] = None , snake_case_ : Dict = None , snake_case_ : Tuple = None , snake_case_ : Tuple = False , **snake_case_ : Optional[Any] , ) -> Optional[int]: SCREAMING_SNAKE_CASE : Tuple = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case_ , encoding='utf-8' ) as reader: return json.load(snake_case_ ) class _a : """simple docstring""" def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE ) def __a ( cls ,__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('config' ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('trust_remote_code' ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = ImageProcessingMixin.get_image_processor_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = config_dict.get('image_processor_type' ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): SCREAMING_SNAKE_CASE : List[Any] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE : List[Any] = config_dict.pop('feature_extractor_type' ,__SCREAMING_SNAKE_CASE ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): SCREAMING_SNAKE_CASE : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] SCREAMING_SNAKE_CASE : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE ,'image_processor_type' ,__SCREAMING_SNAKE_CASE ) if hasattr(__SCREAMING_SNAKE_CASE ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE : Dict = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: SCREAMING_SNAKE_CASE : Any = image_processor_class_from_name(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor_auto_map is not None SCREAMING_SNAKE_CASE : Optional[Any] = image_processor_class is not None or type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE : str = resolve_trust_remote_code( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE : int = get_class_from_dynamic_module( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('code_revision' ,__SCREAMING_SNAKE_CASE ) if os.path.isdir(__SCREAMING_SNAKE_CASE ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) elif image_processor_class is not None: return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE : List[str] = IMAGE_PROCESSOR_MAPPING[type(__SCREAMING_SNAKE_CASE )] return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __a ( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): IMAGE_PROCESSOR_MAPPING.register(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
701
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello, World!' __UpperCAmelCase = 'en_XX' def SCREAMING_SNAKE_CASE_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = Path('data_bin' ) SCREAMING_SNAKE_CASE : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case_ ).parent ) , checkpoint_file=Path(snake_case_ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case_ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case_ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(snake_case_ ) SCREAMING_SNAKE_CASE : Any = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE : List[Any] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , snake_case_ ) SCREAMING_SNAKE_CASE : int = XmodForSequenceClassification(snake_case_ ) if classification_head else XmodForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE : Tuple = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE : str = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE : Any = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE : List[str] = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) SCREAMING_SNAKE_CASE : List[Any] = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE : Union[str, Any] = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE : List[Any] = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE : List[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE : Union[str, Any] = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE : str = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE : Union[str, Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.fca.weight SCREAMING_SNAKE_CASE : List[str] = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE : Dict = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.fca.weight SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.fca.bias SCREAMING_SNAKE_CASE : Tuple = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE : Dict = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE : Tuple = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE : str = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE : int = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.weight SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.bias SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.weight SCREAMING_SNAKE_CASE : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE : Any = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads['mnli'].dense.weight SCREAMING_SNAKE_CASE : List[Any] = xmod.model.classification_heads['mnli'].dense.bias SCREAMING_SNAKE_CASE : str = xmod.model.classification_heads['mnli'].out_proj.weight SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE : Optional[Any] = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE : Tuple = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE : Union[str, Any] = xmod.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case_ )[0] if classification_head: SCREAMING_SNAKE_CASE : List[str] = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case_ ) ) else: SCREAMING_SNAKE_CASE : Any = xmod.model(snake_case_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE : Dict = torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
220
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a =logging.get_logger(__name__) a ={ """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class A_ ( _lowerCamelCase , _lowerCamelCase ): _UpperCAmelCase : List[str] = '''dinat''' _UpperCAmelCase : str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any]=4 ,SCREAMING_SNAKE_CASE__ : Any=3 ,SCREAMING_SNAKE_CASE__ : List[str]=6_4 ,SCREAMING_SNAKE_CASE__ : Dict=[3, 4, 6, 5] ,SCREAMING_SNAKE_CASE__ : Any=[2, 4, 8, 1_6] ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,SCREAMING_SNAKE_CASE__ : Dict=3.0 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Dict=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : List[Any]=0.02 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1E-5 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Dict ,): super().__init__(**_A) __lowerCamelCase : Any = patch_size __lowerCamelCase : int = num_channels __lowerCamelCase : Tuple = embed_dim __lowerCamelCase : str = depths __lowerCamelCase : List[Any] = len(_A) __lowerCamelCase : str = num_heads __lowerCamelCase : Tuple = kernel_size __lowerCamelCase : Dict = dilations __lowerCamelCase : List[str] = mlp_ratio __lowerCamelCase : Dict = qkv_bias __lowerCamelCase : Union[str, Any] = hidden_dropout_prob __lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCamelCase : Any = drop_path_rate __lowerCamelCase : Dict = hidden_act __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase : Optional[int] = int(embed_dim * 2 ** (len(_A) - 1)) __lowerCamelCase : int = layer_scale_init_value __lowerCamelCase : int = ['''stem'''] + [F"stage{idx}" for idx in range(1 ,len(_A) + 1)] __lowerCamelCase : Dict = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names)
652
import sys lowerCAmelCase_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def snake_case( __magic_name__ = N ) -> int: '''simple docstring''' lowercase : List[Any] = -sys.maxsize - 1 for i in range(len(__magic_name__ ) - 12 ): lowercase : int = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase : Dict = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
217
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Any =XLMProphetNetTokenizer lowercase : str =False lowercase : Any =True def UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase_ :Dict = XLMProphetNetTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = '''[PAD]''' lowercase_ :Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCamelCase_ ) , 1012 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase ( self ): lowercase_ :Any = XLMProphetNetTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) lowercase_ :int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ :Any = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase_ :Union[str, Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def UpperCamelCase ( self ): return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def UpperCamelCase ( self ): lowercase_ :List[str] = '''Hello World!''' lowercase_ :List[Any] = [3_5389, 6672, 49, 2] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def UpperCamelCase ( self ): # fmt: off lowercase_ :Tuple = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
718
import math SCREAMING_SNAKE_CASE : List[str] = 10 SCREAMING_SNAKE_CASE : Dict = 7 SCREAMING_SNAKE_CASE : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( _a = 2_0 ) -> str: '''simple docstring''' lowercase_ :List[str] = math.comb(_a , _a ) lowercase_ :Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _a ) lowercase_ :Dict = NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
441
0
'''simple docstring''' import math def __lowercase ( __lowercase = 100 ) -> int: '''simple docstring''' _A = sum(i * i for i in range(1 , n + 1 ) ) _A = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
330
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase_ = logging.get_logger(__name__) # General docstring lowerCamelCase_ = '''RegNetConfig''' # Base docstring lowerCamelCase_ = '''facebook/regnet-y-040''' lowerCamelCase_ = [1, 10_88, 7, 7] # Image classification docstring lowerCamelCase_ = '''facebook/regnet-y-040''' lowerCamelCase_ = '''tabby, tabby cat''' lowerCamelCase_ = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[str] = "relu" , ): '''simple docstring''' super().__init__() _A = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , groups=__UpperCAmelCase , bias=__UpperCAmelCase , ) _A = nn.BatchNormad(__UpperCAmelCase ) _A = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.convolution(__UpperCAmelCase ) _A = self.normalization(__UpperCAmelCase ) _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : RegNetConfig ): '''simple docstring''' super().__init__() _A = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _A = config.num_channels def lowerCAmelCase ( self : int , __UpperCAmelCase : str ): '''simple docstring''' _A = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _A = self.embedder(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 ): '''simple docstring''' super().__init__() _A = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase ) _A = nn.BatchNormad(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tensor ): '''simple docstring''' _A = self.convolution(__UpperCAmelCase ) _A = self.normalization(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' super().__init__() _A = nn.AdaptiveAvgPoolad((1, 1) ) _A = nn.Sequential( nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = self.pooler(__UpperCAmelCase ) _A = self.attention(__UpperCAmelCase ) _A = hidden_state * attention return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 ): '''simple docstring''' super().__init__() _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( RegNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) _A = nn.Sequential( RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase ) , ) _A = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any ): '''simple docstring''' _A = hidden_state _A = self.layer(__UpperCAmelCase ) _A = self.shortcut(__UpperCAmelCase ) hidden_state += residual _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 ): '''simple docstring''' super().__init__() _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( RegNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) _A = nn.Sequential( RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase ) , ) _A = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any ): '''simple docstring''' _A = hidden_state _A = self.layer(__UpperCAmelCase ) _A = self.shortcut(__UpperCAmelCase ) hidden_state += residual _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ): '''simple docstring''' super().__init__() _A = RegNetXLayer if config.layer_type == "x" else RegNetYLayer _A = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , ) , *[layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = self.layers(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : RegNetConfig ): '''simple docstring''' super().__init__() _A = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _A = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase ) ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Tensor , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True ): '''simple docstring''' _A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _A = hidden_states + (hidden_state,) _A = stage_module(__UpperCAmelCase ) if output_hidden_states: _A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = RegNetConfig snake_case = '''regnet''' snake_case = '''pixel_values''' snake_case = True def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = value lowerCamelCase_ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Dict ): '''simple docstring''' super().__init__(__UpperCAmelCase ) _A = config _A = RegNetEmbeddings(__UpperCAmelCase ) _A = RegNetEncoder(__UpperCAmelCase ) _A = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tensor , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None ): '''simple docstring''' _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.embedder(__UpperCAmelCase ) _A = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) _A = encoder_outputs[0] _A = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(__UpperCAmelCase ) _A = config.num_labels _A = RegNetModel(__UpperCAmelCase ) # classification head _A = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[torch.LongTensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ): '''simple docstring''' _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.regnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) _A = outputs.pooler_output if return_dict else outputs[1] _A = self.classifier(__UpperCAmelCase ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = "single_label_classification" else: _A = "multi_label_classification" if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: _A = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
330
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) __A : Dict = size if size is not None else {"shortest_edge": 224} __A : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __A : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} __A : Any = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) __A : Dict = do_resize __A : Tuple = size __A : Any = resample __A : Union[str, Any] = do_center_crop __A : List[Any] = crop_size __A : Tuple = do_rescale __A : List[str] = rescale_factor __A : Any = do_normalize __A : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __A : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): __A : List[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __A : List[str] = int((256 / 224) * size["shortest_edge"] ) __A : Dict = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __A : Optional[Any] = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( __UpperCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): __A : Union[str, Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): __A : Tuple = do_resize if do_resize is not None else self.do_resize __A : Optional[Any] = resample if resample is not None else self.resample __A : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Tuple = image_mean if image_mean is not None else self.image_mean __A : Union[str, Any] = image_std if image_std is not None else self.image_std __A : Dict = size if size is not None else self.size __A : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : List[str] = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) __A : str = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __A : List[str] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __A : Dict = [self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: __A : List[str] = [self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: __A : Dict = [self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] __A : Optional[Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __A : Tuple = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
387
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a ( lowerCAmelCase__ ): '''simple docstring''' def __UpperCAmelCase( self ): __A : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads" ) ) class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): __A : Optional[int] = parent __A : Optional[int] = batch_size __A : List[Any] = image_size __A : int = patch_sizes __A : Optional[Any] = patch_stride __A : Tuple = patch_padding __A : str = is_training __A : List[str] = use_labels __A : Union[str, Any] = num_labels __A : Union[str, Any] = num_channels __A : Tuple = embed_dim __A : int = num_heads __A : str = stride_kv __A : Optional[int] = depth __A : Tuple = cls_token __A : Any = attention_drop_rate __A : Optional[int] = initializer_range __A : Optional[Any] = layer_norm_eps def __UpperCAmelCase( self ): __A : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Dict = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : int = CvtModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Dict = model(__UpperCAmelCase ) __A : str = (self.image_size, self.image_size) __A , __A : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __A : Dict = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __A : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : str = self.num_labels __A : Any = CvtForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Union[str, Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase( self ): __A : Any = self.prepare_config_and_inputs() __A , __A , __A : Any = config_and_inputs __A : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowerCamelCase_ : Optional[int] = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Dict = False lowerCamelCase_ : Optional[Any] = False def __UpperCAmelCase( self ): __A : Any = CvtModelTester(self ) __A : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase( self ): return @unittest.skip(reason="Cvt does not output attentions" ) def __UpperCAmelCase( self ): pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __UpperCAmelCase( self ): pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[Any] = model_class(__UpperCAmelCase ) __A : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : str = [*signature.parameters.keys()] __A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __UpperCAmelCase( self ): def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __A : Any = outputs.hidden_states __A : List[Any] = len(self.model_tester.depth ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase( self ): pass @slow def __UpperCAmelCase( self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = CvtModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase_ ( ) -> Dict: __A : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase( self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCAmelCase( self ): __A : int = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) __A : List[str] = self.default_image_processor __A : Optional[Any] = prepare_img() __A : List[Any] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __A : List[Any] = model(**__UpperCAmelCase ) # verify the logits __A : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __A : List[str] = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
387
1
from __future__ import annotations def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int | float: if len(lowerCAmelCase_ ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(lowerCAmelCase_ ) or left < -len(lowerCAmelCase_ ) or right >= len(lowerCAmelCase_ ) or right < -len(lowerCAmelCase_ ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ = find_max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ = find_max(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
100
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase ( __snake_case ): def __init__(self : Dict , snake_case : str , snake_case : str=13 , snake_case : Union[str, Any]=7 , snake_case : int=True , snake_case : Any=True , snake_case : str=False , snake_case : Optional[Any]=True , snake_case : Optional[Any]=99 , snake_case : Dict=32 , snake_case : Union[str, Any]=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : Optional[int]="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : List[Any]=512 , snake_case : List[Any]=16 , snake_case : Optional[int]=2 , snake_case : Tuple=0.02 , snake_case : Union[str, Any]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> List[Any]: _lowercase : Dict = parent _lowercase : int = batch_size _lowercase : Optional[Any] = seq_length _lowercase : int = is_training _lowercase : Dict = use_input_mask _lowercase : Union[str, Any] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Dict = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : int = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Optional[Any] = num_choices _lowercase : str = scope def _a(self : int ) -> Dict: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Tuple = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Any ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : Dict ) -> Optional[int]: _lowercase : Optional[int] = DistilBertModel(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[Any] = model(snake_case , snake_case ) _lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: _lowercase : Optional[int] = DistilBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a(self : Tuple , snake_case : List[str] , snake_case : Any , snake_case : List[str] , snake_case : Dict , snake_case : str , snake_case : str ) -> Any: _lowercase : Dict = DistilBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[str] = model( snake_case , attention_mask=snake_case , start_positions=snake_case , end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a(self : Union[str, Any] , snake_case : str , snake_case : Dict , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: _lowercase : str = self.num_labels _lowercase : Any = DistilBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a(self : int , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str ) -> str: _lowercase : str = self.num_labels _lowercase : List[str] = DistilBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : str = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a(self : List[str] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : int , snake_case : Union[str, Any] ) -> Optional[Any]: _lowercase : str = self.num_choices _lowercase : Dict = DistilBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = model( snake_case , attention_mask=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a(self : List[str] ) -> List[str]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _A = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _A = True _A = True _A = True _A = True def _a(self : Dict ) -> List[Any]: _lowercase : Optional[Any] = DistilBertModelTester(self ) _lowercase : str = ConfigTester(self , config_class=snake_case , dim=37 ) def _a(self : int ) -> List[str]: self.config_tester.run_common_tests() def _a(self : Optional[Any] ) -> Optional[int]: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case ) def _a(self : Any ) -> int: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case ) def _a(self : Dict ) -> List[Any]: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case ) def _a(self : str ) -> Tuple: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case ) def _a(self : Any ) -> List[Any]: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case ) def _a(self : Optional[int] ) -> Optional[int]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case ) @slow def _a(self : Optional[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DistilBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @slow @require_torch_gpu def _a(self : Optional[int] ) -> Optional[int]: _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowercase : str = True _lowercase : Tuple = model_class(config=snake_case ) _lowercase : str = self._prepare_for_class(snake_case , snake_case ) _lowercase : Optional[int] = torch.jit.trace( snake_case , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case , os.path.join(snake_case , "traced_model.pt" ) ) _lowercase : Dict = torch.jit.load(os.path.join(snake_case , "traced_model.pt" ) , map_location=snake_case ) loaded(inputs_dict["input_ids"].to(snake_case ) , inputs_dict["attention_mask"].to(snake_case ) ) @require_torch class __lowercase ( unittest.TestCase ): @slow def _a(self : int ) -> str: _lowercase : Any = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowercase : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowercase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] _lowercase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) _lowercase : Any = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) )
461
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __magic_name__ ( __snake_case : Dict ) -> str: if isinstance(__snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class a__ : def __magic_name__ ( self , _a , _a ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_a , _a ) lowercase : Dict = TFVisionTextDualEncoderModel(_a ) lowercase : Optional[Any] = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : List[str] = self.get_vision_text_model(_a , _a ) lowercase : Any = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowercase : Union[str, Any] = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : Optional[int] = self.get_vision_text_model(_a , _a ) lowercase : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} lowercase : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_a ) lowercase : Union[str, Any] = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : List[str] = self.get_vision_text_model(_a , _a ) lowercase : Tuple = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowercase : Union[str, Any] = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) lowercase : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) lowercase : Any = TFVisionTextDualEncoderModel.from_pretrained(_a ) lowercase : Dict = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) lowercase : List[str] = after_output[0].numpy() lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1E-5 ) def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : Optional[int] = self.get_vision_text_model(_a , _a ) lowercase : Dict = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowercase : str = model( input_ids=_a , pixel_values=_a , attention_mask=_a , output_attentions=_a ) lowercase : Any = output.vision_model_output.attentions self.assertEqual(len(_a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = to_atuple(vision_model.config.image_size ) lowercase : Optional[int] = to_atuple(vision_model.config.patch_size ) lowercase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase : Optional[int] = output.text_model_output.attentions self.assertEqual(len(_a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __magic_name__ ( self , _a , _a , _a ): lowercase : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(_a , _a , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __magic_name__ ( self ): lowercase : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_a ) def __magic_name__ ( self ): lowercase : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_a ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_a ) def __magic_name__ ( self ): lowercase : Any = self.prepare_config_and_inputs() self.check_save_load(**_a ) def __magic_name__ ( self ): lowercase : Any = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_a ) @slow def __magic_name__ ( self ): lowercase : int = self.get_pretrained_model_and_inputs() lowercase : Dict = model_a(**_a ) lowercase : Tuple = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_a ) lowercase : Any = TFVisionTextDualEncoderModel.from_pretrained(_a ) lowercase : Tuple = model_a(**_a ) lowercase : Tuple = after_outputs[0].numpy() lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1E-5 ) @require_tf class a__ ( a_, unittest.TestCase ): def __magic_name__ ( self ): lowercase : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) lowercase : Optional[Any] = 13 lowercase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase : Optional[Any] = random_attention_mask([batch_size, 4] ) lowercase : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __magic_name__ ( self , _a , _a ): lowercase : List[str] = TFViTModel(_a , name="vision_model" ) lowercase : Dict = TFBertModel(_a , name="text_model" ) return vision_model, text_model def __magic_name__ ( self ): lowercase : Any = TFViTModelTester(self ) lowercase : str = TFBertModelTester(self ) lowercase : Dict = vit_model_tester.prepare_config_and_inputs() lowercase : int = bert_model_tester.prepare_config_and_inputs() lowercase : Union[str, Any] = vision_config_and_inputs ( lowercase ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( a_, unittest.TestCase ): def __magic_name__ ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowercase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) lowercase : List[Any] = 13 lowercase : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase : Tuple = random_attention_mask([batch_size, 4] ) lowercase : List[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __magic_name__ ( self , _a , _a , _a , _a , _a=None , **_a ): lowercase : int = self.get_vision_text_model(_a , _a ) lowercase : int = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowercase : int = model( input_ids=_a , pixel_values=_a , attention_mask=_a , output_attentions=_a ) lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(_a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) lowercase : List[str] = to_atuple(vision_model.config.patch_size ) lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase : Any = output.text_model_output.attentions self.assertEqual(len(_a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __magic_name__ ( self , _a , _a ): lowercase : Dict = TFDeiTModel(_a , name="vision_model" ) lowercase : List[Any] = TFRobertaModel(_a , name="text_model" ) return vision_model, text_model def __magic_name__ ( self ): lowercase : Any = TFDeiTModelTester(self ) lowercase : int = TFRobertaModelTester(self ) lowercase : int = vit_model_tester.prepare_config_and_inputs() lowercase : Tuple = bert_model_tester.prepare_config_and_inputs() lowercase : int = vision_config_and_inputs ( lowercase ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( a_, unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) lowercase : int = 13 lowercase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase : Any = random_attention_mask([batch_size, 4] ) lowercase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __magic_name__ ( self , _a , _a ): lowercase : Union[str, Any] = TFCLIPVisionModel(_a , name="vision_model" ) lowercase : List[str] = TFBertModel(_a , name="text_model" ) return vision_model, text_model def __magic_name__ ( self ): lowercase : List[str] = TFCLIPVisionModelTester(self ) lowercase : Dict = TFBertModelTester(self ) lowercase : int = clip_model_tester.prepare_config_and_inputs() lowercase : Tuple = bert_model_tester.prepare_config_and_inputs() lowercase : Tuple = vision_config_and_inputs ( lowercase ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_a ) lowercase : str = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) lowercase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_a , padding=_a , return_tensors="np" ) lowercase : Optional[Any] = model(**_a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase : Union[str, Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _a , atol=1E-3 ) )
710
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : Union[str, Any] = {"""vocab_file""": """spiece.model"""} _A : Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 _A : str = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } _A : List[str] = """▁""" class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , _a , _a="</s>" , _a="<unk>" , _a="<pad>" , _a=100 , _a=None , _a = None , _a=True , **_a , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase : str = [f"""<extra_id_{i}>""" for i in range(_a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase : str = len(set(filter(lambda _a : bool("extra_id" in str(_a ) ) , _a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) lowercase : Optional[Any] = legacy lowercase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a , unk_token=_a , pad_token=_a , extra_ids=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , legacy=_a , **_a , ) lowercase : Optional[Any] = vocab_file lowercase : Union[str, Any] = extra_ids lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @staticmethod def __magic_name__ ( _a , _a , _a ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , _a , ) return max_model_length @property def __magic_name__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def __magic_name__ ( self ): lowercase : Any = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_a )) + [1] return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def __magic_name__ ( self ): return list( set(filter(lambda _a : bool(re.search(R"<extra_id_\d+>" , _a ) ) is not None , self.additional_special_tokens ) ) ) def __magic_name__ ( self ): return [self._convert_token_to_id(_a ) for token in self.get_sentinel_tokens()] def __magic_name__ ( self , _a ): if len(_a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __magic_name__ ( self , _a , _a = None ): lowercase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __magic_name__ ( self , _a , _a = None ): lowercase : Any = self._add_eos_if_not_present(_a ) if token_ids_a is None: return token_ids_a else: lowercase : str = self._add_eos_if_not_present(_a ) return token_ids_a + token_ids_a def __getstate__( self ): lowercase : List[str] = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self , _a ): lowercase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase : str = {} lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , _a , **_a ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowercase : Optional[int] = SPIECE_UNDERLINE + text.replace(_a , " " ) return super().tokenize(_a , **_a ) def __magic_name__ ( self , _a , **_a ): if not self.legacy: lowercase : Dict = text.startswith(_a ) if is_first: lowercase : Dict = text[1:] lowercase : Tuple = self.sp_model.encode(_a , out_type=_a ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(_a ): lowercase : Tuple = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __magic_name__ ( self , _a ): if token.startswith("<extra_id_" ): lowercase : Optional[int] = re.match(R"<extra_id_(\d+)>" , _a ) lowercase : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_a ) def __magic_name__ ( self , _a ): if index < self.sp_model.get_piece_size(): lowercase : Union[str, Any] = self.sp_model.IdToPiece(_a ) else: lowercase : Union[str, Any] = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def __magic_name__ ( self , _a ): lowercase : Tuple = [] lowercase : int = "" lowercase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowercase : List[Any] = True lowercase : Dict = [] else: current_sub_tokens.append(_a ) lowercase : Dict = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __magic_name__ ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : int = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowercase : List[Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
518
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A = get_tests_dir("fixtures") class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # A mock response for an HTTP head request to emulate server down lowercase__: Tuple = mock.Mock() lowercase__: Optional[Any] = 500 lowercase__: Union[str, Any] = {} lowercase__: int = HTTPError lowercase__: List[str] = {} # Download this model to make sure it's in the cache. lowercase__: Dict = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): # This test is for deprecated behavior and can be removed in v5 lowercase__: List[Any] = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _snake_case ( self ): with self.assertRaises(_UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: Tuple = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowercase__: List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCAmelCase ) @is_staging_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ): lowercase__: int = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def _snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _snake_case ( self ): lowercase__: int = ViTImageProcessor.from_pretrained(_UpperCAmelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) lowercase__: Any = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCAmelCase , repo_id='''test-image-processor''' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__: Optional[int] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): lowercase__: List[str] = ViTImageProcessor.from_pretrained(_UpperCAmelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) lowercase__: Tuple = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCAmelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__: Optional[Any] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): CustomImageProcessor.register_for_auto_class() lowercase__: Any = CustomImageProcessor.from_pretrained(_UpperCAmelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) lowercase__: Any = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
586
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = ["image_processor", "tokenizer"] _UpperCAmelCase :Union[str, Any] = "BlipImageProcessor" _UpperCAmelCase :Union[str, Any] = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) # add QFormer tokenizer lowercase__: Tuple = qformer_tokenizer def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase__: Tuple = BatchFeature() if text is not None: lowercase__: List[str] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) encoding.update(_UpperCAmelCase ) lowercase__: str = self.qformer_tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: List[str] = qformer_text_encoding.pop('''input_ids''' ) lowercase__: int = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase__: Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self ): lowercase__: List[str] = self.tokenizer.model_input_names lowercase__: str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case ( self , _UpperCAmelCase , **_UpperCAmelCase ): if os.path.isfile(_UpperCAmelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: Any = os.path.join(_UpperCAmelCase , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(_UpperCAmelCase ) return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder='''qformer_tokenizer''' ) lowercase__: Union[str, Any] = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) args.append(_UpperCAmelCase ) return cls(*_UpperCAmelCase )
586
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _UpperCAmelCase = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowerCAmelCase_ ( UpperCamelCase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: UpperCamelCase_ = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): UpperCamelCase_ = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() UpperCamelCase_ = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
717
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = XLMTokenizer _UpperCamelCase : Optional[int] = False def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = "lower newer" UpperCamelCase_ = "lower newer" return input_text, output_text def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_ = "lower" UpperCamelCase_ = ["low", "er</w>"] UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokens + ["<unk>"] UpperCamelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCamelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
371
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Dict = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ['''LayoutLMv3FeatureExtractor'''] __lowerCamelCase : Union[str, Any] = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class A_ (unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict=7 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :List[str]=30 , lowerCAmelCase__ :List[str]=400 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=1 / 255 , lowerCAmelCase__ :int=True , ) -> str: '''simple docstring''' snake_case_ : List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} snake_case_ : Dict = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Optional[Any] = num_channels snake_case_ : str = min_resolution snake_case_ : Dict = max_resolution snake_case_ : Optional[Any] = do_resize snake_case_ : str = size snake_case_ : Optional[int] = do_normalize snake_case_ : Dict = image_mean snake_case_ : Optional[int] = image_std snake_case_ : List[str] = do_rescale snake_case_ : Dict = rescale_factor snake_case_ : str = do_pad def _A ( self :List[Any] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str]=False ) -> str: '''simple docstring''' if not batched: snake_case_ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): snake_case_, snake_case_ : int = image.size else: snake_case_, snake_case_ : Any = image.shape[1], image.shape[2] if w < h: snake_case_ : int = int(self.size["shortest_edge"] * h / w ) snake_case_ : List[Any] = self.size["shortest_edge"] elif w > h: snake_case_ : Optional[int] = self.size["shortest_edge"] snake_case_ : str = int(self.size["shortest_edge"] * w / h ) else: snake_case_ : Tuple = self.size["shortest_edge"] snake_case_ : Dict = self.size["shortest_edge"] else: snake_case_ : List[str] = [] for image in image_inputs: snake_case_, snake_case_ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] snake_case_ : int = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = YolosImageProcessor if is_vision_available() else None def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : int = YolosImageProcessingTester(self ) @property def _A ( self :List[str] ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) def _A ( self :List[Any] ) -> Any: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) snake_case_ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def _A ( self :List[str] ) -> int: '''simple docstring''' pass def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : int = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) snake_case_ : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self :Dict ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Tuple = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self :Tuple ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) snake_case_ : List[Any] = self.image_processing_class(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_rescale=lowerCAmelCase__ ) # create random PyTorch tensors snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors snake_case_ : Tuple = image_processing_a.pad(lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Union[str, Any] = image_processing_a(lowerCAmelCase__ , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1E-4 ) ) @slow def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case_ : int = json.loads(f.read() ) snake_case_ : Optional[int] = {"image_id": 39_769, "annotations": target} # encode them snake_case_ : Tuple = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) snake_case_ : Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values snake_case_ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) snake_case_ : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes snake_case_ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) snake_case_ : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id snake_case_ : Dict = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd snake_case_ : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels snake_case_ : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify orig_size snake_case_ : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size snake_case_ : List[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) ) @slow def _A ( self :Dict ) -> int: '''simple docstring''' snake_case_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case_ : Optional[int] = json.loads(f.read() ) snake_case_ : Tuple = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} snake_case_ : Any = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case_ : int = YolosImageProcessor(format="coco_panoptic" ) snake_case_ : Union[str, Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values snake_case_ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) snake_case_ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area snake_case_ : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes snake_case_ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) snake_case_ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id snake_case_ : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd snake_case_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels snake_case_ : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify masks snake_case_ : Any = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__ ) # verify orig_size snake_case_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size snake_case_ : Union[str, Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) )
653
1
"""simple docstring""" # Function to print upper half of diamond (pyramid) def _lowerCAmelCase ( lowerCamelCase__ : Optional[int] ) -> Optional[int]: for i in range(0, lowerCamelCase__ ): for _ in range(0, n - i - 1 ): # printing spaces print(" ", end="" ) for _ in range(0, i + 1 ): # printing stars print("* ", end="" ) print() def _lowerCAmelCase ( lowerCamelCase__ : List[str] ) -> Any: for i in range(lowerCamelCase__, 0, -1 ): for _ in range(lowerCamelCase__, 0, -1 ): # printing stars print("* ", end="" ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(" ", end="" ) def _lowerCAmelCase ( lowerCamelCase__ : Union[str, Any] ) -> List[str]: if n <= 0: print(" ... .... nothing printing :(" ) return floyd(lowerCamelCase__ ) # upper half reverse_floyd(lowerCamelCase__ ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') lowercase_ : Optional[int] = 1 while K: lowercase_ : List[str] = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) lowercase_ : Optional[int] = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
295
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
295
1
import os from collections.abc import Iterator def __lowerCAmelCase ( A = "." ): for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("./" ) def __lowerCAmelCase ( A ): return F"{i * ' '}*" if i else "\n##" def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __lowerCAmelCase ( A = "." ): UpperCAmelCase_ = "" for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: UpperCAmelCase_ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase_ = F"{filepath}/{filename}".replace(" " , "%20" ) UpperCAmelCase_ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
162
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowercase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowercase__ = Image.open(_SCREAMING_SNAKE_CASE ) return im.convert('RGB' ) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) _UpperCamelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase )} , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _UpperCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _UpperCamelCase : str = field(default=UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = torch.stack([example['pixel_values'] for example in examples] ) lowercase__ = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __UpperCamelCase () -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ = {} if data_args.train_dir is not None: lowercase__ = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: lowercase__ = os.path.join(data_args.validation_dir , '**' ) lowercase__ = load_dataset( 'imagefolder' , data_files=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = dataset['train'].train_test_split(data_args.train_val_split ) lowercase__ = split['train'] lowercase__ = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ = dataset['train'].features['labels'].names lowercase__ , lowercase__ = {}, {} for i, label in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = str(_SCREAMING_SNAKE_CASE ) lowercase__ = label # Load the accuracy metric from the datasets package lowercase__ = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['shortest_edge'] else: lowercase__ = (image_processor.size['height'], image_processor.size['width']) lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase__ = Compose( [ RandomResizedCrop(_SCREAMING_SNAKE_CASE ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), normalize, ] ) def train_transforms(_SCREAMING_SNAKE_CASE ): lowercase__ = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(_SCREAMING_SNAKE_CASE ): lowercase__ = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowercase__ = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowercase__ = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Initalize our trainer lowercase__ = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('eval' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
235
0
import functools def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : str ): lowerCAmelCase__ :Any = len(UpperCAmelCase ) lowerCAmelCase__ :List[Any] = len(UpperCAmelCase ) @functools.cache def min_distance(UpperCAmelCase : int , UpperCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase__ :Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCAmelCase ) , 1 + min_distance(UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
712
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = ShapEImgaImgPipeline A = ['''image'''] A = ['''image'''] A = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A = False @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ): '''simple docstring''' return 8 @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowerCAmelCase__ :int = CLIPVisionModel(_lowerCAmelCase ) return model @property def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_resize=_lowerCAmelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Any = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCAmelCase__ :int = PriorTransformer(**_lowerCAmelCase ) return model @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase__ :str = ShapERenderer(**_lowerCAmelCase ) return model def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.dummy_prior lowerCAmelCase__ :str = self.dummy_image_encoder lowerCAmelCase__ :Optional[Any] = self.dummy_image_processor lowerCAmelCase__ :Union[str, Any] = self.dummy_renderer lowerCAmelCase__ :str = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=_lowerCAmelCase , clip_sample=_lowerCAmelCase , clip_sample_range=1.0 , ) lowerCAmelCase__ :Any = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ :Dict = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ :str = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ :Tuple = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = "cpu" lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ :Union[str, Any] = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :int = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCAmelCase__ :List[Any] = output.images[0] lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase__ :str = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ): '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Any = torch_device == "cpu" lowerCAmelCase__ :Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCAmelCase , relax_max_difference=_lowerCAmelCase , ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.get_dummy_components() lowerCAmelCase__ :Tuple = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :List[Any] = 2 lowerCAmelCase__ :List[str] = self.get_dummy_inputs(_lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase__ :Any = batch_size * [inputs[key]] lowerCAmelCase__ :Optional[Any] = pipe(**_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) lowerCAmelCase__ :int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) lowerCAmelCase__ :Optional[int] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) lowerCAmelCase__ :Tuple = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Any = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowerCAmelCase__ :List[Any] = pipe( _lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
111
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case : Tuple = random.Random() if is_torch_available(): import torch def A ( __snake_case: List[Any] , __snake_case: Optional[Any]=1.0 , __snake_case: List[str]=None , __snake_case: int=None ) -> Optional[int]: """simple docstring""" if rng is None: __magic_name__ = global_rng __magic_name__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=7 , UpperCamelCase_ : List[str]=4_0_0 , UpperCamelCase_ : str=2_0_0_0 , UpperCamelCase_ : List[Any]=1 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Dict=1_6_0_0_0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = min_seq_length __magic_name__ = max_seq_length __magic_name__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ = feature_size __magic_name__ = padding_value __magic_name__ = sampling_rate __magic_name__ = return_attention_mask __magic_name__ = do_normalize def a__ ( self : int ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self : Any , UpperCamelCase_ : Any=False , UpperCamelCase_ : List[Any]=False ): '''simple docstring''' def _flatten(UpperCamelCase_ : int ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: __magic_name__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __magic_name__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ASTFeatureExtractor def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = ASTFeatureExtractionTester(self ) def a__ ( self : int ): '''simple docstring''' __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input __magic_name__ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __magic_name__ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test batched __magic_name__ = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' ).input_values __magic_name__ = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __magic_name__ = np.asarray(UpperCamelCase_ ) __magic_name__ = feat_extract(UpperCamelCase_ , return_tensors='np' ).input_values __magic_name__ = feat_extract(UpperCamelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) @require_torch def a__ ( self : Tuple ): '''simple docstring''' import torch __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = np.random.rand(1_0_0 ).astype(np.floataa ) __magic_name__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __magic_name__ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self : Any , UpperCamelCase_ : List[Any] ): '''simple docstring''' from datasets import load_dataset __magic_name__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __magic_name__ = ds.sort('id' ).select(range(UpperCamelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on __magic_name__ = self._load_datasamples(1 ) __magic_name__ = ASTFeatureExtractor() __magic_name__ = feature_extractor(UpperCamelCase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCamelCase_ , atol=1e-4 ) )
545
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case : Dict = logging.get_logger(__name__) class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = ["""input_values""", """padding_mask"""] def __init__( self : Optional[int] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2_4_0_0_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : float = None , UpperCamelCase_ : float = None , **UpperCamelCase_ : str , ): '''simple docstring''' super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = chunk_length_s __magic_name__ = overlap @property def a__ ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self : Optional[Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : Optional[Union[bool, str, PaddingStrategy]] = None , UpperCamelCase_ : Optional[bool] = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[int] = None , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __magic_name__ = True __magic_name__ = bool( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): __magic_name__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __magic_name__ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ = [np.asarray(UpperCamelCase_ ).T] # verify inputs are valid for idx, example in enumerate(UpperCamelCase_ ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) __magic_name__ = None __magic_name__ = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __magic_name__ = min(array.shape[0] for array in raw_audio ) __magic_name__ = int(np.floor(max_length / self.chunk_stride ) ) __magic_name__ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __magic_name__ = max(array.shape[0] for array in raw_audio ) __magic_name__ = int(np.ceil(max_length / self.chunk_stride ) ) __magic_name__ = (nb_step - 1) * self.chunk_stride + self.chunk_length __magic_name__ = 'max_length' else: __magic_name__ = input_values # normal padding on batch if padded_inputs is None: __magic_name__ = self.pad( UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , padding=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) if padding: __magic_name__ = padded_inputs.pop('attention_mask' ) __magic_name__ = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __magic_name__ = example[..., None] input_values.append(example.T ) __magic_name__ = input_values if return_tensors is not None: __magic_name__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
545
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = "vision-encoder-decoder" SCREAMING_SNAKE_CASE__ :int = True def __init__( self : List[Any] , **__a : Tuple ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCamelCase : List[str] = kwargs.pop("encoder" ) _UpperCamelCase : Optional[int] = encoder_config.pop("model_type" ) _UpperCamelCase : Any = kwargs.pop("decoder" ) _UpperCamelCase : List[Any] = decoder_config.pop("model_type" ) _UpperCamelCase : Dict = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase : Optional[int] = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase : Tuple = True @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __a : PretrainedConfig , __a : PretrainedConfig , **__a : List[str] ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : str = copy.deepcopy(self.__dict__ ) _UpperCamelCase : int = self.encoder.to_dict() _UpperCamelCase : Tuple = self.decoder.to_dict() _UpperCamelCase : List[Any] = self.__class__.model_type return output class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ :Optional[Any] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: _UpperCamelCase : List[Any] = OrderedDict() _UpperCamelCase : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase : List[Any] = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch _UpperCamelCase : Dict = OrderedDict() _UpperCamelCase : Any = super().generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) _UpperCamelCase : List[str] = dummy_input['''input_ids'''].shape _UpperCamelCase : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCamelCase : Optional[Any] = dummy_input.pop("input_ids" ) _UpperCamelCase : str = dummy_input.pop("attention_mask" ) _UpperCamelCase : List[str] = torch.zeros(lowerCamelCase_ ) return common_inputs class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> None: pass def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , __a : str = "default" ) -> OnnxConfig: _UpperCamelCase : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase_ , lowerCamelCase_ )
718
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
0
from ...processing_utils import ProcessorMixin class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""image_processor""", """feature_extractor"""] _SCREAMING_SNAKE_CASE = """TvltImageProcessor""" _SCREAMING_SNAKE_CASE = """TvltFeatureExtractor""" def __init__( self : Any, _snake_case : Union[str, Any], _snake_case : str ) ->Any: super().__init__(image_processor=_snake_case, feature_extractor=_snake_case ) snake_case__ : int = image_processor snake_case__ : Any = feature_extractor def __call__( self : List[Any], _snake_case : Dict=None, _snake_case : Optional[int]=None, _snake_case : List[Any]=None, _snake_case : Union[str, Any]=None, _snake_case : Optional[int]=False, _snake_case : str=False, *_snake_case : str, **_snake_case : List[str], ) ->Any: if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) snake_case__ : Dict = None if images is not None: snake_case__ : Dict = self.image_processor(_snake_case, mask_pixel=_snake_case, *_snake_case, **_snake_case ) if images_mixed is not None: snake_case__ : List[Any] = self.image_processor(_snake_case, is_mixed=_snake_case, *_snake_case, **_snake_case ) if audio is not None: snake_case__ : Tuple = self.feature_extractor( _snake_case, *_snake_case, sampling_rate=_snake_case, mask_audio=_snake_case, **_snake_case ) snake_case__ : Dict = {} if audio is not None: output_dict.update(_snake_case ) if images is not None: output_dict.update(_snake_case ) if images_mixed_dict is not None: output_dict.update(_snake_case ) return output_dict @property def lowercase_ ( self : Dict ) ->str: snake_case__ : Optional[Any] = self.image_processor.model_input_names snake_case__ : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
478
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ :List[Any] = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
478
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) __UpperCamelCase : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case ( lowerCamelCase , lowerCamelCase=100 , lowerCamelCase=" " ): '''simple docstring''' __lowercase = text.split(lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCamelCase ) , lowerCamelCase )] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(lowerCamelCase ): titles.append(title if title is not None else """""" ) texts.append(lowerCamelCase ) return {"title": titles, "text": texts} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __lowercase = ctx_encoder(input_ids.to(device=lowerCamelCase ) , return_dict=lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowercase = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowercase = dataset.map(lowerCamelCase , batched=lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCamelCase ) __lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowercase = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __lowercase = dataset.map( partial(lowerCamelCase , ctx_encoder=lowerCamelCase , ctx_tokenizer=lowerCamelCase ) , batched=lowerCamelCase , batch_size=processing_args.batch_size , features=lowerCamelCase , ) # And finally save your dataset __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=lowerCamelCase ) # And save the index __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __UpperCamelCase : __snake_case :str = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) __snake_case :str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) __snake_case :str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) __snake_case :Optional[str] = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) __snake_case :int = field( default=1_6 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __UpperCamelCase : __snake_case :int = field( default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __UpperCamelCase : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __UpperCamelCase : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase__ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self , *UpperCamelCase , **UpperCamelCase) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase)
410
import math def _lowercase ( __SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( __SCREAMING_SNAKE_CASE = 1_0001 ) -> int: try: UpperCamelCase__ : Any = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) UpperCamelCase__ : list[int] = [] UpperCamelCase__ : Any = 2 while len(__SCREAMING_SNAKE_CASE ) < nth: if is_prime(__SCREAMING_SNAKE_CASE ): primes.append(__SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(__SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
410
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : int = """xlm-roberta-xl""" def __init__( self , snake_case=250_880 , snake_case=2_560 , snake_case=36 , snake_case=32 , snake_case=10_240 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=514 , snake_case=1 , snake_case=0.02 , snake_case=1E-05 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=True , snake_case=None , **snake_case , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) a__ : Union[str, Any] = vocab_size a__ : Dict = hidden_size a__ : Union[str, Any] = num_hidden_layers a__ : Any = num_attention_heads a__ : List[str] = hidden_act a__ : List[Any] = intermediate_size a__ : List[Any] = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : List[str] = max_position_embeddings a__ : str = type_vocab_size a__ : Dict = initializer_range a__ : Optional[Any] = layer_norm_eps a__ : Dict = position_embedding_type a__ : Any = use_cache a__ : Any = classifier_dropout class __lowerCAmelCase ( _UpperCamelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a__ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
629
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Optional[Any] = """informer""" _UpperCamelCase : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = None , snake_case = "mean" , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 64 , snake_case = 32 , snake_case = 32 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = True , snake_case = "gelu" , snake_case = 0.05 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 100 , snake_case = 0.02 , snake_case=True , snake_case = "prob" , snake_case = 5 , snake_case = True , **snake_case , ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = prediction_length a__ : Optional[int] = context_length or prediction_length a__ : Optional[int] = distribution_output a__ : str = loss a__ : Optional[Any] = input_size a__ : int = num_time_features a__ : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] a__ : Optional[int] = scaling a__ : List[str] = num_dynamic_real_features a__ : Optional[int] = num_static_real_features a__ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) a__ : List[Any] = cardinality else: a__ : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) a__ : Tuple = embedding_dimension else: a__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration a__ : int = input_size * len(self.lags_sequence ) + self._number_of_features a__ : Union[str, Any] = d_model a__ : Any = encoder_attention_heads a__ : Optional[Any] = decoder_attention_heads a__ : int = encoder_ffn_dim a__ : List[Any] = decoder_ffn_dim a__ : List[str] = encoder_layers a__ : Any = decoder_layers a__ : List[str] = dropout a__ : int = attention_dropout a__ : List[Any] = activation_dropout a__ : Optional[int] = encoder_layerdrop a__ : Tuple = decoder_layerdrop a__ : Any = activation_function a__ : Tuple = init_std a__ : Optional[int] = use_cache # Informer a__ : Union[str, Any] = attention_type a__ : List[str] = sampling_factor a__ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _snake_case ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
629
1
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> tuple[int, int]: try: lowerCamelCase_ = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) lowerCamelCase_ = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: lowerCamelCase_ = len(str(__UpperCamelCase ).split('.' )[1] ) lowerCamelCase_ = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase_ = 10**number_of_frac_digits lowerCamelCase_ ,lowerCamelCase_ = denominator, numerator while True: lowerCamelCase_ = dividend % divisor if remainder == 0: break lowerCamelCase_ ,lowerCamelCase_ = divisor, remainder lowerCamelCase_ ,lowerCamelCase_ = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(89.0) = }''') print(f'''{decimal_to_fraction("67") = }''') print(f'''{decimal_to_fraction("45.0") = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction("6.25") = }''') print(f'''{decimal_to_fraction("78td") = }''')
42
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = Dict[str, Any] lowerCamelCase : Dict = List[Prediction] @add_end_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , *A_ : int , **A_ : int ) -> Optional[int]: """simple docstring""" super().__init__(*A_ , **A_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a__ ( self : Union[str, Any] , **A_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = {} if "threshold" in kwargs: lowerCamelCase_ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : str , *A_ : Optional[int] , **A_ : Tuple ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = load_image(A_ ) lowerCamelCase_ = torch.IntTensor([[image.height, image.width]] ) lowerCamelCase_ = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCamelCase_ = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCamelCase_ = target_size return inputs def a__ ( self : Union[str, Any] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_inputs.pop('target_size' ) lowerCamelCase_ = self.model(**A_ ) lowerCamelCase_ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCamelCase_ = model_inputs['bbox'] return model_outputs def a__ ( self : str , A_ : Any , A_ : Tuple=0.9 ) -> str: """simple docstring""" lowerCamelCase_ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase_ , lowerCamelCase_ = target_size[0].tolist() def unnormalize(A_ : Dict ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCamelCase_ , lowerCamelCase_ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCamelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase_ = [unnormalize(A_ ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [dict(zip(A_ , A_ ) ) for vals in zip(scores.tolist() , A_ , A_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase_ = self.image_processor.post_process_object_detection(A_ , A_ , A_ ) lowerCamelCase_ = raw_annotations[0] lowerCamelCase_ = raw_annotation['scores'] lowerCamelCase_ = raw_annotation['labels'] lowerCamelCase_ = raw_annotation['boxes'] lowerCamelCase_ = scores.tolist() lowerCamelCase_ = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase_ = [self._get_bounding_box(A_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [ dict(zip(A_ , A_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def a__ ( self : Union[str, Any] , A_ : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = box.int().tolist() lowerCamelCase_ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
70
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ ={ "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } lowerCAmelCase__ ={"mobilebert-uncased": 512} lowerCAmelCase__ ={} class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]="[UNK]" , __SCREAMING_SNAKE_CASE : Tuple="[SEP]" , __SCREAMING_SNAKE_CASE : List[str]="[PAD]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Dict="[MASK]" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = do_lower_case def _a ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a_ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(a_ , "num_encoder_blocks" ) ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : Any , a_ : Tuple=13 , a_ : Optional[Any]=64 , a_ : str=3 , a_ : Any=4 , a_ : List[str]=[2, 2, 2, 2] , a_ : Optional[int]=[8, 4, 2, 1] , a_ : List[str]=[16, 32, 64, 128] , a_ : Union[str, Any]=[1, 4, 8, 16] , a_ : Dict=[1, 2, 4, 8] , a_ : Tuple=True , a_ : Optional[int]=True , a_ : int="gelu" , a_ : Optional[Any]=0.1 , a_ : Optional[int]=0.1 , a_ : int=0.02 , a_ : Optional[int]=3 , a_ : Any=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_encoder_blocks __snake_case = sr_ratios __snake_case = depths __snake_case = hidden_sizes __snake_case = downsampling_rates __snake_case = num_attention_heads __snake_case = is_training __snake_case = use_labels __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = scope def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Union[str, Any] ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self : List[Any] , a_ : int , a_ : List[str] , a_ : Dict ): """simple docstring""" __snake_case = SegformerModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) __snake_case = __snake_case = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A ( self : int , a_ : List[Any] , a_ : Dict , a_ : Optional[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = SegformerForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self : Optional[int] , a_ : str , a_ : Dict , a_ : str ): """simple docstring""" __snake_case = 1 __snake_case = SegformerForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() __snake_case = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(a_ ) __snake_case = model(a_ , labels=a_ ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Any ): """simple docstring""" __snake_case = SegformerModelTester(self ) __snake_case = SegformerConfigTester(self , config_class=a_ ) def A ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*a_ ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*a_ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def A ( self : Tuple ): """simple docstring""" pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def A ( self : Optional[Any] ): """simple docstring""" pass def A ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.attentions __snake_case = sum(self.model_tester.depths ) self.assertEqual(len(a_ ) , a_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.attentions self.assertEqual(len(a_ ) , a_ ) # verify the first attentions (first block, first layer) __snake_case = (self.model_tester.image_size // 4) ** 2 __snake_case = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __snake_case = (self.model_tester.image_size // 32) ** 2 __snake_case = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __snake_case = len(a_ ) # Check attention is always last and order is fine __snake_case = True __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 1 , len(a_ ) ) __snake_case = outputs.attentions self.assertEqual(len(a_ ) , a_ ) # verify the first attentions (first block, first layer) __snake_case = (self.model_tester.image_size // 4) ** 2 __snake_case = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A ( self : int ): """simple docstring""" def check_hidden_states_output(a_ : List[Any] , a_ : List[Any] , a_ : Tuple ): __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.hidden_states __snake_case = self.model_tester.num_encoder_blocks self.assertEqual(len(a_ ) , a_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) def A ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : int ): """simple docstring""" pass @slow def A ( self : List[str] ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = SegformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __UpperCAmelCase ( ) -> List[Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Dict ): """simple docstring""" __snake_case = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) __snake_case = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ) __snake_case = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): __snake_case = model(a_ ) __snake_case = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def A ( self : Tuple ): """simple docstring""" __snake_case = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) __snake_case = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ) __snake_case = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): __snake_case = model(a_ ) __snake_case = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a_ , atol=1e-1 ) ) @slow def A ( self : Tuple ): """simple docstring""" __snake_case = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) __snake_case = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ) __snake_case = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): __snake_case = model(a_ ) __snake_case = outputs.logits.detach().cpu() __snake_case = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(500, 300)] ) __snake_case = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , a_ ) __snake_case = image_processor.post_process_semantic_segmentation(outputs=a_ ) __snake_case = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , a_ )
69
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'wavlm' def __init__( self, A_=32, A_=768, A_=12, A_=12, A_=3072, A_="gelu", A_=0.1, A_=0.1, A_=0.1, A_=0.0, A_=0.1, A_=0.1, A_=0.02, A_=1E-5, A_="group", A_="gelu", A_=(512, 512, 512, 512, 512, 512, 512), A_=(5, 2, 2, 2, 2, 2, 2), A_=(10, 3, 3, 3, 3, 2, 2), A_=False, A_=128, A_=16, A_=320, A_=800, A_=False, A_=True, A_=0.05, A_=10, A_=2, A_=0.0, A_=10, A_=320, A_=2, A_=0.1, A_=100, A_=256, A_=256, A_=0.1, A_="mean", A_=False, A_=False, A_=256, A_=(512, 512, 512, 512, 1500), A_=(5, 3, 3, 1, 1), A_=(1, 2, 3, 1, 1), A_=512, A_=80, A_=0, A_=1, A_=2, A_=False, A_=3, A_=2, A_=3, A_=None, **A_, ) -> Union[str, Any]: super().__init__(**A_, pad_token_id=A_, bos_token_id=A_, eos_token_id=A_ ) UpperCAmelCase__ =hidden_size UpperCAmelCase__ =feat_extract_norm UpperCAmelCase__ =feat_extract_activation UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =conv_bias UpperCAmelCase__ =num_buckets UpperCAmelCase__ =max_bucket_distance UpperCAmelCase__ =num_conv_pos_embeddings UpperCAmelCase__ =num_conv_pos_embedding_groups UpperCAmelCase__ =len(self.conv_dim ) UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =hidden_dropout UpperCAmelCase__ =attention_dropout UpperCAmelCase__ =activation_dropout UpperCAmelCase__ =feat_proj_dropout UpperCAmelCase__ =final_dropout UpperCAmelCase__ =layerdrop UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =initializer_range UpperCAmelCase__ =num_ctc_classes UpperCAmelCase__ =vocab_size UpperCAmelCase__ =do_stable_layer_norm UpperCAmelCase__ =use_weighted_layer_sum UpperCAmelCase__ =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ =apply_spec_augment UpperCAmelCase__ =mask_time_prob UpperCAmelCase__ =mask_time_length UpperCAmelCase__ =mask_time_min_masks UpperCAmelCase__ =mask_feature_prob UpperCAmelCase__ =mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase__ =num_codevectors_per_group UpperCAmelCase__ =num_codevector_groups UpperCAmelCase__ =contrastive_logits_temperature UpperCAmelCase__ =num_negatives UpperCAmelCase__ =codevector_dim UpperCAmelCase__ =proj_codevector_dim UpperCAmelCase__ =diversity_loss_weight # ctc loss UpperCAmelCase__ =ctc_loss_reduction UpperCAmelCase__ =ctc_zero_infinity # adapter UpperCAmelCase__ =add_adapter UpperCAmelCase__ =adapter_kernel_size UpperCAmelCase__ =adapter_stride UpperCAmelCase__ =num_adapter_layers UpperCAmelCase__ =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =list(A_ ) UpperCAmelCase__ =xvector_output_dim @property def __UpperCAmelCase ( self ) -> List[Any]: return functools.reduce(operator.mul, self.conv_stride, 1 )
625
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a : List[str] = object() # For specifying empty leaf dict `{}` _a : int = object() def UpperCamelCase__ ( _A: int , _A: Any ): '''simple docstring''' __lowerCamelCase = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(_A ) - len(_A ) + 1 ): __lowerCamelCase = [x.match(_A ) for x, y in zip(_A , ks[i:] )] if matches and all(_A ): return True return False def UpperCamelCase__ ( _A: Union[str, Any] ): '''simple docstring''' def replace(_A: Optional[Any] , _A: Dict ): for rule, replacement in rules: if _match(_A , _A ): return replacement return val return replace def UpperCamelCase__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , _A )), (("transformer", "wte", "embedding"), P("""mp""" , _A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_A , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , _A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_A , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , _A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase__ ( _A: List[Any] ): '''simple docstring''' __lowerCamelCase = _get_partition_rules() __lowerCamelCase = _replacement_rules(_A ) __lowerCamelCase = {k: _unmatched for k in flatten_dict(_A )} __lowerCamelCase = {k: replace(_A , _A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_A ) )
571
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _a : List[str] = datasets.logging.get_logger(__name__) _a : Optional[Any] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _a : Dict = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _a : Dict = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _a : List[Any] = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def lowerCamelCase_ ( self , UpperCAmelCase ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) __lowerCamelCase = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: __lowerCamelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCamelCase = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer __lowerCamelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __lowerCamelCase = score.BleurtScorer(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.scorer.score(references=UpperCAmelCase , candidates=UpperCAmelCase ) return {"scores": scores}
571
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( __A : Tuple ) -> Any: """simple docstring""" lowercase : int =[] lowercase : Optional[Any] =[] lowercase : int =[] for rt in rc.restypes: lowercase : List[str] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase : Any ={name: i for i, name in enumerate(__SCREAMING_SNAKE_CASE )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) lowercase : Optional[Any] =torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase : Optional[Any] =torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase : Dict =torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase : int =protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase : str =restype_atomaa_to_atomaa[protein_aatype] lowercase : Optional[Any] =restype_atomaa_mask[protein_aatype] lowercase : Dict =residx_atomaa_mask lowercase : Tuple =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase : Tuple =restype_atomaa_to_atomaa[protein_aatype] lowercase : Dict =residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase : Optional[Any] =torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase : str =rc.restype_atoa[restype_letter] lowercase : List[str] =rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase : int =rc.atom_order[atom_name] lowercase : Optional[int] =1 lowercase : str =restype_atomaa_mask[protein_aatype] lowercase : List[str] =residx_atomaa_mask return protein def lowercase_ ( __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : int =tree_map(lambda __A : torch.tensor(__SCREAMING_SNAKE_CASE , device=batch['''aatype'''].device ) , __SCREAMING_SNAKE_CASE , np.ndarray ) lowercase : List[Any] =tensor_tree_map(lambda __A : np.array(__SCREAMING_SNAKE_CASE ) , make_atomaa_masks(__SCREAMING_SNAKE_CASE ) ) return out
94
'''simple docstring''' import re def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" try: _UpperCamelCase =split_input(__SCREAMING_SNAKE_CASE ) if upper: _UpperCamelCase =''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCamelCase =''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return to_simple_case(__SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" try: _UpperCamelCase =to_simple_case(__SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''_''' ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
404
0
lowercase_ = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def __UpperCamelCase () -> None: lowercase__ = 'Morse code here!' print(_SCREAMING_SNAKE_CASE ) lowercase__ = encrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) lowercase__ = decrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
45
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
1
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Any =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Optional[int] =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: Tuple =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
59
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : '''simple docstring''' lowerCAmelCase : int lowerCAmelCase : TreeNode | None = None lowerCAmelCase : TreeNode | None = None lowerCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def __UpperCAmelCase ( __lowerCamelCase ) -> int: if root is None: return 0 # Validation def count_nodes(__lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCamelCase ) != count_coins(__lowerCamelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ : Optional[Any] = get_distrib(node.left ) lowercase__ , lowercase__ : Tuple = get_distrib(node.right ) lowercase__ : List[Any] = 1 - left_distrib_excess lowercase__ : Any = 1 - right_distrib_excess lowercase__ : List[str] = ( left_distrib_moves + right_distrib_moves + abs(__lowerCamelCase ) + abs(__lowerCamelCase ) ) lowercase__ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCamelCase , __lowerCamelCase ) return get_distrib(__lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
560
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( a_ ): _lowerCamelCase : torch.FloatTensor class lowercase ( a_, a_ ): @register_to_config def __init__( self , _snake_case = 6_5536 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ) -> List[str]: super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ : List[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Dict = block_out_channels[0] * 4 UpperCAmelCase_ : List[Any] = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : int = nn.ModuleList([]) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = nn.ModuleList([]) UpperCAmelCase_ : Any = None # down UpperCAmelCase_ : Dict = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : int = i == len(_snake_case) - 1 UpperCAmelCase_ : Any = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ : Optional[int] = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ : Union[str, Any] = list(reversed(_snake_case)) UpperCAmelCase_ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Tuple = out_channels else: UpperCAmelCase_ : int = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ : Dict = output_channel UpperCAmelCase_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ : str = i == len(_snake_case) - 1 UpperCAmelCase_ : Union[str, Any] = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ : Any = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case = True , ) -> Union[UNetaDOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ : Tuple = timesteps[None].to(sample.device) UpperCAmelCase_ : Any = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(_snake_case) else: UpperCAmelCase_ : int = timestep_embed[..., None] UpperCAmelCase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : List[Any] = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ : int = down_block_res_samples[-1:] UpperCAmelCase_ : Tuple = down_block_res_samples[:-1] UpperCAmelCase_ : List[Any] = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ : Optional[Any] = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
471
0
from math import sqrt def lowercase ( SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE_ = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE_ = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE_ = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def lowercase ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE_ = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE_ = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE_ = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE ): ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE_ = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_ = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_ = prime_factorization(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_ = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_ = prime_factorization(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = min(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def lowercase ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE_ = get_prime_numbers(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE ) # run variable for while-loops. SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE_ = True while i < len_pn and loop: SCREAMING_SNAKE_CASE_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (len(SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_ = 0 while numbera != 0: SCREAMING_SNAKE_CASE_ = numbera % numbera SCREAMING_SNAKE_CASE_ = numbera SCREAMING_SNAKE_CASE_ = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE_ = prime_factorization(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prime_factorization(SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE_ = prime_fac_a.count(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): ans *= n else: SCREAMING_SNAKE_CASE_ = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE_ = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and is_prime( SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' assert ( is_prime(SCREAMING_SNAKE_CASE ) and is_prime(SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE_ = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE_ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE_ = get_divisors(SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE_ = gcd(abs(SCREAMING_SNAKE_CASE ) , abs(SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE_ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE_ = ans ans += fiba SCREAMING_SNAKE_CASE_ = tmp return ans
205
import qiskit def lowercase ( SCREAMING_SNAKE_CASE = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE_ = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
205
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ : Optional[Any] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case__ : List[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case__ : Optional[Any] = concatenate_datasets snake_case__ : str = DownloadConfig snake_case__ : Optional[int] = DownloadManager snake_case__ : List[Any] = DownloadMode snake_case__ : List[str] = DownloadConfig snake_case__ : List[str] = DownloadMode snake_case__ : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCAmelCase__ ( __UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 'poolformer' def __init__( self: Union[str, Any] , __lowerCAmelCase: Dict=3 , __lowerCAmelCase: List[Any]=16 , __lowerCAmelCase: Dict=16 , __lowerCAmelCase: Optional[int]=3 , __lowerCAmelCase: int=4.0 , __lowerCAmelCase: Dict=[2, 2, 6, 2] , __lowerCAmelCase: Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase: Optional[Any]=[7, 3, 3, 3] , __lowerCAmelCase: List[Any]=[4, 2, 2, 2] , __lowerCAmelCase: Optional[int]=[2, 1, 1, 1] , __lowerCAmelCase: Any=4 , __lowerCAmelCase: Optional[int]=0.0 , __lowerCAmelCase: Optional[int]="gelu" , __lowerCAmelCase: List[Any]=True , __lowerCAmelCase: Optional[int]=1E-5 , __lowerCAmelCase: List[str]=0.02 , **__lowerCAmelCase: int , ) -> str: '''simple docstring''' __UpperCAmelCase = num_channels __UpperCAmelCase = patch_size __UpperCAmelCase = stride __UpperCAmelCase = padding __UpperCAmelCase = pool_size __UpperCAmelCase = hidden_sizes __UpperCAmelCase = mlp_ratio __UpperCAmelCase = depths __UpperCAmelCase = patch_sizes __UpperCAmelCase = strides __UpperCAmelCase = num_encoder_blocks __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_layer_scale __UpperCAmelCase = layer_scale_init_value __UpperCAmelCase = initializer_range super().__init__(**lowerCAmelCase_ ) class UpperCAmelCase__ ( __UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = version.parse('1.11' ) @property def _UpperCAmelCase ( self: Tuple ) -> List[Any]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _UpperCAmelCase ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' return 2E-3
712
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) return image def __lowerCAmelCase ( A_ : List[Any] ) -> List[str]: __UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase ( A_ : Optional[int] , A_ : int , A_ : str ) -> List[Any]: __UpperCAmelCase = dct.pop(A_ ) __UpperCAmelCase = val def __lowerCAmelCase ( A_ : Optional[int] , A_ : Optional[int] ) -> int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(A_ , requires_grad=A_ ), v_bias) ) __UpperCAmelCase = qkv_bias def __lowerCAmelCase ( A_ : Any ) -> int: __UpperCAmelCase = 3_64 if "coco" in model_name else 2_24 __UpperCAmelCase = InstructBlipVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: __UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_20_01 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() __UpperCAmelCase = InstructBlipConfig(vision_config=A_ , text_config=A_ , qformer_config=A_ ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( A_ : int , A_ : Union[str, Any]=None , A_ : Optional[Any]=False ) -> Dict: __UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __UpperCAmelCase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCAmelCase = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __UpperCAmelCase , __UpperCAmelCase = get_blipa_config(A_ ) __UpperCAmelCase = InstructBlipForConditionalGeneration(A_ ).eval() __UpperCAmelCase = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __UpperCAmelCase , __UpperCAmelCase = model_name_to_original[model_name] # load original model print("Loading original model..." ) __UpperCAmelCase = "cuda:1" if torch.cuda.is_available() else "cpu" __UpperCAmelCase = "cuda:2" if torch.cuda.is_available() else "cpu" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_model_and_preprocess( name=A_ , model_type=A_ , is_eval=A_ , device=A_ ) original_model.eval() print("Done!" ) # update state dict keys __UpperCAmelCase = original_model.state_dict() __UpperCAmelCase = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(A_ ) if key.startswith("Qformer.bert" ): __UpperCAmelCase = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __UpperCAmelCase = key.replace("self" , "attention" ) if "llm_proj" in key: __UpperCAmelCase = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __UpperCAmelCase = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __UpperCAmelCase = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __UpperCAmelCase = key.replace("t5" , "language" ) __UpperCAmelCase = val # read in qv biases read_in_q_v_bias(A_ , A_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A_ , strict=A_ ) __UpperCAmelCase = load_demo_image() __UpperCAmelCase = "What is unusual about this image?" # create processor __UpperCAmelCase = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=A_ , image_std=A_ ) __UpperCAmelCase = InstructBlipProcessor( image_processor=A_ , tokenizer=A_ , qformer_tokenizer=A_ , ) __UpperCAmelCase = processor(images=A_ , text=A_ , return_tensors="pt" ).to(A_ ) # make sure processor creates exact same pixel values __UpperCAmelCase = vis_processors["eval"](A_ ).unsqueeze(0 ).to(A_ ) __UpperCAmelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "vicuna" in model_name: __UpperCAmelCase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __UpperCAmelCase = hf_model(**A_ ).logits else: __UpperCAmelCase = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __UpperCAmelCase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(A_ ) __UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCAmelCase = hf_model(**A_ , labels=A_ ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCAmelCase = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , A_ , atol=A_ ) print("Looks ok!" ) print("Generating with original model..." ) __UpperCAmelCase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __UpperCAmelCase = hf_model.generate( **A_ , do_sample=A_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCAmelCase = 2 print("Original generation:" , A_ ) __UpperCAmelCase = processor.batch_decode(A_ , skip_special_tokens=A_ ) __UpperCAmelCase = [text.strip() for text in output_text] print("HF generation:" , A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase__ : def __init__( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[str]=32 , UpperCamelCase_ : str=16 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Optional[Any]=[0, 1, 2, 3] , UpperCamelCase_ : int=4 , UpperCamelCase_ : int=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Dict=[1, 384, 24, 24] , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=None , ) -> int: """simple docstring""" lowerCamelCase_ : Tuple = parent lowerCamelCase_ : Optional[int] = batch_size lowerCamelCase_ : Optional[Any] = image_size lowerCamelCase_ : List[str] = patch_size lowerCamelCase_ : Optional[int] = num_channels lowerCamelCase_ : Dict = is_training lowerCamelCase_ : Any = use_labels lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : int = backbone_out_indices lowerCamelCase_ : List[str] = num_attention_heads lowerCamelCase_ : str = intermediate_size lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : int = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : str = num_labels lowerCamelCase_ : str = backbone_featmap_shape lowerCamelCase_ : Optional[int] = scope lowerCamelCase_ : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ : List[Any] = (image_size // patch_size) ** 2 lowerCamelCase_ : List[Any] = num_patches + 1 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : str = None if self.use_labels: lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCamelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Dict = DPTModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCamelCase_ : str = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = self.num_labels lowerCamelCase_ : int = DPTForDepthEstimation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCamelCase_ : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Tuple = self.num_labels lowerCamelCase_ : Tuple = DPTForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCamelCase_ : Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : int = config_and_inputs lowerCamelCase_ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): A = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = DPTModelTester(self ) lowerCamelCase_ : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : int = model_class(UpperCamelCase_ ) lowerCamelCase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCamelCase_ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCamelCase_ , lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Tuple = True if model_class in get_values(UpperCamelCase_ ): continue lowerCamelCase_ : List[str] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCamelCase_ : Optional[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCamelCase_ : Any = model(**UpperCamelCase_ ).loss loss.backward() def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCamelCase_ , lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Union[str, Any] = True if model_class in get_values(UpperCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue lowerCamelCase_ : Union[str, Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.train() lowerCamelCase_ : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCamelCase_ : List[Any] = model(**UpperCamelCase_ ).loss loss.backward() def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : int = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase_ : int = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone lowerCamelCase_ : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowerCamelCase_ : Union[str, Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @slow def __UpperCamelCase ( self : int ) -> int: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowerCamelCase_ : List[str] = DPTModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Tuple = '''add''' with self.assertRaises(UpperCamelCase_ ): lowerCamelCase_ : Any = DPTForDepthEstimation(UpperCamelCase_ ) def __snake_case (): """simple docstring""" lowerCamelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowerCamelCase_ : int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = prepare_img() lowerCamelCase_ : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase_ : List[Any] = model(**UpperCamelCase_ ) lowerCamelCase_ : str = outputs.predicted_depth # verify the predicted depth lowerCamelCase_ : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , UpperCamelCase_ ) lowerCamelCase_ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCamelCase_ , atol=1e-4 ) )
501
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase__ ( _lowerCAmelCase ,unittest.TestCase ): A = WavaVecaPhonemeCTCTokenizer A = False def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" super().setUp() lowerCamelCase_ : Dict = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) lowerCamelCase_ : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCamelCase_ : List[Any] = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} lowerCamelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=20 , UpperCamelCase_ : str=5 ) -> Tuple[str, list]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )) for i in range(len(UpperCamelCase_ ) )] lowerCamelCase_ : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: lowerCamelCase_ : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: lowerCamelCase_ : str = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCamelCase_ : List[str] = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: lowerCamelCase_ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: lowerCamelCase_ : Optional[int] = ''' ''' + output_txt lowerCamelCase_ : Dict = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCamelCase ( self : Tuple , **UpperCamelCase_ : str ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) lowerCamelCase_ : Union[str, Any] = tokenizer('''m xxx ɪ''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) lowerCamelCase_ : Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCamelCase_ : Union[str, Any] = tokenizer('''maɪ c''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [3, 200] ) # mai should be <unk> (=3) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Union[str, Any] = '''Hello how are you''' lowerCamelCase_ : Optional[int] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Dict = '''Hello how are you''' lowerCamelCase_ : int = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase_ ).input_ids , tokenizer(UpperCamelCase_ , do_phonemize=UpperCamelCase_ ).input_ids ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : str = '''Hello how are you''' lowerCamelCase_ : Tuple = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Any = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCamelCase_ : Dict = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Dict = '''Hello how are you''' lowerCamelCase_ : Union[str, Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Optional[int] = '''Hello how are you''' lowerCamelCase_ : List[Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase_ ).input_ids , tokenizer(UpperCamelCase_ , do_phonemize=UpperCamelCase_ ).input_ids ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : str = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off lowerCamelCase_ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCamelCase_ : Dict = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter lowerCamelCase_ : Any = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=UpperCamelCase_ ) lowerCamelCase_ : Tuple = tokenizer.batch_decode(UpperCamelCase_ , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Optional[Any] = '''Hello how are you''' lowerCamelCase_ : Optional[Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Any = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : int = '''Hello how are you''' lowerCamelCase_ : Union[str, Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Optional[Any] = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=UpperCamelCase_ ) lowerCamelCase_ : Any = '''Hello how are you''' lowerCamelCase_ : Any = tokenizer(UpperCamelCase_ , phonemizer_lang='''en-us''' ).input_ids lowerCamelCase_ : Dict = tokenizer(UpperCamelCase_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : int = tokenizer.decode(UpperCamelCase_ ) lowerCamelCase_ : Any = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(UpperCamelCase_ , '''ɛ l o h aʊ a ʁ j u''' ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Optional[int] = '''Hello how Are you''' lowerCamelCase_ : Dict = '''hello how are you''' lowerCamelCase_ : List[str] = tokenizer(UpperCamelCase_ ).input_ids lowerCamelCase_ : List[Any] = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off lowerCamelCase_ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCamelCase_ : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def __UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = [d[key] for d in offsets] return retrieved_list def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCamelCase_ : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCamelCase_ : Union[str, Any] = tokenizer.decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ , filter_word_delimiter_token=UpperCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_ : int = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(UpperCamelCase_ : str , UpperCamelCase_ : int ): self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , UpperCamelCase_ ) ) # transform list to ModelOutput lowerCamelCase_ : Optional[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): [recursive_check(UpperCamelCase_ , UpperCamelCase_ ) for la, la in zip(UpperCamelCase_ , UpperCamelCase_ )] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off lowerCamelCase_ : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCamelCase_ : Tuple = tokenizer.batch_decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = [tokenizer.decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ ) for ids in sample_ids] check_list_tuples_equal(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ : int = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : List[str] = tokenizer.vocab_size lowerCamelCase_ : Optional[int] = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCamelCase_ : Tuple = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCamelCase_ : Dict = tokenizer.add_tokens(UpperCamelCase_ ) lowerCamelCase_ : Dict = tokenizer.vocab_size lowerCamelCase_ : Dict = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size + len(UpperCamelCase_ ) ) lowerCamelCase_ : Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCamelCase_ : List[Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCamelCase_ : List[Any] = tokenizer.add_special_tokens(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = tokenizer.vocab_size lowerCamelCase_ : Dict = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size_a + len(UpperCamelCase_ ) ) lowerCamelCase_ : Union[str, Any] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> int: """simple docstring""" lowerCamelCase_ : Dict = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : List[Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] lowerCamelCase_ : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(output['''text'''] , UpperCamelCase_ )
501
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a ( snake_case__: Any , snake_case__: int , snake_case__: List[str] , snake_case__: List[str] , snake_case__: Any ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowercase_ = TapasConfig.from_json_file(snake_case__ ) # set absolute/relative position embeddings parameter lowercase_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase_ = TapasForQuestionAnswering(config=snake_case__ ) elif task == "WTQ": # run_task_main.py hparams lowercase_ = 4 lowercase_ = True # hparam_utils.py hparams lowercase_ = 0.6_6_4_6_9_4 lowercase_ = 0.2_0_7_9_5_1 lowercase_ = 0.1_2_1_1_9_4 lowercase_ = True lowercase_ = True lowercase_ = False lowercase_ = 0.0_3_5_2_5_1_3 lowercase_ = TapasForQuestionAnswering(config=snake_case__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase_ = 4 lowercase_ = False # hparam_utils.py hparams lowercase_ = 3_6.4_5_1_9 lowercase_ = 0.9_0_3_4_2_1 lowercase_ = 2_2_2.0_8_8 lowercase_ = True lowercase_ = True lowercase_ = True lowercase_ = 0.7_6_3_1_4_1 lowercase_ = TapasForQuestionAnswering(config=snake_case__ ) elif task == "TABFACT": lowercase_ = TapasForSequenceClassification(config=snake_case__ ) elif task == "MLM": lowercase_ = TapasForMaskedLM(config=snake_case__ ) elif task == "INTERMEDIATE_PRETRAINING": lowercase_ = TapasModel(config=snake_case__ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case__ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) lowercase_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(snake_case__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
409
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> None: warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
409
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _A ( A__ , A__ ): """simple docstring""" return float((preds == labels).mean() ) def _A ( A__ , A__ , A__="binary" ): """simple docstring""" __lowercase = simple_accuracy(A__ , A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=A__ , average=A__ ) ) return { "accuracy": acc, "f1": fa, } def _A ( A__ , A__ ): """simple docstring""" __lowercase = {} for id_pred, label in zip(A__ , A__ ): __lowercase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __lowercase = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase = [(pred, label)] __lowercase , __lowercase = [], [] for question, preds_labels in question_map.items(): __lowercase , __lowercase = zip(*A__ ) __lowercase = fa_score(y_true=A__ , y_pred=A__ , average='''macro''' ) fas.append(A__ ) __lowercase = int(sum(pred == label for pred, label in preds_labels ) == len(A__ ) ) ems.append(A__ ) __lowercase = float(sum(A__ ) / len(A__ ) ) __lowercase = sum(A__ ) / len(A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowercase__ ,lowercase__ )} elif self.config_name == "cb": return acc_and_fa(lowercase__ ,lowercase__ ,fa_avg='''macro''' ) elif self.config_name == "record": __lowercase = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] __lowercase = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowercase__ ,lowercase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowercase__ ,lowercase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowercase__ ,lowercase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'laion/clap-htsat-unfused' lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = ClapProcessor(tokenizer=snake_case , feature_extractor=snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase = self.get_feature_extractor(do_normalize=snake_case , padding_value=1.0 ) lowercase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=snake_case , feature_extractor=snake_case ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(snake_case , return_tensors='np' ) lowercase = processor(audios=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=snake_case , feature_extractor=snake_case ) lowercase = 'This is a test string' lowercase = processor(text=snake_case ) lowercase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=snake_case , feature_extractor=snake_case ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(snake_case ) lowercase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=snake_case , feature_extractor=snake_case ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
565
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): for i in range(config.num_hidden_layers ): if base_model: lowercase = '' else: lowercase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowercase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[ : config.hidden_size, : ] lowercase = in_proj_bias[: config.hidden_size] lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase = val def UpperCAmelCase_ ( ): lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = ViTConfig() lowercase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase = True lowercase = int(vit_name[-12:-10] ) lowercase = int(vit_name[-9:-6] ) else: lowercase = 1000 lowercase = 'huggingface/label-files' lowercase = 'imagenet-1k-id2label.json' lowercase = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = int(vit_name[-6:-4] ) lowercase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): lowercase = 192 lowercase = 768 lowercase = 12 lowercase = 3 elif vit_name[9:].startswith('small' ): lowercase = 384 lowercase = 1536 lowercase = 12 lowercase = 6 else: pass else: if vit_name[4:].startswith('small' ): lowercase = 768 lowercase = 2304 lowercase = 8 lowercase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): lowercase = 1024 lowercase = 4096 lowercase = 24 lowercase = 16 elif vit_name[4:].startswith('huge' ): lowercase = 1280 lowercase = 5120 lowercase = 32 lowercase = 16 # load original model from timm lowercase = timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase = timm_model.state_dict() if base_model: remove_classification_head_(__SCREAMING_SNAKE_CASE ) lowercase = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase = ViTModel(__SCREAMING_SNAKE_CASE ).eval() else: lowercase = ViTForImageClassification(__SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase = DeiTImageProcessor(size=config.image_size ) else: lowercase = ViTImageProcessor(size=config.image_size ) lowercase = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase = encoding['pixel_values'] lowercase = model(__SCREAMING_SNAKE_CASE ) if base_model: lowercase = timm_model.forward_features(__SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1e-3 ) else: lowercase = timm_model(__SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
565
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = AutoConfig.from_pretrained(lowercase__ ) lowercase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase__ ) lowercase__ = checkpoints.load_tax_checkpoint(lowercase__ ) lowercase__ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": lowercase__ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): lowercase__ = f'''layers_{str(lowercase__ )}''' # Self-Attention lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization lowercase__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning lowercase__ = flax_model.params["""encoder"""]["""block"""][str(lowercase__ )]["""layer"""] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_global_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = tax_mlp_layer_norm lowercase__ = flax_model_encoder_layer_block # Only for layer 0: lowercase__ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T lowercase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T lowercase__ = tax_encoder_global_rel_embedding # Assigning lowercase__ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] lowercase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase__ = f'''layers_{str(lowercase__ )}''' # Self-Attention lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] lowercase__ = tax_enc_dec_attention_module["""key"""]["""kernel"""] lowercase__ = tax_enc_dec_attention_module["""out"""]["""kernel"""] lowercase__ = tax_enc_dec_attention_module["""query"""]["""kernel"""] lowercase__ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization lowercase__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning lowercase__ = flax_model.params["""decoder"""]["""block"""][str(lowercase__ )]["""layer"""] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_pre_attention_layer_norm lowercase__ = tax_enc_dec_attention_key lowercase__ = tax_enc_dec_attention_out lowercase__ = tax_enc_dec_attention_query lowercase__ = tax_enc_dec_attention_value lowercase__ = tax_cross_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = txa_mlp_layer_norm lowercase__ = flax_model_decoder_layer_block # Decoder Normalization lowercase__ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] lowercase__ = txa_decoder_norm # Only for layer 0: lowercase__ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T lowercase__ = tax_decoder_rel_embedding # Token Embeddings lowercase__ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] lowercase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(lowercase__ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) __A = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
325
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __A = "CompVis/stable-diffusion-v1-1" __A = "CompVis/stable-diffusion-v1-2" __A = "CompVis/stable-diffusion-v1-3" __A = "CompVis/stable-diffusion-v1-4" class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Optional[int]: '''simple docstring''' super()._init_() lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , requires_safety_checker=lowerCamelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , lowerCamelCase__ = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' lowercase__ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCamelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
325
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Tuple = '▁' UpperCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = BertGenerationTokenizer __lowercase : Any = False __lowercase : Optional[int] = True def snake_case__ ( self ): """simple docstring""" super().setUp() __A : int = BertGenerationTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ): """simple docstring""" __A : Dict = """<s>""" __A : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def snake_case__ ( self ): """simple docstring""" __A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_a ) , 1_002 ) def snake_case__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def snake_case__ ( self ): """simple docstring""" __A : Dict = BertGenerationTokenizer(_a , keep_accents=_a ) __A : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) __A : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __A : str = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __A : Dict = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case__ ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def snake_case__ ( self ): """simple docstring""" __A : str = """Hello World!""" __A : Optional[Any] = [18_536, 2_260, 101] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def snake_case__ ( self ): """simple docstring""" __A : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __A : int = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def snake_case__ ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __A : str = list(self.big_tokenizer.get_vocab().keys() )[:10] __A : Tuple = """ """.join(_a ) __A : Optional[int] = self.big_tokenizer.encode_plus(_a , return_tensors='pt' , return_token_type_ids=_a ) __A : Dict = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_a ) __A : List[str] = BertGenerationConfig() __A : Optional[int] = BertGenerationEncoder(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def snake_case__ ( self ): """simple docstring""" __A : List[str] = {"""input_ids""": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
710
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase_ : int = '' UpperCAmelCase_ : Union[str, Any] = '' UpperCAmelCase_ : Any = '' UpperCAmelCase_ : int = 1 # (0 is vertical, 1 is horizontal) def _lowercase ( ): __A ,__A : Optional[int] = get_dataset(UpperCamelCase__, UpperCamelCase__ ) print('Processing...' ) __A ,__A ,__A : Any = update_image_and_anno(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A : Dict = random_chars(32 ) __A : List[Any] = paths[index].split(os.sep )[-1].rsplit('.', 1 )[0] __A : Dict = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""", UpperCamelCase__, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __A : Tuple = [] for anno in new_annos[index]: __A : Any = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""", 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : str ): __A : Tuple = [] __A : int = [] for label_file in glob.glob(os.path.join(UpperCamelCase__, '*.txt' ) ): __A : Optional[int] = label_file.split(os.sep )[-1].rsplit('.', 1 )[0] with open(UpperCamelCase__ ) as in_file: __A : Optional[Any] = in_file.readlines() __A : int = os.path.join(UpperCamelCase__, f"""{label_name}.jpg""" ) __A : Optional[int] = [] for obj_list in obj_lists: __A : str = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def _lowercase ( UpperCamelCase__ : list, UpperCamelCase__ : list, UpperCamelCase__ : int = 1 ): __A : int = [] __A : Optional[Any] = [] __A : str = [] for idx in range(len(UpperCamelCase__ ) ): __A : List[Any] = [] __A : List[str] = img_list[idx] path_list.append(UpperCamelCase__ ) __A : Optional[Any] = anno_list[idx] __A : Union[str, Any] = cva.imread(UpperCamelCase__ ) if flip_type == 1: __A : int = cva.flip(UpperCamelCase__, UpperCamelCase__ ) for bbox in img_annos: __A : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __A : Tuple = cva.flip(UpperCamelCase__, UpperCamelCase__ ) for bbox in img_annos: __A : Dict = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def _lowercase ( UpperCamelCase__ : int = 32 ): assert number_char > 1, "The number of character should greater than 1" __A : int = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
540
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase ( _UpperCAmelCase : str ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _lowercase , _lowercase : str = emb.weight.shape _lowercase : Dict = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _lowercase : Optional[Any] = emb.weight.data return lin_layer def UpperCamelCase ( _UpperCAmelCase : Dict ) -> int: '''simple docstring''' _lowercase : Dict = torch.load(_UpperCAmelCase , map_location="cpu" ) _lowercase : Tuple = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowercase : Union[str, Any] = mam_aaa["model"] remove_ignore_keys_(_UpperCAmelCase ) _lowercase : List[str] = state_dict["encoder.embed_tokens.weight"].shape[0] _lowercase : Any = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowercase : Optional[Any] = state_dict["decoder.embed_tokens.weight"] _lowercase : Optional[Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) _lowercase : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase_ : List[Any] = parser.parse_args() UpperCamelCase_ : Union[str, Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
461
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) _A = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size for training."} ) _A = field(default=2 , metadata={"help": "Batch size for evaluation."} ) _A = field(default=0.1 , metadata={"help": "Value of weight decay."} ) _A = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _A = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) _A = field(default="cosine" , metadata={"help": "Learning rate."} ) _A = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _A = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) _A = field( default=__snake_case , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _A = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) _A = field(default=1 , metadata={"help": "Training seed."} ) _A = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) _A = field( default=__snake_case , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _A = field(default=__snake_case , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) _A = field( default=__snake_case , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) _A = field( default=__snake_case , metadata={"help": "Sample from the language model's output distribution."} ) _A = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) _A = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) _A = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) _A = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) _A = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) _A = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _A = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowercase : _A = field( default=__snake_case , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) _A = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) _A = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) _A = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _A = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _A = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _A = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _A = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) _A = field( default=__snake_case , metadata={"help": "If True, near-duplicate samples are removed."} ) _A = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowercase : _A = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) _A = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) _A = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) _A = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) _A = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowercase : _A = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) _A = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} )
461
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase ( lowercase__ ): '''simple docstring''' def UpperCamelCase ( self , UpperCamelCase_ ): with open(UpperCamelCase_ , encoding='''utf-8''' ) as input_file: lowercase_ :Union[str, Any] = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) lowercase_ :List[Any] = input_file.read() lowercase_ :Tuple = regexp.search(UpperCamelCase_ ) return match def UpperCamelCase ( self , UpperCamelCase_ ): with open(UpperCamelCase_ , encoding='''utf-8''' ) as input_file: lowercase_ :str = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) lowercase_ :Union[str, Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowercase_ :List[Any] = regexp.finditer(UpperCamelCase_ ) lowercase_ :int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase ( self ): lowercase_ :Dict = Path('''./datasets''' ) lowercase_ :List[str] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase_ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase ( self ): lowercase_ :List[Any] = Path('''./datasets''' ) lowercase_ :Dict = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase_ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
441
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE : Optional[Any] = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
441
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def UpperCAmelCase ( snake_case : Tuple , snake_case : Optional[int] , snake_case : Any , snake_case : List[str] , snake_case : Optional[Any] , snake_case : str , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[Any] , snake_case : List[Any] , ): _lowerCAmelCase:Any = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } _lowerCAmelCase , _lowerCAmelCase:Optional[int] = input_paths_and_base_extractors[compression_format] if input_path is None: _lowerCAmelCase:Tuple = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) assert base_extractor.is_extractable(snake_case ) _lowerCAmelCase:Any = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(snake_case , snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCAmelCase:Union[str, Any] = file_path.read_text(encoding='''utf-8''' ) else: _lowerCAmelCase:List[str] = output_path.read_text(encoding='''utf-8''' ) _lowerCAmelCase:Union[str, Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def UpperCAmelCase ( snake_case : Any , snake_case : Optional[Any] , snake_case : str , snake_case : Tuple , snake_case : Dict , snake_case : List[str] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : int , snake_case : str , snake_case : str , ): _lowerCAmelCase:Dict = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } _lowerCAmelCase:Any = input_paths[compression_format] if input_path is None: _lowerCAmelCase:str = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) _lowerCAmelCase:int = Extractor.infer_extractor_format(snake_case ) assert extractor_format is not None _lowerCAmelCase:Optional[Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(snake_case , snake_case , snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCAmelCase:Tuple = file_path.read_text(encoding='''utf-8''' ) else: _lowerCAmelCase:Optional[int] = output_path.read_text(encoding='''utf-8''' ) _lowerCAmelCase:str = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase ( snake_case : str , snake_case : List[Any] ): import tarfile _lowerCAmelCase:str = tmp_path / '''data_dot_dot''' directory.mkdir() _lowerCAmelCase:List[str] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(snake_case , '''w''' ) as f: f.add(snake_case , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase ( snake_case : Any ): import tarfile _lowerCAmelCase:List[str] = tmp_path / '''data_sym_link''' directory.mkdir() _lowerCAmelCase:Any = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=snake_case ) with tarfile.TarFile(snake_case , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def UpperCAmelCase ( snake_case : Tuple , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Optional[int] , snake_case : Any ): _lowerCAmelCase:int = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } _lowerCAmelCase:Tuple = insecure_tar_files[insecure_tar_file] _lowerCAmelCase:Optional[int] = tmp_path / '''extracted''' TarExtractor.extract(snake_case , snake_case ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase ( snake_case : int ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _lowerCAmelCase:Any = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 _lowerCAmelCase:List[str] = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(snake_case ) assert zipfile.is_zipfile(str(snake_case ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(snake_case ) # but we're right
227
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( snake_case : BertModel , snake_case : str , snake_case : str ): _lowerCAmelCase:Dict = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _lowerCAmelCase:Optional[int] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(snake_case ): os.makedirs(snake_case ) _lowerCAmelCase:Dict = model.state_dict() def to_tf_var_name(snake_case : str ): for patt, repl in iter(snake_case ): _lowerCAmelCase:Any = name.replace(snake_case , snake_case ) return F'bert/{name}' def create_tf_var(snake_case : np.ndarray , snake_case : str , snake_case : tf.Session ): _lowerCAmelCase:Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase:Any = tf.get_variable(dtype=snake_case , shape=tensor.shape , name=snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase:List[str] = to_tf_var_name(snake_case ) _lowerCAmelCase:int = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase:int = torch_tensor.T _lowerCAmelCase:int = create_tf_var(tensor=snake_case , name=snake_case , session=snake_case ) tf.keras.backend.set_value(snake_case , snake_case ) _lowerCAmelCase:Any = session.run(snake_case ) print(F'Successfully created {tf_name}: {np.allclose(snake_case , snake_case )}' ) _lowerCAmelCase:Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case , os.path.join(snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCAmelCase ( snake_case : Optional[int]=None ): _lowerCAmelCase:Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=snake_case , required=snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=snake_case , default=snake_case , required=snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=snake_case , required=snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=snake_case , required=snake_case , help='''Directory in which to save tensorflow model''' ) _lowerCAmelCase:Tuple = parser.parse_args(snake_case ) _lowerCAmelCase:Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
227
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=128 , snake_case_=32 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ) -> Tuple: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def A__ ( self ) -> List[Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: __lowerCAmelCase = NezhaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __lowerCAmelCase = model(snake_case_ , token_type_ids=snake_case_ ) __lowerCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> int: __lowerCAmelCase = True __lowerCAmelCase = NezhaModel(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , ) __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: __lowerCAmelCase = NezhaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: __lowerCAmelCase = NezhaForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = NezhaForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = NezhaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = NezhaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = self.num_labels __lowerCAmelCase = NezhaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = NezhaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True def A__ ( self , snake_case_ , snake_case_ , snake_case_=False ) -> List[str]: __lowerCAmelCase = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def A__ ( self ) -> Dict: __lowerCAmelCase = NezhaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def A__ ( self ) -> Any: self.config_tester.run_common_tests() def A__ ( self ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def A__ ( self ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) def A__ ( self ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*snake_case_ ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def A__ ( self ) -> Dict: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = NezhaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @slow @require_torch_gpu def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowerCAmelCase = True __lowerCAmelCase = model_class(config=snake_case_ ) __lowerCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) __lowerCAmelCase = torch.jit.trace( snake_case_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case_ , os.path.join(snake_case_ , """bert.pt""" ) ) __lowerCAmelCase = torch.jit.load(os.path.join(snake_case_ , """bert.pt""" ) , map_location=snake_case_ ) loaded(inputs_dict["""input_ids"""].to(snake_case_ ) , inputs_dict["""attention_mask"""].to(snake_case_ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ) -> Tuple: __lowerCAmelCase = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) __lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] __lowerCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) ) @slow def A__ ( self ) -> List[str]: __lowerCAmelCase = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) __lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] __lowerCAmelCase = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
573
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Dict: __lowerCAmelCase = [10, 20, 30, 40, 50, 60] __lowerCAmelCase = [2, 4, 6, 8, 10, 12] __lowerCAmelCase = 100 self.assertEqual(kp.calc_profit(snake_case_ , snake_case_ , snake_case_ ) , 210 ) def A__ ( self ) -> Dict: self.assertRaisesRegex(snake_case_ , """max_weight must greater than zero.""" ) def A__ ( self ) -> Tuple: self.assertRaisesRegex(snake_case_ , """Weight can not be negative.""" ) def A__ ( self ) -> int: self.assertRaisesRegex(snake_case_ , """Profit can not be negative.""" ) def A__ ( self ) -> Tuple: self.assertRaisesRegex(snake_case_ , """max_weight must greater than zero.""" ) def A__ ( self ) -> Optional[int]: self.assertRaisesRegex( snake_case_ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
573
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowercase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=3 , lowercase=2 , lowercase=1 , lowercase=16 , lowercase=[128, 256, 384] , lowercase=[4, 6, 8] , lowercase=[2, 3, 4] , lowercase=[16, 16, 16] , lowercase=0 , lowercase=[2, 2, 2] , lowercase=[2, 2, 2] , lowercase=0.0_2 , lowercase=True , lowercase=True , lowercase=2 , ) -> Any: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = kernel_size lowerCamelCase_ = stride lowerCamelCase_ = padding lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_attention_heads lowerCamelCase_ = depths lowerCamelCase_ = key_dim lowerCamelCase_ = drop_path_rate lowerCamelCase_ = patch_size lowerCamelCase_ = attention_ratio lowerCamelCase_ = mlp_ratio lowerCamelCase_ = initializer_range lowerCamelCase_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = LevitModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = (self.image_size, self.image_size) lowerCamelCase_ , lowerCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): lowerCamelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCamelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> List[str]: lowerCamelCase_ = self.num_labels lowerCamelCase_ = LevitForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = LevitModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return @unittest.skip(reason="Levit does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_( self ) -> int: pass @unittest.skip(reason="Levit does not output attentions" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowercase ) , lowercase ) lowerCamelCase_ = (self.model_tester.image_size, self.model_tester.image_size) lowerCamelCase_ , lowerCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): lowerCamelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCamelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE_( self ) -> str: pass def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Dict: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: if not self.model_tester.is_training: return lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.train() lowerCamelCase_ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) lowerCamelCase_ = model(**lowercase ).loss loss.backward() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCamelCase_ = False lowerCamelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCamelCase_ = model_class(lowercase ) model.gradient_checkpointing_enable() model.to(lowercase ) model.train() lowerCamelCase_ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) lowerCamelCase_ = model(**lowercase ).loss loss.backward() def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): lowerCamelCase_ = problem_type["title"] lowerCamelCase_ = problem_type["num_labels"] lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.train() lowerCamelCase_ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if problem_type["num_labels"] > 1: lowerCamelCase_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCamelCase_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase ) as warning_list: lowerCamelCase_ = model(**lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def SCREAMING_SNAKE_CASE_( self ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = LevitModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowerCamelCase_ ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCamelCase_ = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
463
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_( self ) -> int: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> int: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = 2 lowerCamelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ) lowerCamelCase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase ) ).to(lowercase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(lowercase ) ).convert("RGB" ).resize((64, 64) ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE_( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase ): if isinstance(lowercase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase ) torch.manual_seed(0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = MultiControlNetModel([controlneta, controlneta] ) lowerCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> List[Any]: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = 2 lowerCamelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ), ] lowerCamelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase ) ).to(lowercase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(lowercase ) ).convert("RGB" ).resize((64, 64) ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**lowercase ) pipe.to(lowercase ) lowerCamelCase_ = 1_0.0 lowerCamelCase_ = 4 lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase ) except NotImplementedError: pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) lowerCamelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=lowercase , controlnet=lowercase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = "evil space-punk bird" lowerCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) lowerCamelCase_ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) lowerCamelCase_ = pipe( lowercase , lowercase , control_image=lowercase , generator=lowercase , output_type="np" , num_inference_steps=50 , strength=0.6 , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
463
1
'''simple docstring''' def _a( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _a( ): '''simple docstring''' assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
665
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a_ = False a_ = False def _a( UpperCamelCase__ : Namespace ): '''simple docstring''' return TrainCommand(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @staticmethod def __magic_name__ ( __lowercase : ArgumentParser ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=__lowercase , required=__lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=__lowercase , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=__lowercase , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=__lowercase , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=__lowercase , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=__lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=__lowercase , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=__lowercase , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=__lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=__lowercase , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=__lowercase , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=__lowercase , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=__lowercase , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple , __lowercase : Namespace ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE__ : int ='''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =args.output SCREAMING_SNAKE_CASE__ : str =args.column_label SCREAMING_SNAKE_CASE__ : List[Any] =args.column_text SCREAMING_SNAKE_CASE__ : Tuple =args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE__ : List[str] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE__ : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =args.validation_split SCREAMING_SNAKE_CASE__ : List[Any] =args.train_batch_size SCREAMING_SNAKE_CASE__ : Any =args.valid_batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =args.learning_rate SCREAMING_SNAKE_CASE__ : int =args.adam_epsilon def __magic_name__ ( self : Any ) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def __magic_name__ ( self : Optional[int] ) -> Tuple: raise NotImplementedError def __magic_name__ ( self : Dict ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
665
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCAmelCase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=False , snake_case=True , snake_case=False , snake_case=False , snake_case=19 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> int: """simple docstring""" a__ : List[str] = parent a__ : int = batch_size a__ : Union[str, Any] = seq_length a__ : List[str] = is_training a__ : Optional[int] = use_input_mask a__ : Dict = use_token_type_ids a__ : Dict = use_labels a__ : Union[str, Any] = vocab_size a__ : List[str] = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : List[Any] = num_attention_heads a__ : Any = intermediate_size a__ : List[str] = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : List[str] = type_vocab_size a__ : Optional[Any] = type_sequence_label_size a__ : Optional[int] = initializer_range a__ : List[Any] = num_labels a__ : List[Any] = num_choices a__ : Tuple = scope def _snake_case ( self ) -> str: """simple docstring""" a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : List[str] = None if self.use_input_mask: a__ : str = random_attention_mask([self.batch_size, self.seq_length] ) a__ : List[str] = None a__ : str = None a__ : Dict = None if self.use_labels: a__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) a__ : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> List[Any]: """simple docstring""" a__ : Dict = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_A , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def _snake_case ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : Any = EsmForProteinFolding(config=_A ).float() model.to(_A ) model.eval() a__ : List[Any] = model(_A , attention_mask=_A ) a__ : Dict = model(_A ) a__ : str = model(_A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _snake_case ( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = self.prepare_config_and_inputs() ( a__ ) : List[str] = config_and_inputs a__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : Any = False _UpperCamelCase : int = (EsmForProteinFolding,) if is_torch_available() else () _UpperCamelCase : int = () _UpperCamelCase : List[str] = {} if is_torch_available() else {} _UpperCamelCase : List[Any] = False def _snake_case ( self ) -> Tuple: """simple docstring""" a__ : Dict = EsmFoldModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def _snake_case ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ) -> List[Any]: """simple docstring""" a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @unittest.skip("Does not support attention outputs" ) def _snake_case ( self ) -> int: """simple docstring""" pass @unittest.skip def _snake_case ( self ) -> Tuple: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def _snake_case ( self ) -> Dict: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def _snake_case ( self ) -> Any: """simple docstring""" pass @unittest.skip("ESMFold does not support passing input embeds!" ) def _snake_case ( self ) -> int: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _snake_case ( self ) -> List[str]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _snake_case ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _snake_case ( self ) -> Any: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _snake_case ( self ) -> Tuple: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _snake_case ( self ) -> int: """simple docstring""" pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def _snake_case ( self ) -> List[str]: """simple docstring""" pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def _snake_case ( self ) -> List[str]: """simple docstring""" pass @unittest.skip("ESMFold only has one output format." ) def _snake_case ( self ) -> int: """simple docstring""" pass @unittest.skip("This test doesn\'t work for ESMFold and doesn\'t test core functionality" ) def _snake_case ( self ) -> Dict: """simple docstring""" pass @unittest.skip("ESMFold does not support input chunking." ) def _snake_case ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments." ) def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def _snake_case ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def _snake_case ( self ) -> Any: """simple docstring""" pass @unittest.skip("ESMFold doesn\'t support data parallel." ) def _snake_case ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ) -> List[Any]: """simple docstring""" pass @require_torch class __lowerCAmelCase ( _UpperCamelCase ): @slow def _snake_case ( self ) -> int: """simple docstring""" a__ : Any = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() a__ : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a__ : Tuple = model(_A )['''positions'''] a__ : Optional[Any] = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _A , atol=1E-4 ) )
112
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np _UpperCamelCase : List[str] = re.compile(R'\b(a|an|the)\b', re.UNICODE) _UpperCamelCase : Optional[int] = None def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=A , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=A , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __UpperCAmelCase ( A : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ : Union[str, Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __UpperCAmelCase ( A : List[Any] ) -> Dict: def remove_articles(A : Dict ): return ARTICLES_REGEX.sub(''' ''' , A ) def white_space_fix(A : str ): return " ".join(text.split() ) def remove_punc(A : Tuple ): UpperCAmelCase_ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A ) ) ) ) def __UpperCAmelCase ( A : Optional[Any] ) -> Tuple: if not s: return [] return normalize_answer(A ).split() def __UpperCAmelCase ( A : Optional[int] , A : Dict ) -> List[str]: return int(normalize_answer(A ) == normalize_answer(A ) ) def __UpperCAmelCase ( A : Optional[Any] , A : List[Any] ) -> str: UpperCAmelCase_ : Tuple = get_tokens(A ) UpperCAmelCase_ : Union[str, Any] = get_tokens(A ) UpperCAmelCase_ : Dict = collections.Counter(A ) & collections.Counter(A ) UpperCAmelCase_ : Optional[int] = sum(common.values() ) if len(A ) == 0 or len(A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase_ : int = 1.0 * num_same / len(A ) UpperCAmelCase_ : Any = 1.0 * num_same / len(A ) UpperCAmelCase_ : Any = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( A : Union[str, Any] , A : str ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ : Optional[Any] = qa['''id'''] UpperCAmelCase_ : List[str] = [t for t in qa['''answers''']['''text'''] if normalize_answer(A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase_ : Tuple = [''''''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue UpperCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers UpperCAmelCase_ : List[Any] = max(compute_exact(A , A ) for a in gold_answers ) UpperCAmelCase_ : int = max(compute_fa(A , A ) for a in gold_answers ) return exact_scores, fa_scores def __UpperCAmelCase ( A : Optional[int] , A : Tuple , A : Optional[Any] , A : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = {} for qid, s in scores.items(): UpperCAmelCase_ : Union[str, Any] = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase_ : List[str] = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase_ : Any = s return new_scores def __UpperCAmelCase ( A : Any , A : Any , A : str=None ) -> int: if not qid_list: UpperCAmelCase_ : str = len(A ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: UpperCAmelCase_ : Dict = len(A ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __UpperCAmelCase ( A : Union[str, Any] , A : Dict , A : Union[str, Any] ) -> Dict: for k in new_eval: UpperCAmelCase_ : str = new_eval[k] def __UpperCAmelCase ( A : str , A : Tuple , A : Any , A : List[str] ) -> Optional[int]: plt.step(A , A , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(A , A , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(A ) plt.savefig(A ) plt.clf() def __UpperCAmelCase ( A : Optional[Any] , A : Optional[Any] , A : Optional[int] , A : Optional[int] , A : str=None , A : Any=None ) -> Any: UpperCAmelCase_ : Optional[Any] = sorted(A , key=lambda A : na_probs[k] ) UpperCAmelCase_ : int = 0.0 UpperCAmelCase_ : List[Any] = 1.0 UpperCAmelCase_ : Optional[int] = 0.0 UpperCAmelCase_ : Optional[Any] = [1.0] UpperCAmelCase_ : List[Any] = [0.0] UpperCAmelCase_ : Dict = 0.0 for i, qid in enumerate(A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase_ : List[Any] = true_pos / float(i + 1 ) UpperCAmelCase_ : Union[str, Any] = true_pos / float(A ) if i == len(A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(A ) recalls.append(A ) if out_image: plot_pr_curve(A , A , A , A ) return {"ap": 100.0 * avg_prec} def __UpperCAmelCase ( A : List[Any] , A : str , A : Any , A : Optional[int] , A : Any , A : List[str] ) -> List[Any]: if out_image_dir and not os.path.exists(A ): os.makedirs(A ) UpperCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase_ : Union[str, Any] = make_precision_recall_eval( A , A , A , A , out_image=os.path.join(A , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) UpperCAmelCase_ : List[str] = make_precision_recall_eval( A , A , A , A , out_image=os.path.join(A , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) UpperCAmelCase_ : Dict = {k: float(A ) for k, v in qid_to_has_ans.items()} UpperCAmelCase_ : Optional[int] = make_precision_recall_eval( A , A , A , A , out_image=os.path.join(A , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(A , A , '''pr_exact''' ) merge_eval(A , A , '''pr_f1''' ) merge_eval(A , A , '''pr_oracle''' ) def __UpperCAmelCase ( A : List[str] , A : Tuple , A : str , A : List[Any] ) -> Dict: if not qid_list: return UpperCAmelCase_ : List[Any] = [na_probs[k] for k in qid_list] UpperCAmelCase_ : Union[str, Any] = np.ones_like(A ) / float(len(A ) ) plt.hist(A , weights=A , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(A , F"na_prob_hist_{name}.png" ) ) plt.clf() def __UpperCAmelCase ( A : str , A : Dict , A : List[str] , A : int ) -> Optional[Any]: UpperCAmelCase_ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase_ : Optional[Any] = num_no_ans UpperCAmelCase_ : int = cur_score UpperCAmelCase_ : List[Any] = 0.0 UpperCAmelCase_ : Dict = sorted(A , key=lambda A : na_probs[k] ) for i, qid in enumerate(A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase_ : Tuple = scores[qid] else: if preds[qid]: UpperCAmelCase_ : Optional[int] = -1 else: UpperCAmelCase_ : int = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase_ : Dict = cur_score UpperCAmelCase_ : Dict = na_probs[qid] return 100.0 * best_score / len(A ), best_thresh def __UpperCAmelCase ( A : int , A : List[Any] , A : Union[str, Any] , A : Tuple , A : str , A : Union[str, Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = find_best_thresh(A , A , A , A ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = find_best_thresh(A , A , A , A ) UpperCAmelCase_ : List[str] = best_exact UpperCAmelCase_ : List[Any] = exact_thresh UpperCAmelCase_ : Any = best_fa UpperCAmelCase_ : str = fa_thresh def __UpperCAmelCase ( ) -> Tuple: with open(OPTS.data_file ) as f: UpperCAmelCase_ : Optional[int] = json.load(A ) UpperCAmelCase_ : str = dataset_json['''data'''] with open(OPTS.pred_file ) as f: UpperCAmelCase_ : List[Any] = json.load(A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase_ : List[str] = json.load(A ) else: UpperCAmelCase_ : List[str] = {k: 0.0 for k in preds} UpperCAmelCase_ : Optional[Any] = make_qid_to_has_ans(A ) # maps qid to True/False UpperCAmelCase_ : Optional[int] = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase_ : Dict = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_raw_scores(A , A ) UpperCAmelCase_ : Optional[int] = apply_no_ans_threshold(A , A , A , OPTS.na_prob_thresh ) UpperCAmelCase_ : Tuple = apply_no_ans_threshold(A , A , A , OPTS.na_prob_thresh ) UpperCAmelCase_ : int = make_eval_dict(A , A ) if has_ans_qids: UpperCAmelCase_ : Optional[int] = make_eval_dict(A , A , qid_list=A ) merge_eval(A , A , '''HasAns''' ) if no_ans_qids: UpperCAmelCase_ : Dict = make_eval_dict(A , A , qid_list=A ) merge_eval(A , A , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(A , A , A , A , A , A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(A , A , A , A , A , OPTS.out_image_dir ) histogram_na_prob(A , A , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(A , A , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(A , A ) else: print(json.dumps(A , indent=2 ) ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
541
0
def snake_case_ (__A : int ) -> str: if isinstance(__A , __A ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(__A , __A ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __lowerCAmelCase : Dict = False if num < 0: __lowerCAmelCase : int = True __lowerCAmelCase : List[str] = -num __lowerCAmelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__A ) for e in binary ) return "0b" + "".join(str(__A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
218
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[torch.FloatTensor] =None lowerCamelCase : torch.FloatTensor =None lowerCamelCase : Optional[Tuple[torch.FloatTensor]] =None lowerCamelCase : Optional[Tuple[torch.FloatTensor]] =None class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=5_12 , lowerCAmelCase : int="cls" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : int , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Dict = project_dim __lowerCAmelCase : Dict = pooler_fn __lowerCAmelCase : Any = learn_encoder __lowerCAmelCase : Optional[Any] = use_attention_mask class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple =[R"pooler", R"logit_scale"] lowerCamelCase : List[str] =[R"position_ids", R"predictions.decoder.bias"] lowerCamelCase : List[Any] ="roberta" lowerCamelCase : List[str] =RobertaSeriesConfig def __init__( self : Dict , lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : Any = XLMRobertaModel(lowerCAmelCase ) __lowerCAmelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase : Union[str, Any] = getattr(lowerCAmelCase , """has_pre_transformation""" , lowerCAmelCase ) if self.has_pre_transformation: __lowerCAmelCase : Dict = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase : Optional[int] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : int = self.base_model( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase , ) if self.has_pre_transformation: __lowerCAmelCase : Union[str, Any] = outputs["""hidden_states"""][-2] __lowerCAmelCase : str = self.pre_LN(lowerCAmelCase ) __lowerCAmelCase : str = self.transformation_pre(lowerCAmelCase ) return TransformationModelOutput( projection_state=lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowerCAmelCase : Any = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
218
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __a: Optional[int] = logging.get_logger(__name__) __a: Any = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "t5" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __lowerCAmelCase=32128 , __lowerCAmelCase=512 , __lowerCAmelCase=64 , __lowerCAmelCase=2048 , __lowerCAmelCase=6 , __lowerCAmelCase=None , __lowerCAmelCase=8 , __lowerCAmelCase=32 , __lowerCAmelCase=128 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=1.0 , __lowerCAmelCase="relu" , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , **__lowerCAmelCase , ) -> Optional[int]: lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : int = d_kv lowercase__ : List[str] = d_ff lowercase__ : Optional[Any] = num_layers lowercase__ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : Optional[Any] = num_heads lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : str = dropout_rate lowercase__ : Tuple = layer_norm_epsilon lowercase__ : List[str] = initializer_factor lowercase__ : Dict = feed_forward_proj lowercase__ : Any = use_cache lowercase__ : Optional[int] = self.feed_forward_proj.split('''-''' ) lowercase__ : List[Any] = act_info[-1] lowercase__ : Optional[int] = act_info[0] == '''gated''' if len(__lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(__lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase , ) class UpperCAmelCase ( a__ ): '''simple docstring''' @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: lowercase__ : int = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowercase__ : Any = '''past_encoder_sequence + sequence''' lowercase__ : List[Any] = {0: '''batch'''} lowercase__ : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} lowercase__ : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='''inputs''' ) return common_inputs @property def _lowerCAmelCase( self ) -> int: return 13
152
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class a__ ( _lowercase ): __magic_name__ : List[Any] = "markuplm" def __init__(self : List[Any], __UpperCAmelCase : int=30522, __UpperCAmelCase : Tuple=768, __UpperCAmelCase : str=12, __UpperCAmelCase : List[Any]=12, __UpperCAmelCase : Tuple=3072, __UpperCAmelCase : Union[str, Any]="gelu", __UpperCAmelCase : Union[str, Any]=0.1, __UpperCAmelCase : str=0.1, __UpperCAmelCase : Union[str, Any]=512, __UpperCAmelCase : Dict=2, __UpperCAmelCase : int=0.02, __UpperCAmelCase : Optional[Any]=1e-12, __UpperCAmelCase : Union[str, Any]=0, __UpperCAmelCase : Optional[Any]=0, __UpperCAmelCase : Union[str, Any]=2, __UpperCAmelCase : int=256, __UpperCAmelCase : Tuple=1024, __UpperCAmelCase : Optional[Any]=216, __UpperCAmelCase : str=1001, __UpperCAmelCase : Optional[Any]=32, __UpperCAmelCase : Dict=50, __UpperCAmelCase : Union[str, Any]="absolute", __UpperCAmelCase : Tuple=True, __UpperCAmelCase : List[str]=None, **__UpperCAmelCase : Union[str, Any], ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : int = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : List[Any] = max_depth SCREAMING_SNAKE_CASE : Any = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : int = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Dict = tag_pad_id SCREAMING_SNAKE_CASE : Optional[int] = subs_pad_id SCREAMING_SNAKE_CASE : int = xpath_unit_hidden_size
715
'''simple docstring''' import heapq import sys import numpy as np snake_case_ = tuple[int, int] class a__ : def __init__(self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Tuple = set() def lowercase__ (self : Any ) -> Dict: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def lowercase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" return len(self.elements ) == 0 def lowercase__ (self : Dict, __UpperCAmelCase : int, __UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" if item not in self.set: heapq.heappush(self.elements, (priority, item) ) self.set.add(__UpperCAmelCase ) else: # update # print("update", item) SCREAMING_SNAKE_CASE : List[Any] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements, (pro, xxx) ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if item in self.set: self.set.remove(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements, (prito, yyy) ) def lowercase__ (self : Tuple ) -> Dict: """simple docstring""" return self.elements[0][1] def lowercase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = heapq.heappop(self.elements ) self.set.remove(__UpperCAmelCase ) return (priority, item) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # euclidean distance SCREAMING_SNAKE_CASE : str = np.array(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) return np.linalg.norm(a - b ) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # integer division by time variable return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :dict[TPos, float] ): SCREAMING_SNAKE_CASE : List[str] = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return ans def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = np.chararray((n, n) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = '''*''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE : Tuple = '''#''' SCREAMING_SNAKE_CASE : List[Any] = '''-''' SCREAMING_SNAKE_CASE : Any = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = x # print(x) SCREAMING_SNAKE_CASE : int = '''-''' SCREAMING_SNAKE_CASE : Dict = back_pointer[x] SCREAMING_SNAKE_CASE : int = '''-''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = back_pointer[goal] while x != start: print(_SCREAMING_SNAKE_CASE , end=''' ''' ) SCREAMING_SNAKE_CASE : Optional[int] = back_pointer[x] print(_SCREAMING_SNAKE_CASE ) sys.exit() def __lowercase (_SCREAMING_SNAKE_CASE :TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Optional[int] , ): for itera in range(_SCREAMING_SNAKE_CASE ): open_list[itera].remove_element(_SCREAMING_SNAKE_CASE ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = s SCREAMING_SNAKE_CASE : List[Any] = (x - 1, y) SCREAMING_SNAKE_CASE : Optional[Any] = (x + 1, y) SCREAMING_SNAKE_CASE : List[Any] = (x, y + 1) SCREAMING_SNAKE_CASE : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = -1 SCREAMING_SNAKE_CASE : List[str] = float('''inf''' ) if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE : List[str] = g_function[s] + 1 SCREAMING_SNAKE_CASE : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if neighbours not in close_list_inad: for var in range(1 , _SCREAMING_SNAKE_CASE ): if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): open_list[j].put( _SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase (): SCREAMING_SNAKE_CASE : Optional[int] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case_ = make_common_ground() snake_case_ = blocks_blk # hyper parameters snake_case_ = 1 snake_case_ = 1 snake_case_ = 20 snake_case_ = 3 # one consistent and two other inconsistent # start and end destination snake_case_ = (0, 0) snake_case_ = (n - 1, n - 1) snake_case_ = 1 def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Any = {start: 0, goal: float('''inf''' )} SCREAMING_SNAKE_CASE : Tuple = {start: -1, goal: -1} SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = set() for i in range(_SCREAMING_SNAKE_CASE ): open_list.append(PriorityQueue() ) open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , _SCREAMING_SNAKE_CASE ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = open_list[i].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_inad.append(_SCREAMING_SNAKE_CASE ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : List[Any] = open_list[0].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_anchor.append(_SCREAMING_SNAKE_CASE ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
0
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __a: Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: str = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } __a: List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } __a: Dict = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } __a: Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __a: Tuple = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __a: Optional[int] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a: List[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __a: Optional[int] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __a: Optional[Any] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __call__( self : int , lowerCamelCase : int , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = titles if not isinstance(lowerCamelCase , lowerCamelCase ) else [titles] _UpperCAmelCase = texts if not isinstance(lowerCamelCase , lowerCamelCase ) else [texts] _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = questions if not isinstance(lowerCamelCase , lowerCamelCase ) else [questions] * n_passages if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( f"""There should be as many titles than texts but got {len(lowerCamelCase )} titles and {len(lowerCamelCase )} texts.""" ) _UpperCAmelCase = super().__call__(lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["""input_ids"""] _UpperCAmelCase = super().__call__(lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["""input_ids"""] _UpperCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase , lowerCamelCase ) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase = attention_mask return self.pad(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : BatchEncoding , lowerCamelCase : DPRReaderOutput , lowerCamelCase : int = 16 , lowerCamelCase : int = 64 , lowerCamelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input["""input_ids"""] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = sorted(range(lowerCamelCase ) , reverse=lowerCamelCase , key=relevance_logits.__getitem__ ) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase , top_spans=lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase , start_index=lowerCamelCase , end_index=lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int , lowerCamelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) _UpperCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) _UpperCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = ['''input_ids''', '''attention_mask''']
108
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[int] = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' from timeit import timeit __snake_case : List[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: A_ = 0 A_ = len(_UpperCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: A_ = len(_UpperCamelCase ) // 2 A_ = len(_UpperCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: if len(_UpperCamelCase ) <= 2: return True if s[0] == s[len(_UpperCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: return s == s[::-1] def _UpperCAmelCase ( _UpperCamelCase : str ) -> None: A_ = F'''all({name}(key) is value for key, value in test_data.items())''' A_ = F'''from __main__ import test_data, {name}''' A_ = 50_00_00 A_ = timeit(stmt=_UpperCamelCase, setup=_UpperCamelCase, number=_UpperCamelCase ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
174
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A = 4 __A = 3 class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" pass def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> Optional[Any]: """simple docstring""" for shard in shards: for i in range(__A ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" __lowerCamelCase = int(os.environ['RANK'] ) __lowerCamelCase = int(os.environ['WORLD_SIZE'] ) __lowerCamelCase = ArgumentParser() parser.add_argument('--streaming' , type=__A ) parser.add_argument('--local_rank' , type=__A ) parser.add_argument('--num_workers' , type=__A , default=0 ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.streaming __lowerCamelCase = args.num_workers __lowerCamelCase = {'shards': [F"""shard_{shard_idx}""" for shard_idx in range(__A )]} __lowerCamelCase = IterableDataset.from_generator(__A , gen_kwargs=__A ) if not streaming: __lowerCamelCase = Dataset.from_list(list(__A ) ) __lowerCamelCase = split_dataset_by_node(__A , rank=__A , world_size=__A ) __lowerCamelCase = torch.utils.data.DataLoader(__A , num_workers=__A ) __lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
469
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = 'fnet' def __init__(self : List[str] , __UpperCAmelCase : Optional[Any]=3_2_0_0_0 , __UpperCAmelCase : List[Any]=7_6_8 , __UpperCAmelCase : Optional[Any]=1_2 , __UpperCAmelCase : Optional[int]=3_0_7_2 , __UpperCAmelCase : Tuple="gelu_new" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : str=5_1_2 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Optional[int]=1E-12 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : int=5_1_2 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Union[str, Any]=2 , **__UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_tpu_fourier_optimizations UpperCAmelCase__ = tpu_short_seq_length
486
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : '''simple docstring''' pass
436
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} UpperCAmelCase_ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowercase_ : Optional[int] = bs[:] lowercase_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowercase_ : int = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def __magic_name__ ( lowercase ) -> Optional[int]: """simple docstring""" lowercase_ : str = set() lowercase_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : List[str] = char return pairs class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self, snake_case__, snake_case__, snake_case__="replace", snake_case__="<s>", snake_case__="</s>", snake_case__="</s>", snake_case__="<s>", snake_case__="<unk>", snake_case__="<pad>", snake_case__="<mask>", snake_case__=False, **snake_case__, ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else bos_token lowercase_ : List[Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else eos_token lowercase_ : Dict = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else sep_token lowercase_ : Union[str, Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else cls_token lowercase_ : List[Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else unk_token lowercase_ : List[str] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Tuple = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else mask_token super().__init__( errors=snake_case__, bos_token=snake_case__, eos_token=snake_case__, unk_token=snake_case__, sep_token=snake_case__, cls_token=snake_case__, pad_token=snake_case__, mask_token=snake_case__, add_prefix_space=snake_case__, **snake_case__, ) with open(snake_case__, encoding="""utf-8""" ) as vocab_handle: lowercase_ : Optional[Any] = json.load(snake_case__ ) lowercase_ : Optional[int] = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = errors # how to handle errors in decoding lowercase_ : Dict = bytes_to_unicode() lowercase_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__, encoding="""utf-8""" ) as merges_handle: lowercase_ : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] lowercase_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ : List[Any] = dict(zip(snake_case__, range(len(snake_case__ ) ) ) ) lowercase_ : str = {} lowercase_ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def snake_case__ ( self ) -> Any: """simple docstring""" return len(self.encoder ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def snake_case__ ( self, snake_case__ ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowercase_ : Optional[Any] = tuple(snake_case__ ) lowercase_ : Optional[Any] = get_pairs(snake_case__ ) if not pairs: return token while True: lowercase_ : Optional[Any] = min(snake_case__, key=lambda snake_case__ : self.bpe_ranks.get(snake_case__, float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : int = bigram lowercase_ : Tuple = [] lowercase_ : Dict = 0 while i < len(snake_case__ ): try: lowercase_ : List[Any] = word.index(snake_case__, snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : Optional[int] = tuple(snake_case__ ) lowercase_ : Optional[int] = new_word if len(snake_case__ ) == 1: break else: lowercase_ : List[str] = get_pairs(snake_case__ ) lowercase_ : Union[str, Any] = """ """.join(snake_case__ ) lowercase_ : str = word return word def snake_case__ ( self, snake_case__ ) -> int: """simple docstring""" lowercase_ : Tuple = [] for token in re.findall(self.pat, snake_case__ ): lowercase_ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(""" """ ) ) return bpe_tokens def snake_case__ ( self, snake_case__ ) -> Optional[int]: """simple docstring""" return self.encoder.get(snake_case__, self.encoder.get(self.unk_token ) ) def snake_case__ ( self, snake_case__ ) -> Any: """simple docstring""" return self.decoder.get(snake_case__ ) def snake_case__ ( self, snake_case__ ) -> Any: """simple docstring""" lowercase_ : str = """""".join(snake_case__ ) lowercase_ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""", errors=self.errors ) return text def snake_case__ ( self, snake_case__, snake_case__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ : Any = os.path.join( snake_case__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase_ : Union[str, Any] = os.path.join( snake_case__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=snake_case__, ensure_ascii=snake_case__ ) + """\n""" ) lowercase_ : Optional[int] = 0 with open(snake_case__, """w""", encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowercase_ : Optional[Any] = token_index writer.write(""" """.join(snake_case__ ) + """\n""" ) index += 1 return vocab_file, merge_file def snake_case__ ( self, snake_case__, snake_case__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] lowercase_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, snake_case__, snake_case__ = None, snake_case__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__, token_ids_a=snake_case__, already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def snake_case__ ( self, snake_case__, snake_case__ = None ) -> List[int]: """simple docstring""" lowercase_ : List[str] = [self.sep_token_id] lowercase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self, snake_case__, snake_case__=False, **snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = kwargs.pop("""add_prefix_space""", self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): lowercase_ : str = """ """ + text return (text, kwargs)
436
1
from graphs.minimum_spanning_tree_kruskal import kruskal def snake_case () -> int: '''simple docstring''' _snake_case : Optional[Any] = 9 _snake_case : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case : Optional[int] = kruskal(__lowercase , __lowercase ) _snake_case : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowercase ) == sorted(__lowercase )
670
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Tuple = Rectangle(height=0.5 , width=0.5 ) _snake_case : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : List[str] = [mem.copy() for i in range(6 )] _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : int = Text("CPU" , font_size=24 ) _snake_case : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : int = [mem.copy() for i in range(4 )] _snake_case : Dict = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = Text("GPU" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Model" , font_size=24 ) _snake_case : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : str = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) _snake_case : List[Any] = [mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("Loaded Checkpoint" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case : List[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) _snake_case : int = [] _snake_case : str = [] for i, rect in enumerate(lowercase_ ): _snake_case : Dict = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) _snake_case : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
670
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a__ : str = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ : bool = field(default=UpperCamelCase , metadata={"help": "Whether tp freeze the encoder."}) snake_case__ : bool = field(default=UpperCamelCase , metadata={"help": "Whether to freeze the embeddings."}) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) snake_case__ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) snake_case__ : Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) snake_case__ : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."}) snake_case__ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."}) snake_case__ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "Source language id for translation."}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "Target language id for translation."}) snake_case__ : Optional[int] = field(default=UpperCamelCase , metadata={"help": "# num_beams to use for evaluation."}) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , f"""{split}_results.json""" ) ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowerCAmelCase_ , lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets __SCREAMING_SNAKE_CASE = ( dataset_class( lowerCAmelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) __SCREAMING_SNAKE_CASE = ( dataset_class( lowerCAmelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __SCREAMING_SNAKE_CASE = ( dataset_class( lowerCAmelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer __SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task , lowerCAmelCase_ ) if training_args.predict_with_generate else None ) __SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , data_args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , data_collator=SeqaSeqDataCollator( lowerCAmelCase_ , lowerCAmelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info("*** Train ***" ) __SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="val" ) __SCREAMING_SNAKE_CASE = data_args.n_val __SCREAMING_SNAKE_CASE = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) __SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=lowerCAmelCase_ , metric_key_prefix="test" ) __SCREAMING_SNAKE_CASE = test_output.metrics __SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): __SCREAMING_SNAKE_CASE = round(metrics["test_loss"] , 4 ) handle_metrics("test" , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) if training_args.predict_with_generate: __SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = lmap(str.strip , lowerCAmelCase_ ) write_txt_file(lowerCAmelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
553
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Any: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int ) -> Any: __SCREAMING_SNAKE_CASE = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __SCREAMING_SNAKE_CASE = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCAmelCase__ , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase__ , py_version="py36" , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: # create estimator __SCREAMING_SNAKE_CASE = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __SCREAMING_SNAKE_CASE = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
553
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): # Load configuration defined in the metadata file with open(lowerCamelCase ) as metadata_file: _SCREAMING_SNAKE_CASE : int = json.load(lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = LukeConfig(use_entity_aware_attention=lowerCamelCase, **metadata['model_config'] ) # Load in the weights from the checkpoint_path _SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(lowerCamelCase, map_location='cpu' ) # Load the entity vocab file _SCREAMING_SNAKE_CASE : Optional[int] = load_entity_vocab(lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _SCREAMING_SNAKE_CASE : Dict = AddedToken('<ent>', lstrip=lowerCamelCase, rstrip=lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = AddedToken('<ent2>', lstrip=lowerCamelCase, rstrip=lowerCamelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase, LukeTokenizer.vocab_files_names['entity_vocab_file'] ), 'w' ) as f: json.dump(lowerCamelCase, lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = LukeTokenizer.from_pretrained(lowerCamelCase ) # Initialize the embeddings of the special tokens _SCREAMING_SNAKE_CASE : str = state_dict['embeddings.word_embeddings.weight'] _SCREAMING_SNAKE_CASE : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE : Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE : str = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _SCREAMING_SNAKE_CASE : List[str] = f"""encoder.layer.{layer_index}.attention.self.""" _SCREAMING_SNAKE_CASE : Optional[int] = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE : int = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _SCREAMING_SNAKE_CASE : Any = state_dict['entity_embeddings.entity_embeddings.weight'] _SCREAMING_SNAKE_CASE : Union[str, Any] = entity_emb[entity_vocab['[MASK]']] _SCREAMING_SNAKE_CASE : Tuple = LukeModel(config=lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase ) if not (len(lowerCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(lowerCamelCase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs _SCREAMING_SNAKE_CASE : Dict = LukeTokenizer.from_pretrained(lowerCamelCase, task='entity_classification' ) _SCREAMING_SNAKE_CASE : List[str] = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _SCREAMING_SNAKE_CASE : Optional[int] = (39, 42) _SCREAMING_SNAKE_CASE : int = tokenizer(lowerCamelCase, entity_spans=[span], add_prefix_space=lowerCamelCase, return_tensors='pt' ) _SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase ) # Verify word hidden states if model_size == "large": _SCREAMING_SNAKE_CASE : str = torch.Size((1, 42, 1_024) ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 42, 768) ) _SCREAMING_SNAKE_CASE : int = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], lowerCamelCase, atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1, 1_024) ) _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1, 768) ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], lowerCamelCase, atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase ) ) model.save_pretrained(lowerCamelCase ) def lowercase__ ( lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = {} with open(lowerCamelCase, 'r', encoding='utf-8' ) as f: for index, line in enumerate(lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = line.rstrip().split('\t' ) _SCREAMING_SNAKE_CASE : str = index return entity_vocab if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowerCAmelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
621
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> jnp.ndarray: for processor in self: _SCREAMING_SNAKE_CASE : int = inspect.signature(processor.__call__ ).parameters if len(lowerCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) _SCREAMING_SNAKE_CASE : Any = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) _SCREAMING_SNAKE_CASE : Tuple = temperature def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = scores / self.temperature return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = top_p _SCREAMING_SNAKE_CASE : Optional[int] = filter_value _SCREAMING_SNAKE_CASE : Any = min_tokens_to_keep def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = lax.top_k(lowerCAmelCase_ , scores.shape[-1] ) _SCREAMING_SNAKE_CASE : Dict = jnp.full_like(lowerCAmelCase_ , self.filter_value ) _SCREAMING_SNAKE_CASE : int = jax.nn.softmax(lowerCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(lowerCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCAmelCase_ ) # min tokens to keep _SCREAMING_SNAKE_CASE : Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = jax.lax.sort_key_val(lowerCAmelCase_ , lowerCAmelCase_ )[-1] return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> Tuple: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) _SCREAMING_SNAKE_CASE : Tuple = max(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = filter_value def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = scores.shape _SCREAMING_SNAKE_CASE : int = jnp.full(batch_size * vocab_size , self.filter_value ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = lax.top_k(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.broadcast_to((jnp.arange(lowerCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _SCREAMING_SNAKE_CASE : List[Any] = topk_scores.flatten() _SCREAMING_SNAKE_CASE : Dict = topk_indices.flatten() + shift _SCREAMING_SNAKE_CASE : List[str] = next_scores_flat.at[topk_indices_flat].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = next_scores_flat.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = bos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : int = 1 - jnp.bool_(cur_len - 1 ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = max_length _SCREAMING_SNAKE_CASE : Any = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : List[Any] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min_length _SCREAMING_SNAKE_CASE : str = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _SCREAMING_SNAKE_CASE : Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = list(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = begin_index def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Any = 1 - jnp.bool_(cur_len - self.begin_index ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = list(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = dict(lowerCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _SCREAMING_SNAKE_CASE : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _SCREAMING_SNAKE_CASE : Dict = force_token_array.at[index].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : str = jnp.intaa(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: def _force_token(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : str = scores.shape[0] _SCREAMING_SNAKE_CASE : List[Any] = self.force_token_array[generation_idx] _SCREAMING_SNAKE_CASE : Dict = jnp.ones_like(lowerCAmelCase_ , dtype=scores.dtype ) * -float('inf' ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _SCREAMING_SNAKE_CASE : str = lax.dynamic_update_slice(lowerCAmelCase_ , lowerCAmelCase_ , (0, current_token) ) return new_scores _SCREAMING_SNAKE_CASE : Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCAmelCase_ ) , lambda: scores , ) , ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Tuple = generate_config.eos_token_id _SCREAMING_SNAKE_CASE : str = generate_config.no_timestamps_token_id _SCREAMING_SNAKE_CASE : Optional[int] = generate_config.no_timestamps_token_id + 1 _SCREAMING_SNAKE_CASE : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCAmelCase_ , 'max_initial_timestamp_index' ): _SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.max_initial_timestamp_index else: _SCREAMING_SNAKE_CASE : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _SCREAMING_SNAKE_CASE : Dict = model_config.vocab_size def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: # suppress <|notimestamps|> which is handled by without_timestamps _SCREAMING_SNAKE_CASE : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : int = jnp.where((cur_len - self.begin_index) >= 1 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Any = jnp.where((cur_len - self.begin_index) < 2 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCAmelCase_ , lowerCAmelCase_ , ) return jnp.where( lowerCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(cur_len == self.begin_index , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Tuple = self.timestamp_begin + self.max_initial_timestamp_index _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where( lowerCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowerCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _SCREAMING_SNAKE_CASE : str = jax.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Dict = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) return scores
621
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int = 0 ): lowercase_ : List[str] = length or len(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase_ , lowercase_ : int = list_data[i + 1], list_data[i] lowercase_ : int = True return list_data if not swapped else bubble_sort(__SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
477
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'switch_transformers' lowercase = ['past_key_values'] lowercase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self ,__UpperCamelCase=3_2128 ,__UpperCamelCase=768 ,__UpperCamelCase=64 ,__UpperCamelCase=2048 ,__UpperCamelCase=64 ,__UpperCamelCase=12 ,__UpperCamelCase=3 ,__UpperCamelCase=12 ,__UpperCamelCase=3 ,__UpperCamelCase=12 ,__UpperCamelCase=8 ,__UpperCamelCase=False ,__UpperCamelCase=0.01 ,__UpperCamelCase="float32" ,__UpperCamelCase=False ,__UpperCamelCase=32 ,__UpperCamelCase=128 ,__UpperCamelCase=0.1 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=0.001 ,__UpperCamelCase=0.001 ,__UpperCamelCase=1.0 ,__UpperCamelCase="relu" ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=0 ,__UpperCamelCase=1 ,**__UpperCamelCase ,) -> str: '''simple docstring''' lowercase_ : List[str] = vocab_size lowercase_ : Optional[Any] = d_model lowercase_ : Dict = d_kv lowercase_ : Dict = d_ff lowercase_ : str = num_sparse_encoder_layers lowercase_ : List[str] = num_layers lowercase_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase_ : Tuple = self.num_layers // self.num_sparse_encoder_layers else: lowercase_ : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase_ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase_ : List[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase_ : List[Any] = num_heads lowercase_ : Dict = num_experts lowercase_ : List[str] = expert_capacity lowercase_ : Optional[Any] = router_bias lowercase_ : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase_ : Optional[Any] = router_dtype lowercase_ : Union[str, Any] = router_ignore_padding_tokens lowercase_ : Any = relative_attention_num_buckets lowercase_ : List[Any] = relative_attention_max_distance lowercase_ : str = dropout_rate lowercase_ : Any = layer_norm_epsilon lowercase_ : Tuple = initializer_factor lowercase_ : str = feed_forward_proj lowercase_ : List[Any] = use_cache lowercase_ : str = add_router_probs lowercase_ : Tuple = router_z_loss_coef lowercase_ : int = router_aux_loss_coef lowercase_ : List[str] = self.feed_forward_proj.split('-' ) lowercase_ : List[str] = act_info[-1] lowercase_ : Optional[Any] = act_info[0] == 'gated' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ : Union[str, Any] = 'gelu_new' super().__init__( pad_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,is_encoder_decoder=__UpperCamelCase ,**__UpperCamelCase ,)
477
1
"""simple docstring""" from __future__ import annotations import requests A = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Optional[int] = 1 , lowerCamelCase_: Optional[int] = "new" , lowerCamelCase_: Optional[int] = None ): """simple docstring""" snake_case : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_a ) - valid_terms ) ): snake_case : Union[str, Any] = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(_a ) snake_case : Tuple = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError snake_case : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_a )} snake_case : Optional[int] = {} for id_ in range(_a ): snake_case : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
import argparse from collections import defaultdict import yaml snake_case : Union[str, Any] = 'docs/source/en/_toctree.yml' def snake_case__ ( __lowercase ) -> int: """simple docstring""" A__ : str = defaultdict(__lowercase ) for doc in model_doc: counts[doc["local"]] += 1 A__ : List[Any] = [key for key, value in counts.items() if value > 1] A__ : Optional[int] = [] for duplicate_key in duplicates: A__ : List[str] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__lowercase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__lowercase , key=lambda __lowercase : s["title"].lower() ) def snake_case__ ( __lowercase=False ) -> Optional[Any]: """simple docstring""" with open(__lowercase , encoding="utf-8" ) as f: A__ : str = yaml.safe_load(f.read() ) # Get to the API doc A__ : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : Optional[Any] = content[api_idx]["sections"] # Then to the model doc A__ : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ : Union[str, Any] = api_doc[model_idx]["sections"] A__ : Union[str, Any] = [(idx, section) for idx, section in enumerate(__lowercase ) if "sections" in section] A__ : Union[str, Any] = False for idx, modality_doc in modalities_docs: A__ : Optional[int] = modality_doc["sections"] A__ : Dict = clean_model_doc_toc(__lowercase ) if old_modality_doc != new_modality_doc: A__ : str = True if overwrite: A__ : Dict = new_modality_doc if diff: if overwrite: A__ : Any = model_doc A__ : str = api_doc with open(__lowercase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowercase , allow_unicode=__lowercase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
706
from collections import Counter from timeit import timeit def snake_case__ ( __lowercase = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def snake_case__ ( __lowercase = "" ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return True A__ : Any = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ : dict[str, int] = {} for character in lower_case_input_str: A__ : Optional[int] = character_freq_dict.get(__lowercase , 0 ) + 1 A__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case__ ( __lowercase = "" ) -> None: """simple docstring""" print("\nFor string = " , __lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": snake_case : Dict = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) snake_case : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
182
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Dict = ["image_processor", "tokenizer"] lowercase : Optional[Any] = "AutoImageProcessor" lowercase : Dict = "AutoTokenizer" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: super().__init__(lowercase__ , lowercase__ ) A : Optional[int] =self.image_processor def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: A : Union[str, Any] =self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: A : Tuple =self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: A : Any =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE_ ( self : str , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: return ["input_ids", "attention_mask", "pixel_values"]
305
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase : List[str] = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = 0xe_0_0_0 _lowerCamelCase : Union[str, Any] = 0xe_0_0_1 _lowerCamelCase : Any = 0xe_0_0_2 _lowerCamelCase : List[str] = 0xe_0_0_3 _lowerCamelCase : Any = 0xe_0_0_4 # Maps special codepoints to human-readable names. _lowerCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=False , lowercase__=2_0_4_8 , **lowercase__ , ): '''simple docstring''' __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , model_max_length=lowercase__ , **lowercase__ , ) # Creates a mapping for looking up the IDs of special symbols. __A ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): __A =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __A ={ codepoint: name for name, codepoint in self._special_codepoints.items() } __A =UNICODE_VOCAB_SIZE __A =len(self._special_codepoints ) @property def __UpperCamelCase ( self ): '''simple docstring''' return self._unicode_vocab_size def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return list(lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' try: return ord(lowercase__ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase__ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return "".join(lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =[self.sep_token_id] __A =[self.cls_token_id] __A =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) __A =[1] + ([0] * len(lowercase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase__ )) + [1] return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =[self.sep_token_id] __A =[self.cls_token_id] __A =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' return ()
184
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A_ ( A__ ) -> Dict: a__ : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def A_ ( A__ ) -> Dict: a__ , a__ : Optional[Any] = emb.weight.shape a__ : int = nn.Linear(A__ , A__ , bias=A__ ) a__ : str = emb.weight.data return lin_layer def A_ ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ) -> List[str]: a__ : Dict = torch.load(A__ , map_location='cpu' )['model'] remove_ignore_keys_(A__ ) a__ : Union[str, Any] = state_dict['encoder.embed_tokens.weight'].shape[0] a__ : Optional[int] = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: a__ : Dict = 'relu' a__ : Any = state_dict['decoder.embed_tokens.weight'] a__ : Optional[Any] = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: a__ : List[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") lowercase : Optional[Any] = parser.parse_args() lowercase : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
392
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[Any] = '''vit_msn''' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-06 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase) a__ : Tuple = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Optional[Any] = hidden_act a__ : int = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : List[Any] = initializer_range a__ : Optional[int] = layer_norm_eps a__ : List[str] = image_size a__ : Optional[int] = patch_size a__ : List[str] = num_channels a__ : Dict = qkv_bias
392
1
import cmath import math def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: float , lowerCAmelCase_: float , lowerCAmelCase_: float , lowerCAmelCase_: float ): snake_case_ : List[Any] = math.radians(__UpperCamelCase ) snake_case_ : List[Any] = math.radians(__UpperCamelCase ) # Convert voltage and current to rectangular form snake_case_ : List[str] = cmath.rect(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = cmath.rect(__UpperCamelCase , __UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : int ) -> bool: """simple docstring""" if num < 0: return False _A = num _A = 0 while num > 0: _A = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
292
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __lowercase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : str = BloomTokenizerFast _SCREAMING_SNAKE_CASE : str = BloomTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[int] = "tokenizer_file" _SCREAMING_SNAKE_CASE : Optional[Any] = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def snake_case__ ( self) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''') tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self , **_A) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_A) def snake_case__ ( self) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : int = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] _UpperCAmelCase : List[Any] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] _UpperCAmelCase : Any = tokenizer.batch_encode_plus(_A)['''input_ids'''] self.assertListEqual(_A , _A) _UpperCAmelCase : Any = tokenizer.batch_decode(_A) self.assertListEqual(_A , _A) def snake_case__ ( self , _A=6) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase : List[Any] = '''This is a simple input''' _UpperCAmelCase : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : int = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : Optional[int] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(_A , max_length=_A) tokenizer_r.encode_plus(_A , max_length=_A) tokenizer_r.batch_encode_plus(_A , max_length=_A) tokenizer_r.encode(_A , max_length=_A) tokenizer_r.batch_encode_plus(_A , max_length=_A) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''') _UpperCAmelCase : Tuple = None # Hotfixing padding = None self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''') # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''') # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''') # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''') # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : int = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=_A) _UpperCAmelCase : Tuple = next(iter(_A))['''premise'''] # pick up one data _UpperCAmelCase : List[Any] = list(sample_data.values()) _UpperCAmelCase : Any = list(map(tokenizer.encode , _A)) _UpperCAmelCase : List[str] = [tokenizer.decode(_A , clean_up_tokenization_spaces=_A) for x in output_tokens] self.assertListEqual(_A , _A) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
186
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A_ ( pl.LightningModule ): '''simple docstring''' def __init__( self , _A) -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase : Dict = model _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : List[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( __A : str , __A : str , __A : str ) -> List[str]: # load longformer model from model identifier _UpperCAmelCase : Optional[Any] = LongformerModel.from_pretrained(__A ) _UpperCAmelCase : Optional[Any] = LightningModel(__A ) _UpperCAmelCase : Optional[int] = torch.load(__A , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model _UpperCAmelCase : int = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
186
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=3_0 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=True , __lowerCAmelCase=1 / 2_5_5 , __lowerCAmelCase=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __magic_name__ :str = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} __magic_name__ :Union[str, Any] = parent __magic_name__ :Optional[Any] = batch_size __magic_name__ :Tuple = num_channels __magic_name__ :int = min_resolution __magic_name__ :Union[str, Any] = max_resolution __magic_name__ :Any = do_resize __magic_name__ :Any = size __magic_name__ :int = do_normalize __magic_name__ :Dict = image_mean __magic_name__ :Optional[int] = image_std __magic_name__ :int = do_rescale __magic_name__ :List[str] = rescale_factor __magic_name__ :Union[str, Any] = do_pad def A ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" if not batched: __magic_name__ :Optional[Any] = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): __magic_name__ , __magic_name__ :Tuple = image.size else: __magic_name__ , __magic_name__ :Optional[int] = image.shape[1], image.shape[2] if w < h: __magic_name__ :Tuple = int(self.size['''shortest_edge'''] * h / w ) __magic_name__ :Optional[Any] = self.size['''shortest_edge'''] elif w > h: __magic_name__ :Any = self.size['''shortest_edge'''] __magic_name__ :Optional[Any] = int(self.size['''shortest_edge'''] * w / h ) else: __magic_name__ :Tuple = self.size['''shortest_edge'''] __magic_name__ :List[str] = self.size['''shortest_edge'''] else: __magic_name__ :Optional[int] = [] for image in image_inputs: __magic_name__ , __magic_name__ :Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ :List[str] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] __magic_name__ :str = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = ConditionalDetrImageProcessor if is_vision_available() else None def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = ConditionalDetrImageProcessingTester(self ) @property def A ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) __magic_name__ :Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" # Initialize image_processing __magic_name__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input __magic_name__ :int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ :int = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) __magic_name__ :int = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ): """simple docstring""" # Initialize image_processing __magic_name__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input __magic_name__ :Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ :Any = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ :int = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ): """simple docstring""" # Initialize image_processing __magic_name__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input __magic_name__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ :Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ :Any = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ :Any = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A ( self ): """simple docstring""" # prepare image and target __magic_name__ :Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __magic_name__ :str = json.loads(f.read() ) __magic_name__ :List[Any] = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them __magic_name__ :Optional[int] = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) __magic_name__ :Any = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values __magic_name__ :Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) __magic_name__ :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area __magic_name__ :Any = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes __magic_name__ :Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) __magic_name__ :Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id __magic_name__ :Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd __magic_name__ :Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels __magic_name__ :List[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size __magic_name__ :List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size __magic_name__ :Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def A ( self ): """simple docstring""" # prepare image, target and masks_path __magic_name__ :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __magic_name__ :str = json.loads(f.read() ) __magic_name__ :int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} __magic_name__ :int = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __magic_name__ :str = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) __magic_name__ :int = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values __magic_name__ :Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) __magic_name__ :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area __magic_name__ :List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes __magic_name__ :Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) __magic_name__ :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id __magic_name__ :Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd __magic_name__ :Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels __magic_name__ :Optional[int] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks __magic_name__ :str = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size __magic_name__ :Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size __magic_name__ :Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
477
0
import string def _lowercase ( a_ : str ) -> Optional[int]: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __magic_name__ = '' for symbol in message: if symbol in string.ascii_uppercase: __magic_name__ = string.ascii_uppercase.find(lowerCAmelCase__ ) __magic_name__ = num - key if num < 0: __magic_name__ = num + len(string.ascii_uppercase ) __magic_name__ = translated + string.ascii_uppercase[num] else: __magic_name__ = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _lowercase ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ = input('Encrypted message: ' ) __magic_name__ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _lowercase ( a_ : Optional[Any] ,a_ : Dict ,a_ : Any ,a_ : Any=None ,a_ : Any=None ,a_ : List[str]=None ,a_ : Union[str, Any]=None ,a_ : Dict=None ,) -> Optional[Any]: '''simple docstring''' if attention_mask is None: __magic_name__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __magic_name__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __magic_name__ = torch.ones(config.encoder_layers ,config.encoder_attention_heads ,device=a_ ) if decoder_head_mask is None: __magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ ) if cross_attn_head_mask is None: __magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __UpperCamelCase : def __init__( self: Union[str, Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any]=13 , __UpperCamelCase: Tuple=7 , __UpperCamelCase: Dict=True , __UpperCamelCase: Optional[int]=False , __UpperCamelCase: str=99 , __UpperCamelCase: Optional[Any]=16 , __UpperCamelCase: List[Any]=2 , __UpperCamelCase: Optional[int]=4 , __UpperCamelCase: Tuple=4 , __UpperCamelCase: Optional[int]="relu" , __UpperCamelCase: Optional[Any]=0.1 , __UpperCamelCase: Dict=0.1 , __UpperCamelCase: int=0.0 , __UpperCamelCase: int=0.0 , __UpperCamelCase: List[Any]=20 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: List[Any]=1 , __UpperCamelCase: Tuple=0 , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.eos_token_id # Eos Token __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __magic_name__ = input_ids.clamp(self.pad_token_id + 1 ) __magic_name__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) __magic_name__ = self.get_config() __magic_name__ = prepare_mam_aaa_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ): '''simple docstring''' __magic_name__ = MaMaaaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() __magic_name__ = inputs_dict['input_ids'] __magic_name__ = inputs_dict['attention_mask'] __magic_name__ = inputs_dict['head_mask'] # first forward pass __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) __magic_name__, __magic_name__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['last_hidden_state'] __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ 'last_hidden_state' ] # select random slice __magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ = output_from_no_past[:, -3:, random_slice_idx].detach() __magic_name__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-2 ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: Any , __UpperCamelCase: int ): '''simple docstring''' __magic_name__ = MaMaaaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() __magic_name__ = model(**__UpperCamelCase ) __magic_name__ = outputs.encoder_last_hidden_state __magic_name__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) __magic_name__ = MaMaaaEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) __magic_name__ = MaMaaaDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _lowercase : Dict = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _lowercase : Tuple = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _lowercase : List[str] = True _lowercase : Dict = True _lowercase : Union[str, Any] = False _lowercase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = MaMaaaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __magic_name__ = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) __magic_name__, __magic_name__ = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info['missing_keys'] , [] ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __magic_name__ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __magic_name__ = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if not self.is_encoder_decoder: __magic_name__ = inputs['input_ids'] del inputs["input_ids"] else: __magic_name__ = inputs['input_ids'] __magic_name__ = inputs.get('decoder_input_ids' , __UpperCamelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCamelCase ) __magic_name__ = model.get_input_embeddings() if not self.is_encoder_decoder: __magic_name__ = wte(__UpperCamelCase ) else: __magic_name__ = wte(__UpperCamelCase ) __magic_name__ = wte(__UpperCamelCase ) with torch.no_grad(): model(**__UpperCamelCase )[0] def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs() __magic_name__ = input_dict['input_ids'] __magic_name__ = input_ids.ne(1 ).to(__UpperCamelCase ) __magic_name__ = MaMaaaForConditionalGeneration(__UpperCamelCase ).eval().to(__UpperCamelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ) model.generate(num_beams=4 , do_sample=__UpperCamelCase , early_stopping=__UpperCamelCase , num_return_sequences=3 ) def _lowercase ( a_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return torch.tensor(a_ ,dtype=torch.long ,device=a_ ) A__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' __magic_name__ = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) __magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) __magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) __magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase )[0] __magic_name__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here __magic_name__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) # change to intended input __magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) __magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) __magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase )[0] __magic_name__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here __magic_name__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) __magic_name__ = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __magic_name__ = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __magic_name__ = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors='pt' ) __magic_name__ = model.generate( input_ids=dct['input_ids'].to(__UpperCamelCase ) , attention_mask=dct['attention_mask'].to(__UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __magic_name__ = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __magic_name__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert generated == expected_en
184
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Dict ): '''simple docstring''' if isinstance(__lowerCamelCase, np.ndarray ): return list(tensor.shape ) __lowercase =tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic __lowercase =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def __UpperCamelCase ( lowercase__ : Any, lowercase__ : str = None, lowercase__ : List[Any] = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9, axis=__lowerCamelCase, name=__lowerCamelCase ) def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : Optional[int], lowercase__ : List[str], lowercase__ : List[str]=1E-5, lowercase__ : Optional[Any]=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase, __lowerCamelCase ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __lowercase =tf.nn.moments(__lowerCamelCase, axes=[axis], keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __lowercase =[1] * inputs.shape.rank __lowercase =shape_list(__lowerCamelCase )[axis] __lowercase =tf.reshape(__lowerCamelCase, __lowerCamelCase ) __lowercase =tf.reshape(__lowerCamelCase, __lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. __lowercase =tf.nn.batch_normalization( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, offset=__lowerCamelCase, scale=__lowerCamelCase, variance_epsilon=__lowerCamelCase, ) return outputs def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : Union[str, Any]=0, lowercase__ : int=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __lowercase =tf.shape(__lowerCamelCase ) __lowercase =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __lowercase =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 ) return tf.reshape(__lowerCamelCase, __lowerCamelCase ) def __UpperCamelCase ( lowercase__ : Tuple ): '''simple docstring''' if not isinstance(__lowerCamelCase, tf.Tensor ): __lowercase =tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __lowercase =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __lowercase =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __lowercase =( tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCamelCase ( lowercase__ : Optional[int], lowercase__ : Tuple, lowercase__ : Tuple = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( __lowerCamelCase, tf.cast(__lowerCamelCase, dtype=tensor.dtype ), message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ), ) def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : List[str], lowercase__ : Union[str, Any] ): '''simple docstring''' __lowercase =6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __lowercase =[x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __lowercase =np.asarray(__lowerCamelCase ) __lowercase =1 __lowercase =np.array_split(__lowerCamelCase, __lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __lowercase =np.array_split(__lowerCamelCase, __lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): __lowercase =chunk_data else: __lowercase =data def __UpperCamelCase ( lowercase__ : int, lowercase__ : Dict ): '''simple docstring''' if name in group.attrs: __lowercase =[n.decode('utf8' ) if hasattr(__lowerCamelCase, 'decode' ) else n for n in group.attrs[name]] else: __lowercase =[] __lowercase =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(__lowerCamelCase, 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' def _expand_single_ad_tensor(lowercase__ : Any ): if isinstance(__lowerCamelCase, tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase, axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor, __lowerCamelCase )
119
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : int=7 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=30 , lowerCamelCase : Dict=400 , lowerCamelCase : str=True , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=1 / 255 , lowerCamelCase : Any=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __snake_case : Optional[Any] = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = num_channels __snake_case : str = min_resolution __snake_case : int = max_resolution __snake_case : int = do_resize __snake_case : Tuple = size __snake_case : Any = do_normalize __snake_case : int = image_mean __snake_case : Tuple = image_std __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : str = do_pad def __snake_case ( self : Any ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ) -> List[str]: if not batched: __snake_case : Dict = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __snake_case , __snake_case : Dict = image.size else: __snake_case , __snake_case : List[str] = image.shape[1], image.shape[2] if w < h: __snake_case : Optional[int] = int(self.size["shortest_edge"] * h / w ) __snake_case : int = self.size["shortest_edge"] elif w > h: __snake_case : List[str] = self.size["shortest_edge"] __snake_case : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: __snake_case : List[Any] = self.size["shortest_edge"] __snake_case : Any = self.size["shortest_edge"] else: __snake_case : int = [] for image in image_inputs: __snake_case , __snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ConditionalDetrImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def __snake_case ( self : Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any] ) -> Optional[int]: __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def __snake_case ( self : Any ) -> Dict: __snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) __snake_case : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Dict: pass def __snake_case ( self : Tuple ) -> str: # Initialize image_processing __snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> str: # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> List[str]: # Initialize image_processing __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : int = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case ( self : Any ) -> Optional[int]: # prepare image and target __snake_case : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : List[Any] = {"image_id": 39769, "annotations": target} # encode them __snake_case : List[str] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) __snake_case : List[str] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : List[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __snake_case : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def __snake_case ( self : str ) -> Tuple: # prepare image, target and masks_path __snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : str = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __snake_case : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __snake_case : int = ConditionalDetrImageProcessor(format="coco_panoptic" ) __snake_case : str = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : Any = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __snake_case : List[Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __snake_case : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
81
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __lowerCAmelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , ) -> Any: output_path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , use_external_data_format=__lowerCAmelCase , enable_onnx_checker=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) else: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Dict: __lowercase : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase : List[str] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase : Union[str, Any] = '''cpu''' __lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=__lowerCAmelCase ).to(__lowerCAmelCase ) __lowercase : Dict = Path(__lowerCAmelCase ) # TEXT ENCODER __lowercase : str = pipeline.text_encoder.config.max_position_embeddings __lowercase : Dict = pipeline.text_encoder.config.hidden_size __lowercase : Dict = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__lowerCAmelCase , ) del pipeline.text_encoder # UNET __lowercase : List[str] = pipeline.unet.config.in_channels __lowercase : Optional[Any] = pipeline.unet.config.sample_size __lowercase : List[Any] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(2 ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(2 , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=__lowerCAmelCase , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__lowerCAmelCase , use_external_data_format=__lowerCAmelCase , ) __lowercase : Union[str, Any] = str(unet_path.absolute().as_posix() ) __lowercase : Optional[int] = os.path.dirname(__lowerCAmelCase ) __lowercase : Optional[Any] = onnx.load(__lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(__lowerCAmelCase ) os.mkdir(__lowerCAmelCase ) # collate external tensor files into one onnx.save_model( __lowerCAmelCase , __lowerCAmelCase , save_as_external_data=__lowerCAmelCase , all_tensors_to_one_file=__lowerCAmelCase , location='''weights.pb''' , convert_attribute=__lowerCAmelCase , ) del pipeline.unet # VAE ENCODER __lowercase : Optional[int] = pipeline.vae __lowercase : Dict = vae_encoder.config.in_channels __lowercase : List[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __lowercase : List[str] = lambda __lowerCAmelCase , __lowerCAmelCase : vae_encoder.encode(__lowerCAmelCase , __lowerCAmelCase )[0].sample() onnx_export( __lowerCAmelCase , model_args=( torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__lowerCAmelCase , ) # VAE DECODER __lowercase : Union[str, Any] = pipeline.vae __lowercase : Union[str, Any] = vae_decoder.config.latent_channels __lowercase : Any = vae_decoder.config.out_channels # forward only through the decoder part __lowercase : List[Any] = vae_encoder.decode onnx_export( __lowerCAmelCase , model_args=( torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __lowercase : Optional[int] = pipeline.safety_checker __lowercase : Optional[Any] = safety_checker.config.vision_config.num_channels __lowercase : Union[str, Any] = safety_checker.config.vision_config.image_size __lowercase : str = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__lowerCAmelCase , ) del pipeline.safety_checker __lowercase : Union[str, Any] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) __lowercase : int = pipeline.feature_extractor else: __lowercase : Optional[int] = None __lowercase : Tuple = None __lowercase : Optional[int] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__lowerCAmelCase ) print('''ONNX pipeline saved to''' , __lowerCAmelCase ) del pipeline del onnx_pipeline __lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(__lowerCAmelCase , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
712
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowerCAmelCase : """simple docstring""" def snake_case_ ( self : str ): torch.manual_seed(0 ) __lowercase : Optional[int] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Tuple = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase : List[str] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __lowercase : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase : Optional[int] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Dict = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase : Dict = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase : Any = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self : Any ): __lowercase : Tuple = self.get_dummy_components() __lowercase : Any = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : List[str] = self.get_dummy_inputs(_snake_case ) __lowercase : List[Any] = inputs['''prompt'''] __lowercase : int = inputs['''generator'''] __lowercase : Dict = inputs['''num_inference_steps'''] __lowercase : Optional[int] = inputs['''output_type'''] if "image" in inputs: __lowercase : Tuple = inputs['''image'''] else: __lowercase : Dict = None if "mask_image" in inputs: __lowercase : Tuple = inputs['''mask_image'''] else: __lowercase : List[Any] = None if "original_image" in inputs: __lowercase : List[Any] = inputs['''original_image'''] else: __lowercase : Optional[int] = None __lowercase , __lowercase : Optional[int] = pipe.encode_prompt(_snake_case ) # inputs with prompt converted to embeddings __lowercase : int = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __lowercase : Tuple = image if mask_image is not None: __lowercase : List[str] = mask_image if original_image is not None: __lowercase : List[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_snake_case , _snake_case , _snake_case ) __lowercase : List[str] = pipe(**_snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_snake_case ) __lowercase : List[Any] = self.pipeline_class.from_pretrained(_snake_case ) pipe_loaded.to(_snake_case ) pipe_loaded.set_progress_bar_config(disable=_snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_snake_case , _snake_case ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) __lowercase : int = self.get_dummy_inputs(_snake_case ) __lowercase : Union[str, Any] = inputs['''generator'''] __lowercase : Any = inputs['''num_inference_steps'''] __lowercase : Tuple = inputs['''output_type'''] # inputs with prompt converted to embeddings __lowercase : List[str] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __lowercase : Dict = image if mask_image is not None: __lowercase : Tuple = mask_image if original_image is not None: __lowercase : Any = original_image __lowercase : List[str] = pipe_loaded(**_snake_case )[0] __lowercase : Optional[int] = np.abs(to_np(_snake_case ) - to_np(_snake_case ) ).max() self.assertLess(_snake_case , 1E-4 ) def snake_case_ ( self : Optional[int] ): __lowercase : Union[str, Any] = self.get_dummy_components() __lowercase : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Dict = self.get_dummy_inputs(_snake_case ) __lowercase : Any = pipe(**_snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_snake_case ) __lowercase : Dict = self.pipeline_class.from_pretrained(_snake_case ) pipe_loaded.to(_snake_case ) pipe_loaded.set_progress_bar_config(disable=_snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase : Optional[Any] = self.get_dummy_inputs(_snake_case ) __lowercase : str = pipe_loaded(**_snake_case )[0] __lowercase : int = np.abs(to_np(_snake_case ) - to_np(_snake_case ) ).max() self.assertLess(_snake_case , 1E-4 )
284
0
"""simple docstring""" from math import factorial, pi def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int = 3_0 ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) snake_case_ : Union[str, Any] = float(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int = 3_0 ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) snake_case_ : int = float(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
480
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[str]] , SCREAMING_SNAKE_CASE__ : int , ): """simple docstring""" snake_case_ : Any = len(SCREAMING_SNAKE_CASE__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : list[list[str]] = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE__ ) print("""""" ) print(len(SCREAMING_SNAKE_CASE__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
480
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' for param in module.parameters(): lowerCamelCase__ =False def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ ="cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase__ ="mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' lowerCamelCase__ =plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def lowerCamelCase_ ( ) -> str: '''simple docstring''' lowerCamelCase__ =datetime.now() lowerCamelCase__ =current_time.strftime("%H:%M:%S" ) return timestamp
132
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a =get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp a =5 a =10 @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( __lowerCAmelCase , unittest.TestCase ): A__ : Dict = SpeechaTextTokenizer A__ : Any = False A__ : Any = True def _a ( self ): super().setUp() lowerCamelCase__ =sp.SentencePieceProcessor() spm_model.Load(_lowerCamelCase ) lowerCamelCase__ =["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowerCamelCase ) )] lowerCamelCase__ =dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowerCamelCase__ =Path(self.tmpdirname ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCamelCase__ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ): lowerCamelCase__ ="<pad>" lowerCamelCase__ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_lowerCamelCase ) , 1001 ) def _a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def _a ( self ): lowerCamelCase__ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase__ =tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [289, 50, 14, 174, 386] , ) lowerCamelCase__ =tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCamelCase__ =tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase__ =tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _a ( self ): # fmt: off lowerCamelCase__ ={"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class __UpperCAmelCase ( unittest.TestCase ): A__ : Optional[int] = '''valhalla/s2t_mustc_multilinguial_medium''' A__ : Optional[int] = '''C\'est trop cool''' A__ : Optional[Any] = '''Esto es genial''' @classmethod def _a ( cls ): lowerCamelCase__ =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _a ( self ): self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def _a ( self ): self.assertEqual(self.tokenizer.vocab_size , 10000 ) def _a ( self ): self.assertIn(_lowerCamelCase , self.tokenizer.all_special_ids ) lowerCamelCase__ =[ES_CODE, 4, 1601, 47, 7647, 2] lowerCamelCase__ =self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) lowerCamelCase__ =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ ="fr" lowerCamelCase__ =self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowerCamelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _a ( self ): lowerCamelCase__ ="fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCamelCase__ ="es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
132
1
__UpperCamelCase: str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase: Tuple = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] , _lowercase : int , _lowercase : list[bool] ) -> list[int]: '''simple docstring''' lowercase__ : str = True lowercase__ : int = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_lowercase , _lowercase , _lowercase ) order.append(_lowercase ) return order def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] , _lowercase : int , _lowercase : list[bool] ) -> list[int]: '''simple docstring''' lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_lowercase , _lowercase , _lowercase ) return component def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' lowercase__ : Optional[int] = len(_lowercase ) * [False] lowercase__ : dict[int, list[int]] = {vert: [] for vert in range(len(_lowercase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_lowercase ) lowercase__ : Dict = [] for i, was_visited in enumerate(_lowercase ): if not was_visited: order += topology_sort(_lowercase , _lowercase , _lowercase ) lowercase__ : Dict = [] lowercase__ : Optional[Any] = len(_lowercase ) * [False] for i in range(len(_lowercase ) ): lowercase__ : List[Any] = order[len(_lowercase ) - i - 1] if not visited[vert]: lowercase__ : Tuple = find_components(_lowercase , _lowercase , _lowercase ) components_list.append(_lowercase ) return components_list
266
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = PriorTransformer _A = "hidden_states" @property def snake_case__( self: Union[str, Any] ): lowercase__ : List[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 7 lowercase__ : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: int, lowerCamelCase_: Dict=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Tuple = 4 lowercase__ : List[Any] = 8 lowercase__ : List[str] = 7 lowercase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__( self: str ): return (4, 8) @property def snake_case__( self: List[str] ): return (4, 8) def snake_case__( self: Dict ): lowercase__ : int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowercase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case__( self: int ): lowercase__ , lowercase__ : Dict = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy', output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(lowerCamelCase_ ) lowercase__ : Tuple = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__( self: str ): lowercase__ , lowercase__ : List[Any] = self.prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : List[str] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2], lowerCamelCase_ ) def snake_case__( self: Union[str, Any] ): lowercase__ : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowercase__ : Optional[int] = model.to(lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'set_default_attn_processor' ): model.set_default_attn_processor() lowercase__ : List[str] = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : str = model(**lowerCamelCase_ )[0] lowercase__ : int = output[0, :5].flatten().cpu() print(lowerCamelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : List[str] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(lowerCamelCase_, lowerCamelCase_, rtol=1E-2 ) ) @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__( self: Tuple, lowerCamelCase_: Union[str, Any]=1, lowerCamelCase_: Tuple=768, lowerCamelCase_: Dict=77, lowerCamelCase_: Union[str, Any]=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Dict = batch_size lowercase__ : Dict = embedding_dim lowercase__ : Dict = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def snake_case__( self: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: str ): lowercase__ : List[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior', subfolder='prior' ) model.to(lowerCamelCase_ ) lowercase__ : Optional[int] = self.get_dummy_seed_input(seed=lowerCamelCase_ ) with torch.no_grad(): lowercase__ : List[str] = model(**lowerCamelCase_ )[0] assert list(sample.shape ) == [1, 768] lowercase__ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowerCamelCase_ ) lowercase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_, lowerCamelCase_, atol=1E-3 )
266
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=[0.5, 0.5, 0.5] , _lowercase=[0.5, 0.5, 0.5] , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Union[str, Any] = min_resolution lowerCAmelCase_ : str = max_resolution lowerCAmelCase_ : str = do_resize lowerCAmelCase_ : List[str] = size if size is not None else {"""height""": 18, """width""": 20} lowerCAmelCase_ : Tuple = do_thumbnail lowerCAmelCase_ : str = do_align_axis lowerCAmelCase_ : Optional[Any] = do_pad lowerCAmelCase_ : List[str] = do_normalize lowerCAmelCase_ : Tuple = image_mean lowerCAmelCase_ : Any = image_std def UpperCAmelCase__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase__ ( __A , unittest.TestCase ): __UpperCamelCase = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """do_thumbnail""" ) ) self.assertTrue(hasattr(_lowercase , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_lowercase , """do_pad""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowerCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def UpperCAmelCase__ ( self ): pass @is_flaky() def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input lowerCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ : Union[str, Any] = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ : Any = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input lowerCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ : str = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
719
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase_ : List[str] = """hf-internal-testing/tiny-random-bert""" UpperCAmelCase_ : List[Any] = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") UpperCAmelCase_ : Tuple = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Union[str, Any] = cached_file(_lowercase , _lowercase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_lowercase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_lowercase , _lowercase ) ) ) with open(os.path.join(_lowercase , """refs""" , """main""" ) ) as f: lowerCAmelCase_ : Any = f.read() self.assertEqual(_lowercase , os.path.join(_lowercase , """snapshots""" , _lowercase , _lowercase ) ) self.assertTrue(os.path.isfile(_lowercase ) ) # File is cached at the same place the second time. lowerCAmelCase_ : Dict = cached_file(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # Using a specific revision to test the full commit hash. lowerCAmelCase_ : Optional[int] = cached_file(_lowercase , _lowercase , revision="""9b8c223""" ) self.assertEqual(_lowercase , os.path.join(_lowercase , """snapshots""" , _lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ): with self.assertRaisesRegex(_lowercase , """is not a valid model identifier""" ): lowerCAmelCase_ : Dict = cached_file("""tiny-random-bert""" , _lowercase ) with self.assertRaisesRegex(_lowercase , """is not a valid git identifier""" ): lowerCAmelCase_ : Tuple = cached_file(_lowercase , _lowercase , revision="""aaaa""" ) with self.assertRaisesRegex(_lowercase , """does not appear to have a file named""" ): lowerCAmelCase_ : List[Any] = cached_file(_lowercase , """conf""" ) def UpperCAmelCase__ ( self ): with self.assertRaisesRegex(_lowercase , """does not appear to have a file named""" ): lowerCAmelCase_ : Any = cached_file(_lowercase , """conf""" ) with open(os.path.join(_lowercase , """refs""" , """main""" ) ) as f: lowerCAmelCase_ : str = f.read() self.assertTrue(os.path.isfile(os.path.join(_lowercase , """.no_exist""" , _lowercase , """conf""" ) ) ) lowerCAmelCase_ : Union[str, Any] = cached_file(_lowercase , """conf""" , _raise_exceptions_for_missing_entries=_lowercase ) self.assertIsNone(_lowercase ) lowerCAmelCase_ : Any = cached_file(_lowercase , """conf""" , local_files_only=_lowercase , _raise_exceptions_for_missing_entries=_lowercase ) self.assertIsNone(_lowercase ) lowerCAmelCase_ : Any = mock.Mock() lowerCAmelCase_ : Optional[Any] = 500 lowerCAmelCase_ : Any = {} lowerCAmelCase_ : List[str] = HTTPError lowerCAmelCase_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head: lowerCAmelCase_ : Union[str, Any] = cached_file(_lowercase , """conf""" , _raise_exceptions_for_connection_errors=_lowercase ) self.assertIsNone(_lowercase ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) def UpperCAmelCase__ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_lowercase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _lowercase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_lowercase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _lowercase , revision="""ahaha""" ) lowerCAmelCase_ : Union[str, Any] = get_file_from_repo("""bert-base-cased""" , _lowercase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCAmelCase_ : Any = json.loads(open(_lowercase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def UpperCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Optional[Any] = Path(_lowercase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_lowercase , """a.txt""" ) , str(_lowercase ) ) self.assertIsNone(get_file_from_repo(_lowercase , """b.txt""" ) )
440
0