code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Union[str, Any]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = AutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[Any]): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Dict = TFAutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : str = AutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Dict): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Tuple): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Tuple = AutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : int): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[str]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) def lowerCAmelCase ( self : int): __lowerCamelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : int = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0)
652
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Path ,SCREAMING_SNAKE_CASE__ : Union[str, None] = None ,SCREAMING_SNAKE_CASE__ : Union[List[str], None] = None ,SCREAMING_SNAKE_CASE__ : Union[str, List[str], None] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = [file for file in os.listdir(SCREAMING_SNAKE_CASE__) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__))] if identifier is not None: __lowerCamelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): for n_ in n_identifier: __lowerCamelCase : Optional[int] = [file for file in files if n_ not in file] else: __lowerCamelCase : Dict = [file for file in files if n_identifier not in file] __lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py') __lowerCamelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,SCREAMING_SNAKE_CASE__) if only_modules: __lowerCamelCase : Optional[int] = file.split('.')[0] try: __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__) self.assertIs(len(result.failures) ,0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __lowerCamelCase : int = doctest.testfile(str('..' / directory / file) ,optionflags=doctest.ELLIPSIS) self.assertIs(result.failed ,0) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = 'modeling' __lowerCamelCase : Dict = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = Path('src/transformers') __lowerCamelCase : Optional[int] = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = Path('src/transformers') __lowerCamelCase : str = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,n_identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Path('docs/source') __lowerCamelCase : str = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__ ,only_modules=SCREAMING_SNAKE_CASE__)
652
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_ ( snake_case : Tuple , snake_case : List[str] , snake_case : int , snake_case : Optional[Any] , snake_case : List[Any] ) -> str: '''simple docstring''' with open(snake_case ) as metadata_file: __UpperCamelCase = json.load(snake_case ) __UpperCamelCase = LukeConfig(use_entity_aware_attention=snake_case , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __UpperCamelCase = torch.load(snake_case , map_location='''cpu''' ) # Load the entity vocab file __UpperCamelCase = load_entity_vocab(snake_case ) __UpperCamelCase = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase = AddedToken('''<ent>''' , lstrip=snake_case , rstrip=snake_case ) __UpperCamelCase = AddedToken('''<ent2>''' , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(snake_case , snake_case ) __UpperCamelCase = LukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens __UpperCamelCase = state_dict['''embeddings.word_embeddings.weight'''] __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) __UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase = f"encoder.layer.{layer_index}.attention.self." __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] __UpperCamelCase = entity_emb[entity_vocab['''[MASK]''']] __UpperCamelCase = LukeModel(config=snake_case ).eval() __UpperCamelCase , __UpperCamelCase = model.load_state_dict(snake_case , strict=snake_case ) if not (len(snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"Missing keys {', '.join(snake_case )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs __UpperCamelCase = LukeTokenizer.from_pretrained(snake_case , task='''entity_classification''' ) __UpperCamelCase = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) __UpperCamelCase = (39, 42) __UpperCamelCase = tokenizer(snake_case , entity_spans=[span] , add_prefix_space=snake_case , return_tensors='''pt''' ) __UpperCamelCase = model(**snake_case ) # Verify word hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 42, 1024) ) __UpperCamelCase = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base __UpperCamelCase = torch.Size((1, 42, 768) ) __UpperCamelCase = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 1, 1024) ) __UpperCamelCase = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base __UpperCamelCase = torch.Size((1, 1, 768) ) __UpperCamelCase = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(snake_case ) ) model.save_pretrained(snake_case ) def A_ ( snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = {} with open(snake_case , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(snake_case ): __UpperCamelCase , __UpperCamelCase = line.rstrip().split('''\t''' ) __UpperCamelCase = index return entity_vocab if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowercase__ : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
451
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def A_ ( snake_case : List[str] ) -> List[str]: '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(snake_case : Optional[int] , snake_case : List[Any]="" , snake_case : str="." ): __UpperCamelCase = [] for k, v in d.items(): __UpperCamelCase = parent_key + sep + k if parent_key else k if isinstance(snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case , snake_case , sep=snake_case ).items() ) else: items.append((new_key, v) ) return dict(snake_case ) __UpperCamelCase = argparse.Namespace() with open(snake_case , '''r''' ) as yaml_file: try: __UpperCamelCase = yaml.load(snake_case , Loader=yaml.FullLoader ) __UpperCamelCase = flatten_yaml_as_dict(snake_case ) for k, v in flat_cfg.items(): setattr(snake_case , snake_case , snake_case ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case , str(snake_case ) ) ) return config def A_ ( snake_case : List[Any] , snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = MobileViTVaConfig() __UpperCamelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): __UpperCamelCase = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __UpperCamelCase = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __UpperCamelCase = 151 __UpperCamelCase = 512 __UpperCamelCase = '''ade20k-id2label.json''' __UpperCamelCase = True elif task_name.startswith('''voc_''' ): __UpperCamelCase = 21 __UpperCamelCase = 512 __UpperCamelCase = '''pascal-voc-id2label.json''' __UpperCamelCase = True # orig_config __UpperCamelCase = load_orig_config_file(snake_case ) assert getattr(snake_case , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __UpperCamelCase = getattr(snake_case , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __UpperCamelCase = getattr(snake_case , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __UpperCamelCase = getattr(snake_case , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __UpperCamelCase = '''huggingface/label-files''' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def A_ ( snake_case : List[Any] , snake_case : int , snake_case : Any ) -> str: '''simple docstring''' __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A_ ( snake_case : int , snake_case : List[Any]=False ) -> Optional[Any]: '''simple docstring''' if base_model: __UpperCamelCase = '''''' else: __UpperCamelCase = '''mobilevitv2.''' __UpperCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __UpperCamelCase = k[8:] else: __UpperCamelCase = k if ".block." in k: __UpperCamelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __UpperCamelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __UpperCamelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __UpperCamelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: __UpperCamelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: __UpperCamelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __UpperCamelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: __UpperCamelCase = [0, 1] elif i == 4: __UpperCamelCase = [0, 1, 2, 3] elif i == 5: __UpperCamelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __UpperCamelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __UpperCamelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __UpperCamelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __UpperCamelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def A_ ( snake_case : List[str] ) -> str: '''simple docstring''' __UpperCamelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case ) for k in keys_to_ignore: state_dict.pop(snake_case , snake_case ) def A_ ( ) -> str: '''simple docstring''' __UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A_ ( snake_case : Dict , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[int] ) -> int: '''simple docstring''' __UpperCamelCase = get_mobilevitva_config(snake_case , snake_case ) # load original state_dict __UpperCamelCase = torch.load(snake_case , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __UpperCamelCase = MobileViTVaForSemanticSegmentation(snake_case ).eval() __UpperCamelCase = False else: __UpperCamelCase = MobileViTVaForImageClassification(snake_case ).eval() __UpperCamelCase = False # remove and rename some keys of load the original model __UpperCamelCase = checkpoint remove_unused_keys(snake_case ) __UpperCamelCase = create_rename_keys(snake_case , base_model=snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load modified state_dict model.load_state_dict(snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase = model(**snake_case ) # verify classification model if task_name.startswith('''imagenet''' ): __UpperCamelCase = outputs.logits __UpperCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __UpperCamelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) lowercase__ : Tuple = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
451
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Any = split_dict._to_yaml_list() assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = SplitDict._from_yaml_list(_SCREAMING_SNAKE_CASE ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase__ : Dict = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase__ : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_SCREAMING_SNAKE_CASE ), SplitInfo(dataset_name="my_dataset" )] ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
378
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowercase : List[Any] , __lowercase : int=13 , __lowercase : int=7 , __lowercase : str=False , __lowercase : int=True , __lowercase : Union[str, Any]=False , __lowercase : str=True , __lowercase : Optional[int]=33 , __lowercase : Dict=32 , __lowercase : Tuple=5 , __lowercase : List[Any]=4 , __lowercase : Dict=37 , __lowercase : Any="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : List[str]=512 , __lowercase : str=16 , __lowercase : Tuple=2 , __lowercase : Tuple=0.02 , __lowercase : Tuple=3 , __lowercase : Union[str, Any]=4 , __lowercase : Dict=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Dict , __lowercase : List[str] , __lowercase : int , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[int] ): '''simple docstring''' __a = EsmModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase ) __a = model(__lowercase ) __a = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : int ): '''simple docstring''' __a = EsmForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Any ): '''simple docstring''' __a = self.num_labels __a = EsmForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =False __lowerCamelCase : Optional[Any] =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] =() __lowerCamelCase : str =( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : str =True def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = EsmModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = EsmModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs()[0] __a = EsmEmbeddings(config=__lowercase ) __a = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __a = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __a = create_position_ids_from_input_ids(__lowercase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowercase , __lowercase ) ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs()[0] __a = EsmEmbeddings(config=__lowercase ) __a = torch.empty(2 , 4 , 30 ) __a = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __a = torch.as_tensor([expected_single_positions, expected_single_positions] ) __a = embeddings.create_position_ids_from_inputs_embeds(__lowercase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowercase , __lowercase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' with torch.no_grad(): __a = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __a = model(__lowercase )[0] __a = 33 __a = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowercase ) __a = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' with torch.no_grad(): __a = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __a = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __a = model(__lowercase )[0] # compare the actual values for a slice. __a = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4 ) )
225
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = False __lowerCamelCase = 3.0 class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowercase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() A__ = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) A__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , lowercase ) @require_multi_gpu def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase__ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowerCAmelCase__ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase__ = torch.nn.Linear(1_0_0, 2_0_0) lowerCAmelCase__ = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase__ = """""" lowerCAmelCase__ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
719
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase__ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict: '''simple docstring''' A__ = None # source code of `config_class` A__ = inspect.getsource(SCREAMING_SNAKE_CASE_ ) A__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): A__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A__ = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A__ = ckpt_name break return checkpoint def lowerCAmelCase__ ( ) -> List[str]: '''simple docstring''' A__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE_ ) A__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: A__ = "\n".join(sorted(SCREAMING_SNAKE_CASE_ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
626
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError('longest_common_substring() takes two strings for inputs' ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowercase__ = 0 lowercase__ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowercase__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowercase__ = i lowercase__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
235
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spm_char.model"""} lowercase_ = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } lowercase_ = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a : Any , a : Any="<s>" , a : List[Any]="</s>" , a : List[str]="<unk>" , a : Any="<pad>" , a : Optional[Dict[str, Any]] = None , **a : Optional[Any] , )-> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Dict , a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> List[str]: """simple docstring""" return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] )-> str: """simple docstring""" return self.sp_model.piece_to_id(a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] )-> Dict: """simple docstring""" lowercase__ = self.sp_model.IdToPiece(a ) return token def SCREAMING_SNAKE_CASE_ ( self : str , a : Dict )-> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token lowercase__ = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] , a : Optional[Any]=None )-> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(a )) + suffix_ones return ([0] * len(a )) + ([0] * len(a )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
235
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_UpperCamelCase ): """simple docstring""" a_ = ["""onnx"""] def __init__( self : int , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Dict ) -> int: requires_backends(self , ['onnx'] ) @classmethod def lowercase ( cls : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: requires_backends(cls , ['onnx'] ) @classmethod def lowercase ( cls : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: requires_backends(cls , ['onnx'] )
709
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[Any] = '▁' _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[int] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _snake_case : Union[str, Any] = { 'google/reformer-crime-and-punishment': 524288, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[Any]=[] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Any , ) -> None: __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : Any ) -> Any: return self.sp_model.get_piece_size() def lowercase ( self : int ) -> Dict[str, int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Dict ) -> Tuple: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : int ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = [] __lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A : List[Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : Any = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' A : Union[str, Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , ) -> int: '''simple docstring''' __a = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __a = [[refs[i] for refs in references] for i in range(_snake_case )] __a = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) __a = sb_ter.corpus_score(_snake_case , _snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
219
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __A( unittest.TestCase ): snake_case_ = MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __a = text_generator('''This is a test''' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ] , ) __a = text_generator.model.config.eos_token_id __a = '''<pad>''' __a = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''Hello I believe in''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __a = text_generator(_snake_case ) self.assertEqual( _snake_case , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __a = text_generator(_snake_case , stop_sequence=''' fe''' ) self.assertEqual(_snake_case , [{'''generated_text''': '''Hello I believe in fe'''}] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = text_generator.model __a = text_generator.tokenizer __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = pipeline(task='''text-generation''' , model=_snake_case , tokenizer=_snake_case , return_full_text=_snake_case ) __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __a = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_text=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_tensors=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_text=_snake_case , return_tensors=_snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __a = text_generator('''''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __a = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __a = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) __a = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_snake_case ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' import torch # Classic `model_kwargs` __a = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_snake_case , top_p=0.5 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = '''Hello world''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __a = logging.get_logger('''transformers.generation.tf_utils''' ) else: __a = logging.get_logger('''transformers.generation.utils''' ) __a = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(_snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_new_tokens=1 ) self.assertNotIn(_snake_case , cl.out ) with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 ) self.assertNotIn(_snake_case , cl.out )
219
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : AutoencoderKL , __UpperCamelCase : KarrasDiffusionSchedulers , __UpperCamelCase : Optional[Dict[int, str]] = None , )->Dict: super().__init__() self.register_modules(transformer=__UpperCamelCase , vae=__UpperCamelCase , scheduler=__UpperCamelCase ) # create a imagenet -> id dictionary for easier use _UpperCAmelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): _UpperCAmelCase = int(__UpperCamelCase ) _UpperCAmelCase = dict(sorted(self.labels.items() ) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, List[str]] )->List[int]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = list(__UpperCamelCase ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : float = 4.0 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : int = 5_0 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , )->Union[ImagePipelineOutput, Tuple]: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = self.transformer.config.sample_size _UpperCAmelCase = self.transformer.config.in_channels _UpperCAmelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__UpperCamelCase , device=self.device , dtype=self.transformer.dtype , ) _UpperCAmelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _UpperCAmelCase = torch.tensor(__UpperCamelCase , device=self.device ).reshape(-1 ) _UpperCAmelCase = torch.tensor([1_0_0_0] * batch_size , device=self.device ) _UpperCAmelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _UpperCAmelCase = latent_model_input[: len(__UpperCamelCase ) // 2] _UpperCAmelCase = torch.cat([half, half] , dim=0 ) _UpperCAmelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = t if not torch.is_tensor(__UpperCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCAmelCase = latent_model_input.device.type == '''mps''' if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = torch.floataa if is_mps else torch.floataa else: _UpperCAmelCase = torch.intaa if is_mps else torch.intaa _UpperCAmelCase = torch.tensor([timesteps] , dtype=__UpperCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _UpperCAmelCase = self.transformer( __UpperCamelCase , timestep=__UpperCamelCase , class_labels=__UpperCamelCase ).sample # perform guidance if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCAmelCase , _UpperCAmelCase = torch.split(__UpperCamelCase , len(__UpperCamelCase ) // 2 , dim=0 ) _UpperCAmelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCAmelCase = torch.cat([half_eps, half_eps] , dim=0 ) _UpperCAmelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCAmelCase , _UpperCAmelCase = torch.split(__UpperCamelCase , __UpperCamelCase , dim=1 ) else: _UpperCAmelCase = noise_pred # compute previous image: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase = latent_model_input.chunk(2 , dim=0 ) else: _UpperCAmelCase = latent_model_input _UpperCAmelCase = 1 / self.vae.config.scaling_factor * latents _UpperCAmelCase = self.vae.decode(__UpperCamelCase ).sample _UpperCAmelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCamelCase )
711
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): '''simple docstring''' def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print('''******************''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ : Dict = logging.get_logger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''audio_values''', '''audio_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=[1_6, 1_6] , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=4_4_1_0_0 , __SCREAMING_SNAKE_CASE=8_6 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=0.0 , **__SCREAMING_SNAKE_CASE , ): super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Tuple = spectrogram_length snake_case__ : List[Any] = num_channels snake_case__ : List[str] = patch_size snake_case__ : Dict = feature_size // self.patch_size[1] snake_case__ : Optional[Any] = n_fft snake_case__ : Optional[int] = sampling_rate // hop_length_to_sampling_rate snake_case__ : Optional[int] = sampling_rate snake_case__ : str = padding_value snake_case__ : Tuple = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ).T def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) snake_case__ : List[str] = log_spec[:, :-1] snake_case__ : Optional[Any] = log_spec - 20.0 snake_case__ : List[str] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case__ : List[str] = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) snake_case__ : int = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): snake_case__ : Optional[int] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis snake_case__ : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask snake_case__ : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: snake_case__ : int = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] snake_case__ : List[str] = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding snake_case__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch snake_case__ : Dict = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) snake_case__ : int = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): snake_case__ : str = audio_features[i] snake_case__ : Tuple = feature # return as BatchFeature if return_attention_mask: snake_case__ : int = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: snake_case__ : Any = {"""audio_values""": padded_audio_features} snake_case__ : Union[str, Any] = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
38
import math from datetime import datetime, timedelta def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : Union[str, Any] = year % 1_9 __a : int = year % 4 __a : Optional[int] = year % 7 __a : Dict = math.floor(year / 1_0_0 ) __a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __a : Union[str, Any] = leap_day_inhibits / 4 __a : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __a : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_8 ) else: return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was''' print(F"Easter in {year} {tense} {gauss_easter(year)}")
47
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase( metaclass=SCREAMING_SNAKE_CASE ): __A: Dict = ["""keras_nlp"""] def __init__( self : List[str] , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Optional[Any] ): requires_backends(self , ["keras_nlp"] )
328
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Tuple = """funnel""" __A: Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , _lowerCamelCase : Optional[Any]=3_05_22 , _lowerCamelCase : Any=[4, 4, 4] , _lowerCamelCase : Dict=None , _lowerCamelCase : List[str]=2 , _lowerCamelCase : int=7_68 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Any=64 , _lowerCamelCase : Union[str, Any]=30_72 , _lowerCamelCase : Optional[Any]="gelu_new" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Any=None , _lowerCamelCase : Any=1E-9 , _lowerCamelCase : str="mean" , _lowerCamelCase : str="relative_shift" , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Dict=True , _lowerCamelCase : int=True , **_lowerCamelCase : Union[str, Any] , ): _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[Any] = block_sizes _UpperCAmelCase : str = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats assert len(_lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _UpperCAmelCase : List[str] = num_decoder_layers _UpperCAmelCase : str = d_model _UpperCAmelCase : int = n_head _UpperCAmelCase : str = d_head _UpperCAmelCase : List[Any] = d_inner _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Any = hidden_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = initializer_std _UpperCAmelCase : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _UpperCAmelCase : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _UpperCAmelCase : str = attention_type _UpperCAmelCase : Union[str, Any] = separate_cls _UpperCAmelCase : List[str] = truncate_seq _UpperCAmelCase : Optional[int] = pool_q_only super().__init__(**_lowerCamelCase ) @property def a__ ( self : Dict ): return sum(self.block_sizes ) @num_hidden_layers.setter def a__ ( self : List[Any] , _lowerCamelCase : Any ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def a__ ( self : Optional[int] ): return len(self.block_sizes ) @num_blocks.setter def a__ ( self : List[str] , _lowerCamelCase : Any ): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
328
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A : List[Any] = None __A : Optional[Any] = logging.get_logger(__name__) __A : str = '▁' __A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __A : Optional[int] = { 'google/pegasus-xsum': 512, } class __UpperCamelCase ( UpperCAmelCase__ ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = PegasusTokenizer lowercase : List[str] = ['input_ids', 'attention_mask'] def __init__( self :Tuple ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Union[str, Any]="<pad>" ,_UpperCamelCase :int="</s>" ,_UpperCamelCase :int="<unk>" ,_UpperCamelCase :Optional[Any]="<mask_2>" ,_UpperCamelCase :Optional[Any]="<mask_1>" ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :Dict=1_0_3 ,**_UpperCamelCase :Dict ,): snake_case_ : List[str] = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' F''' {type(_UpperCAmelCase )}''' ) snake_case_ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) ,self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case_ : List[str] = additional_special_tokens_extended else: snake_case_ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( _UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,mask_token_sent=_UpperCAmelCase ,offset=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase ,) snake_case_ : Dict = vocab_file snake_case_ : str = False if not self.vocab_file else True def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self :Optional[Any] ,_UpperCamelCase :List ,_UpperCamelCase :Optional[List] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : List[Any] = os.path.join( _UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file ,_UpperCAmelCase ) return (out_vocab_file,)
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : List[Any] = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = VQModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=(3_2, 3_2) ): lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : int = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } lowerCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Any = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase_ : Dict = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : int = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
317
0
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase__ : List[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase__ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def A ( snake_case__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' __snake_case = [] for i in range(len(UpperCamelCase_ ) ): __snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(UpperCamelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(UpperCamelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(UpperCamelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(UpperCamelCase_ ) return next_generation def A ( snake_case__ : list[list[int]] , snake_case__ : int ) -> list[Image.Image]: '''simple docstring''' __snake_case = [] for _ in range(UpperCamelCase_ ): # Create output image __snake_case = Image.new('RGB' , (len(cells[0] ), len(UpperCamelCase_ )) ) __snake_case = img.load() # Save cells to image for x in range(len(UpperCamelCase_ ) ): for y in range(len(cells[0] ) ): __snake_case = 255 - cells[y][x] * 255 __snake_case = (colour, colour, colour) # Save image images.append(UpperCamelCase_ ) __snake_case = new_generation(UpperCamelCase_ ) return images if __name__ == "__main__": UpperCAmelCase__ : int = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
313
'''simple docstring''' from __future__ import annotations def a ( UpperCamelCase_ : str , UpperCamelCase_ : list[str] | None = None , UpperCamelCase_ : dict[str, float] | None = None , UpperCamelCase_ : bool = False , ) -> tuple[int, float, str]: snake_case__ =cipher_alphabet or [chr(UpperCamelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case__ ={ 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary snake_case__ =frequencies_dict if not case_sensitive: snake_case__ =ciphertext.lower() # Chi squared statistic values snake_case__ ={} # cycle through all of the shifts for shift in range(len(UpperCamelCase_ ) ): snake_case__ ='' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case__ =(alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case__ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case__ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case__ =decrypted_with_shift.lower().count(UpperCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ =frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case__ =decrypted_with_shift.count(UpperCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ =frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case__ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case__ =min( UpperCamelCase_ , key=UpperCamelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( snake_case__ ) , ( snake_case__ ) , ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
538
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
407
from functools import lru_cache @lru_cache def _lowerCAmelCase ( __magic_name__ :int ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
407
1
'''simple docstring''' import json import sys def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ) -> Tuple: '''simple docstring''' with open(UpperCAmelCase__ , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ :Optional[int] = json.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Optional[Any] = results[benchmark_name] SCREAMING_SNAKE_CASE__ :Union[str, Any] = benchmark_name.split('/' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) SCREAMING_SNAKE_CASE__ :List[str] = '| metric |' SCREAMING_SNAKE_CASE__ :List[Any] = '|--------|' SCREAMING_SNAKE_CASE__ :Optional[Any] = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :str = benchmark_res[metric_name] SCREAMING_SNAKE_CASE__ :Optional[int] = metric_vals['new'] SCREAMING_SNAKE_CASE__ :Any = metric_vals.get('old' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = metric_vals.get('diff' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = F''' {new_val:f}''' if isinstance(UpperCAmelCase__ , (int, float) ) else 'None' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(UpperCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(UpperCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase__ ) ) if __name__ == "__main__": UpperCamelCase_ = sys.argv[1] UpperCamelCase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
209
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE__ :Any = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(UpperCAmelCase__ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Tuple = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = [''.join(UpperCAmelCase__ ) for row in temp_grid] SCREAMING_SNAKE_CASE__ :str = ''.join(UpperCAmelCase__ ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :str = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] # generates template for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Optional[int] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Dict = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) SCREAMING_SNAKE_CASE__ :Any = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE__ :int = input_string[counter : counter + len(UpperCAmelCase__ )] grid.append(list(UpperCAmelCase__ ) ) counter += len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = '' # reads as zigzag for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Any = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str ) -> dict[int, str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = {} for key_guess in range(1 , len(UpperCAmelCase__ ) ): # tries every key SCREAMING_SNAKE_CASE__ :List[str] = decrypt(UpperCAmelCase__ , UpperCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
209
1
def a_ ( __snake_case ) -> None: '''simple docstring''' UpperCamelCase_ = generate_pascal_triangle(__snake_case ) for row_idx in range(__snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def a_ ( __snake_case ) -> list[list[int]]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCamelCase_ = [] for current_row_idx in range(__snake_case ): UpperCamelCase_ = populate_current_row(__snake_case , __snake_case ) triangle.append(__snake_case ) return triangle def a_ ( __snake_case , __snake_case ) -> list[int]: '''simple docstring''' UpperCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase_ , UpperCamelCase_ = 1, 1 for current_col_idx in range(1 , __snake_case ): calculate_current_element( __snake_case , __snake_case , __snake_case , __snake_case ) return current_row def a_ ( __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' UpperCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase_ = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase_ = above_to_left_elt + above_to_right_elt def a_ ( __snake_case ) -> list[list[int]]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCamelCase_ = [[1]] for row_index in range(1 , __snake_case ): UpperCamelCase_ = [0] + result[-1] + [0] UpperCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase_ = sum(divmod(__snake_case , 2 ) ) UpperCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase_ = row_first_half + row_second_half result.append(__snake_case ) return result def a_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__snake_case , __snake_case ) -> None: UpperCamelCase_ = F'''{func.__name__}({value})''' UpperCamelCase_ = timeit(F'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__snake_case , __snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
712
import argparse import hashlib # hashlib is only used inside the Test class import struct class A : def __init__( self : Optional[int] , __UpperCAmelCase : str ) -> Dict: """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def lowercase__ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def lowercase__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) UpperCamelCase_ = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = list(struct.unpack('>16L' , __UpperCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCamelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.padding() UpperCamelCase_ = self.split_blocks() for block in self.blocks: UpperCamelCase_ = self.expand_block(__UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCamelCase_ = (b & c) | ((~b) & d) UpperCamelCase_ = 0X5A82_7999 elif 20 <= i < 40: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0X6ED9_EBA1 elif 40 <= i < 60: UpperCamelCase_ = (b & c) | (b & d) | (c & d) UpperCamelCase_ = 0X8F1B_BCDC elif 60 <= i < 80: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0XCA62_C1D6 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = ( self.rotate(__UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(__UpperCAmelCase , 30 ), c, d, ) UpperCamelCase_ = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def a_ ( ) -> Tuple: '''simple docstring''' UpperCamelCase_ = B'Test String' assert SHAaHash(__snake_case ).final_hash() == hashlib.shaa(__snake_case ).hexdigest() # noqa: S324 def a_ ( ) -> str: '''simple docstring''' UpperCamelCase_ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = bytes(__snake_case , 'utf-8' ) print(SHAaHash(__snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
559
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase : Dict = pd.read_csv('sample_data.csv', header=None) _lowercase : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase : Optional[int] = df.iloc[:, 1:2] _lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) _lowercase : str = MinMaxScaler().fit_transform(actual_data) _lowercase : Optional[int] = 10 _lowercase : Any = 5 _lowercase : Union[str, Any] = 20 _lowercase : Union[str, Any] = len_data - periods * look_back _lowercase : int = actual_data[:division] _lowercase : Optional[Any] = actual_data[division - look_back :] _lowercase ,_lowercase : List[str] = [], [] _lowercase ,_lowercase : Any = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase : Optional[int] = np.array(train_x) _lowercase : Any = np.array(test_x) _lowercase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) _lowercase : Tuple = np.array([list(i.ravel()) for i in test_y]) _lowercase : int = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') _lowercase : Any = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) _lowercase : Optional[Any] = model.predict(x_test)
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''YolosFeatureExtractor'''] __A = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
593
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , ) -> Tuple: super().__init__() _A = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _A = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _A = False _A = nn.Dropout(p=lowerCAmelCase_ ) _A = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) _A = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): _A = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) _A = TaLayerNorm(lowerCAmelCase_ ) _A = nn.Dropout(p=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = self.token_embedder(lowerCAmelCase_ ) _A = encoder_input_tokens.shape[1] _A = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) _A = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask _A = encoder_input_tokens.size() _A = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: _A = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] _A = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
83
import colorsys from PIL import Image # type: ignore def snake_case ( snake_case__ :float , snake_case__ :float , snake_case__ :int) -> float: _A = x _A = y for step in range(snake_case__): # noqa: B007 _A = a * a - b * b + x _A = 2 * a * b + y _A = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1)) def snake_case ( snake_case__ :int = 800 , snake_case__ :int = 600 , snake_case__ :float = -0.6 , snake_case__ :float = 0 , snake_case__ :float = 3.2 , snake_case__ :int = 50 , snake_case__ :bool = True , ) -> Image.Image: _A = Image.new("""RGB""" , (image_width, image_height)) _A = img.load() # loop through the image-coordinates for image_x in range(snake_case__): for image_y in range(snake_case__): # determine the figure-coordinates based on the image-coordinates _A = figure_width / image_width * image_height _A = figure_center_x + (image_x / image_width - 0.5) * figure_width _A = figure_center_y + (image_y / image_height - 0.5) * figure_height _A = get_distance(snake_case__ , snake_case__ , snake_case__) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A = get_color_coded_rgb(snake_case__) else: _A = get_black_and_white_rgb(snake_case__) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
83
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : List[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') A_ : List[str] = [file for file in filepaths if '-' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') A_ : str = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') A_ : List[str] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
265
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[int] = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'vocab_file': 'spiece.model'} __lowerCamelCase = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __lowerCamelCase = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = 3 __lowerCamelCase = 4 class _UpperCamelCase( lowercase__ ): __A: Tuple = VOCAB_FILES_NAMES __A: List[Any] = PRETRAINED_VOCAB_FILES_MAP __A: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A: Optional[Any] = """left""" def __init__( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Dict=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : List[str]="<s>" , _lowerCamelCase : Any="</s>" , _lowerCamelCase : Optional[int]="<unk>" , _lowerCamelCase : Tuple="<sep>" , _lowerCamelCase : Tuple="<pad>" , _lowerCamelCase : Optional[int]="<cls>" , _lowerCamelCase : Dict="<mask>" , _lowerCamelCase : Union[str, Any]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Dict , ): _UpperCAmelCase : Dict = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Tuple = remove_space _UpperCAmelCase : List[Any] = keep_accents _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def a__ ( self : Tuple ): return len(self.sp_model ) def a__ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): _UpperCAmelCase : int = self.__dict__.copy() _UpperCAmelCase : List[Any] = None return state def __setstate__( self : Any , _lowerCamelCase : List[str] ): _UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Dict = {} _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self : str , _lowerCamelCase : Optional[Any] ): if self.remove_space: _UpperCAmelCase : str = ''' '''.join(inputs.strip().split() ) else: _UpperCAmelCase : int = inputs _UpperCAmelCase : List[Any] = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: _UpperCAmelCase : Any = unicodedata.normalize("NFKD" , UpperCAmelCase__ ) _UpperCAmelCase : int = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _UpperCAmelCase : int = outputs.lower() return outputs def a__ ( self : Optional[Any] , _lowerCamelCase : str ): _UpperCAmelCase : List[str] = self.preprocess_text(UpperCAmelCase__ ) _UpperCAmelCase : Dict = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _UpperCAmelCase : List[str] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _UpperCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase : List[Any] = cur_pieces[1:] else: _UpperCAmelCase : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def a__ ( self : List[Any] , _lowerCamelCase : Optional[int] ): return self.sp_model.PieceToId(UpperCAmelCase__ ) def a__ ( self : Tuple , _lowerCamelCase : Dict ): return self.sp_model.IdToPiece(UpperCAmelCase__ ) def a__ ( self : Union[str, Any] , _lowerCamelCase : str ): _UpperCAmelCase : str = ''''''.join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , " " ).strip() return out_string def a__ ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : Union[str, Any] , ): _UpperCAmelCase : Optional[int] = kwargs.pop("use_source_tokenizer" , UpperCAmelCase__ ) _UpperCAmelCase : Any = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) _UpperCAmelCase : List[Any] = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCAmelCase : Any = ''''''.join(UpperCAmelCase__ ) _UpperCAmelCase : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCAmelCase : str = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def a__ ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _UpperCAmelCase : Dict = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a__ ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def a__ ( self : Union[str, Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a__ ( self : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Optional[Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , "wb" ) as fi: _UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
700
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCamelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: _UpperCAmelCase : Tuple = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _UpperCAmelCase : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _UpperCAmelCase : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _UpperCamelCase: def __init__( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Tuple=13 , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : Optional[int]=99 , _lowerCamelCase : Dict=16 , _lowerCamelCase : str=2 , _lowerCamelCase : Any=4 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : Dict=0 , _lowerCamelCase : str=0.02 , ): _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : Dict = is_training _UpperCAmelCase : int = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : Any = pad_token_id _UpperCAmelCase : Optional[Any] = bos_token_id _UpperCAmelCase : Optional[int] = initializer_range def a__ ( self : Any ): _UpperCAmelCase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCAmelCase : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCAmelCase : Union[str, Any] = shift_tokens_right(_lowerCamelCase , 1 , 2 ) _UpperCAmelCase : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , ) _UpperCAmelCase : str = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def a__ ( self : int ): _UpperCAmelCase ,_UpperCAmelCase : Any = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): _UpperCAmelCase : Dict = 20 _UpperCAmelCase : List[Any] = model_class_name(_lowerCamelCase ) _UpperCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _UpperCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : str = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) _UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : Dict = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCamelCase , ) _UpperCAmelCase : List[str] = model.decode(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def a__ ( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): _UpperCAmelCase : int = 20 _UpperCAmelCase : str = model_class_name(_lowerCamelCase ) _UpperCAmelCase : List[str] = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase ,_UpperCAmelCase : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) _UpperCAmelCase : List[Any] = model.decode(_lowerCamelCase , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase ) _UpperCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _UpperCamelCase( unittest.TestCase ): __A: Any = 99 def a__ ( self : Optional[Any] ): _UpperCAmelCase : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _UpperCAmelCase : Any = input_ids.shape[0] _UpperCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a__ ( self : int ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[str] = self._get_config_and_data() _UpperCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) _UpperCAmelCase : Dict = lm_model(input_ids=_lowerCamelCase ) _UpperCAmelCase : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowerCamelCase ) def a__ ( self : Union[str, Any] ): _UpperCAmelCase : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _UpperCAmelCase : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _UpperCAmelCase : str = lm_model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) _UpperCAmelCase : int = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowerCamelCase ) def a__ ( self : List[Any] ): _UpperCAmelCase : List[str] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _UpperCAmelCase : Optional[int] = shift_tokens_right(_lowerCamelCase , 1 , 2 ) _UpperCAmelCase : List[str] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() _UpperCAmelCase : Optional[int] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _UpperCamelCase( SCREAMING_SNAKE_CASE , unittest.TestCase , SCREAMING_SNAKE_CASE ): __A: str = True __A: List[str] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __A: List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def a__ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = FlaxBlenderbotModelTester(self ) def a__ ( self : Tuple ): _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a__ ( self : List[Any] ): _UpperCAmelCase ,_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a__ ( self : Dict ): _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Optional[Any] = model_class(_lowerCamelCase ) @jax.jit def encode_jitted(_lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Tuple ): return model.encode(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Optional[int] = encode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : Optional[Any] = encode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( self : List[str] ): _UpperCAmelCase ,_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : int = model_class(_lowerCamelCase ) _UpperCAmelCase : int = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _UpperCAmelCase : Optional[int] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ): return model.decode( decoder_input_ids=_lowerCamelCase , decoder_attention_mask=_lowerCamelCase , encoder_outputs=_lowerCamelCase , ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Tuple = decode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : List[str] = decode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a__ ( self : Tuple ): for model_class_name in self.all_model_classes: _UpperCAmelCase : Any = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCAmelCase : Dict = np.ones((1, 1) ) * model.config.eos_token_id _UpperCAmelCase : List[str] = model(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def a__ ( self : Any ): _UpperCAmelCase : Tuple = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} _UpperCAmelCase : List[str] = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} _UpperCAmelCase : Any = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) _UpperCAmelCase : List[str] = ["Sam"] _UpperCAmelCase : Tuple = tokenizer(_lowerCamelCase , return_tensors="jax" ) _UpperCAmelCase : Union[str, Any] = model.generate(**_lowerCamelCase , **_lowerCamelCase ) _UpperCAmelCase : List[Any] = "Sam is a great name. It means \"sun\" in Gaelic." _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase , **_lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
328
0
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : int ,_snake_case : str=0 ): '''simple docstring''' if name is None: lowercase__ = None else: lowercase__ = "." * max(0 ,spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" lowercase__ = fmt.format(_snake_case ) # Print and recurse (if needed). if isinstance(_snake_case ,_snake_case ): if msg is not None: print(_snake_case ) for k in val.keys(): recursive_print(_snake_case ,val[k] ,spaces + 2 ) elif isinstance(_snake_case ,torch.Tensor ): print(_snake_case ,":" ,val.size() ) else: print(_snake_case ,":" ,_snake_case ) def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ,_snake_case : List[str] ): '''simple docstring''' lowercase__ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase__ = (num_heads, hidden_size, num_splits) + input_shape[1:] lowercase__ = param.view(*_snake_case ) lowercase__ = param.transpose(0 ,2 ) lowercase__ = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase__ = (num_heads, num_splits, hidden_size) + input_shape[1:] lowercase__ = param.view(*_snake_case ) lowercase__ = param.transpose(0 ,1 ).contiguous() lowercase__ = param.view(*_snake_case ) return param def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : str ): '''simple docstring''' lowercase__ = {} # old versions did not store training args lowercase__ = input_state_dict.get("args" ,_snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase__ = ds_args.padded_vocab_size lowercase__ = ds_args.max_position_embeddings lowercase__ = ds_args.hidden_size lowercase__ = ds_args.num_layers lowercase__ = ds_args.num_attention_heads lowercase__ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase__ = config.n_head # The hidden_size per head. lowercase__ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase__ = input_state_dict["checkpoint_version"] else: lowercase__ = 0.0 # The model. lowercase__ = input_state_dict["model"] # The language model. lowercase__ = model["language_model"] # The embeddings. lowercase__ = lm["embedding"] # The word embeddings. lowercase__ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. lowercase__ = word_embeddings[: config.vocab_size, :] lowercase__ = word_embeddings # The position embeddings. lowercase__ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase__ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowercase__ = pos_embeddings # The transformer. lowercase__ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. lowercase__ = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. lowercase__ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase__ = layer_re.match(_snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase__ = int(m.group(1 ) ) # The name of the operation. lowercase__ = m.group(2 ) # Is it a weight or a bias? lowercase__ = m.group(3 ) # The name of the layer. lowercase__ = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): lowercase__ = "ln_1" if op_name.startswith("input" ) else "ln_2" lowercase__ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase__ = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,_snake_case ,_snake_case ) lowercase__ = causal_mask # Insert a "dummy" tensor for masked_bias. lowercase__ = torch.tensor(-1e4 ,dtype=torch.floataa ) lowercase__ = masked_bias lowercase__ = fix_query_key_value_ordering(_snake_case ,_snake_case ,3 ,_snake_case ,_snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase__ = out_val.transpose(0 ,1 ).contiguous() # Store. lowercase__ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase__ = fix_query_key_value_ordering(_snake_case ,_snake_case ,3 ,_snake_case ,_snake_case ) # Store. No change of shape. lowercase__ = out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase__ = megatron_to_transformers[op_name] lowercase__ = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase__ = megatron_to_transformers[op_name] lowercase__ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase__ = transformer["final_layernorm.weight"] lowercase__ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. lowercase__ = word_embeddings # It should be done! return output_state_dict def lowerCamelCase ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" ,action="store_true" ) parser.add_argument( "path_to_checkpoint" ,type=_snake_case ,help="Path to the checkpoint file (.zip archive or direct .pt file)" ,) parser.add_argument( "--config_file" ,default="" ,type=_snake_case ,help="An optional config json file describing the pre-trained model." ,) lowercase__ = parser.parse_args() # Extract the basename. lowercase__ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint ,"r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: lowercase__ = torch.load(_snake_case ,map_location="cpu" ) else: lowercase__ = torch.load(args.path_to_checkpoint ,map_location="cpu" ) lowercase__ = input_state_dict.get("args" ,_snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase__ = "gelu_fast" elif ds_args.openai_gelu: lowercase__ = "gelu_new" else: lowercase__ = "gelu" else: # in the very early days this used to be "gelu_new" lowercase__ = "gelu_new" # Spell out all parameters in case the defaults change. lowercase__ = GPTaConfig( vocab_size=50_257 ,n_positions=1_024 ,n_embd=1_024 ,n_layer=24 ,n_head=16 ,n_inner=4_096 ,activation_function=_snake_case ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="cls_index" ,summary_use_proj=_snake_case ,summary_activation=_snake_case ,summary_proj_to_labels=_snake_case ,summary_first_dropout=0.1 ,scale_attn_weights=_snake_case ,use_cache=_snake_case ,bos_token_id=50_256 ,eos_token_id=50_256 ,) else: lowercase__ = GPTaConfig.from_json_file(args.config_file ) lowercase__ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) lowercase__ = convert_megatron_checkpoint(_snake_case ,_snake_case ,_snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_snake_case ,_snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase__ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase__ = "gpt2" elif tokenizer_type == "PretrainedFromHF": lowercase__ = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowercase__ = "gpt2" lowercase__ = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ = type(_snake_case ).__name__ lowercase__ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_snake_case ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_snake_case ) # Store the state_dict to file. lowercase__ = os.path.join(_snake_case ,"pytorch_model.bin" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_snake_case ,_snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
267
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets SCREAMING_SNAKE_CASE__ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" SCREAMING_SNAKE_CASE__ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" SCREAMING_SNAKE_CASE__ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case (datasets.Metric ): def _a ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] ,) def _a ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_="uniform_average" ,UpperCAmelCase_=True ) -> Tuple: lowercase__ = mean_squared_error( UpperCAmelCase_ ,UpperCAmelCase_ ,sample_weight=UpperCAmelCase_ ,multioutput=UpperCAmelCase_ ,squared=UpperCAmelCase_ ) return {"mse": mse}
267
1
from __future__ import annotations from math import pi, sqrt def snake_case_ ( snake_case , snake_case ) -> tuple: if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
335
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = DDIMPipeline __lowercase : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowercase : List[str] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __lowercase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) lowercase__: int = DDIMScheduler() lowercase__: List[Any] = {'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('mps' ): lowercase__: Any = torch.manual_seed(lowerCAmelCase__ ) else: lowercase__: Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: Any = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = 'cpu' lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: str = pipe(**lowerCAmelCase__ ).images lowercase__: List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Optional[Any] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__: int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-cifar10-32' lowercase__: Union[str, Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Optional[Any] = DDIMScheduler() lowercase__: List[str] = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: str = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type='numpy' ).images lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Optional[Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-ema-bedroom-256' lowercase__: int = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) lowercase__: Any = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: Tuple = ddpm(generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: List[str] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
335
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ (metaclass=__snake_case ): __lowerCamelCase : Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *a , **a): requires_backends(self , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) class SCREAMING_SNAKE_CASE__ (metaclass=__snake_case ): __lowerCamelCase : List[str] = ["""flax""", """transformers"""] def __init__( self , *a , **a): requires_backends(self , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) class SCREAMING_SNAKE_CASE__ (metaclass=__snake_case ): __lowerCamelCase : Dict = ["""flax""", """transformers"""] def __init__( self , *a , **a): requires_backends(self , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) class SCREAMING_SNAKE_CASE__ (metaclass=__snake_case ): __lowerCamelCase : int = ["""flax""", """transformers"""] def __init__( self , *a , **a): requires_backends(self , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers']) @classmethod def snake_case_ ( cls , *a , **a): requires_backends(cls , ['flax', 'transformers'])
164
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , __snake_case ): __lowerCamelCase : Optional[int] = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , a , a , a = None , a = 5_0257 , a = 1024 , a = 768 , a = 12 , a = 12 , a = None , a = "gelu_new" , a = 0.1 , a = 0.1 , a = 0.1 , a = 1e-5 , a = 0.02 , a = True , a = True , a = False , a = False , ): super().__init__() lowercase__ : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""") lowercase__ : Any = prefix_inner_dim lowercase__ : List[str] = prefix_hidden_dim lowercase__ : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Dict = ( nn.Linear(self.prefix_hidden_dim , a) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Tuple = GPTaConfig( vocab_size=a , n_positions=a , n_embd=a , n_layer=a , n_head=a , n_inner=a , activation_function=a , resid_pdrop=a , embd_pdrop=a , attn_pdrop=a , layer_norm_epsilon=a , initializer_range=a , scale_attn_weights=a , use_cache=a , scale_attn_by_inverse_layer_idx=a , reorder_and_upcast_attn=a , ) lowercase__ : Tuple = GPTaLMHeadModel(a) def snake_case_ ( self , a , a , a = None , a = None , ): lowercase__ : Optional[Any] = self.transformer.transformer.wte(a) lowercase__ : Optional[Any] = self.encode_prefix(a) lowercase__ : Union[str, Any] = self.decode_prefix(a) lowercase__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowercase__ : Optional[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowercase__ : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1) lowercase__ : Optional[Any] = self.transformer(inputs_embeds=a , labels=a , attention_mask=a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case_ ( self , a , a): return torch.zeros(a , self.prefix_length , dtype=torch.intaa , device=a) def snake_case_ ( self , a): return self.encode_prefix(a) @torch.no_grad() def snake_case_ ( self , a , a , a): lowercase__ : List[str] = torch.split(a , 1 , dim=0) lowercase__ : Optional[Any] = [] lowercase__ : str = [] for feature in features: lowercase__ : Dict = self.decode_prefix(feature.to(a)) # back to the clip feature # Only support beam search for now lowercase__ , lowercase__ : str = self.generate_beam( input_embeds=a , device=a , eos_token_id=a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase__ : str = torch.stack(a) lowercase__ : List[str] = torch.stack(a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case_ ( self , a=None , a=None , a=None , a = 5 , a = 67 , a = 1.0 , a = None , ): lowercase__ : Optional[int] = eos_token_id lowercase__ : List[Any] = None lowercase__ : int = None lowercase__ : str = torch.ones(a , device=a , dtype=torch.int) lowercase__ : List[Any] = torch.zeros(a , device=a , dtype=torch.bool) if input_embeds is not None: lowercase__ : int = input_embeds else: lowercase__ : int = self.transformer.transformer.wte(a) for i in range(a): lowercase__ : Union[str, Any] = self.transformer(inputs_embeds=a) lowercase__ : Optional[int] = outputs.logits lowercase__ : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase__ : Union[str, Any] = logits.softmax(-1).log() if scores is None: lowercase__ , lowercase__ : Tuple = logits.topk(a , -1) lowercase__ : Dict = generated.expand(a , *generated.shape[1:]) lowercase__ , lowercase__ : Dict = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowercase__ : Union[str, Any] = next_tokens else: lowercase__ : Dict = tokens.expand(a , *tokens.shape[1:]) lowercase__ : Dict = torch.cat((tokens, next_tokens) , dim=1) else: lowercase__ : str = -float(np.inf) lowercase__ : Optional[Any] = 0 lowercase__ : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase__ : str = scores_sum / seq_lengths[:, None] lowercase__ , lowercase__ : List[str] = scores_sum_average.view(-1).topk(a , -1) lowercase__ : List[str] = next_tokens // scores_sum.shape[1] lowercase__ : List[Any] = seq_lengths[next_tokens_source] lowercase__ : Dict = next_tokens % scores_sum.shape[1] lowercase__ : Tuple = next_tokens.unsqueeze(1) lowercase__ : Union[str, Any] = tokens[next_tokens_source] lowercase__ : Any = torch.cat((tokens, next_tokens) , dim=1) lowercase__ : List[str] = generated[next_tokens_source] lowercase__ : Union[str, Any] = scores_sum_average * seq_lengths lowercase__ : str = is_stopped[next_tokens_source] lowercase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowercase__ : Optional[Any] = torch.cat((generated, next_token_embed) , dim=1) lowercase__ : Optional[Any] = is_stopped + next_tokens.eq(a).squeeze() if is_stopped.all(): break lowercase__ : Dict = scores / seq_lengths lowercase__ : Optional[Any] = scores.argsort(descending=a) # tokens tensors are already padded to max_seq_length lowercase__ : int = [tokens[i] for i in order] lowercase__ : Optional[int] = torch.stack(a , dim=0) lowercase__ : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
164
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase__ : Optional[List[str]] = None UpperCamelCase__ : Optional[Any] = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase__ : Dict = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "PIL.Image.Image" lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase : str = field(default='Image' , init=A_ , repr=A_ ) def __call__( self : List[Any] ): '''simple docstring''' return self.pa_type def SCREAMING_SNAKE_CASE ( self : Dict , __lowercase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ = np.array(__lowercase ) if isinstance(__lowercase , __lowercase ): return {"path": value, "bytes": None} elif isinstance(__lowercase , __lowercase ): return {"path": None, "bytes": value} elif isinstance(__lowercase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowercase ) elif isinstance(__lowercase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowercase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowercase : dict , __lowercase : Dict=None ): '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: UpperCAmelCase_ = {} UpperCAmelCase_ , UpperCAmelCase_ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(__lowercase ): UpperCAmelCase_ = PIL.Image.open(__lowercase ) else: UpperCAmelCase_ = path.split("""::""" )[-1] try: UpperCAmelCase_ = string_to_dict(__lowercase , config.HUB_DATASETS_URL )["""repo_id"""] UpperCAmelCase_ = token_per_repo_id.get(__lowercase ) except ValueError: UpperCAmelCase_ = None with xopen(__lowercase , """rb""" , use_auth_token=__lowercase ) as f: UpperCAmelCase_ = BytesIO(f.read() ) UpperCAmelCase_ = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowercase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): UpperCAmelCase_ = pa.array([None] * len(__lowercase ) , type=pa.binary() ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ = pa.array([None] * len(__lowercase ) , type=pa.string() ) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCAmelCase_ = storage.field("""bytes""" ) else: UpperCAmelCase_ = pa.array([None] * len(__lowercase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCAmelCase_ = storage.field("""path""" ) else: UpperCAmelCase_ = pa.array([None] * len(__lowercase ) , type=pa.string() ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ = pa.array( [encode_np_array(np.array(__lowercase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase_ = pa.array([None] * len(__lowercase ) , type=pa.string() ) UpperCAmelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__lowercase , self.pa_type ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowercase : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowercase : Dict ): with xopen(__lowercase , """rb""" ) as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(__lowercase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__lowercase , self.pa_type ) def A_( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def A_( A ): UpperCAmelCase_ = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ = image.format else: UpperCAmelCase_ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(A , format=A ) return buffer.getvalue() def A_( A ): if hasattr(A , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(A )} def A_( A ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) UpperCAmelCase_ = array.dtype UpperCAmelCase_ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCAmelCase_ = dtype.kind UpperCAmelCase_ = dtype.itemsize UpperCAmelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ = dtype_byteorder + dtype_kind + str(A ) UpperCAmelCase_ = np.dtype(A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCAmelCase_ = PIL.Image.fromarray(array.astype(A ) ) return {"path": None, "bytes": image_to_bytes(A )} def A_( A ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: UpperCAmelCase_ , UpperCAmelCase_ = first_non_null_value(A ) if isinstance(A , A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(A , np.ndarray ): UpperCAmelCase_ = no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] elif isinstance(A , PIL.Image.Image ): UpperCAmelCase_ = no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] else: return objs else: return objs
486
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
486
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'sentencepiece.model'} UpperCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCamelCase = { 'google/rembert': 256, } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Dict="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : List[Any]="[MASK]" , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = remove_space lowerCAmelCase__ = keep_accents lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor() self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def a ( self : int ) -> Union[str, Any]: return len(self.sp_model ) def a ( self : Any ) -> str: lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> List[str]: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = d lowerCAmelCase__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[int]: lowerCAmelCase__ = self.sp_model.EncodeAsPieces(SCREAMING_SNAKE_CASE__ ) return pieces def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: lowerCAmelCase__ = self.sp_model.decode_pieces(SCREAMING_SNAKE_CASE__ ) return out_string def a ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("Vocabulary path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
61
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
"""simple docstring""" from manim import * class __a (UpperCamelCase_): '''simple docstring''' def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : List[str] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : List[str] = VGroup(*_a ).arrange(_a , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(*_a ).arrange(_a , buff=0 ) SCREAMING_SNAKE_CASE__ : Tuple = VGroup(_a , _a ).arrange(_a , buff=0 ) SCREAMING_SNAKE_CASE__ : int = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : List[str] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = [mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE__ : str = VGroup(*_a ).arrange(_a , buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : List[Any] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.align_to(_a , _a ) gpu.set_x(gpu.get_x() - 1 ) self.add(_a ) SCREAMING_SNAKE_CASE__ : List[str] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[int] = VGroup(*_a ).arrange(_a , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.play( Create(_a , run_time=1 ) , Create(_a , run_time=1 ) , Create(_a , run_time=1 ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : int = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=2.5 ) , Write(_a ) , Write(_a ) ) self.add(_a ) SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i, rect in enumerate(_a ): SCREAMING_SNAKE_CASE__ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) cpu_target.move_to(_a ) cpu_target.generate_target() SCREAMING_SNAKE_CASE__ : Optional[int] = 0.46 / 4 SCREAMING_SNAKE_CASE__ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_a , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_a , buff=0.0 ) cpu_targs.append(_a ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_a ) ) second_animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(*_a ) self.wait()
12
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
12
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: str = None ): if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __SCREAMING_SNAKE_CASE : Optional[int] = quote(_lowerCamelCase ) return hfh.hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" , revision=_lowerCamelCase )
578
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( a_ ): _A : Optional[int] = 'facebook/bart-large-mnli' _A : Union[str, Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _A : Dict = 'text_classifier' _A : Union[str, Any] = AutoTokenizer _A : Tuple = AutoModelForSequenceClassification _A : Optional[int] = ['text', ['text']] _A : Dict = ['text'] def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setup() UpperCAmelCase = self.model.config UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase = int(snake_case__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = labels return self.pre_processor( [text] * len(snake_case__ ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = outputs.logits UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
'''simple docstring''' import math from collections.abc import Callable def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = xa UpperCamelCase__ = xa while True: if x_n == x_na or function(snake_case__ ) == function(snake_case__ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) UpperCamelCase__ = x_na - ( function(snake_case__ ) / ((function(snake_case__ ) - function(snake_case__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase__ = x_na UpperCamelCase__ = x_na def __magic_name__( _A ): '''simple docstring''' return math.pow(snake_case__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
706
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : str = field(default="audio-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __a : ClassVar[Features] = Features({"audio": Audio()} ) __a : ClassVar[Features] = Features({"labels": ClassLabel} ) __a : str = "audio" __a : str = "labels" def A ( self : List[Any] , lowercase : List[Any] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def A ( self : int ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
265
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Tuple = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Optional[Any] = 42 snake_case__ : Optional[Any] = field(default_factory=snake_case__ ) snake_case__ : List[Any] = field(default_factory=snake_case__ ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Tensor ) -> str: a_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor ) -> List[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: return list(filter(lambda SCREAMING_SNAKE_CASE__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Tuple = 42 snake_case__ : str = 42 snake_case__ : Optional[Any] = 0 snake_case__ : Tuple = field(default_factory=snake_case__ ) snake_case__ : int = field(default_factory=snake_case__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Union[str, Any]: a_ : Dict = Tracker(self.dest )(lowerCAmelCase__ ).parametrized a_ : int = Tracker(self.src )(lowerCAmelCase__ ).parametrized a_ : Union[str, Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) a_ : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F"""Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while""" F""" destination module has {len(lowerCAmelCase__ )}.""" ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : int , __A : List[str] , __A : Any = True ) -> Tuple: """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): a_ : Optional[int] = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() a_ : Any = ResNetForImageClassification(snake_case__ ).eval() a_ : List[Any] = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) a_ : str = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." a_ : Dict = F"""resnet{"-".join(name.split("resnet" ) )}""" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=snake_case__ , ) # we can use the convnext one a_ : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=snake_case__ , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Dict = None , __A : Optional[int] = True ) -> Any: """simple docstring""" a_ : Tuple = "imagenet-1k-id2label.json" a_ : Dict = 10_00 a_ : Tuple = (1, num_labels) a_ : List[Any] = "huggingface/label-files" a_ : Optional[Any] = num_labels a_ : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) a_ : Optional[int] = {int(snake_case__ ): v for k, v in idalabel.items()} a_ : List[str] = idalabel a_ : List[str] = {v: k for k, v in idalabel.items()} a_ : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) a_ : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) UpperCAmelCase_ : Tuple = parser.parse_args() UpperCAmelCase_ : int = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
570
import os _lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Any = 0 while index < len(snake_case__) - 1: lowerCAmelCase_ : Optional[Any] = SYMBOLS[numerals[index]] lowerCAmelCase_ : int = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = "" lowerCAmelCase_ : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowerCAmelCase_ : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowerCAmelCase_ : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase ( snake_case__ = "/p089_roman.txt"): lowerCAmelCase_ : int = 0 with open(os.path.dirname(snake_case__) + roman_numerals_filename) as filea: lowerCAmelCase_ : List[Any] = filea.readlines() for line in lines: lowerCAmelCase_ : Any = line.strip() lowerCAmelCase_ : Tuple = parse_roman_numerals(snake_case__) lowerCAmelCase_ : List[Any] = generate_roman_numerals(snake_case__) savings += len(snake_case__) - len(snake_case__) return savings if __name__ == "__main__": print(f"{solution() = }")
659
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowercase : int = HfArgumentParser(InitializationArguments) _lowercase : Optional[int] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowercase : Dict = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) _lowercase : str = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowercase : int = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
546
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _UpperCamelCase : """simple docstring""" @property def _UpperCAmelCase ( self ) -> Any: return self.get_dummy_input() @property def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _UpperCAmelCase ( self , a__=True , a__=False , a__=False , a__=False , ) -> Optional[Any]: A = 4 A = 32 A = (32, 32) A = torch.manual_seed(0 ) A = torch.device(a__ ) A = (batch_size, num_channels) + sizes A = randn_tensor(a__ , generator=a__ , device=a__ ) A = {"""hidden_states""": hidden_states} if include_temb: A = 128 A = randn_tensor((batch_size, temb_channels) , generator=a__ , device=a__ ) if include_res_hidden_states_tuple: A = torch.manual_seed(1 ) A = (randn_tensor(a__ , generator=a__ , device=a__ ),) if include_encoder_hidden_states: A = floats_tensor((batch_size, 32, 32) ).to(a__ ) if include_skip_sample: A = randn_tensor(((batch_size, 3) + sizes) , generator=a__ , device=a__ ) return dummy_input def _UpperCAmelCase ( self ) -> int: A = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) unet_block.to(a__ ) unet_block.eval() with torch.no_grad(): A = unet_block(**a__ ) if isinstance(a__ , a__ ): A = output[0] self.assertEqual(output.shape , self.output_shape ) A = output[0, -1, -3:, -3:] A = torch.tensor(a__ ).to(a__ ) assert torch_all_close(output_slice.flatten() , a__ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _UpperCAmelCase ( self ) -> str: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) model.to(a__ ) model.train() A = model(**a__ ) if isinstance(a__ , a__ ): A = output[0] A = torch.device(a__ ) A = randn_tensor(output.shape , device=a__ ) A = torch.nn.functional.mse_loss(a__ , a__ ) loss.backward()
546
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCamelCase : Any = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase : Any = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase : Tuple = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase : Optional[int] = model(__snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __snake_case , atol=1e-3 ) ) @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCamelCase : Optional[Any] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase : Any = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase : Tuple = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(__snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __snake_case , atol=1e-3 ) )
102
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = """▁""" A__ = {"""vocab_file""": """sentencepiece.bpe.model"""} A__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } A__ = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , __snake_case : Any , __snake_case : str="<s>" , __snake_case : Dict="</s>" , __snake_case : List[Any]="</s>" , __snake_case : str="<s>" , __snake_case : Tuple="<unk>" , __snake_case : int="<pad>" , __snake_case : List[str]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase :int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token lowerCamelCase :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowerCamelCase :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) lowerCamelCase :List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase :Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase :Tuple = 1 lowerCamelCase :Dict = len(self.sp_model ) + self.fairseq_offset lowerCamelCase :Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.__dict__.copy() lowerCamelCase :int = None lowerCamelCase :List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ): lowerCamelCase :str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase :List[str] = {} lowerCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase :Optional[int] = [self.cls_token_id] lowerCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def snake_case ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :Dict = [self.sep_token_id] lowerCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self : int ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def snake_case ( self : Optional[int] ): lowerCamelCase :int = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : List[str] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def snake_case ( self : Tuple , __snake_case : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase :Dict = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case ( self : Any , __snake_case : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case ( self : Dict , __snake_case : List[str] ): lowerCamelCase :Optional[Any] = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip() return out_string def snake_case ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase :Tuple = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: lowerCamelCase :Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
166
0
'''simple docstring''' class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Tuple = name lowerCAmelCase__ : Optional[Any] = value lowerCAmelCase__ : str = weight def __repr__( self ) -> Union[str, Any]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def UpperCAmelCase_ ( self ) -> Any: return self.value def UpperCAmelCase_ ( self ) -> int: return self.name def UpperCAmelCase_ ( self ) -> List[str]: return self.weight def UpperCAmelCase_ ( self ) -> Dict: return self.value / self.weight def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = [] for i in range(len(UpperCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = sorted(UpperCamelCase , key=UpperCamelCase , reverse=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ , lowerCAmelCase__ : Any = 0.0, 0.0 for i in range(len(UpperCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
160
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ :Tuple = TypeVar('T') class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = data __UpperCAmelCase : Node[T] | None = None def __str__( self : int ): '''simple docstring''' return f'''{self.data}''' class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Node[T] | None = None def __iter__( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.top while node: yield node.data __UpperCAmelCase : Dict = node.next def __str__( self : Any ): '''simple docstring''' return "->".join([str(__lowercase ) for item in self] ) def __len__( self : int ): '''simple docstring''' return len(tuple(iter(self ) ) ) def A_ ( self : Tuple ): '''simple docstring''' return self.top is None def A_ ( self : List[str] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : int = Node(__lowercase ) if not self.is_empty(): __UpperCAmelCase : int = self.top __UpperCAmelCase : Tuple = node def A_ ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowercase ) __UpperCAmelCase : List[str] = self.top __UpperCAmelCase : List[str] = self.top.next return pop_node.data def A_ ( self : str ): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = None if __name__ == "__main__": from doctest import testmod testmod()
522
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ :Tuple = TypeVar('T') class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = data __UpperCAmelCase : Node[T] | None = None def __str__( self : int ): '''simple docstring''' return f'''{self.data}''' class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Node[T] | None = None def __iter__( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.top while node: yield node.data __UpperCAmelCase : Dict = node.next def __str__( self : Any ): '''simple docstring''' return "->".join([str(__lowercase ) for item in self] ) def __len__( self : int ): '''simple docstring''' return len(tuple(iter(self ) ) ) def A_ ( self : Tuple ): '''simple docstring''' return self.top is None def A_ ( self : List[str] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : int = Node(__lowercase ) if not self.is_empty(): __UpperCAmelCase : int = self.top __UpperCAmelCase : Tuple = node def A_ ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowercase ) __UpperCAmelCase : List[str] = self.top __UpperCAmelCase : List[str] = self.top.next return pop_node.data def A_ ( self : str ): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = None if __name__ == "__main__": from doctest import testmod testmod()
522
1
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : List[Any] = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _A (__a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE_ : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : int , lowercase_ : Any=13 , lowercase_ : Any=7 , lowercase_ : Any=True , lowercase_ : Any=False , lowercase_ : Union[str, Any]=99 , lowercase_ : Optional[Any]=16 , lowercase_ : str=2 , lowercase_ : Dict=4 , lowercase_ : int=4 , lowercase_ : int="gelu" , lowercase_ : str=0.1 , lowercase_ : str=0.1 , lowercase_ : List[str]=32 , lowercase_ : Any=2 , lowercase_ : Optional[int]=1 , lowercase_ : Tuple=0 , lowercase_ : Optional[Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Any = pad_token_id SCREAMING_SNAKE_CASE_ : str = bos_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE_ : List[Any] = shift_tokens_right(lowercase_ , 1 , 2) SCREAMING_SNAKE_CASE_ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : Tuple = model_class_name(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model.encode(inputs_dict['''input_ids''']) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') SCREAMING_SNAKE_CASE_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.decode(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : List[str] = model_class_name(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = model.encode(inputs_dict['''input_ids''']) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : Tuple = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : int = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : str = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 9_9 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self._get_config_and_data() SCREAMING_SNAKE_CASE_ : str = FlaxBlenderbotForConditionalGeneration(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = lm_model(input_ids=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : Union[str, Any] = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : Dict = shift_tokens_right(lowercase_ , 1 , 2) SCREAMING_SNAKE_CASE_ : Dict = np.equal(lowercase_ , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE_ : str = np.equal(lowercase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowercase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = FlaxBlenderbotModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = model_class(lowercase_) @jax.jit def encode_jitted(lowercase_ : Optional[int] , lowercase_ : Any=None , **lowercase_ : Dict): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_) with self.subTest('''JIT Enabled'''): SCREAMING_SNAKE_CASE_ : Dict = encode_jitted(**lowercase_).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Tuple = encode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ : int = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) SCREAMING_SNAKE_CASE_ : Optional[int] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase_ : List[Any] , lowercase_ : int , lowercase_ : int): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('''JIT Enabled'''): SCREAMING_SNAKE_CASE_ : Dict = decode_jitted(**lowercase_).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : int = decode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''') @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} SCREAMING_SNAKE_CASE_ : int = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} SCREAMING_SNAKE_CASE_ : Dict = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''') SCREAMING_SNAKE_CASE_ : str = ['''Sam'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(lowercase_ , return_tensors='''jax''') SCREAMING_SNAKE_CASE_ : List[str] = model.generate(**lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Any = '''Sam is a great name. It means "sun" in Gaelic.''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.batch_decode(lowercase_ , **lowercase_) assert generated_txt[0].strip() == tgt_text
512
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["torch", "torchsde"] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Dict): '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde''']) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *lowercase_ : int , **lowercase_ : Optional[Any]): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde''']) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *lowercase_ : List[Any] , **lowercase_ : Tuple): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''])
512
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A ( _a ,unittest.TestCase ): lowercase_ = TransfoXLTokenizer lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().setUp() _a = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Dict , **lowerCAmelCase_ : Optional[int] ) -> Tuple: """simple docstring""" _a = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" _a = '''<unk> UNwanted , running''' _a = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase_ ) _a = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase_ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _a = TransfoXLTokenizer(lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _a = TransfoXLTokenizer(lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = TransfoXLTokenizer(lower_case=lowerCAmelCase_ ) _a = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _a = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a = self.get_tokenizer() _a = len(lowerCAmelCase_ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
377
'''simple docstring''' def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if n == 1 or not isinstance(UpperCamelCase , UpperCamelCase ): return 0 elif n == 2: return 1 else: _a = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ (UpperCamelCase : int ): '''simple docstring''' _a = 0 _a = 2 while digits < n: index += 1 _a = len(str(fibonacci(UpperCamelCase ) ) ) return index def snake_case_ (UpperCamelCase : int = 1000 ): '''simple docstring''' return fibonacci_digits_index(UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
377
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a (lowerCAmelCase__ = True , *lowerCAmelCase__ , **lowerCAmelCase__ ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __a = False if main_process_only: __a = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ , disable=lowerCAmelCase__ )
99
class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = set_counts __a = max(__A ) __a = len(__A ) __a = [1] * num_sets __a = list(range(__A ) ) def snake_case_ ( self , __A , __A ): __a = self.get_parent(__A ) __a = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __a = 0 __a = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __a = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __a = 0 __a = src_parent __a = self.set_counts[src_parent] __a = max(self.max_set , __A ) return True def snake_case_ ( self , __A ): if self.parents[disj_set] == disj_set: return disj_set __a = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
99
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : List[str] = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=8 ): _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case( __A ): def __init__( self , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _SCREAMING_SNAKE_CASE = latents.to(A_ ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def A ( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _SCREAMING_SNAKE_CASE = torch.device(F'''cuda:{gpu_id}''' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def A ( self , A_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _SCREAMING_SNAKE_CASE = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self ): '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A_ , A_ ): _SCREAMING_SNAKE_CASE = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _SCREAMING_SNAKE_CASE = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _SCREAMING_SNAKE_CASE = torch.cat(A_ , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A_ , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A_ , dim=0 ) _SCREAMING_SNAKE_CASE = hint.repeat_interleave(A_ , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) _SCREAMING_SNAKE_CASE = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.movq.config.latent_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {'''image_embeds''': image_embeds, '''hint''': hint} _SCREAMING_SNAKE_CASE = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A_ , force_not_quantize=A_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
700
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCamelCase : str = False class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self ): '''simple docstring''' return 12 @property def A ( self ): '''simple docstring''' return 12 @property def A ( self ): '''simple docstring''' return 32 @property def A ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def A ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(A_ ) @property def A ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } _SCREAMING_SNAKE_CASE = TransformeraDModel(**A_ ) return model def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''cpu''' _SCREAMING_SNAKE_CASE = self.dummy_vqvae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_transformer _SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed ) _SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings(learnable=A_ ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) _SCREAMING_SNAKE_CASE = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _SCREAMING_SNAKE_CASE = '''teddy bear playing in the pool''' _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type='''np''' ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=A_ , output_type='''np''' , return_dict=A_ , num_inference_steps=2 )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _SCREAMING_SNAKE_CASE = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''cpu''' _SCREAMING_SNAKE_CASE = self.dummy_vqvae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_transformer _SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed ) _SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings( learnable=A_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) _SCREAMING_SNAKE_CASE = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _SCREAMING_SNAKE_CASE = '''teddy bear playing in the pool''' _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type='''np''' ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=A_ , output_type='''np''' , return_dict=A_ , num_inference_steps=2 )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _SCREAMING_SNAKE_CASE = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) _SCREAMING_SNAKE_CASE = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=A_ , output_type='''np''' , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
168
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase__ ) if n > 1: factors.append(UpperCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
605
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowercase : """simple docstring""" def __magic_name__ ( self , A_ , A_ , A_ )-> Union[str, Any]: return None class __lowercase : """simple docstring""" def __magic_name__ ( self , A_ , A_ , A_ , A_ )-> int: return None class __lowercase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __magic_name__ ( self )-> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(A_ , 'tf' , 12 , **A_ ) @require_torch @slow def __magic_name__ ( self )-> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(A_ , 'pt' , 12 , **A_ ) @require_torch @slow def __magic_name__ ( self )-> List[str]: from transformers import BertModel _SCREAMING_SNAKE_CASE = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(A_ ) ) vocab_file.flush() _SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(A_ ) ) ) model.save_pretrained(A_ ) self._test_export(A_ , 'pt' , 12 , A_ ) @require_tf @slow def __magic_name__ ( self )-> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(A_ , 'tf' , 12 , **A_ ) _SCREAMING_SNAKE_CASE = quantize(Path(A_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(A_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __magic_name__ ( self )-> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(A_ , 'pt' , 12 , **A_ ) _SCREAMING_SNAKE_CASE = quantize(A_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(A_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __magic_name__ ( self , A_ , A_ , A_ , A_=None , **A_ )-> Any: try: # Compute path with TemporaryDirectory() as tempdir: _SCREAMING_SNAKE_CASE = Path(A_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(A_ , A_ , A_ , A_ , A_ , **A_ ) return path except Exception as e: self.fail(A_ ) @require_torch @require_tokenizers @slow def __magic_name__ ( self )-> List[str]: from transformers import BertModel _SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(A_ , A_ , 'pt' ) @require_tf @require_tokenizers @slow def __magic_name__ ( self )-> Optional[int]: from transformers import TFBertModel _SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(A_ , A_ , 'tf' ) def __magic_name__ ( self , A_ , A_ , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(A_ , A_ ) _SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = infer_shapes(A_ , A_ ) # Assert all variables are present self.assertEqual(len(A_ ) , len(A_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , A_ ) self.assertSequenceEqual(variable_names[3:] , A_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask', 'token_type_ids'] _SCREAMING_SNAKE_CASE = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , A_ , A_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(A_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(A_ ) , set(A_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(A_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , A_ , A_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(A_ ) , 1 ) self.assertEqual(len(A_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __magic_name__ ( self )-> Optional[Any]: _SCREAMING_SNAKE_CASE = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
605
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def __snake_case ( lowercase : Callable[[int | float], int | float] , lowercase : int | float , lowercase : int | float , lowercase : int = 100 , ): snake_case_ = x_start snake_case_ = fnc(lowercase ) snake_case_ = 0.0 for _ in range(lowercase ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ = (x_end - x_start) / steps + xa snake_case_ = fnc(lowercase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ = xa snake_case_ = fxa return area if __name__ == "__main__": def __snake_case ( lowercase : Optional[Any] ): return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowercase__ = 10 while i <= 10_00_00: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
420
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
420
1
from pathlib import Path import numpy as np from PIL import Image def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" a_ , a_ , a_ : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" a_ : Tuple = np.zeros_like(SCREAMING_SNAKE_CASE_ ) a_ : Optional[int] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image a_ : int = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): a_ : Any = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() a_ : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE : List[Any] = Path(__file__).resolve().parent / "image_data" / "lena.jpg" SCREAMING_SNAKE_CASE : List[str] = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
419
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class snake_case__ ( __A ): UpperCAmelCase : Tuple = """switch_transformers""" UpperCAmelCase : Optional[int] = ["""past_key_values"""] UpperCAmelCase : List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , UpperCamelCase_=32128 , UpperCamelCase_=768 , UpperCamelCase_=64 , UpperCamelCase_=2048 , UpperCamelCase_=64 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=12 , UpperCamelCase_=8 , UpperCamelCase_=False , UpperCamelCase_=0.01 , UpperCamelCase_="float32" , UpperCamelCase_=False , UpperCamelCase_=32 , UpperCamelCase_=128 , UpperCamelCase_=0.1 , UpperCamelCase_=1e-6 , UpperCamelCase_=0.001 , UpperCamelCase_=0.001 , UpperCamelCase_=1.0 , UpperCamelCase_="relu" , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=1 , **UpperCamelCase_ , ) -> str: """simple docstring""" a_ : str = vocab_size a_ : Dict = d_model a_ : int = d_kv a_ : Optional[int] = d_ff a_ : str = num_sparse_encoder_layers a_ : List[str] = num_layers a_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : Union[str, Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a_ : str = self.num_layers // self.num_sparse_encoder_layers else: a_ : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a_ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: a_ : str = self.num_decoder_layers # HACK: this will create 0 sparse layers a_ : List[str] = num_heads a_ : Any = num_experts a_ : List[Any] = expert_capacity a_ : Any = router_bias a_ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a_ : Optional[int] = router_dtype a_ : List[Any] = router_ignore_padding_tokens a_ : Union[str, Any] = relative_attention_num_buckets a_ : List[str] = relative_attention_max_distance a_ : List[Any] = dropout_rate a_ : Any = layer_norm_epsilon a_ : Tuple = initializer_factor a_ : Optional[int] = feed_forward_proj a_ : Dict = use_cache a_ : str = add_router_probs a_ : Dict = router_z_loss_coef a_ : Any = router_aux_loss_coef a_ : Union[str, Any] = self.feed_forward_proj.split("""-""" ) a_ : str = act_info[-1] a_ : Optional[Any] = act_info[0] == """gated""" if len(UpperCamelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase_ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ : Optional[Any] = """gelu_new""" super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ , )
419
1
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "efficientnet" def __init__( self : Dict , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 6_0_0 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 3.1 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , UpperCAmelCase_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , UpperCAmelCase_ : List[int] = [] , UpperCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase_ : float = 0.25 , UpperCAmelCase_ : str = "swish" , UpperCAmelCase_ : int = 2_5_6_0 , UpperCAmelCase_ : str = "mean" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 0.0_01 , UpperCAmelCase_ : float = 0.99 , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : float = 0.2 , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : Tuple = num_channels a : List[str] = image_size a : Optional[int] = width_coefficient a : Dict = depth_coefficient a : List[str] = depth_divisor a : Tuple = kernel_sizes a : Dict = in_channels a : str = out_channels a : Optional[int] = depthwise_padding a : Any = strides a : int = num_block_repeats a : Any = expand_ratios a : Tuple = squeeze_expansion_ratio a : Optional[Any] = hidden_act a : str = hidden_dim a : Dict = pooling_type a : Any = initializer_range a : Tuple = batch_norm_eps a : List[str] = batch_norm_momentum a : Any = dropout_rate a : List[str] = drop_connect_rate a : List[str] = sum(UpperCAmelCase_) * 4 class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return 1e-5
610
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase : Optional[int] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCamelCase : Union[str, Any] = { """facebook/blenderbot_small-90M""": 512, } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = BlenderbotSmallTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str="<|endoftext|>" , UpperCAmelCase_ : Tuple="<|endoftext|>" , UpperCAmelCase_ : Optional[Any]="<|endoftext|>" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=True , **UpperCAmelCase_ : Tuple , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase_ , merges=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , ) , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : Optional[Any] = add_prefix_space def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None): """simple docstring""" a : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : int = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
610
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : int = KandinskyVaaInpaintPipeline _A : Tuple = ["image_embeds", "negative_image_embeds", "image", "mask_image"] _A : Any = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] _A : Any = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _A : Optional[int] = False @property def __A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return 3_2 @property def __A ( self : Any ) -> int: '''simple docstring''' return 3_2 @property def __A ( self : List[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __A ( self : Dict ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return 1_0_0 @property def __A ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ =UNetaDConditionModel(**_UpperCamelCase ) return model @property def __A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.dummy_unet SCREAMING_SNAKE_CASE__ =self.dummy_movq SCREAMING_SNAKE_CASE__ =DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_UpperCamelCase ,set_alpha_to_one=_UpperCamelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_UpperCamelCase ,) SCREAMING_SNAKE_CASE__ ={ """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self : Optional[int] ,_UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[int]=0 ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ =floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE__ =Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask SCREAMING_SNAKE_CASE__ =np.ones((6_4, 6_4) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 if str(_UpperCamelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ =torch.manual_seed(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ =torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ ={ """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""cpu""" SCREAMING_SNAKE_CASE__ =self.get_dummy_components() SCREAMING_SNAKE_CASE__ =self.pipeline_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =pipe( **self.get_dummy_inputs(_UpperCamelCase ) ,return_dict=_UpperCamelCase ,)[0] SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ =image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ =np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : Dict ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ =np.ones((7_6_8, 7_6_8) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ="""a hat""" SCREAMING_SNAKE_CASE__ =KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ =pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =pipe_prior( _UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() SCREAMING_SNAKE_CASE__ =pipeline( image=_UpperCamelCase ,mask_image=_UpperCamelCase ,image_embeds=_UpperCamelCase ,negative_image_embeds=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE__ =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCamelCase ,_UpperCamelCase )
151
def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ), len(grid[0] ) if ( min(__UpperCamelCase, __UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE__ =0 count += depth_first_search(__UpperCamelCase, row + 1, __UpperCamelCase, __UpperCamelCase ) count += depth_first_search(__UpperCamelCase, row - 1, __UpperCamelCase, __UpperCamelCase ) count += depth_first_search(__UpperCamelCase, __UpperCamelCase, col + 1, __UpperCamelCase ) count += depth_first_search(__UpperCamelCase, __UpperCamelCase, col - 1, __UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
151
1
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = '''Hello, World!''' __SCREAMING_SNAKE_CASE : Any = '''en_XX''' def lowerCAmelCase_( lowercase_ : str , lowercase_ : str , lowercase_ : bool ) -> List[str]: _lowerCamelCase = Path('''data_bin''' ) _lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase_ ).parent ) , checkpoint_file=Path(lowercase_ ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(lowercase_ ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(lowercase_ ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(lowercase_ ) _lowerCamelCase = xmod.model.encoder.sentence_encoder _lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , lowercase_ ) _lowerCamelCase = XmodForSequenceClassification(lowercase_ ) if classification_head else XmodForMaskedLM(lowercase_ ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCamelCase = xmod_sent_encoder.embed_tokens.weight _lowerCamelCase = xmod_sent_encoder.embed_positions.weight _lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight _lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCamelCase = model.roberta.encoder.layer[i] _lowerCamelCase = xmod_sent_encoder.layers[i] # self attention _lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) _lowerCamelCase = xmod_layer.self_attn.q_proj.weight _lowerCamelCase = xmod_layer.self_attn.q_proj.bias _lowerCamelCase = xmod_layer.self_attn.k_proj.weight _lowerCamelCase = xmod_layer.self_attn.k_proj.bias _lowerCamelCase = xmod_layer.self_attn.v_proj.weight _lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output _lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) _lowerCamelCase = xmod_layer.self_attn.out_proj.weight _lowerCamelCase = xmod_layer.self_attn.out_proj.bias _lowerCamelCase = xmod_layer.self_attn_layer_norm.weight _lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate _lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) _lowerCamelCase = xmod_layer.fca.weight _lowerCamelCase = xmod_layer.fca.bias # output _lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) _lowerCamelCase = xmod_layer.fca.weight _lowerCamelCase = xmod_layer.fca.bias _lowerCamelCase = xmod_layer.final_layer_norm.weight _lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _lowerCamelCase = xmod_layer.adapter_layer_norm.weight _lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _lowerCamelCase = bert_output.adapter_modules[lang_code] _lowerCamelCase = xmod_layer.adapter_modules[lang_code] _lowerCamelCase = from_adapter.fca.weight _lowerCamelCase = from_adapter.fca.bias _lowerCamelCase = from_adapter.fca.weight _lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _lowerCamelCase = xmod_sent_encoder.layer_norm.weight _lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: _lowerCamelCase = xmod.model.classification_heads['''mnli'''].dense.weight _lowerCamelCase = xmod.model.classification_heads['''mnli'''].dense.bias _lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight _lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCamelCase = xmod.model.encoder.lm_head.dense.weight _lowerCamelCase = xmod.model.encoder.lm_head.dense.bias _lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight _lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias _lowerCamelCase = xmod.model.encoder.lm_head.weight _lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCamelCase = xmod.encode(lowercase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase_ ) _lowerCamelCase = model(lowercase_ )[0] if classification_head: _lowerCamelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(lowercase_ ) ) else: _lowerCamelCase = xmod.model(lowercase_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 _lowerCamelCase = torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(lowercase_ ).mkdir(parents=lowercase_ , exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
623
"""simple docstring""" from __future__ import annotations from typing import Any def lowerCAmelCase_( lowercase_ : list[Any] ) -> None: create_state_space_tree(lowercase_ , [] , 0 ) def lowerCAmelCase_( lowercase_ : list[Any] , lowercase_ : list[Any] , lowercase_ : int ) -> None: if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
623
1
import math import random from typing import Any from .hill_climbing import SearchProblem def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = math.inf ,_SCREAMING_SNAKE_CASE = -math.inf ,_SCREAMING_SNAKE_CASE = math.inf ,_SCREAMING_SNAKE_CASE = -math.inf ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = 100 ,_SCREAMING_SNAKE_CASE = 0.01 ,_SCREAMING_SNAKE_CASE = 1 ,) -> str: lowerCamelCase : str = False lowerCamelCase : Optional[Any] = search_prob lowerCamelCase : Dict = start_temperate lowerCamelCase : Any = [] lowerCamelCase : Tuple = 0 lowerCamelCase : Union[str, Any] = None while not search_end: lowerCamelCase : str = current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase : Optional[Any] = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 lowerCamelCase : str = None lowerCamelCase : Any = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase : Dict = random.randint(0 ,len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor lowerCamelCase : Optional[int] = neighbors.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase : int = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase : int = picked_neighbor else: lowerCamelCase : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase : List[Any] = picked_neighbor lowerCamelCase : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase : Optional[int] = True else: lowerCamelCase : Tuple = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE__ : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE__ : Optional[Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: return (3 * x**2) - (6 * y) SCREAMING_SNAKE_CASE__ : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE__ : int = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE__ : List[str] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' )
311
import math import os import sys def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = '' try: with open(lowerCamelCase , 'rb' ) as binary_file: UpperCamelCase_ : Union[str, Any] = binary_file.read() for dat in data: UpperCamelCase_ : Optional[int] = F"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __lowercase ( lowerCamelCase : dict[str, str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : str ): lexicon.pop(lowerCamelCase ) UpperCamelCase_ : Optional[int] = last_match_id if math.loga(lowerCamelCase ).is_integer(): for curr_key in lexicon: UpperCamelCase_ : Optional[int] = '0' + lexicon[curr_key] UpperCamelCase_ : List[str] = bin(lowerCamelCase )[2:] def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = {'0': '0', '1': '1'} UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = '', '' UpperCamelCase_ : List[str] = len(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase_ : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) index += 1 UpperCamelCase_ : Optional[int] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase_ : Any = lexicon[curr_string] result += last_match_id return result def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Union[str, Any] = os.path.getsize(lowerCamelCase ) UpperCamelCase_ : List[str] = bin(lowerCamelCase )[2:] UpperCamelCase_ : int = len(lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Optional[int] = 8 try: with open(lowerCamelCase , 'wb' ) as opened_file: UpperCamelCase_ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCamelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Dict = read_file_binary(lowerCamelCase ) UpperCamelCase_ : Optional[int] = compress_data(lowerCamelCase ) UpperCamelCase_ : Dict = add_file_length(lowerCamelCase , lowerCamelCase ) write_file_binary(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
417
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : int = logging.get_logger(__name__) __a : int = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class UpperCAmelCase( __a ): """simple docstring""" a : int = '''roc_bert''' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=768 , lowerCamelCase=910 , lowerCamelCase=512 , lowerCamelCase=24858 , lowerCamelCase=True , **lowerCamelCase , ) -> Dict: """simple docstring""" lowercase__ : Dict = vocab_size lowercase__ : Dict = max_position_embeddings lowercase__ : str = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : str = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : str = type_vocab_size lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[str] = use_cache lowercase__ : Any = enable_pronunciation lowercase__ : List[Any] = enable_shape lowercase__ : str = pronunciation_embed_dim lowercase__ : List[Any] = pronunciation_vocab_size lowercase__ : str = shape_embed_dim lowercase__ : Any = shape_vocab_size lowercase__ : List[Any] = concat_input lowercase__ : Optional[Any] = position_embedding_type lowercase__ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=snake_case__ , **snake_case__ )
706
import unittest from knapsack import knapsack as k class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = 0 lowercase__ : int = [0] lowercase__ : Optional[Any] = [0] lowercase__ : Optional[int] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 0 ) lowercase__ : Any = [60] lowercase__ : Dict = [10] lowercase__ : Any = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 0 ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = 3 lowercase__ : Union[str, Any] = [1, 2, 3] lowercase__ : Dict = [3, 2, 1] lowercase__ : List[Any] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 5 ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = 50 lowercase__ : int = [60, 100, 120] lowercase__ : Optional[Any] = [10, 20, 30] lowercase__ : List[str] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 220 ) if __name__ == "__main__": unittest.main()
298
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE__ : List[str] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE__ : Optional[Any] = False @property def __magic_name__( self :List[str] ) -> Optional[Any]: return 32 @property def __magic_name__( self :Any ) -> Any: return 32 @property def __magic_name__( self :int ) -> str: return self.time_input_dim @property def __magic_name__( self :Optional[int] ) -> str: return self.time_input_dim * 4 @property def __magic_name__( self :Dict ) -> Dict: return 100 @property def __magic_name__( self :Dict ) -> Dict: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def __magic_name__( self :int ) -> Optional[int]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __magic_name__( self :List[Any] ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.dummy_unet __SCREAMING_SNAKE_CASE : Any = self.dummy_movq __SCREAMING_SNAKE_CASE : List[Any] = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int]=0 ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = output.images __SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Dict ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __SCREAMING_SNAKE_CASE : Dict = init_image.resize((512, 512) ) __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 255.0 __SCREAMING_SNAKE_CASE : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A robot, 4k photo''' __SCREAMING_SNAKE_CASE : Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : int = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = pipe_prior( lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.85 , generator=lowerCAmelCase__ , negative_prompt='''''' , ).to_tuple() __SCREAMING_SNAKE_CASE : Dict = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , hint=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) __lowerCAmelCase = torch.permute(lowerCAmelCase_, (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any ): if "metadata" in layer: __lowerCAmelCase = layer.split('metadata' ) __lowerCAmelCase = ''.join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __lowerCAmelCase = layer.split('kvstore' ) __lowerCAmelCase = ''.join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __lowerCAmelCase = layer.split('/' ) __lowerCAmelCase = '/'.join(split_layer[:-1] ) __lowerCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: __lowerCAmelCase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __lowerCAmelCase = 'file' else: __lowerCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int ): __lowerCAmelCase = rename_keys(lowerCAmelCase_ ) __lowerCAmelCase = {} for k, v in current_block.items(): __lowerCAmelCase = v __lowerCAmelCase = new_current_block torch.save(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Dict, lowerCAmelCase_ : str = WEIGHTS_NAME ): __lowerCAmelCase = convert_file_size_to_int(lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = 0 os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint', 'rb' ) as fp: __lowerCAmelCase = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __lowerCAmelCase = flatten_dict(lowerCAmelCase_, sep='/' ) __lowerCAmelCase = {} for layer in checkpoint_info.keys(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_key_and_tensorstore_dict( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if curr_real_layer_name in all_layers: __lowerCAmelCase = content else: __lowerCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCAmelCase = torch.tensor(lowerCAmelCase_ ) __lowerCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCAmelCase , __lowerCAmelCase = rename_base_flax_keys(tuple(key.split('/' ) ), lowerCAmelCase_ ) __lowerCAmelCase = '/'.join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCAmelCase = os.path.join( lowerCAmelCase_, weights_name.replace('.bin', F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_, lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = raw_weights.to(getattr(lowerCAmelCase_, lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCAmelCase = os.path.join(lowerCAmelCase_, weights_name.replace('.bin', F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_, lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCAmelCase = {} __lowerCAmelCase = {} for idx, shard in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = weights_name.replace( '.bin', F"""-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} __lowerCAmelCase = os.path.join(lowerCAmelCase_, weights_name.replace('.bin', F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowerCAmelCase_, os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) ) __lowerCAmelCase = shard for key in shard: __lowerCAmelCase = shard_file # Add the metadata __lowerCAmelCase = {'total_size': total_size} __lowerCAmelCase = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase_, lowerCAmelCase_ ), 'w', encoding='utf-8' ) as f: __lowerCAmelCase = json.dumps(lowerCAmelCase_, indent=2, sort_keys=lowerCAmelCase_ ) + '\n' f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _snake_case : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a_ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCAmelCase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __lowerCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted', device_map='auto' ) __lowerCAmelCase = TaTokenizer.from_pretrained('t5-small' ) __lowerCAmelCase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __lowerCAmelCase = tokenizer(lowerCAmelCase_, return_tensors='pt' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_, decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
421
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _snake_case : List[Any] = get_tests_dir('fixtures/dummy-config.json') class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = 0 def lowercase ( self : Dict ) -> Optional[Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = AutoConfig.for_model('roberta' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'fake-roberta' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertEqual(type(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[Any]: try: AutoConfig.register('custom' , lowerCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register('model' , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register('bert' , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowercase ( self : Optional[int] ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase_ , 'bert-base is not a local folder and is not a valid model identifier' ): __lowerCAmelCase = AutoConfig.from_pretrained('bert-base' ) def lowercase ( self : List[Any] ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ , revision='aaaaaa' ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaisesRegex( lowerCAmelCase_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowercase ( self : str ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowerCAmelCase_ ) __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowercase ( self : List[Any] ) -> List[str]: class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """new-model""" try: AutoConfig.register('new-model' , lowerCAmelCase_ ) # If remote code is not set, the default is to use local __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub __lowerCAmelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
421
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ShapEImgaImgPipeline lowerCAmelCase = ['''image'''] lowerCAmelCase = ['''image'''] lowerCAmelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowerCAmelCase = False @property def a__ ( self ) -> Optional[int]: return 32 @property def a__ ( self ) -> str: return 32 @property def a__ ( self ) -> Any: return self.time_input_dim * 4 @property def a__ ( self ) -> Tuple: return 8 @property def a__ ( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) UpperCAmelCase_ : str = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def a__ ( self ) -> Tuple: UpperCAmelCase_ : List[Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_resize=_SCREAMING_SNAKE_CASE ,image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,resample=3 ,size=224 ,) return image_processor @property def a__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase_ : str = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def a__ ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase_ : List[str] = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_prior UpperCAmelCase_ : str = self.dummy_image_encoder UpperCAmelCase_ : Union[str, Any] = self.dummy_image_processor UpperCAmelCase_ : Tuple = self.dummy_renderer UpperCAmelCase_ : Optional[Any] = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_024 ,prediction_type='''sample''' ,use_karras_sigmas=_SCREAMING_SNAKE_CASE ,clip_sample=_SCREAMING_SNAKE_CASE ,clip_sample_range=1.0 ,) UpperCAmelCase_ : Optional[int] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=0 ) -> Any: UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): UpperCAmelCase_ : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def a__ ( self ) -> Tuple: UpperCAmelCase_ : List[str] = '''cpu''' UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Optional[Any] = output.images[0] UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase_ : Dict = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = torch_device == '''cpu''' UpperCAmelCase_ : List[str] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_SCREAMING_SNAKE_CASE ,relax_max_difference=_SCREAMING_SNAKE_CASE ,) def a__ ( self ) -> str: UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase_ : int = batch_size * [inputs[key]] UpperCAmelCase_ : int = pipe(**_SCREAMING_SNAKE_CASE ,num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) UpperCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) UpperCAmelCase_ : str = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) UpperCAmelCase_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCAmelCase_ : str = pipe( _SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
30
'''simple docstring''' def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> bool: '''simple docstring''' if curr_ind == len(_lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_lowercase ) ): if valid_connection(_lowercase , _lowercase , _lowercase , _lowercase ): # Insert current vertex into path as next transition lowerCamelCase_ : Any = next_ver # Validate created path if util_hamilton_cycle(_lowercase , _lowercase , curr_ind + 1 ): return True # Backtrack lowerCamelCase_ : Union[str, Any] = -1 return False def lowercase_ ( _lowercase , _lowercase = 0 ) -> list[int]: '''simple docstring''' lowerCamelCase_ : int = [-1] * (len(_lowercase ) + 1) # initialize start and end of path with starting index lowerCamelCase_ : str = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_lowercase , _lowercase , 1 ) else []
422
0
from collections import deque def _lowerCamelCase( UpperCamelCase__ : Tuple ) -> Any: A : int = len(lowerCamelCase_ ) A : Dict = deque() A : Optional[int] = [False for _ in range(lowerCamelCase_ )] A : Union[str, Any] = [-1 for _ in range(lowerCamelCase_ )] A : List[Any] = index_of[:] def strong_connect(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): A : List[str] = index # the number when this node is seen A : Optional[Any] = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase_ ) A : Optional[Any] = True for w in g[v]: if index_of[w] == -1: A : Tuple = strong_connect(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A : Tuple = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A : Tuple = [] A : List[str] = stack.pop() A : List[str] = False component.append(lowerCamelCase_ ) while w != v: A : str = stack.pop() A : List[str] = False component.append(lowerCamelCase_ ) components.append(lowerCamelCase_ ) return index A : int = [] for v in range(lowerCamelCase_ ): if index_of[v] == -1: strong_connect(lowerCamelCase_ , 0 , lowerCamelCase_ ) return components def _lowerCamelCase( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Optional[Any]: A : Union[str, Any] = [[] for _ in range(lowerCamelCase_ )] for u, v in edges: g[u].append(lowerCamelCase_ ) return g if __name__ == "__main__": # Test snake_case_ = 7 snake_case_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] snake_case_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] snake_case_ = [(u, v) for u, v in zip(source, target)] snake_case_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
712
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES snake_case_ = """tiny-wmt19-en-ru""" # Build # borrowed from a test snake_case_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case_ = dict(zip(vocab, range(len(vocab)))) snake_case_ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = Path(tmpdirname) snake_case_ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] snake_case_ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] snake_case_ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) snake_case_ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) snake_case_ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) snake_case_ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test snake_case_ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") snake_case_ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
537
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase_ = pd.read_csv("sample_data.csv", header=None) lowerCAmelCase_ = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase_ = df.iloc[:, 1:2] lowerCAmelCase_ = actual_data.values.reshape(len_data, 1) lowerCAmelCase_ = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase_ = 1_0 lowerCAmelCase_ = 5 lowerCAmelCase_ = 2_0 lowerCAmelCase_ = len_data - periods * look_back lowerCAmelCase_ = actual_data[:division] lowerCAmelCase_ = actual_data[division - look_back :] lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ , lowerCAmelCase_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase_ = np.array(train_x) lowerCAmelCase_ = np.array(test_x) lowerCAmelCase_ = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase_ = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase_ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") lowerCAmelCase_ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase_ = model.predict(x_test)
326
from math import pi, sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert gamma(0.5 ) == sqrt(lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
300
0
"""simple docstring""" import os from pathlib import Path def __a ( A , A , A ): '''simple docstring''' lowercase__ = { "en": "Machine learning is great, isn\'t it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowercase__ = f'''{src_lang}-{tgt_lang}''' lowercase__ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(a__ , exist_ok=a__ ) lowercase__ = os.path.join(a__ , "README.md" ) print(f'''Generating {path}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(a__ ) # make sure we are under the root of the project lowerCAmelCase_: List[Any] = Path(__file__).resolve().parent.parent.parent lowerCAmelCase_: Optional[Any] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Dict = model_name.split("-") lowerCAmelCase_: Union[str, Any] = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = 'PoolFormerConfig' # Base docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = [1, 512, 7, 7] # Image classification docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = 'tabby, tabby cat' lowerCAmelCase__ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCamelCase ( __a, __a = 0.0, __a = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE_ = 1 - drop_prob SCREAMING_SNAKE_CASE_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE_ = keep_prob + torch.rand(__a, dtype=input.dtype, device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE_ = input.div(__a ) * random_tensor return output class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = drop_prob def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return drop_path(SCREAMING_SNAKE_CASE_ , self.drop_prob , self.training ) def _lowercase (self ): """simple docstring""" return "p={}".format(self.drop_prob ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = patch_size if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE_ = stride if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE_ = padding if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = norm_layer(SCREAMING_SNAKE_CASE_ ) if norm_layer else nn.Identity() def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.projection(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.norm(SCREAMING_SNAKE_CASE_ ) return embeddings class snake_case ( nn.GroupNorm ): def __init__(self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(1 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.AvgPoolad(SCREAMING_SNAKE_CASE_ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.pool(SCREAMING_SNAKE_CASE_ ) - hidden_states class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) SCREAMING_SNAKE_CASE_ = PoolFormerDropPath(SCREAMING_SNAKE_CASE_ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_ = config.hidden_act def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.conva(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.act_fn(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.drop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.conva(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.drop(SCREAMING_SNAKE_CASE_ ) return hidden_states class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = PoolFormerPooling(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerOutput(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE_ ) # Useful for training neural nets SCREAMING_SNAKE_CASE_ = PoolFormerDropPath(SCREAMING_SNAKE_CASE_ ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE_ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE_ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE_) ) , requires_grad=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE_) ) , requires_grad=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE_ = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE_ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = self.output(self.after_norm(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE_ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE_ = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE_ ) ) ) # First residual connection SCREAMING_SNAKE_CASE_ = pooling_output + hidden_states SCREAMING_SNAKE_CASE_ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE_ = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE_ ) ) ) SCREAMING_SNAKE_CASE_ = hidden_states + layer_output SCREAMING_SNAKE_CASE_ = (output,) + outputs return outputs class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) # Transformer blocks SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ): """simple docstring""" SCREAMING_SNAKE_CASE_ = () if output_hidden_states else None SCREAMING_SNAKE_CASE_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE_ = embedding_layer(SCREAMING_SNAKE_CASE_ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = blk(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) class snake_case ( __lowercase ): UpperCAmelCase__ = PoolFormerConfig UpperCAmelCase__ = '''poolformer''' UpperCAmelCase__ = '''pixel_values''' UpperCAmelCase__ = True def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = value lowerCAmelCase__ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = PoolFormerEncoder(SCREAMING_SNAKE_CASE_ ) # Initialize weights and apply final processing self.post_init() def _lowercase (self ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE_ = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , config.hidden_size ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.dense(SCREAMING_SNAKE_CASE_ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowercase , ) class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = config.num_labels SCREAMING_SNAKE_CASE_ = PoolFormerModel(SCREAMING_SNAKE_CASE_ ) # Final norm SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ = self.poolformer( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = outputs[0] SCREAMING_SNAKE_CASE_ = self.classifier(self.norm(SCREAMING_SNAKE_CASE_ ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_ = '''single_label_classification''' else: SCREAMING_SNAKE_CASE_ = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_ = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: SCREAMING_SNAKE_CASE_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
626
"""simple docstring""" def _lowerCamelCase ( __a ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 while repunit: SCREAMING_SNAKE_CASE_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCamelCase ( __a = 1_000_000 ): SCREAMING_SNAKE_CASE_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
626
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __A() -> List[Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=lowerCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=lowerCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=lowerCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase , default=5e-4 ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=lowerCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=lowerCAmelCase , default=1_0 ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase , default="""./results""" ) return parser.parse_args() lowerCamelCase__ = load("accuracy") def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = eval_pred _UpperCamelCase = np.argmax(lowerCAmelCase , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=lowerCAmelCase ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a ) -> None: '''simple docstring''' super().__init__() _UpperCamelCase = trainer def A_ ( self , a , a , a , **a ) -> Union[str, Any]: '''simple docstring''' if control.should_evaluate: _UpperCamelCase = deepcopy(a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __A() -> List[Any]: """simple docstring""" _UpperCamelCase = get_args() set_seed(args.seed ) _UpperCamelCase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) _UpperCamelCase = dataset.train_test_split(test_size=0.2 ) _UpperCamelCase = train_test["""test"""].train_test_split(test_size=0.5 ) _UpperCamelCase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCamelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCamelCase = False _UpperCamelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(lowerCAmelCase ): _UpperCamelCase = tokenizer(example["""src"""] , truncation=lowerCAmelCase , max_length=1_0_2_4 ) _UpperCamelCase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCamelCase = train_test_validation.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) _UpperCamelCase = DataCollatorWithPadding(tokenizer=lowerCAmelCase ) _UpperCamelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) _UpperCamelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , compute_metrics=lowerCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
202
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = XLNetTokenizer UpperCamelCase_ : Optional[int] = XLNetTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Dict = True def A_ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = XLNetTokenizer(a , keep_accents=a ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = """<s>""" _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(a ) , 10_06 ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = XLNetTokenizer(a , keep_accents=a ) _UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [2_85, 46, 10, 1_70, 3_82] ) _UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = XLNetTokenizer(a , do_lower_case=a ) _UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = XLNetTokenizer(a , do_lower_case=a ) _UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
202
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Tuple: # word like '180' or '身高' or '神' for char in word: _lowercase = ord(snake_case__ ) if not _is_chinese_char(snake_case__ ): return 0 return 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] ) -> str: _lowercase = set() for token in tokens: _lowercase = len(snake_case__ ) > 1 and is_chinese(snake_case__ ) if chinese_word: word_set.add(snake_case__ ) _lowercase = list(snake_case__ ) return word_list def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :set() ) -> Dict: if not chinese_word_set: return bert_tokens _lowercase = max([len(snake_case__ ) for w in chinese_word_set] ) _lowercase = bert_tokens _lowercase , _lowercase = 0, len(snake_case__ ) while start < end: _lowercase = True if is_chinese(bert_word[start] ): _lowercase = min(end - start , snake_case__ ) for i in range(snake_case__ , 1 , -1 ): _lowercase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowercase = '##' + bert_word[j] _lowercase = start + i _lowercase = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :LTP , snake_case__ :BertTokenizer ) -> Optional[Any]: _lowercase = [] for i in range(0 , len(snake_case__ ) , 100 ): _lowercase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws _lowercase = [get_chinese_word(snake_case__ ) for r in res] ltp_res.extend(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) _lowercase = [] for i in range(0 , len(snake_case__ ) , 100 ): _lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=snake_case__ , truncation=snake_case__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(snake_case__ ) == len(snake_case__ ) _lowercase = [] for input_ids, chinese_word in zip(snake_case__ , snake_case__ ): _lowercase = [] for id in input_ids: _lowercase = bert_tokenizer._convert_id_to_token(snake_case__ ) input_tokens.append(snake_case__ ) _lowercase = add_sub_symbol(snake_case__ , snake_case__ ) _lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case__ ): if token[:2] == "##": _lowercase = token[2:] # save chinese tokens' pos if len(snake_case__ ) == 1 and _is_chinese_char(ord(snake_case__ ) ): ref_id.append(snake_case__ ) ref_ids.append(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) return ref_ids def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> Any: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowercase = f.readlines() _lowercase = [line.strip() for line in data if len(snake_case__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase = LTP(args.ltp ) # faster in GPU device _lowercase = BertTokenizer.from_pretrained(args.bert ) _lowercase = prepare_ref(snake_case__ , snake_case__ , snake_case__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowercase = [json.dumps(snake_case__ ) + '\n' for ref in ref_ids] f.writelines(snake_case__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) snake_case = parser.parse_args() main(args)
67
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A : List[str] = pytest.mark.integration A : Optional[Any] = {"comet"} A : int = importlib.util.find_spec("fairseq") is not None A : Union[str, Any] = {"code_eval"} A : Dict = os.name == "nt" A : Dict = {"bertscore", "frugalscore", "perplexity"} A : Any = importlib.util.find_spec("transformers") is not None def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) @local class _UpperCamelCase ( parameterized.TestCase ): '''simple docstring''' __UpperCAmelCase : Any ={} __UpperCAmelCase : List[str] =None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) __lowerCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __lowerCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case ( self , __a , __a ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def snake_case ( self ): def load_local_metric(__a , *__a , **__a ): return load_metric(os.path.join("metrics" , __a ) , *__a , **__a ) with patch("datasets.load_metric" ) as mock_load_metric: __lowerCAmelCase = load_local_metric yield @classmethod def snake_case ( cls , __a ): def wrapper(__a ): __lowerCAmelCase = contextmanager(__a ) __lowerCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self , __a ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: __lowerCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import torch def bert_cos_score_idf(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: __lowerCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' def load_from_checkpoint(_UpperCamelCase ): class _UpperCamelCase : '''simple docstring''' def snake_case ( self , __a , *__a , **__a ): assert len(__a ) == 2 __lowerCAmelCase = [0.1_9, 0.9_2] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: __lowerCAmelCase = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: __lowerCAmelCase = load_from_checkpoint yield def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = load_metric(os.path.join("metrics" , "seqeval" ) ) __lowerCAmelCase = "ERROR" __lowerCAmelCase = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_UpperCamelCase , match=re.escape(_UpperCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCamelCase )
636
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a_ : int = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : int = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } a_ : Optional[Any] = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } a_ : Any = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = SqueezeBertTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(UpperCamelCase_ , normalizer_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**UpperCamelCase_ ) lowerCamelCase_ = do_lower_case def snake_case ( self , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
714
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=7 , UpperCamelCase=3 , UpperCamelCase=30 , UpperCamelCase=400 , UpperCamelCase=True , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=1 / 255 , UpperCamelCase=True , UpperCamelCase=[0.5, 0.5, 0.5] , UpperCamelCase=[0.5, 0.5, 0.5] , UpperCamelCase=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_pad def snake_case ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): lowerCamelCase_ ,lowerCamelCase_ = image.size else: lowerCamelCase_ ,lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ = self.size["shortest_edge"] elif w > h: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = self.size["shortest_edge"] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ ,lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] lowerCamelCase_ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = DetrImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = DetrImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(UpperCamelCase , "rescale_factor" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase , "size" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_pad" ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case ( self ): """simple docstring""" # prepare image and target lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"image_id": 3_9769, "annotations": target} # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) lowerCamelCase_ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase ) ) @slow def snake_case ( self ): """simple docstring""" # prepare image, target and masks_path lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowerCamelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) lowerCamelCase_ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase ) ) # verify masks lowerCamelCase_ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase ) )
445
0
'''simple docstring''' def A (__lowerCamelCase :int , __lowerCamelCase :int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowerCAmelCase = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase = max(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ) , b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _a : str = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _a : Tuple = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _a : Dict = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowercase : list[int] , _lowercase : int ): '''simple docstring''' if len(_lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) UpperCAmelCase : List[str] = sum(array[:k] ) for i in range(len(_lowercase ) - k ): UpperCAmelCase : Optional[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase : Union[str, Any] = max(_lowercase , _lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() snake_case_ : Union[str, Any] = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] snake_case_ : int = randint(0, 1_1_0) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
292
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case_ : Union[str, Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def lowercase_ ( _lowercase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase ) def lowercase_ ( _lowercase : str , _lowercase : Dict ): '''simple docstring''' if exitstatus == 5: UpperCAmelCase : List[str] = 0 # Doctest custom flag to ignore output. snake_case_ : Union[str, Any] = doctest.register_optionflag("""IGNORE_RESULT""") snake_case_ : Optional[int] = doctest.OutputChecker class snake_case__ ( lowerCAmelCase_ ): def __lowerCAmelCase ( self : List[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase , lowercase , lowercase ) snake_case_ : List[str] = CustomOutputChecker snake_case_ : Optional[Any] = HfDoctestModule snake_case_ : List[str] = HfDocTestParser
292
1
'''simple docstring''' import random from typing import Any def UpperCAmelCase ( UpperCAmelCase__ : list): for _ in range(len(UpperCAmelCase__)): lowerCamelCase : List[Any] = random.randint(0 , len(UpperCAmelCase__) - 1) lowerCamelCase : Optional[int] = random.randint(0 , len(UpperCAmelCase__) - 1) lowerCamelCase , lowerCamelCase : Tuple = data[b], data[a] return data if __name__ == "__main__": A = [0, 1, 2, 3, 4, 5, 6, 7] A = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
320
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): if not isinstance(lowerCamelCase , lowerCamelCase): A_ : List[Any] = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase) if number < 1: A_ : int = F'Input value of [number={number}] must be > 0' raise ValueError(lowerCamelCase) A_ : Optional[Any] = 1 for i in range(1 , lowerCamelCase): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ : List[Any] = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ : Tuple = { "roberta-base": 5_12, "roberta-large": 5_12, "roberta-large-mnli": 5_12, "distilroberta-base": 5_12, "roberta-base-openai-detector": 5_12, "roberta-large-openai-detector": 5_12, } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Dict = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Optional[Any] = ['input_ids', 'attention_mask'] snake_case__ :Optional[int] = RobertaTokenizer def __init__( self : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=None , __magic_name__ : int="replace" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : int="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Tuple="<pad>" , __magic_name__ : List[str]="<mask>" , __magic_name__ : Dict=False , __magic_name__ : Union[str, Any]=True , **__magic_name__ : int , ): """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space: lowerCAmelCase__ = getattr(__magic_name__ , pre_tok_state.pop("type" ) ) lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = pre_tok_class(**__magic_name__ ) lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = "post_processor" lowerCAmelCase__ = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: lowerCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase__ = tuple(state["cls"] ) lowerCAmelCase__ = False if state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space: lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = True if state.get("trim_offsets" , __magic_name__ ) != trim_offsets: lowerCAmelCase__ = trim_offsets lowerCAmelCase__ = True if changes_to_apply: lowerCAmelCase__ = getattr(__magic_name__ , state.pop("type" ) ) lowerCAmelCase__ = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value lowerCAmelCase__ = value def __SCREAMING_SNAKE_CASE ( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : Any , **__magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" lowerCAmelCase__ = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ): """simple docstring""" lowerCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
48
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
1
"""simple docstring""" import os import string import sys lowerCamelCase : Any = 1 << 8 lowerCamelCase : Optional[int] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } lowerCamelCase : str = KEYMAP["""up"""] lowerCamelCase : List[str] = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase : Dict = [] lowerCamelCase : Optional[int] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): lowerCamelCase : Tuple = ord(str(i)) def A__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt _SCREAMING_SNAKE_CASE = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase__ ) == 0: # Read the keystroke _SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCamelCase__ ) if ord(UpperCamelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _SCREAMING_SNAKE_CASE = chr(KEYMAP['''esc'''] ) except KeyError: _SCREAMING_SNAKE_CASE = cha[1] else: _SCREAMING_SNAKE_CASE = ch.decode(UpperCamelCase__ ) else: _SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _SCREAMING_SNAKE_CASE = sys.stdin.fileno() _SCREAMING_SNAKE_CASE = termios.tcgetattr(UpperCamelCase__ ) try: tty.setraw(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase__ , termios.TCSADRAIN , UpperCamelCase__ ) return ch def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase__ ) == KEYMAP["esc"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) == KEYMAP["mod_int"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
168
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCamelCase : Any = """facebook/wmt19-en-de""" lowerCamelCase : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCamelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCamelCase : Dict = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowerCamelCase : Dict = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCamelCase : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save lowerCamelCase : Optional[int] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
168
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: # load base model lowercase__ = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(_SCREAMING_SNAKE_CASE ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(_SCREAMING_SNAKE_CASE ) > -1: try: lowercase__ = curr_layer.__getattr__(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(_SCREAMING_SNAKE_CASE ) == 0: break except Exception: if len(_SCREAMING_SNAKE_CASE ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_SCREAMING_SNAKE_CASE ) else: pair_keys.append(_SCREAMING_SNAKE_CASE ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # update visited list for item in pair_keys: visited.append(_SCREAMING_SNAKE_CASE ) return pipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowercase_ = parser.parse_args() lowercase_ = args.base_model_path lowercase_ = args.checkpoint_path lowercase_ = args.dump_path lowercase_ = args.lora_prefix_unet lowercase_ = args.lora_prefix_text_encoder lowercase_ = args.alpha lowercase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
235
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if len(_SCREAMING_SNAKE_CASE ) < k or k < 0: raise ValueError('Invalid Input' ) lowercase__ = lowercase__ = sum(array[:k] ) for i in range(len(_SCREAMING_SNAKE_CASE ) - k ): lowercase__ = current_sum - array[i] + array[i + k] lowercase__ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1_000, 1_000) for i in range(100)] lowercase_ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
235
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Tuple = """mobilenet_v1""" def __init__( self , A=3 , A=224 , A=1.0 , A=8 , A="relu6" , A=True , A=0.9_9_9 , A=0.0_2 , A=0.0_0_1 , **A , ): super().__init__(**A ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Tuple = depth_multiplier _lowerCamelCase : Dict = min_depth _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[int] = tf_padding _lowerCamelCase : Optional[int] = classifier_dropout_prob _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = layer_norm_eps class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Dict = version.parse("""1.11""" ) @property def _lowerCAmelCase ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def _lowerCAmelCase ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def _lowerCAmelCase ( self ): return 1E-4
717
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") a_ = {"""target_lang""": """fi""", """source_lang""": """en"""} a_ = """>>zh<<""" a_ = """Helsinki-NLP/""" if is_torch_available(): a_ = """pt""" elif is_tf_available(): a_ = """tf""" else: a_ = """jax""" @require_sentencepiece class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Optional[int] = MarianTokenizer a_ : Optional[Any] = False a_ : Optional[int] = True def _lowerCAmelCase ( self ): super().setUp() _lowerCamelCase : Optional[Any] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] _lowerCamelCase : Tuple = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Union[str, Any] = Path(self.tmpdirname ) save_json(A , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(A , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(A , save_dir / VOCAB_FILES_NAMES['target_spm'] ) _lowerCamelCase : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , **A ): return MarianTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , A ): return ( "This is a test", "This is a test", ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = '</s>' _lowerCamelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(A ) , 9 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) _lowerCamelCase : Dict = en_de_tokenizer(['I am a small frog'] , return_tensors=A ) self.assertIsInstance(A , A ) _lowerCamelCase : Optional[int] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(A , batch.input_ids[0] ) _lowerCamelCase : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A ) _lowerCamelCase : Tuple = [x.name for x in Path(A ).glob('*' )] self.assertIn('source.spm' , A ) MarianTokenizer.from_pretrained(A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : str = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=A , truncation=A , return_tensors=A ) self.assertIsInstance(A , A ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : List[Any] = tok(['I am a tiny frog', 'I am a small frog'] , padding=A , return_tensors=A ) self.assertIsInstance(A , A ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _lowerCAmelCase ( self ): # fmt: off _lowerCamelCase : int = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) _lowerCamelCase : List[Any] = 'Tämä on testi' _lowerCamelCase : Optional[int] = 'This is a test' _lowerCamelCase : Any = [76, 7, 2047, 2] _lowerCamelCase : Union[str, Any] = [69, 12, 11, 940, 2] _lowerCamelCase : List[Any] = tokenizer(A ).input_ids self.assertListEqual(A , A ) _lowerCamelCase : Optional[int] = tokenizer(text_target=A ).input_ids self.assertListEqual(A , A ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(A , skip_special_tokens=A ) self.assertEqual(A , A )
349
0
'''simple docstring''' import argparse import os import re import packaging.version __UpperCAmelCase ="examples/" __UpperCAmelCase ={ "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCAmelCase ={ "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCAmelCase ="README.md" def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: with open(_a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowerCamelCase = f.read() __lowerCamelCase = REPLACE_PATTERNS[pattern] __lowerCamelCase = replace.replace('''VERSION''' , _a ) __lowerCamelCase = re_pattern.sub(_a , _a ) with open(_a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_a ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: for folder, directories, fnames in os.walk(_a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_a , _a ) , _a , pattern='''examples''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_a , _a , _a ) if not patch: update_version_in_examples(_a ) def __lowerCAmelCase ( ) -> List[str]: __lowerCamelCase = "🤗 Transformers currently provides the following architectures" __lowerCamelCase = "1. Want to contribute a new model?" with open(_a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowerCamelCase = f.readlines() # Find the start of the list. __lowerCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __lowerCamelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(_a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_a ) def __lowerCAmelCase ( ) -> int: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __lowerCamelCase = f.read() __lowerCamelCase = REPLACE_PATTERNS["init"][0].search(_a ).groups()[0] return packaging.version.parse(_a ) def __lowerCAmelCase ( UpperCamelCase__=False ) -> Optional[Any]: __lowerCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __lowerCamelCase = default_version.base_version elif patch: __lowerCamelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowerCamelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowerCamelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_a ) == 0: __lowerCamelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(_a , patch=_a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCamelCase = get_version() __lowerCamelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowerCamelCase = current_version.base_version # Check with the user we got that right. __lowerCamelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_a ) == 0: __lowerCamelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCAmelCase =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
546
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowercase ( _a=None ,_a=None ) -> List[Any]: return field(default_factory=lambda: default ,metadata=_a ) @dataclass class UpperCAmelCase__ : snake_case_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) snake_case_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Benchmark training of model'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Verbose memory tracing'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Trace memory line by line'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save result to a CSV file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save all print statements in a log file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Whether to print environment information'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) snake_case_ = field( default=F'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) snake_case_ = field( default=F'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) snake_case_ = field( default=F'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) snake_case_ = field( default=F'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) snake_case_ = field( default=F'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) snake_case_ = field( default=F'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) snake_case_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def snake_case_ ( self ): """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A__ , ) def snake_case_ ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case_ ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case_ ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
137
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = (CMStochasticIterativeScheduler,) lowerCamelCase_ = 10 def _snake_case ( self :Optional[int] , **__A :List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 80.0, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _snake_case ( self :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0](**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self :Dict ) -> Tuple: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_SCREAMING_SNAKE_CASE ) def _snake_case ( self :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = 1 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_SCREAMING_SNAKE_CASE ): # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def _snake_case ( self :Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = [106, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 15, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
713
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct_text_model" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , __A :Any=5_0244 , __A :Optional[Any]=768 , __A :Tuple=64 , __A :List[str]=2048 , __A :int=12 , __A :str=12 , __A :Any=32 , __A :Tuple=128 , __A :int=0.1 , __A :str=1E-6 , __A :Optional[Any]=1.0 , __A :Union[str, Any]="gelu_new" , __A :Any=0 , __A :List[str]=False , __A :Optional[Any]=0 , __A :int=1 , __A :Optional[int]=False , __A :Optional[Any]=True , **__A :List[Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = d_kv SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = num_layers SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE__ = dense_act_fn super().__init__( pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , tie_word_embeddings=__A , is_decoder=__A , **__A , ) @classmethod def _snake_case ( cls :Optional[int] , __A :Union[str, os.PathLike] , **__A :Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct_vision_model" def __init__( self :Optional[int] , __A :int=768 , __A :Optional[Any]=768 , __A :Union[str, Any]=2048 , __A :int=64 , __A :Union[str, Any]=12 , __A :str=12 , __A :Any="gelu_new" , __A :List[Any]=1E-6 , __A :Dict=0.0 , __A :int=0.0 , __A :int=1E-10 , __A :Dict=1.0 , __A :int=4096 , __A :int=32 , __A :int=128 , **__A :Tuple , ) -> str: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = patch_embed_hidden_size SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = dense_act_fn SCREAMING_SNAKE_CASE__ = seq_len SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = d_kv @classmethod def _snake_case ( cls :str , __A :Union[str, os.PathLike] , **__A :str ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct" lowerCamelCase_ = True def __init__( self :str , __A :Optional[Any]=None , __A :List[str]=None , __A :Optional[Any]=1.0 , __A :Optional[Any]=0.0_2 , __A :Any=False , __A :Tuple=False , __A :Any=True , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__(tie_word_embeddings=__A , is_encoder_decoder=__A , **__A ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE__ = PixaStructTextConfig(**__A ) SCREAMING_SNAKE_CASE__ = PixaStructVisionConfig(**__A ) SCREAMING_SNAKE_CASE__ = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE__ = self.text_config.pad_token_id SCREAMING_SNAKE_CASE__ = self.text_config.eos_token_id SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = is_vqa @classmethod def _snake_case ( cls :Union[str, Any] , __A :PixaStructTextConfig , __A :PixaStructVisionConfig , **__A :Optional[int] ) -> Optional[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _snake_case ( self :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
59
0
from __future__ import annotations from random import random from typing import Generic, TypeVar a_ = TypeVar("""KT""") a_ = TypeVar("""VT""") class UpperCAmelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: KT | str = "root" , __lowerCAmelCase: VT | None = None ) -> int: '''simple docstring''' __UpperCAmelCase = key __UpperCAmelCase = value __UpperCAmelCase = [] def __repr__( self: Dict ) -> str: '''simple docstring''' return F'''Node({self.key}: {self.value})''' @property def _UpperCAmelCase ( self: Dict ) -> int: '''simple docstring''' return len(self.forward ) class UpperCAmelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: float = 0.5 , __lowerCAmelCase: int = 16 ) -> int: '''simple docstring''' __UpperCAmelCase = Node[KT, VT]() __UpperCAmelCase = 0 __UpperCAmelCase = p __UpperCAmelCase = max_level def __str__( self: int ) -> str: '''simple docstring''' __UpperCAmelCase = list(self ) if len(__lowerCAmelCase ) == 0: return F'''SkipList(level={self.level})''' __UpperCAmelCase = max((len(str(__lowerCAmelCase ) ) for item in items) , default=4 ) __UpperCAmelCase = max(__lowerCAmelCase , 4 ) + 4 __UpperCAmelCase = self.head __UpperCAmelCase = [] __UpperCAmelCase = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(__lowerCAmelCase , "-" ) + "* " * len(__lowerCAmelCase ) ) lines.append(" " * label_size + "| " * len(__lowerCAmelCase ) ) while len(node.forward ) != 0: __UpperCAmelCase = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(__lowerCAmelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(__lowerCAmelCase ) ) __UpperCAmelCase = node.forward lines.append("None".ljust(__lowerCAmelCase ) + "* " * len(__lowerCAmelCase ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(__lowerCAmelCase ) def __iter__( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = self.head while len(node.forward ) != 0: yield node.forward[0].key __UpperCAmelCase = node.forward[0] def _UpperCAmelCase ( self: List[str] ) -> int: '''simple docstring''' __UpperCAmelCase = 1 while random() < self.p and level < self.max_level: level += 1 return level def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: List[str] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __UpperCAmelCase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__lowerCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: KT ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self._locate_node(__lowerCAmelCase ) if node is not None: for i, update_node in enumerate(__lowerCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __UpperCAmelCase = node.forward[i] else: __UpperCAmelCase = update_node.forward[:i] def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: KT , __lowerCAmelCase: VT ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self._locate_node(__lowerCAmelCase ) if node is not None: __UpperCAmelCase = value else: __UpperCAmelCase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __lowerCAmelCase ): update_vector.append(self.head ) __UpperCAmelCase = level __UpperCAmelCase = Node(__lowerCAmelCase , __lowerCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__lowerCAmelCase ) else: __UpperCAmelCase = new_node def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: VT ) -> VT | None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self._locate_node(__lowerCAmelCase ) if node is not None: return node.value return None def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) __UpperCAmelCase = skip_list.head __UpperCAmelCase = {} while node.level != 0: __UpperCAmelCase = node.forward[0] __UpperCAmelCase = node.value assert len(A_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __lowerCAmelCase ( ) -> Optional[int]: __UpperCAmelCase = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) __UpperCAmelCase = skip_list.head __UpperCAmelCase = {} while node.level != 0: __UpperCAmelCase = node.forward[0] __UpperCAmelCase = node.value if len(A_ ) != 4: print() assert len(A_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __lowerCAmelCase ( ) -> str: __UpperCAmelCase = SkipList() assert skip_list.find("Some key" ) is None def __lowerCAmelCase ( ) -> List[Any]: __UpperCAmelCase = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def __lowerCAmelCase ( ) -> List[Any]: __UpperCAmelCase = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def __lowerCAmelCase ( ) -> Dict: __UpperCAmelCase = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 1_42 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(A_ : List[Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(A_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __lowerCAmelCase ( ) -> str: def is_sorted(A_ : int ): return all(next_item >= item for item, next_item in zip(A_ , lst[1:] ) ) __UpperCAmelCase = SkipList() for i in range(10 ): skip_list.insert(A_ , A_ ) assert is_sorted(list(A_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(A_ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(A_ ) ) def __lowerCAmelCase ( ) -> int: for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __lowerCAmelCase ( ) -> Union[str, Any]: __UpperCAmelCase = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(A_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
221
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } a_ = {"""allegro/herbert-base-cased""": 514} a_ = {} class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Tuple = HerbertTokenizer def __init__( self: Optional[Any] , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: str="<s>" , __lowerCAmelCase: List[str]="<unk>" , __lowerCAmelCase: Optional[int]="<pad>" , __lowerCAmelCase: Optional[Any]="<mask>" , __lowerCAmelCase: Union[str, Any]="</s>" , **__lowerCAmelCase: List[Any] , ) -> Tuple: '''simple docstring''' super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , ) def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None , __lowerCAmelCase: bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def _UpperCAmelCase ( self: int , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: str , __lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
221
1
"""simple docstring""" import os import platform import sys lowerCAmelCase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
719
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if len(lowerCAmelCase ) <= 1: return arr, 0 UpperCAmelCase = len(lowerCAmelCase ) // 2 UpperCAmelCase = arr[0:mid] UpperCAmelCase = arr[mid:] UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = _count_cross_inversions(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = 0 while i < len(lowerCAmelCase ) and j < len(lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase = count_inversions_bf(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase = count_inversions_bf(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase ) # an empty list should also have zero inversions UpperCAmelCase = [] UpperCAmelCase = count_inversions_bf(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase ) if __name__ == "__main__": main()
378
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Any = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ , 2 ) - a def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 2 * x def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 2.0 while start <= a: _snake_case = math.pow(SCREAMING_SNAKE_CASE__ , 2 ) return start def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 99_99 , SCREAMING_SNAKE_CASE__ = 0.00000000000001 ): '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _snake_case = get_initial_point(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case = value _snake_case = value - fx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / fx_derivative(SCREAMING_SNAKE_CASE__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
0
'''simple docstring''' from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _A : Any ='''tiny-wmt19-en-ru''' # Build # borrowed from a test _A : List[Any] =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A : Any =dict(zip(vocab, range(len(vocab)))) _A : Optional[Any] =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: _A : Optional[Any] =Path(tmpdirname) _A : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] _A : Tuple =build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] _A : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _A : List[str] =FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _A : List[str] =FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _A : Optional[Any] =FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _A : Optional[int] =tokenizer(['''Making tiny model'''], return_tensors='''pt''') _A : List[Any] =tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _A = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCamelCase ( _A ): config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __UpperCamelCase ( _A ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_A ) def __UpperCamelCase ( _A ): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_A , id=_A ) def __UpperCamelCase ( _A , _A ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ = 0 # Doctest custom flag to ignore output. _A = doctest.register_optionflag('''IGNORE_RESULT''') _A = doctest.OutputChecker class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) _A = CustomOutputChecker _A = HfDoctestModule _A = HfDocTestParser
431
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _A = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _A = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __UpperCamelCase ( _A ): lowerCAmelCase_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( _A ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: lowerCAmelCase_ = _readaa(_A ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = bytestream.read(rows * cols * num_images ) lowerCAmelCase_ = numpy.frombuffer(_A , dtype=numpy.uinta ) lowerCAmelCase_ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = labels_dense.shape[0] lowerCAmelCase_ = numpy.arange(_A ) * num_classes lowerCAmelCase_ = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase_ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( _A , _A=False , _A=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: lowerCAmelCase_ = _readaa(_A ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = bytestream.read(_A ) lowerCAmelCase_ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class A : @deprecated( UpperCamelCase__, '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''', ) def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=dtypes.floataa, UpperCamelCase__=True, UpperCamelCase__=None, ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = random_seed.get_seed(UpperCamelCase__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase_ = dtypes.as_dtype(UpperCamelCase__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase_ = 1_0000 lowerCAmelCase_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase_ = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase_ = images.astype(numpy.floataa ) lowerCAmelCase_ = numpy.multiply(UpperCamelCase__, 1.0 / 255.0 ) lowerCAmelCase_ = images lowerCAmelCase_ = labels lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._images @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._labels @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._num_examples @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._epochs_completed def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=True ): """simple docstring""" if fake_data: lowerCAmelCase_ = [1] * 784 lowerCAmelCase_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCamelCase__ )], [fake_label for _ in range(UpperCamelCase__ )], ) lowerCAmelCase_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) lowerCAmelCase_ = self.images[perma] lowerCAmelCase_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase_ = self._num_examples - start lowerCAmelCase_ = self._images[start : self._num_examples] lowerCAmelCase_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) lowerCAmelCase_ = self.images[perm] lowerCAmelCase_ = self.labels[perm] # Start next epoch lowerCAmelCase_ = 0 lowerCAmelCase_ = batch_size - rest_num_examples lowerCAmelCase_ = self._index_in_epoch lowerCAmelCase_ = self._images[start:end] lowerCAmelCase_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def __UpperCamelCase ( _A , _A , _A ): if not gfile.Exists(_A ): gfile.MakeDirs(_A ) lowerCAmelCase_ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: lowerCAmelCase_ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __UpperCamelCase ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=5000 , _A=None , _A=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) lowerCAmelCase_ = fake() lowerCAmelCase_ = fake() lowerCAmelCase_ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check lowerCAmelCase_ = DEFAULT_SOURCE_URL lowerCAmelCase_ = '''train-images-idx3-ubyte.gz''' lowerCAmelCase_ = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase_ = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase_ = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase_ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_images(_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_labels(_A , one_hot=_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_images(_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): lowerCAmelCase_ = ( '''Validation size should be between 0 and ''' f"{len(_A )}. Received: {validation_size}." ) raise ValueError(_A ) lowerCAmelCase_ = train_images[:validation_size] lowerCAmelCase_ = train_labels[:validation_size] lowerCAmelCase_ = train_images[validation_size:] lowerCAmelCase_ = train_labels[validation_size:] lowerCAmelCase_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase_ = _DataSet(_A , _A , **_A ) lowerCAmelCase_ = _DataSet(_A , _A , **_A ) lowerCAmelCase_ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
431
1
import functools from typing import Any def _UpperCamelCase (a__ :str , a__ :list[str] ): """simple docstring""" if not isinstance(a__ , a__ ) or len(a__ ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(a__ , a__ ) or not all( isinstance(a__ , a__ ) and len(a__ ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie UpperCamelCase__ = {} UpperCamelCase__ = """WORD_KEEPER""" for word in words: UpperCamelCase__ = trie for c in word: if c not in trie_node: UpperCamelCase__ = {} UpperCamelCase__ = trie_node[c] UpperCamelCase__ = True UpperCamelCase__ = len(a__ ) # Dynamic programming method @functools.cache def is_breakable(a__ :int ) -> bool: if index == len_string: return True UpperCamelCase__ = trie for i in range(a__ , a__ ): UpperCamelCase__ = trie_node.get(string[i] , a__ ) if trie_node is None: return False if trie_node.get(a__ , a__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
548
from typing import Any def _UpperCamelCase (a__ :list ): """simple docstring""" if not input_list: return [] UpperCamelCase__ = [input_list.count(a__ ) for value in input_list] UpperCamelCase__ = max(a__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
548
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (a_ ): '''simple docstring''' _snake_case : List[str] = 'linear' _snake_case : Union[str, Any] = 'cosine' _snake_case : Dict = 'cosine_with_restarts' _snake_case : List[Any] = 'polynomial' _snake_case : int = 'constant' _snake_case : Optional[int] = 'constant_with_warmup' _snake_case : str = 'piecewise_constant' def lowercase__ ( __snake_case : str , __snake_case : Tuple = -1 ): '''simple docstring''' return LambdaLR(__snake_case , lambda __snake_case : 1 , last_epoch=__snake_case ) def lowercase__ ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] = -1 ): '''simple docstring''' def lr_lambda(__snake_case : List[Any] ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0 , __snake_case ) ) return 1.0 return LambdaLR(__snake_case , __snake_case , last_epoch=__snake_case ) def lowercase__ ( __snake_case : Any , __snake_case : Any , __snake_case : int = -1 ): '''simple docstring''' UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : int = step_rules.split(',' ) for rule_str in rule_list[:-1]: UpperCAmelCase_ , UpperCAmelCase_ : str = rule_str.split(':' ) UpperCAmelCase_ : Any = int(__snake_case ) UpperCAmelCase_ : List[str] = float(__snake_case ) UpperCAmelCase_ : Dict = value UpperCAmelCase_ : str = float(rule_list[-1] ) def create_rules_function(__snake_case : Tuple , __snake_case : Dict ): def rule_func(__snake_case : Dict ) -> float: UpperCAmelCase_ : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ : Dict = create_rules_function(__snake_case , __snake_case ) return LambdaLR(__snake_case , __snake_case , last_epoch=__snake_case ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : int=-1 ): '''simple docstring''' def lr_lambda(__snake_case : Optional[int] ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1 , __snake_case ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case , __snake_case , __snake_case ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] = 0.5 , __snake_case : List[str] = -1 ): '''simple docstring''' def lr_lambda(__snake_case : Optional[int] ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1 , __snake_case ) ) UpperCAmelCase_ : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : int = 1 , __snake_case : List[str] = -1 ): '''simple docstring''' def lr_lambda(__snake_case : str ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1 , __snake_case ) ) UpperCAmelCase_ : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case , __snake_case , __snake_case ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Optional[Any]=1E-7 , __snake_case : List[str]=1.0 , __snake_case : Any=-1 ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : str ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1 , __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ : Union[str, Any] = lr_init - lr_end UpperCAmelCase_ : List[Any] = num_training_steps - num_warmup_steps UpperCAmelCase_ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case , __snake_case , __snake_case ) __UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] = None , __snake_case : Dict = None , __snake_case : Dict = None , __snake_case : Tuple = 1 , __snake_case : int = 1.0 , __snake_case : Any = -1 , ): '''simple docstring''' UpperCAmelCase_ : str = SchedulerType(__snake_case ) UpperCAmelCase_ : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case , last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case , step_rules=__snake_case , last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case , num_warmup_steps=__snake_case , last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case , num_warmup_steps=__snake_case , num_training_steps=__snake_case , num_cycles=__snake_case , last_epoch=__snake_case , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case , num_warmup_steps=__snake_case , num_training_steps=__snake_case , power=__snake_case , last_epoch=__snake_case , ) return schedule_func( __snake_case , num_warmup_steps=__snake_case , num_training_steps=__snake_case , last_epoch=__snake_case )
406
"""simple docstring""" import socket def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: UpperCAmelCase = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
673
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = 9 UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase = kruskal(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase ) == sorted(lowerCAmelCase )
378
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
378
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCamelCase : str = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
629
import os def A_ ( ) -> Union[str, Any]: with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCamelCase : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCamelCase : str = 0 # right for i in range(20 ): for j in range(17 ): UpperCamelCase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCamelCase : List[Any] = temp # down for i in range(17 ): for j in range(20 ): UpperCamelCase : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCamelCase : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCamelCase : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCamelCase : Tuple = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCamelCase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCamelCase : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
629
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCamelCase : Dict = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self , A_ , A_ = None , A_ = None , A_ = None , A_ = True , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = [file for file in os.listdir(A_ ) if os.path.isfile(os.path.join(A_ , A_ ) )] if identifier is not None: UpperCamelCase : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(A_ , A_ ): for n_ in n_identifier: UpperCamelCase : Any = [file for file in files if n_ not in file] else: UpperCamelCase : Optional[int] = [file for file in files if n_identifier not in file] UpperCamelCase : Dict = ignore_files or [] ignore_files.append("__init__.py" ) UpperCamelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , A_ ) if only_modules: UpperCamelCase : str = file.split("." )[0] try: UpperCamelCase : Union[str, Any] = getattr(A_ , A_ ) UpperCamelCase : int = doctest.DocTestSuite(A_ ) UpperCamelCase : Union[str, Any] = unittest.TextTestRunner().run(A_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCamelCase : Tuple = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = Path("src/transformers" ) UpperCamelCase : Dict = "modeling" UpperCamelCase : Union[str, Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(A_ , identifier=A_ , ignore_files=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = Path("src/transformers" ) UpperCamelCase : Tuple = "tokenization" self.analyze_directory(A_ , identifier=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = Path("src/transformers" ) UpperCamelCase : Optional[int] = "configuration" self.analyze_directory(A_ , identifier=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = Path("src/transformers" ) UpperCamelCase : Union[str, Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(A_ , n_identifier=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = Path("docs/source" ) UpperCamelCase : Optional[Any] = ["favicon.ico"] self.analyze_directory(A_ , ignore_files=A_ , only_modules=A_ )
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Union[str, Any] = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
38
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Dict = '''cvt''' def __init__(self , __magic_name__=3 , __magic_name__=[7, 3, 3] , __magic_name__=[4, 2, 2] , __magic_name__=[2, 1, 1] , __magic_name__=[64, 192, 384] , __magic_name__=[1, 3, 6] , __magic_name__=[1, 2, 10] , __magic_name__=[4.0, 4.0, 4.0] , __magic_name__=[0.0, 0.0, 0.0] , __magic_name__=[0.0, 0.0, 0.0] , __magic_name__=[0.0, 0.0, 0.1] , __magic_name__=[True, True, True] , __magic_name__=[False, False, True] , __magic_name__=["dw_bn", "dw_bn", "dw_bn"] , __magic_name__=[3, 3, 3] , __magic_name__=[1, 1, 1] , __magic_name__=[2, 2, 2] , __magic_name__=[1, 1, 1] , __magic_name__=[1, 1, 1] , __magic_name__=0.02 , __magic_name__=1e-12 , **__magic_name__ , ) -> List[str]: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : int = num_channels snake_case_ : str = patch_sizes snake_case_ : Dict = patch_stride snake_case_ : str = patch_padding snake_case_ : List[str] = embed_dim snake_case_ : int = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Union[str, Any] = mlp_ratio snake_case_ : List[str] = attention_drop_rate snake_case_ : Tuple = drop_rate snake_case_ : Any = drop_path_rate snake_case_ : Optional[int] = qkv_bias snake_case_ : Tuple = cls_token snake_case_ : Dict = qkv_projection_method snake_case_ : Dict = kernel_qkv snake_case_ : List[Any] = padding_kv snake_case_ : Dict = stride_kv snake_case_ : List[str] = padding_q snake_case_ : List[Any] = stride_q snake_case_ : Dict = initializer_range snake_case_ : Dict = layer_norm_eps
60
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize ): """simple docstring""" a_ = """bilinear""" a_ = max_size a_ = short_edge_length def __call__( self , _UpperCAmelCase ): """simple docstring""" a_ = [] for img in imgs: a_ , a_ = img.shape[:2] # later: provide list and randomly choose index for resize a_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a_ = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase ) if h < w: a_ , a_ = size, scale * w else: a_ , a_ = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase ) > self.max_size: a_ = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase ) a_ = newh * scale a_ = neww * scale a_ = int(neww + 0.5 ) a_ = int(newh + 0.5 ) if img.dtype == np.uinta: a_ = Image.fromarray(_UpperCAmelCase ) a_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a_ = np.asarray(_UpperCAmelCase ) else: a_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a_ = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a_ = cfg.INPUT.FORMAT a_ = cfg.SIZE_DIVISIBILITY a_ = cfg.PAD_VALUE a_ = cfg.INPUT.MAX_SIZE_TEST a_ = cfg.MODEL.DEVICE a_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a_ = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) a_ = [im.shape[-2:] for im in images] a_ = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a_ = torch.tensor([im.shape[:2] for im in images] ) a_ = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a_ = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations a_ , a_ = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a_ = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert torch.isfinite(UpperCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" a_ , a_ = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase__ )
483
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ): """simple docstring""" if start is None: __UpperCamelCase =0 if end is None: __UpperCamelCase =len(__UpperCamelCase ) - 1 if start >= end: return __UpperCamelCase =(start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: __UpperCamelCase , __UpperCamelCase =sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
296
"""simple docstring""" import qiskit def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase =qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": __lowercase = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
296
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case = VQModel _snake_case = 'sample' @property def A__ ( self , snake_case_=(32, 32) ) -> Dict: __lowerCAmelCase = 4 __lowerCAmelCase = 3 __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) return {"sample": image} @property def A__ ( self ) -> Tuple: return (3, 32, 32) @property def A__ ( self ) -> Tuple: return (3, 32, 32) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def A__ ( self ) -> Optional[int]: pass def A__ ( self ) -> Tuple: pass def A__ ( self ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self ) -> List[Any]: __lowerCAmelCase = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__SCREAMING_SNAKE_CASE ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __lowerCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __lowerCAmelCase = image.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ).sample __lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCAmelCase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
465
"""simple docstring""" def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: def count_of_possible_combinations(UpperCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase ) def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: def count_of_possible_combinations_with_dp_array( UpperCamelCase : int , UpperCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a__ = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase ) for item in array ) a__ = answer return answer a__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase , UpperCamelCase ) def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: a__ = [0] * (target + 1) a__ = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a : Optional[Any] = 3 a : List[str] = 5 a : Dict = [1, 2, 5] print(combination_sum_iv(n, array, target))
273
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowerCamelCase :str = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowerCamelCase :int = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def snake_case ( UpperCamelCase__ : int ) -> Any: lowerCamelCase : Dict = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCamelCase__ )[0] @deprecated(UpperCamelCase__ , """Please use tf.data to implement this functionality.""" ) def snake_case ( UpperCamelCase__ : List[str] ) -> Any: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase__ ) as bytestream: lowerCamelCase : Optional[Any] = _readaa(UpperCamelCase__ ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) lowerCamelCase : List[Any] = _readaa(UpperCamelCase__ ) lowerCamelCase : int = _readaa(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = _readaa(UpperCamelCase__ ) lowerCamelCase : Dict = bytestream.read(rows * cols * num_images ) lowerCamelCase : Dict = numpy.frombuffer(UpperCamelCase__ , dtype=numpy.uinta ) lowerCamelCase : Optional[int] = data.reshape(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) return data @deprecated(UpperCamelCase__ , """Please use tf.one_hot on tensors.""" ) def snake_case ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: lowerCamelCase : List[Any] = labels_dense.shape[0] lowerCamelCase : Union[str, Any] = numpy.arange(UpperCamelCase__ ) * num_classes lowerCamelCase : List[Any] = numpy.zeros((num_labels, num_classes) ) lowerCamelCase : Tuple = 1 return labels_one_hot @deprecated(UpperCamelCase__ , """Please use tf.data to implement this functionality.""" ) def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[str]=10 ) -> str: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase__ ) as bytestream: lowerCamelCase : Dict = _readaa(UpperCamelCase__ ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) lowerCamelCase : str = _readaa(UpperCamelCase__ ) lowerCamelCase : Any = bytestream.read(UpperCamelCase__ ) lowerCamelCase : Tuple = numpy.frombuffer(UpperCamelCase__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCamelCase__ , UpperCamelCase__ ) return labels class A__ : """simple docstring""" @deprecated( __a , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self: Tuple , __a: Tuple , __a: Dict , __a: Tuple=False , __a: int=False , __a: Optional[int]=dtypes.floataa , __a: Tuple=True , __a: int=None , )-> Any: lowerCamelCase : Dict = random_seed.get_seed(__a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCamelCase : str = dtypes.as_dtype(__a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: lowerCamelCase : Optional[Any] = 10_000 lowerCamelCase : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCamelCase : Union[str, Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCamelCase : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCamelCase : Optional[Any] = images.astype(numpy.floataa ) lowerCamelCase : List[str] = numpy.multiply(__a , 1.0 / 255.0 ) lowerCamelCase : Any = images lowerCamelCase : List[str] = labels lowerCamelCase : Dict = 0 lowerCamelCase : Union[str, Any] = 0 @property def a__ ( self: Tuple )-> List[Any]: return self._images @property def a__ ( self: Optional[int] )-> int: return self._labels @property def a__ ( self: List[Any] )-> Optional[Any]: return self._num_examples @property def a__ ( self: Optional[int] )-> Dict: return self._epochs_completed def a__ ( self: Any , __a: str , __a: Optional[int]=False , __a: str=True )-> Optional[int]: if fake_data: lowerCamelCase : List[str] = [1] * 784 lowerCamelCase : str = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__a )], [fake_label for _ in range(__a )], ) lowerCamelCase : Dict = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCamelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(__a ) lowerCamelCase : Any = self.images[perma] lowerCamelCase : Optional[int] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCamelCase : Union[str, Any] = self._num_examples - start lowerCamelCase : Tuple = self._images[start : self._num_examples] lowerCamelCase : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCamelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(__a ) lowerCamelCase : Dict = self.images[perm] lowerCamelCase : Optional[int] = self.labels[perm] # Start next epoch lowerCamelCase : str = 0 lowerCamelCase : Union[str, Any] = batch_size - rest_num_examples lowerCamelCase : str = self._index_in_epoch lowerCamelCase : List[Any] = self._images[start:end] lowerCamelCase : Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCamelCase : List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCamelCase__ , """Please write your own downloading logic.""" ) def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Any: if not gfile.Exists(UpperCamelCase__ ): gfile.MakeDirs(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if not gfile.Exists(UpperCamelCase__ ): urllib.request.urlretrieve(UpperCamelCase__ , UpperCamelCase__ ) # noqa: S310 with gfile.GFile(UpperCamelCase__ ) as f: lowerCamelCase : str = f.size() print("""Successfully downloaded""" , UpperCamelCase__ , UpperCamelCase__ , """bytes.""" ) return filepath @deprecated( UpperCamelCase__ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def snake_case ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=dtypes.floataa , UpperCamelCase__ : str=True , UpperCamelCase__ : str=5000 , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=DEFAULT_SOURCE_URL , ) -> Tuple: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCamelCase__ , one_hot=UpperCamelCase__ , dtype=UpperCamelCase__ , seed=UpperCamelCase__ ) lowerCamelCase : Tuple = fake() lowerCamelCase : List[str] = fake() lowerCamelCase : str = fake() return _Datasets(train=UpperCamelCase__ , validation=UpperCamelCase__ , test=UpperCamelCase__ ) if not source_url: # empty string check lowerCamelCase : List[str] = DEFAULT_SOURCE_URL lowerCamelCase : Any = """train-images-idx3-ubyte.gz""" lowerCamelCase : Optional[int] = """train-labels-idx1-ubyte.gz""" lowerCamelCase : Optional[Any] = """t10k-images-idx3-ubyte.gz""" lowerCamelCase : Any = """t10k-labels-idx1-ubyte.gz""" lowerCamelCase : Any = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + train_images_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: lowerCamelCase : List[Any] = _extract_images(UpperCamelCase__ ) lowerCamelCase : Tuple = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + train_labels_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: lowerCamelCase : int = _extract_labels(UpperCamelCase__ , one_hot=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + test_images_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: lowerCamelCase : Optional[int] = _extract_images(UpperCamelCase__ ) lowerCamelCase : List[Any] = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + test_labels_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: lowerCamelCase : Dict = _extract_labels(UpperCamelCase__ , one_hot=UpperCamelCase__ ) if not 0 <= validation_size <= len(UpperCamelCase__ ): lowerCamelCase : Tuple = ( """Validation size should be between 0 and """ F'{len(UpperCamelCase__ )}. Received: {validation_size}.' ) raise ValueError(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = train_images[:validation_size] lowerCamelCase : Tuple = train_labels[:validation_size] lowerCamelCase : Optional[int] = train_images[validation_size:] lowerCamelCase : Optional[int] = train_labels[validation_size:] lowerCamelCase : Union[str, Any] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} lowerCamelCase : Optional[int] = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : List[Any] = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) return _Datasets(train=UpperCamelCase__ , validation=UpperCamelCase__ , test=UpperCamelCase__ )
721
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A__ : """simple docstring""" def a__ ( self: Optional[int] , __a: Optional[int] , __a: Tuple , __a: Optional[int] )-> List[str]: return None class A__ : """simple docstring""" def a__ ( self: Optional[int] , __a: Tuple , __a: str , __a: str , __a: str )-> Tuple: return None class A__ ( unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] =[ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ ( self: Optional[Any] )-> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , """tf""" , 12 , **__a ) @require_torch @slow def a__ ( self: str )-> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , """pt""" , 12 , **__a ) @require_torch @slow def a__ ( self: Union[str, Any] )-> Dict: from transformers import BertModel lowerCamelCase : int = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__a ) ) vocab_file.flush() lowerCamelCase : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase : List[str] = BertModel(BertConfig(vocab_size=len(__a ) ) ) model.save_pretrained(__a ) self._test_export(__a , """pt""" , 12 , __a ) @require_tf @slow def a__ ( self: Optional[Any] )-> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase : Optional[int] = self._test_export(__a , """tf""" , 12 , **__a ) lowerCamelCase : Tuple = quantize(Path(__a ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def a__ ( self: Any )-> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase : Any = self._test_export(__a , """pt""" , 12 , **__a ) lowerCamelCase : Dict = quantize(__a ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def a__ ( self: List[Any] , __a: Optional[Any] , __a: List[Any] , __a: Union[str, Any] , __a: Optional[Any]=None , **__a: Optional[int] )-> Any: try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase : Optional[Any] = Path(__a ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a , __a , __a , __a , __a , **__a ) return path except Exception as e: self.fail(__a ) @require_torch @require_tokenizers @slow def a__ ( self: Tuple )-> Dict: from transformers import BertModel lowerCamelCase : int = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCamelCase : List[Any] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__a , __a , """pt""" ) @require_tf @require_tokenizers @slow def a__ ( self: Optional[Any] )-> List[Any]: from transformers import TFBertModel lowerCamelCase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCamelCase : str = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__a , __a , """tf""" ) def a__ ( self: List[str] , __a: str , __a: Optional[Any] , __a: str )-> List[Any]: lowerCamelCase : List[str] = FeatureExtractionPipeline(__a , __a ) lowerCamelCase : List[str] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = infer_shapes(__a , __a ) # Assert all variables are present self.assertEqual(len(__a ) , len(__a ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __a ) self.assertSequenceEqual(variable_names[3:] , __a ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def a__ ( self: List[Any] )-> int: lowerCamelCase : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCamelCase : str = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCamelCase , lowerCamelCase : List[Any] = ensure_valid_input(FuncContiguousArgs() , __a , __a ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__a ) , set(__a ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase , lowerCamelCase : List[Any] = ensure_valid_input(FuncNonContiguousArgs() , __a , __a ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a ) , 1 ) self.assertEqual(len(__a ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def a__ ( self: Tuple )-> Tuple: lowerCamelCase : Optional[int] = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
42
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE :List[Any] = logging.getLogger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "sequence-classification" def __init__( self : Tuple ,A : List[Any] ): if type(A ) == dict: __A = Namespace(**A ) __A = glue_output_modes[hparams.task] __A = glue_tasks_num_labels[hparams.task] super().__init__(A ,A ,self.mode ) def UpperCamelCase_ ( self : List[Any] ,**A : Optional[Any] ): return self.model(**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : Any ): __A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __A = self(**A ) __A = outputs[0] __A = self.trainer.lr_schedulers[0]["scheduler"] __A = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase_ ( self : Optional[int] ): __A = self.hparams __A = processors[args.task]() __A = processor.get_labels() for mode in ["train", "dev"]: __A = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" ,A ) else: logger.info("Creating features from dataset file at %s" ,args.data_dir ) __A = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __A = convert_examples_to_features( A ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("Saving features into cached file %s" ,A ) torch.save(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : int ,A : bool = False ): __A = "dev" if mode == "test" else mode __A = self._feature_file(A ) logger.info("Loading features from cached file %s" ,A ) __A = torch.load(A ) __A = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) __A = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) __A = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __A = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __A = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(A ,A ,A ,A ) ,batch_size=A ,shuffle=A ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any] ,A : int ): __A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __A = self(**A ) __A , __A = outputs[:2] __A = logits.detach().cpu().numpy() __A = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase_ ( self : Optional[Any] ,A : int ): __A = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __A = np.concatenate([x["pred"] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": __A = np.argmax(A ,axis=1 ) elif self.hparams.glue_output_mode == "regression": __A = np.squeeze(A ) __A = np.concatenate([x["target"] for x in outputs] ,axis=0 ) __A = [[] for _ in range(out_label_ids.shape[0] )] __A = [[] for _ in range(out_label_ids.shape[0] )] __A = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task ,A ,A )} __A = dict(results.items() ) __A = results return ret, preds_list, out_label_list def UpperCamelCase_ ( self : Any ,A : list ): __A , __A , __A = self._eval_end(A ) __A = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ): __A , __A , __A = self._eval_end(A ) __A = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase_ ( A : Any ,A : List[Any] ): BaseTransformer.add_model_specific_args(A ,A ) parser.add_argument( "--max_seq_length" ,default=1_28 ,type=A ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--task" ,default="" ,type=A ,required=A ,help="The GLUE task to run" ,) parser.add_argument( "--gpus" ,default=0 ,type=A ,help="The number of GPUs allocated for this, it is by default 0 meaning none" ,) parser.add_argument( "--overwrite_cache" ,action="store_true" ,help="Overwrite the cached training and evaluation sets" ) return parser def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = argparse.ArgumentParser() add_generic_args(a_ , os.getcwd() ) __A = GLUETransformer.add_model_specific_args(a_ , os.getcwd() ) __A = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __A = os.path.join( "./results" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) __A = GLUETransformer(a_ ) __A = generic_train(a_ , a_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __A = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=a_ ) ) __A = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a_ ) if __name__ == "__main__": main()
55
from __future__ import annotations import math def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = u for i in range(1 , a ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = temp * (u - i) return temp def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = int(input("enter the numbers of values: " ) ) SCREAMING_SNAKE_CASE_ :list[list[float]] = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) SCREAMING_SNAKE_CASE_ :Any = 0 print("enter the values of parameters in a list: " ) SCREAMING_SNAKE_CASE_ :Dict = list(map(a , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a ): SCREAMING_SNAKE_CASE_ :List[Any] = float(input() ) SCREAMING_SNAKE_CASE_ :Optional[Any] = int(input("enter the value to interpolate: " ) ) SCREAMING_SNAKE_CASE_ :str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a ): for j in range(n - i ): SCREAMING_SNAKE_CASE_ :List[str] = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE_ :Tuple = y[0][0] for i in range(1 , a ): summ += (ucal(a , a ) * y[0][i]) / math.factorial(a ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
631
0
from __future__ import annotations _A = 10 def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list[int] ) -> list[int]: """simple docstring""" a_ = 1 a_ = max(UpperCamelCase ) while placement <= max_digit: # declare and initialize empty buckets a_ = [[] for _ in range(UpperCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: a_ = int((i / placement) % RADIX ) buckets[tmp].append(UpperCamelCase ) # put each buckets' contents into list_of_ints a_ = 0 for b in range(UpperCamelCase ): for i in buckets[b]: a_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
403
import math _A = 10 _A = 7 _A = BALLS_PER_COLOUR * NUM_COLOURS def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 20 ) -> str: """simple docstring""" a_ = math.comb(UpperCamelCase , UpperCamelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCamelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
403
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1024 ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], [] lowerCamelCase__ : List[str] = list(zip(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ : Dict = sorted_examples[0] def is_too_big(_UpperCAmelCase ): return tok(_UpperCAmelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCamelCase__ : List[Any] = new_src + ' ' + src lowerCamelCase__ : List[Any] = new_tgt + ' ' + tgt if is_too_big(_UpperCAmelCase ) or is_too_big(_UpperCAmelCase ): # cant fit, finalize example finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : str = src, tgt else: # can fit, keep adding lowerCamelCase__ , lowerCamelCase__ : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : Optional[Any] = Path(_UpperCAmelCase ) save_path.mkdir(exist_ok=_UpperCAmelCase ) for split in ["train"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" lowerCamelCase__ : List[str] = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] lowerCamelCase__ : Optional[int] = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] lowerCamelCase__ , lowerCamelCase__ : Dict = pack_examples(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print(F"""packed {split} split from {len(_UpperCAmelCase )} examples -> {len(_UpperCAmelCase )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(_UpperCAmelCase ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(_UpperCAmelCase ) ) for split in ["val", "test"]: lowerCamelCase__ , lowerCamelCase__ : Dict = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(_UpperCAmelCase , save_path / F"""{split}.source""" ) shutil.copyfile(_UpperCAmelCase , save_path / F"""{split}.target""" ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_UpperCAmelCase , default=128 ) parser.add_argument('--data_dir' , type=_UpperCAmelCase ) parser.add_argument('--save_path' , type=_UpperCAmelCase ) lowerCamelCase__ : Any = parser.parse_args() lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
295
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Any ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ : int = controlnet_params lowerCamelCase__ : Any = 'bird' lowerCamelCase__ : Dict = jax.device_count() lowerCamelCase__ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase__ : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[int] = jax.random.split(UpperCAmelCase , jax.device_count() ) lowerCamelCase__ : List[Any] = replicate(UpperCAmelCase ) lowerCamelCase__ : Dict = shard(UpperCAmelCase ) lowerCamelCase__ : Any = shard(UpperCAmelCase ) lowerCamelCase__ : Any = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] = images[0, 253:256, 253:256, -1] lowerCamelCase__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Tuple = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] = controlnet_params lowerCamelCase__ : Any = 'Chef in the kitchen' lowerCamelCase__ : str = jax.device_count() lowerCamelCase__ : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase__ : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple = jax.random.PRNGKey(0 ) lowerCamelCase__ : List[str] = jax.random.split(UpperCAmelCase , jax.device_count() ) lowerCamelCase__ : Dict = replicate(UpperCAmelCase ) lowerCamelCase__ : List[str] = shard(UpperCAmelCase ) lowerCamelCase__ : Tuple = shard(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : int = images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : int = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
295
1
import os def lowercase_ ( lowercase__ ) ->Dict: _snake_case: List[str] = len(grid[0] ) _snake_case: Any = len(lowercase__ ) _snake_case: Optional[Any] = 0 _snake_case: List[Any] = 0 _snake_case: Tuple = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): _snake_case: Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _snake_case: List[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _snake_case: Union[str, Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _snake_case: List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _snake_case: List[str] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: _snake_case: str = max_product return largest def lowercase_ ( ) ->Optional[Any]: _snake_case: Tuple = [] with open(os.path.dirname(lowercase__ ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) _snake_case: List[str] = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
702
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[Any] = tempfile.mkdtemp() # fmt: off _snake_case: Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case: str = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _snake_case: str = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case: Optional[int] = {'unk_token': '<unk>'} _snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) _snake_case: Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } _snake_case: Union[str, Any] = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **__snake_case : Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **__snake_case : Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str , **__snake_case : List[Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case: Any = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Dict = self.get_tokenizer() _snake_case: List[str] = self.get_rust_tokenizer() _snake_case: List[str] = self.get_image_processor() _snake_case: Union[str, Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case: Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case: int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case: List[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case: List[Any] = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) _snake_case: Any = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: List[Any] = self.get_image_processor() _snake_case: List[str] = self.get_tokenizer() _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: List[str] = self.prepare_image_inputs() _snake_case: List[str] = image_processor(__snake_case , return_tensors='np' ) _snake_case: Dict = processor(images=__snake_case , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: List[Any] = self.get_image_processor() _snake_case: Any = self.get_tokenizer() _snake_case: List[str] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: int = 'lower newer' _snake_case: str = processor(text=__snake_case ) _snake_case: List[Any] = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: List[str] = self.get_image_processor() _snake_case: List[Any] = self.get_tokenizer() _snake_case: Tuple = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: Optional[int] = 'lower newer' _snake_case: Union[str, Any] = self.prepare_image_inputs() _snake_case: int = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Dict = self.get_image_processor() _snake_case: Dict = self.get_tokenizer() _snake_case: str = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case: List[Any] = processor.batch_decode(__snake_case ) _snake_case: Any = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Union[str, Any] = self.get_image_processor() _snake_case: Any = self.get_tokenizer() _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: Any = 'lower newer' _snake_case: Optional[Any] = self.prepare_image_inputs() _snake_case: int = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
273
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a : Any = None a : List[str] = logging.get_logger(__name__) a : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } a : Dict = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } a : Optional[int] = '▁' # Segments (not really needed) a : List[str] = 0 a : Union[str, Any] = 1 a : Union[str, Any] = 2 a : int = 3 a : List[Any] = 4 class UpperCamelCase__ ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Tuple = "left" SCREAMING_SNAKE_CASE__ : Any = XLNetTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=False , snake_case=True , snake_case=False , snake_case="<s>" , snake_case="</s>" , snake_case="<unk>" , snake_case="<sep>" , snake_case="<pad>" , snake_case="<cls>" , snake_case="<mask>" , snake_case=["<eop>", "<eod>"] , **snake_case , ): '''simple docstring''' UpperCAmelCase : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( vocab_file=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase : List[Any] = 3 UpperCAmelCase : Union[str, Any] = do_lower_case UpperCAmelCase : Tuple = remove_space UpperCAmelCase : Optional[int] = keep_accents UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[Any] = False if not self.vocab_file else True def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
679
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCamelCase : Optional[Any] = '<<<<<<< This should probably be modified because it mentions: ' __UpperCamelCase : Optional[Any] = '=======\n>>>>>>>\n' __UpperCamelCase : Optional[int] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] __UpperCamelCase : Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def A ( _lowercase ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase__ ( UpperCamelCase_): @staticmethod def __A ( UpperCamelCase__ : ArgumentParser ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str , *UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_logger('''datasets-cli/converting''' ) SCREAMING_SNAKE_CASE : List[str] = tfds_path SCREAMING_SNAKE_CASE : Optional[int] = datasets_directory def __A ( self : Dict ): '''simple docstring''' if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): SCREAMING_SNAKE_CASE : Dict = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) SCREAMING_SNAKE_CASE : str = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Dict = {} if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE : List[str] = os.listdir(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) SCREAMING_SNAKE_CASE : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if not os.path.isfile(UpperCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.readlines() SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = [] for line in lines: SCREAMING_SNAKE_CASE : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE : List[str] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE : Optional[Any] = '''''' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE : Any = '''from datasets import logging\n''' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE : Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda UpperCamelCase__ : e in out_line , UpperCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase__ ) + '''\n''' ) out_lines.append(UpperCamelCase__ ) out_lines.append(UpperCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE : Any = re.sub(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE : Optional[int] = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) SCREAMING_SNAKE_CASE : List[Any] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE : Optional[int] = True out_lines.append(UpperCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE : Dict = f_name.replace('''.py''' , '''''' ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase__ ) if needs_manual_update: with_manual_update.append(UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase__ ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: SCREAMING_SNAKE_CASE : Tuple = os.path.basename(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(UpperCamelCase__ , UpperCamelCase__ ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
248
0
'''simple docstring''' import math from collections.abc import Callable def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Callable[[float], float], SCREAMING_SNAKE_CASE__: float, SCREAMING_SNAKE_CASE__: float ) -> float: """simple docstring""" __a = xa __a = xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __a = x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __a = x_na __a = x_na def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: float ) -> float: """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE__, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
270
'''simple docstring''' import warnings from .generation import TFGenerationMixin class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowerCAmelCase , )
270
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "CLIPImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :List[Any] , __A :Tuple=None , __A :Dict=None , **__A :Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :Any , __A :str=None , __A :List[Any]=None , __A :Union[str, Any]=None , **__A :List[Any] ) -> List[str]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :Union[str, Any] , *__A :Optional[int] , **__A :Any ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Optional[Any] , *__A :str , **__A :Tuple ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self :Dict ) -> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowerCamelCase : """simple docstring""" a = 42 a = None a = None A : Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCAmelCase__ ( lowerCamelCase : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCamelCase ) != count_coins(lowerCamelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCamelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) _A , _A : Optional[Any] = get_distrib(node.left ) _A , _A : Any = get_distrib(node.right ) _A : str = 1 - left_distrib_excess _A : Union[str, Any] = 1 - right_distrib_excess _A : Any = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase ) + abs(lowerCamelCase ) ) _A : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase ,lowerCamelCase ) return get_distrib(lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
128
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def lowerCAmelCase ( *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Any: """simple docstring""" pass @is_pipeline_test @require_vision class __A (unittest.TestCase): '''simple docstring''' @require_torch def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" snake_case_ = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase_ ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], ] , ) @require_tf def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], [ {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, {"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )}, ], ] , ) @slow @require_torch def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" snake_case_ = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
2
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
1
_UpperCAmelCase : Any = 6_5521 def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 1 snake_case_ = 0 for plain_chr in plain_text: snake_case_ = (a + ord(UpperCamelCase__ )) % MOD_ADLER snake_case_ = (b + a) % MOD_ADLER return (b << 16) | a
362
import argparse import struct import unittest class lowercase : def __init__( self , snake_case ): snake_case_ = data # Initialize hash values snake_case_ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants snake_case_ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] snake_case_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def a ( snake_case ): snake_case_ = b'\x80' + (b'\x00' * (63 - (len(snake_case ) + 8) % 64)) snake_case_ = struct.pack('>Q' , (len(snake_case ) * 8) ) return data + padding + big_endian_integer def a ( self ): # Convert into blocks of 64 bytes snake_case_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case_ = list(struct.unpack('>16L' , snake_case ) ) # add 48 0-ed integers words += [0] * 48 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array snake_case_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) snake_case_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) snake_case_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression snake_case_ = self.ror(snake_case , 6 ) ^ self.ror(snake_case , 11 ) ^ self.ror(snake_case , 25 ) snake_case_ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) snake_case_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 snake_case_ = self.ror(snake_case , 2 ) ^ self.ror(snake_case , 13 ) ^ self.ror(snake_case , 22 ) snake_case_ = (a & b) ^ (a & c) ^ (b & c) snake_case_ = (sa + maj) % 0x100000000 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) snake_case_ = [a, b, c, d, e, f, g, h] # Modify final values snake_case_ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] snake_case_ = ''.join([hex(snake_case )[2:].zfill(8 ) for value in self.hashes] ) def a ( self , snake_case , snake_case ): return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase ( unittest.TestCase ): def a ( self ): import hashlib snake_case_ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(snake_case ).hash , hashlib.shaaaa(snake_case ).hexdigest() ) def __lowerCamelCase ( ): '''simple docstring''' import doctest doctest.testmod() snake_case_ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) snake_case_ = parser.parse_args() snake_case_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: snake_case_ = f.read() else: snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) print(SHAaaa(UpperCamelCase__ ).hash ) if __name__ == "__main__": main()
362
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowercase : List[str] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __lowercase : Optional[Any] = dataset.iloc[:, 1:2].values __lowercase : Optional[int] = dataset.iloc[:, 2].values __lowercase ,__lowercase ,__lowercase ,__lowercase : str = train_test_split(X, y, test_size=0.2, random_state=0) __lowercase : Optional[int] = PolynomialFeatures(degree=4) __lowercase : List[Any] = poly_reg.fit_transform(X) __lowercase : Union[str, Any] = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE ( ): plt.scatter(lowerCamelCase__, lowerCamelCase__, color='''red''') plt.plot(lowerCamelCase__, pol_reg.predict(poly_reg.fit_transform(lowerCamelCase__)), color='''blue''') plt.title('''Truth or Bluff (Linear Regression)''') plt.xlabel('''Position level''') plt.ylabel('''Salary''') plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
715
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[int] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str , A_ : Optional[Any]=None , A_ : Union[str, Any]=None , *A_ : List[Any] , **A_ : Union[str, Any] ) -> List[Any]: super().__init__(*A_ , **A_ ) if config is None: assert isinstance(self.model , A_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) __snake_case = self.model.config else: __snake_case = config __snake_case = data_args __snake_case = self.config.tgt_vocab_size if isinstance(self.config , A_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: __snake_case = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __snake_case = label_smoothed_nll_loss def lowercase ( self : List[Any] , A_ : int ) -> Union[str, Any]: if self.optimizer is None: __snake_case = ['''bias''', '''LayerNorm.weight'''] __snake_case = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __snake_case = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __snake_case = Adafactor __snake_case = {'''scale_parameter''': False, '''relative_step''': False} else: __snake_case = AdamW __snake_case = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __snake_case = self.args.learning_rate if self.sharded_ddp: __snake_case = OSS( params=A_ , optim=A_ , **A_ , ) else: __snake_case = optimizer_cls(A_ , **A_ ) if self.lr_scheduler is None: __snake_case = self._get_lr_scheduler(A_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase ( self : Any , A_ : Dict ) -> Dict: __snake_case = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __snake_case = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __snake_case = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __snake_case = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A_ ) return scheduler def lowercase ( self : List[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase ( self : List[Any] , A_ : str , A_ : str , A_ : List[str] ) -> Dict: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __snake_case = model(**A_ , use_cache=A_ )[0] __snake_case = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __snake_case , __snake_case = model(**A_ , labels=A_ , use_cache=A_ )[:2] else: # compute label smoothed loss __snake_case = model(**A_ , use_cache=A_ )[0] __snake_case = torch.nn.functional.log_softmax(A_ , dim=-1 ) __snake_case , __snake_case = self.loss_fn(A_ , A_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase ( self : int , A_ : Tuple , A_ : List[str] ) -> List[Any]: __snake_case = inputs.pop('''labels''' ) __snake_case , __snake_case = self._compute_loss(A_ , A_ , A_ ) return loss def lowercase ( self : Union[str, Any] , A_ : nn.Module , A_ : Dict[str, Union[torch.Tensor, Any]] , A_ : bool , A_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: __snake_case = self._prepare_inputs(A_ ) __snake_case = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __snake_case = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **A_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __snake_case = self._pad_tensors_to_max_len(A_ , gen_kwargs['''max_length'''] ) __snake_case = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __snake_case , __snake_case = self._compute_loss(A_ , A_ , A_ ) __snake_case = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __snake_case = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __snake_case = self._pad_tensors_to_max_len(A_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase ( self : Union[str, Any] , A_ : Any , A_ : List[str] ) -> Optional[Any]: # If PAD token is not defined at least EOS token has to be defined __snake_case = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f" padded to `max_length`={max_length}" ) __snake_case = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __snake_case = tensor return padded_tensor
93
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-vision" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[3, 5, 7, 11], SCREAMING_SNAKE_CASE_=[1, 2, 3, 6], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.4, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=255, **SCREAMING_SNAKE_CASE_, ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : List[Any] = image_size UpperCamelCase : int = patch_size UpperCamelCase : Tuple = num_channels UpperCamelCase : str = use_mask_token UpperCamelCase : Union[str, Any] = use_absolute_position_embeddings UpperCamelCase : int = use_relative_position_bias UpperCamelCase : Optional[int] = use_shared_relative_position_bias UpperCamelCase : int = layer_scale_init_value UpperCamelCase : List[Any] = drop_path_rate UpperCamelCase : str = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase : List[str] = out_indices UpperCamelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase : List[str] = use_auxiliary_head UpperCamelCase : Any = auxiliary_loss_weight UpperCamelCase : Any = auxiliary_channels UpperCamelCase : Tuple = auxiliary_num_convs UpperCamelCase : str = auxiliary_concat_input UpperCamelCase : Optional[int] = semantic_loss_ignore_index class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-4
40
from __future__ import annotations _lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __snake_case : dict[str, list[str]] , __snake_case : str ) -> None: '''simple docstring''' lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase = {} lowerCamelCase = source_vertex def lowerCamelCase__ ( self : List[Any] ) -> None: '''simple docstring''' lowerCamelCase = {self.source_vertex} lowerCamelCase = None lowerCamelCase = [self.source_vertex] # first in first out queue while queue: lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) lowerCamelCase = vertex queue.append(__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase = self.parent.get(__snake_case ) if target_vertex_parent is None: lowerCamelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
246
0
from __future__ import annotations from collections import namedtuple def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = namedtuple("result" , "name value") if (voltage, current, power).count(0) != 1: raise ValueError("Only one argument must be 0") elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system") elif voltage == 0: return result("voltage" , power / current) elif current == 0: return result("current" , power / voltage) elif power == 0: return result("power" , float(round(abs(voltage * current) , 2))) else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list: """simple docstring""" a_ = len(_UpperCAmelCase ) a_ = [] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): a_ = True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: a_ = False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
697
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
1
import math import random def a__ ( A_, A_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __lowerCAmelCase : str = 0.02 def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(A_ ): # Forward propagation __magic_name__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __magic_name__ = (expected / 100) - layer_a # Error delta __magic_name__ = layer_1_error * sigmoid_function(A_, A_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Any = int(input('Expected value: ')) __lowerCAmelCase : Tuple = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
714
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """lilt""" def __init__( self : Dict , UpperCamelCase__ : List[str]=3_0522 , UpperCamelCase__ : Optional[Any]=768 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=3072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Any=1E-12 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : str="absolute" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Tuple=1024 , **UpperCamelCase__ : Optional[int] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = classifier_dropout __magic_name__ = channel_shrink_ratio __magic_name__ = max_ad_position_embeddings
76
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A__ ): """simple docstring""" a = ["torch", "torchsde"] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Dict ) -> List[Any]: requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : Optional[int] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Tuple ) -> Any: requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : Optional[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Dict ) -> int: requires_backends(cls , ['''torch''', '''torchsde'''] )
493
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase__ : """simple docstring""" def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Any=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=99 , __lowerCamelCase : Dict=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : str=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=50 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[Any]=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self : List[str] ) -> Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def lowercase_ ( self : Dict ) -> int: ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict , ) -> List[str]: SCREAMING_SNAKE_CASE__ = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : str , **__lowerCamelCase : Tuple , ) -> Tuple: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[int] , ) -> int: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = BertGenerationDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() # first forward pass SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , *__lowerCamelCase : int , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = BertGenerationDecoder(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a = (BertGenerationDecoder,) if is_torch_available() else () a = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def lowercase_ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = BertGenerationEncoderTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = '''bert''' self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Tuple: # This regression test was failing with PyTorch < 1.3 ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE__ = None self.model_tester.create_and_check_model_as_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__lowerCamelCase ) @slow def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) SCREAMING_SNAKE_CASE__ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) SCREAMING_SNAKE_CASE__ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
493
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A ( snake_case__ ): UpperCamelCase :Optional[Any] = '''beit''' def __init__(self , __magic_name__=8192 , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1E-12 , __magic_name__=224 , __magic_name__=16 , __magic_name__=3 , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=True , __magic_name__=[3, 5, 7, 11] , __magic_name__=[1, 2, 3, 6] , __magic_name__=True , __magic_name__=0.4 , __magic_name__=256 , __magic_name__=1 , __magic_name__=False , __magic_name__=255 , **__magic_name__ , ): super().__init__(**lowercase_ ) lowerCamelCase__ : int = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : List[str] = image_size lowerCamelCase__ : List[Any] = patch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : int = use_mask_token lowerCamelCase__ : int = use_absolute_position_embeddings lowerCamelCase__ : Any = use_relative_position_bias lowerCamelCase__ : Optional[int] = use_shared_relative_position_bias lowerCamelCase__ : Any = layer_scale_init_value lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__ : Any = out_indices lowerCamelCase__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__ : Tuple = use_auxiliary_head lowerCamelCase__ : Optional[Any] = auxiliary_loss_weight lowerCamelCase__ : List[Any] = auxiliary_channels lowerCamelCase__ : str = auxiliary_num_convs lowerCamelCase__ : Union[str, Any] = auxiliary_concat_input lowerCamelCase__ : Any = semantic_loss_ignore_index class __A ( snake_case__ ): UpperCamelCase :int = version.parse('''1.11''' ) @property def _snake_case (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case (self ): return 1E-4
704
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _A (UpperCamelCase : Any ) ->List[str]: '''simple docstring''' lowerCamelCase__ : List[str] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) _lowercase = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _A (UpperCamelCase : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: lowerCamelCase__ : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase__ : Tuple = new_key.replace(UpperCamelCase , UpperCamelCase ) print(f"{key} -> {new_key}" ) lowerCamelCase__ : int = s_dict.pop(UpperCamelCase ) return s_dict def _A (UpperCamelCase : List[Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ : int = emb.weight.shape lowerCamelCase__ : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : List[str] = emb.weight.data return lin_layer def _A (UpperCamelCase : str , UpperCamelCase : str ) ->bytes: '''simple docstring''' os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCamelCase__ : Any = os.path.basename(UpperCamelCase ) lowerCamelCase__ : int = url.split("""/""" )[-2] lowerCamelCase__ : Optional[int] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not os.path.isfile(UpperCamelCase ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(UpperCamelCase ): lowerCamelCase__ : Dict = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(UpperCamelCase ) as source, open(UpperCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=UpperCamelCase , unit_divisor=1024 ) as loop: while True: lowerCamelCase__ : Tuple = source.read(8192 ) if not buffer: break output.write(UpperCamelCase ) loop.update(len(UpperCamelCase ) ) lowerCamelCase__ : Any = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A (UpperCamelCase : Dict , UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if ".pt" not in checkpoint_path: lowerCamelCase__ : Optional[Any] = _download(_MODELS[checkpoint_path] ) else: lowerCamelCase__ : Optional[Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = original_checkpoint["""dims"""] lowerCamelCase__ : int = original_checkpoint["""model_state_dict"""] lowerCamelCase__ : Optional[int] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] lowerCamelCase__ : List[str] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCamelCase , decoder_ffn_dim=UpperCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) lowerCamelCase__ : List[str] = WhisperForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ ,lowerCamelCase__ : str = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : int = proj_out_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
96
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case ( lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("""test""" ) else: __lowercase = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=lowerCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: __lowercase = script_name else: __lowercase = F'--config_file={args.config_file} {script_name}' __lowercase = ["""accelerate-launch"""] + test_args.split() __lowercase = execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def snake_case ( ): '''simple docstring''' __lowercase = test_command_parser() __lowercase = parser.parse_args() test_command(lowerCamelCase ) if __name__ == "__main__": main()
80
def a(lowercase__ ): '''simple docstring''' snake_case_ = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case_ , snake_case_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": A = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
187
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def snake_case_ ( lowercase__ : Union[tf.Tensor, np.ndarray] ): '''simple docstring''' if isinstance(lowercase__ , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase =tf.shape(lowercase__ ) if tensor.shape == tf.TensorShape(lowercase__ ): return dynamic _lowerCAmelCase =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowercase__ )] def snake_case_ ( lowercase__ : tf.Tensor , lowercase__ : Optional[int] = None , lowercase__ : Optional[str] = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=lowercase__ , name=lowercase__ ) def snake_case_ ( lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=1e-5 , lowercase__ : str=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowercase__ , lowercase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized _lowerCAmelCase , _lowerCAmelCase =tf.nn.moments(lowercase__ , axes=[axis] , keepdims=lowercase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase =[1] * inputs.shape.rank _lowerCAmelCase =shape_list(lowercase__ )[axis] _lowerCAmelCase =tf.reshape(lowercase__ , lowercase__ ) _lowerCAmelCase =tf.reshape(lowercase__ , lowercase__ ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase =tf.nn.batch_normalization( lowercase__ , lowercase__ , lowercase__ , offset=lowercase__ , scale=lowercase__ , variance_epsilon=lowercase__ , ) return outputs def snake_case_ ( lowercase__ : str , lowercase__ : Optional[Any]=0 , lowercase__ : str=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase =tf.shape(lowercase__ ) _lowerCAmelCase =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowercase__ , lowercase__ ) def snake_case_ ( lowercase__ : tf.Tensor ): '''simple docstring''' if not isinstance(lowercase__ , tf.Tensor ): _lowerCAmelCase =tf.convert_to_tensor(lowercase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase =( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def snake_case_ ( lowercase__ : tf.Tensor , lowercase__ : int , lowercase__ : str = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( lowercase__ , tf.cast(lowercase__ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(lowercase__ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def snake_case_ ( lowercase__ : str , lowercase__ : str , lowercase__ : Optional[int] ): '''simple docstring''' _lowerCAmelCase =6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase =[x for x in data if len(lowercase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) _lowerCAmelCase =np.asarray(lowercase__ ) _lowerCAmelCase =1 _lowerCAmelCase =np.array_split(lowercase__ , lowercase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase =np.array_split(lowercase__ , lowercase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowercase__ ): _lowerCAmelCase =chunk_data else: _lowerCAmelCase =data def snake_case_ ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): '''simple docstring''' if name in group.attrs: _lowerCAmelCase =[n.decode("""utf8""" ) if hasattr(lowercase__ , """decode""" ) else n for n in group.attrs[name]] else: _lowerCAmelCase =[] _lowerCAmelCase =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(lowercase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' def _expand_single_ad_tensor(lowercase__ : str ): if isinstance(lowercase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowercase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowercase__ )
149
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : Optional[int]=32 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Optional[Any]=10 , lowerCamelCase_ : Any=[10, 20, 30, 40] , lowerCamelCase_ : List[Any]=[1, 1, 2, 1] , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[int]="relu" , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : int=None , ): _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =embeddings_size _lowerCAmelCase =hidden_sizes _lowerCAmelCase =depths _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_act _lowerCAmelCase =num_labels _lowerCAmelCase =scope _lowerCAmelCase =len(lowerCamelCase_ ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =self.get_config() return config, pixel_values def lowerCAmelCase__ ( self : int ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase__ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : List[str] ): _lowerCAmelCase =FlaxRegNetModel(config=lowerCamelCase_ ) _lowerCAmelCase =model(lowerCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] ): _lowerCAmelCase =self.num_labels _lowerCAmelCase =FlaxRegNetForImageClassification(config=lowerCamelCase_ ) _lowerCAmelCase =model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_: Optional[int] = False a_: Any = False a_: Union[str, Any] = False def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =FlaxRegNetModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Union[str, Any] ): return def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase__ ( self : int ): pass def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(lowerCamelCase_ ) _lowerCAmelCase =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCAmelCase__ ( self : int ): def check_hidden_states_output(lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): _lowerCAmelCase =model_class(lowerCamelCase_ ) _lowerCAmelCase =model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _lowerCAmelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase =self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Dict ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase =model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase =model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=lowerCamelCase_ , return_tensors="""np""" ) _lowerCAmelCase =model(**lowerCamelCase_ ) # verify the logits _lowerCAmelCase =(1, 1000) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _lowerCAmelCase =jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
149
1
import collections import os import re from pathlib import Path snake_case__ : Any = '''src/transformers''' # Matches is_xxx_available() snake_case__ : Optional[Any] = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : Optional[int] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : str = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : List[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : List[str] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : int = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Union[str, Any] = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : List[str] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : int = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : List[str] = re.compile(R'''^\s*else:''') def lowercase ( _lowerCAmelCase ): if _re_test_backend.search(_lowerCAmelCase ) is None: return None UpperCAmelCase__ = [b[0] for b in _re_backend.findall(_lowerCAmelCase )] backends.sort() return "_and_".join(_lowerCAmelCase ) def lowercase ( _lowerCAmelCase ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 while line_index < len(_lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCAmelCase ): UpperCAmelCase__ = _re_one_line_import_struct.search(_lowerCAmelCase ).groups()[0] UpperCAmelCase__ = re.findall(R"""\[([^\]]+)\]""" , _lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCAmelCase__ = _re_import_struct_key_value.search(_lowerCAmelCase ) if single_line_import_search is not None: UpperCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(_lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCAmelCase ) is not None: UpperCAmelCase__ = _re_import_struct_add_many.search(_lowerCAmelCase ).groups()[0].split(""", """ ) UpperCAmelCase__ = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_between_brackets.search(_lowerCAmelCase ) is not None: UpperCAmelCase__ = _re_between_brackets.search(_lowerCAmelCase ).groups()[0].split(""", """ ) UpperCAmelCase__ = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_quote_object.search(_lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(_lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase__ = [] while ( line_index < len(_lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCAmelCase__ = lines[line_index] UpperCAmelCase__ = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCAmelCase__ = lines[line_index] UpperCAmelCase__ = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase ( _lowerCAmelCase , _lowerCAmelCase ): def find_duplicates(_lowerCAmelCase ): return [k for k, v in collections.Counter(_lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase__ = [] for key in import_dict_objects.keys(): UpperCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase__ = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowercase ( ): UpperCAmelCase__ = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: UpperCAmelCase__ = os.path.join(_lowerCAmelCase , """__init__.py""" ) UpperCAmelCase__ = parse_init(_lowerCAmelCase ) if objects is not None: UpperCAmelCase__ = analyze_results(*_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase__ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCAmelCase ) ) def lowercase ( ): UpperCAmelCase__ = [] for path, directories, files in os.walk(_lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCAmelCase__ = str((Path(_lowerCAmelCase ) / folder).relative_to(_lowerCAmelCase ) ) UpperCAmelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase__ = str((Path(_lowerCAmelCase ) / fname).relative_to(_lowerCAmelCase ) ) UpperCAmelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCAmelCase ) return submodules snake_case__ : List[Any] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def lowercase ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCAmelCase__ = direct_transformers_import(_lowerCAmelCase ) UpperCAmelCase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: UpperCAmelCase__ = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _lowerCAmelCase ) ) ) UpperCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_lowerCAmelCase ) > 0: UpperCAmelCase__ = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
392
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) ->Optional[Any]: '''simple docstring''' UpperCAmelCase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1E-3 ) ) @slow def UpperCAmelCase ( self : Optional[int] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCAmelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1E-3 ) )
392
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) snake_case_ : Dict = DatasetInfosDict.from_directory(snake_case__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : DatasetInfo ): """simple docstring""" snake_case_ : str = str(snake_case__ ) dataset_info.write_to_directory(snake_case__ ) snake_case_ : List[Any] = DatasetInfo.from_directory(snake_case__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case__ , """dataset_info.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) snake_case_ : List[str] = dataset_info._to_yaml_dict() assert sorted(snake_case__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ : Optional[Any] = yaml.safe_dump(snake_case__ ) snake_case_ : str = yaml.safe_load(snake_case__ ) assert dataset_info_yaml_dict == reloaded def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = DatasetInfo() snake_case_ : int = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : DatasetInfosDict ): """simple docstring""" snake_case_ : Optional[int] = str(snake_case__ ) dataset_infos_dict.write_to_directory(snake_case__ ) snake_case_ : List[str] = DatasetInfosDict.from_directory(snake_case__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case__ , """README.md""" ) )
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0