code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : str = field(default='''question-answering-extractive''' ,metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase_ : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) UpperCAmelCase_ : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) UpperCAmelCase_ : str = "question" UpperCAmelCase_ : str = "context" UpperCAmelCase_ : str = "answers" @property def lowerCAmelCase__ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
614
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase__ : str = get_tests_dir('fixtures') class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[int] = mock.Mock() UpperCAmelCase__ : Dict = 500 UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : List[str] = HTTPError UpperCAmelCase__ : Tuple = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : Any = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase__ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase__ : int = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) UpperCAmelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' ,subfolder='''feature_extractor''' ) self.assertIsNotNone(lowerCamelCase_ ) @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained(lowerCamelCase_ ) image_processor.push_to_hub('''test-image-processor''' ,use_auth_token=self._token ) UpperCAmelCase__ : Any = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCamelCase_ ,repo_id='''test-image-processor''' ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase__ : List[Any] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_ ) ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained(lowerCamelCase_ ) image_processor.push_to_hub('''valid_org/test-image-processor''' ,use_auth_token=self._token ) UpperCAmelCase__ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCamelCase_ ,repo_id='''valid_org/test-image-processor-org''' ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase__ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_ ) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' CustomImageProcessor.register_for_auto_class() UpperCAmelCase__ : List[str] = CustomImageProcessor.from_pretrained(lowerCamelCase_ ) image_processor.push_to_hub('''test-dynamic-image-processor''' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map ,{'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} ,) UpperCAmelCase__ : Any = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ ,'''CustomImageProcessor''' )
614
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase_ : '''simple docstring''' def __init__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =data SCREAMING_SNAKE_CASE_ : Node | None =None class lowerCAmelCase_ : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : Tuple =None SCREAMING_SNAKE_CASE_ : Optional[int] =None def __iter__( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.head while self.head: yield node.data SCREAMING_SNAKE_CASE_ : int =node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(UpperCamelCase__ ) for item in iter(self ) ) def __lowerCamelCase ( self , __UpperCAmelCase ): self.insert_nth(len(self ) , UpperCamelCase__ ) def __lowerCamelCase ( self , __UpperCAmelCase ): self.insert_nth(0 , UpperCamelCase__ ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =Node(UpperCamelCase__ ) if self.head is None: SCREAMING_SNAKE_CASE_ : Dict =new_node # first node points itself SCREAMING_SNAKE_CASE_ : int =new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE_ : List[str] =self.head SCREAMING_SNAKE_CASE_ : Optional[int] =new_node else: SCREAMING_SNAKE_CASE_ : List[Any] =self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] =temp.next SCREAMING_SNAKE_CASE_ : Union[str, Any] =temp.next SCREAMING_SNAKE_CASE_ : Optional[int] =new_node if index == len(self ) - 1: # insert at tail SCREAMING_SNAKE_CASE_ : int =new_node def __lowerCamelCase ( self ): return self.delete_nth(0 ) def __lowerCamelCase ( self ): return self.delete_nth(len(self ) - 1 ) def __lowerCamelCase ( self , __UpperCAmelCase = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE_ : Dict =None elif index == 0: # delete head node SCREAMING_SNAKE_CASE_ : Any =self.tail.next.next SCREAMING_SNAKE_CASE_ : List[Any] =self.head.next else: SCREAMING_SNAKE_CASE_ : str =self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE_ : Tuple =temp.next SCREAMING_SNAKE_CASE_ : Union[str, Any] =temp.next SCREAMING_SNAKE_CASE_ : Dict =temp.next.next if index == len(self ) - 1: # delete at tail SCREAMING_SNAKE_CASE_ : Tuple =temp return delete_node.data def __lowerCamelCase ( self ): return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str =CircularLinkedList() assert len(lowerCAmelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase__ ) == i circular_linked_list.insert_nth(lowerCAmelCase__ ,i + 1 ) assert str(lowerCAmelCase__ ) == "->".join(str(lowerCAmelCase__ ) for i in range(1 ,6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase__ ) == "->".join(str(lowerCAmelCase__ ) for i in range(1 ,7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase__ ) == "->".join(str(lowerCAmelCase__ ) for i in range(0 ,7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase__ ) == "->".join(str(lowerCAmelCase__ ) for i in range(1 ,6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 ,3 ) assert str(lowerCAmelCase__ ) == "->".join(str(lowerCAmelCase__ ) for i in range(1 ,6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
709
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['DPTFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
153
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def snake_case_ ( A_ : Callable[[int | float], int | float], A_ : int | float, A_ : int | float, A_ : int = 1_00, ): '''simple docstring''' _lowerCamelCase : Optional[Any] = x_start _lowerCamelCase : int = fnc(A_ ) _lowerCamelCase : Optional[Any] = 0.0 for _ in range(A_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _lowerCamelCase : int = (x_end - x_start) / steps + xa _lowerCamelCase : Tuple = fnc(A_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _lowerCamelCase : Optional[Any] = xa _lowerCamelCase : Any = fxa return area if __name__ == "__main__": def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase__ = 10 while i <= 100000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
83
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case : Tuple = None snake_case : Tuple = logging.get_logger(__name__) snake_case : List[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case : Dict = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } snake_case : int = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } snake_case : List[str] = """▁""" class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = BigBirdTokenizer __UpperCAmelCase = ["""input_ids""", """attention_mask"""] __UpperCAmelCase = [] def __init__( self : Optional[int] , UpperCamelCase_ : int=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Tuple="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Optional[Any]="[SEP]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : Tuple="[CLS]" , **UpperCamelCase_ : Optional[Any] , ): '''simple docstring''' __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = vocab_file __magic_name__ = False if not self.vocab_file else True def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def a__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __magic_name__ = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
545
0
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __a = [] __a = set({"""(""", """[""", """{"""} ) __a = set({""")""", """]""", """}"""} ) __a = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def __lowercase ( ) -> List[str]: """simple docstring""" __a = input("""Enter sequence of brackets: """ ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , """is balanced""" ) else: print(__SCREAMING_SNAKE_CASE , """is not balanced""" ) if __name__ == "__main__": main()
201
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for tf_name, hf_name in patterns: __a = k.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return k def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" __a = BigBirdPegasusConfig(**__SCREAMING_SNAKE_CASE ) __a = BigBirdPegasusForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __a = torch_model.state_dict() __a = {} # separating decoder weights __a = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __a = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __a = [k.endswith(__SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(__SCREAMING_SNAKE_CASE ): continue __a = DECODER_PATTERNS __a = rename_state_dict_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __a = v.T __a = torch.from_numpy(__SCREAMING_SNAKE_CASE ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __a = [k.endswith(__SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(__SCREAMING_SNAKE_CASE ): continue __a = REMAINING_PATTERNS __a = rename_state_dict_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __a = v.T __a = torch.from_numpy(__SCREAMING_SNAKE_CASE ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __a = mapping["""model.embed_positions.weight"""] __a = mapping.pop("""model.embed_positions.weight""" ) __a , __a = torch_model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) __a = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __a = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __a = {} __a = ["""global_step"""] for name, shape in tqdm(__SCREAMING_SNAKE_CASE , desc="""converting tf checkpoint to dict""" ): __a = any(pat in name for pat in ignore_name ) if skip_key: continue __a = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = array return tf_weights def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" __a = get_tf_weights_as_numpy(__SCREAMING_SNAKE_CASE ) __a = convert_bigbird_pegasus(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
201
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ :Union[str, Any] = 16 a_ :Any = 32 def a ( A__ , A__ , A__ , A__ , A__ = 1_6 ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ : Any = DatasetDict( { '''train''': dataset['''train'''].select(A__ ), '''validation''': dataset['''train'''].select(A__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Tuple = 8 else: SCREAMING_SNAKE_CASE__ : int = None return tokenizer.pad( A__ , padding='''longest''' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Tuple = DataLoader( tokenized_datasets['''test'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def a ( A__ , A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Download the dataset SCREAMING_SNAKE_CASE__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits SCREAMING_SNAKE_CASE__ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Union[str, Any] = config['''lr'''] SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE__ : Optional[Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) SCREAMING_SNAKE_CASE__ : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Optional[int] = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=1_0_0 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.loss SCREAMING_SNAKE_CASE__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A__ , references=A__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A__ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE__ : List[str] = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**A__ ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cat(A__ , dim=0 ) SCREAMING_SNAKE_CASE__ : List[str] = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ : List[str] = metric.compute(predictions=A__ , references=A__ ) accelerator.print('''Average test metrics from all folds:''' , A__ ) def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A__ , default=A__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=A__ , default=3 , help='''The number of splits to perform across the dataset''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(A__ , A__ ) if __name__ == "__main__": main()
35
from manim import * class _A ( UpperCAmelCase_ ): def a ( self : Dict ): """simple docstring""" __UpperCamelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) __UpperCamelCase : Any = [mem.copy() for i in range(6 )] __UpperCamelCase : str = [mem.copy() for i in range(6 )] __UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Dict = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[Any] = Text("""CPU""" , font_size=24 ) __UpperCamelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Tuple = [mem.copy() for i in range(4 )] __UpperCamelCase : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[Any] = Text("""GPU""" , font_size=24 ) __UpperCamelCase : Union[str, Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Dict = [mem.copy() for i in range(6 )] __UpperCamelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Tuple = Text("""Model""" , font_size=24 ) __UpperCamelCase : List[str] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Tuple = [] __UpperCamelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : Optional[Any] = fill.copy().set_fill(lowerCamelCase__ , opacity=0.8 ) target.move_to(lowerCamelCase__ ) model_arr.append(lowerCamelCase__ ) __UpperCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : Any = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Union[str, Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[Any] = Text("""Disk""" , font_size=24 ) __UpperCamelCase : Optional[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : Optional[Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) __UpperCamelCase : Any = MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) ) __UpperCamelCase : List[str] = Square(0.3 ) input.set_fill(lowerCamelCase__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase__ , buff=0.5 ) self.play(Write(lowerCamelCase__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase__ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase__ ) ) self.play(FadeOut(lowerCamelCase__ ) ) __UpperCamelCase : Dict = Arrow(start=lowerCamelCase__ , end=lowerCamelCase__ , color=lowerCamelCase__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCamelCase : int = MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) ) __UpperCamelCase : Dict = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase__ ) , Circumscribe(model_arr[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCamelCase : int = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __UpperCamelCase : Tuple = AnimationGroup( FadeOut(lowerCamelCase__ , run_time=0.5 ) , MoveToTarget(lowerCamelCase__ , run_time=0.5 ) , FadeIn(lowerCamelCase__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCamelCase : Any = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCamelCase : str = a_c __UpperCamelCase : List[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase__ ) , FadeOut(lowerCamelCase__ , run_time=0.5 ) , ) __UpperCamelCase : List[str] = MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) , MoveToTarget(lowerCamelCase__ ) ) self.wait()
269
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 A__ = 42 class snake_case__ ( nn.Module ): A__ = 42 A__ = (16, 32, 96, 256) A__ = jnp.floataa def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): __snake_case : Optional[int] = self.block_out_channels[i] __snake_case : Tuple = self.block_out_channels[i + 1] __snake_case : Dict = nn.Conv( __a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__a ) __snake_case : Optional[Any] = nn.Conv( __a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__a ) __snake_case : Tuple = blocks __snake_case : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , __a : List[Any] ) -> int: '''simple docstring''' __snake_case : List[Any] = self.conv_in(__a ) __snake_case : int = nn.silu(__a ) for block in self.blocks: __snake_case : List[Any] = block(__a ) __snake_case : Any = nn.silu(__a ) __snake_case : int = self.conv_out(__a ) return embedding @flax_register_to_config class snake_case__ ( nn.Module , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = 32 A__ = 4 A__ = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) A__ = False A__ = (320, 640, 1_280, 1_280) A__ = 2 A__ = 8 A__ = None A__ = 1_280 A__ = 0.0 A__ = False A__ = jnp.floataa A__ = True A__ = 0 A__ = '''rgb''' A__ = (16, 32, 96, 256) def A_ ( self : str , __a : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' __snake_case : str = (1, self.in_channels, self.sample_size, self.sample_size) __snake_case : Optional[Any] = jnp.zeros(__a , dtype=jnp.floataa ) __snake_case : int = jnp.ones((1,) , dtype=jnp.intaa ) __snake_case : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __snake_case : str = (1, 3, self.sample_size * 8, self.sample_size * 8) __snake_case : Optional[int] = jnp.zeros(__a , dtype=jnp.floataa ) __snake_case : int = jax.random.split(__a ) __snake_case : Optional[Any] = {'params': params_rng, 'dropout': dropout_rng} return self.init(__a , __a , __a , __a , __a )["params"] def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = self.block_out_channels __snake_case : int = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __snake_case : Optional[int] = self.num_attention_heads or self.attention_head_dim # input __snake_case : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __snake_case : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __snake_case : Optional[Any] = FlaxTimestepEmbedding(__a , dtype=self.dtype ) __snake_case : Any = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __snake_case : Union[str, Any] = self.only_cross_attention if isinstance(__a , __a ): __snake_case : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__a , __a ): __snake_case : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down __snake_case : Dict = [] __snake_case : List[str] = [] __snake_case : List[Any] = block_out_channels[0] __snake_case : Dict = nn.Conv( __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) for i, down_block_type in enumerate(self.down_block_types ): __snake_case : Dict = output_channel __snake_case : Optional[int] = block_out_channels[i] __snake_case : List[str] = i == len(__a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __snake_case : str = FlaxCrossAttnDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __snake_case : str = FlaxDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__a ) for _ in range(self.layers_per_block ): __snake_case : List[Any] = nn.Conv( __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) if not is_final_block: __snake_case : Dict = nn.Conv( __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) __snake_case : List[str] = down_blocks __snake_case : Union[str, Any] = controlnet_down_blocks # mid __snake_case : Optional[Any] = block_out_channels[-1] __snake_case : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=__a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __snake_case : Dict = nn.Conv( __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : float = 1.0 , __a : bool = True , __a : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' __snake_case : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __snake_case : int = jnp.flip(__a , axis=1 ) # 1. time if not isinstance(__a , jnp.ndarray ): __snake_case : Optional[int] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__a , jnp.ndarray ) and len(timesteps.shape ) == 0: __snake_case : Tuple = timesteps.astype(dtype=jnp.floataa ) __snake_case : Dict = jnp.expand_dims(__a , 0 ) __snake_case : List[str] = self.time_proj(__a ) __snake_case : Optional[Any] = self.time_embedding(__a ) # 2. pre-process __snake_case : Dict = jnp.transpose(__a , (0, 2, 3, 1) ) __snake_case : int = self.conv_in(__a ) __snake_case : List[str] = jnp.transpose(__a , (0, 2, 3, 1) ) __snake_case : Tuple = self.controlnet_cond_embedding(__a ) sample += controlnet_cond # 3. down __snake_case : str = (sample,) for down_block in self.down_blocks: if isinstance(__a , __a ): __snake_case : str = down_block(__a , __a , __a , deterministic=not train ) else: __snake_case : Union[str, Any] = down_block(__a , __a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __snake_case : Union[str, Any] = self.mid_block(__a , __a , __a , deterministic=not train ) # 5. contronet blocks __snake_case : int = () for down_block_res_sample, controlnet_block in zip(__a , self.controlnet_down_blocks ): __snake_case : Any = controlnet_block(__a ) controlnet_down_block_res_samples += (down_block_res_sample,) __snake_case : int = controlnet_down_block_res_samples __snake_case : Union[str, Any] = self.controlnet_mid_block(__a ) # 6. scaling __snake_case : str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__a , mid_block_res_sample=__a )
700
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ) -> Dict: # Initialise PyTorch model __snake_case : Tuple = BertConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __snake_case : Optional[int] = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
124
0
from typing import Any def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): _validation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # Creates data structures and fill initial step SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for state in states_space: SCREAMING_SNAKE_CASE = observations_space[0] SCREAMING_SNAKE_CASE = ( initial_probabilities[state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_UpperCAmelCase)): SCREAMING_SNAKE_CASE = observations_space[o] SCREAMING_SNAKE_CASE = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = -1 for k_state in states_space: SCREAMING_SNAKE_CASE = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: SCREAMING_SNAKE_CASE = probability SCREAMING_SNAKE_CASE = k_state # Update probabilities and pointers dicts SCREAMING_SNAKE_CASE = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE = arg_max # The final observation SCREAMING_SNAKE_CASE = observations_space[len(_UpperCAmelCase) - 1] # argmax for given final observation SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = -1 for k_state in states_space: SCREAMING_SNAKE_CASE = probabilities[(k_state, final_observation)] if probability > max_probability: SCREAMING_SNAKE_CASE = probability SCREAMING_SNAKE_CASE = k_state SCREAMING_SNAKE_CASE = arg_max # Process pointers backwards SCREAMING_SNAKE_CASE = last_state SCREAMING_SNAKE_CASE = [] for o in range(len(_UpperCAmelCase) - 1 , -1 , -1): result.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): _validate_not_empty( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) _validate_lists(_UpperCAmelCase , _UpperCAmelCase) _validate_dicts( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): _validate_list(_UpperCAmelCase , 'observations_space') _validate_list(_UpperCAmelCase , 'states_space') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if not isinstance(_object , _UpperCAmelCase): SCREAMING_SNAKE_CASE = F'''{var_name} must be a list''' raise ValueError(_UpperCAmelCase) else: for x in _object: if not isinstance(_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = F'''{var_name} must be a list of strings''' raise ValueError(_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): _validate_dict(_UpperCAmelCase , 'initial_probabilities' , _UpperCAmelCase) _validate_nested_dict(_UpperCAmelCase , 'transition_probabilities') _validate_nested_dict(_UpperCAmelCase , 'emission_probabilities') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): _validate_dict(_object , _UpperCAmelCase , _UpperCAmelCase) for x in _object.values(): _validate_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False): if not isinstance(_object , _UpperCAmelCase): SCREAMING_SNAKE_CASE = F'''{var_name} must be a dict''' raise ValueError(_UpperCAmelCase) if not all(isinstance(_UpperCAmelCase , _UpperCAmelCase) for x in _object): SCREAMING_SNAKE_CASE = F'''{var_name} all keys must be strings''' raise ValueError(_UpperCAmelCase) if not all(isinstance(_UpperCAmelCase , _UpperCAmelCase) for x in _object.values()): SCREAMING_SNAKE_CASE = 'nested dictionary ' if nested else '' SCREAMING_SNAKE_CASE = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(_UpperCAmelCase) if __name__ == "__main__": from doctest import testmod testmod()
73
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase = logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : str = """linear""" lowerCamelCase_ : int = """cosine""" lowerCamelCase_ : str = """cosine_with_restarts""" lowerCamelCase_ : Union[str, Any] = """polynomial""" lowerCamelCase_ : Tuple = """constant""" lowerCamelCase_ : List[Any] = """constant_with_warmup""" lowerCamelCase_ : Optional[int] = """piecewise_constant""" def lowerCamelCase_ ( _lowercase , _lowercase = -1 ) -> Tuple: return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = -1 ) -> Union[str, Any]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = -1 ) -> Any: __A : str = {} __A : str = step_rules.split("," ) for rule_str in rule_list[:-1]: __A , __A : List[Any] = rule_str.split(":" ) __A : Dict = int(_lowercase ) __A : Dict = float(_lowercase ) __A : List[Any] = value __A : List[Any] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: __A : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __A : Dict = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ) -> Dict: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ) -> int: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) __A : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ) -> Tuple: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) __A : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=1E-7 , _lowercase=1.0 , _lowercase=-1 ) -> Optional[Any]: __A : str = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __A : Optional[Any] = lr_init - lr_end __A : List[Any] = num_training_steps - num_warmup_steps __A : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps __A : Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ) -> Dict: __A : List[str] = SchedulerType(_lowercase ) __A : int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
520
0
"""simple docstring""" def a__ ( snake_case__ ) -> int: if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) lowerCamelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
533
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: for attribute in key.split(""".""" ): lowerCamelCase = getattr(snake_case__ , snake_case__ ) if weight_type is not None: lowerCamelCase = getattr(snake_case__ , snake_case__ ).shape else: lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase = value elif weight_type == "weight_g": lowerCamelCase = value elif weight_type == "weight_v": lowerCamelCase = value elif weight_type == "bias": lowerCamelCase = value else: lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a__ ( snake_case__ , snake_case__ ) -> Tuple: lowerCamelCase = [] lowerCamelCase = fairseq_model.state_dict() lowerCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase = None for name, value in fairseq_dict.items(): lowerCamelCase = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCamelCase = True elif name.split(""".""" )[0] == "proj": lowerCamelCase = fairseq_model.proj lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCamelCase = True if "*" in mapped_key: lowerCamelCase = name.split(snake_case__ )[0].split(""".""" )[-2] lowerCamelCase = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: lowerCamelCase = """weight_g""" elif "weight_v" in name: lowerCamelCase = """weight_v""" elif "bias" in name: lowerCamelCase = """bias""" elif "weight" in name: lowerCamelCase = """weight""" else: lowerCamelCase = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = full_name.split("""conv_layers.""" )[-1] lowerCamelCase = name.split(""".""" ) lowerCamelCase = int(items[0] ) lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) def a__ ( snake_case__ ) -> Tuple: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Optional[int]: with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = [line.split(""" """ )[0] for line in lines] lowerCamelCase = len(snake_case__ ) lowerCamelCase = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(snake_case__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Optional[int]: lowerCamelCase = WavaVecaConfig.from_pretrained(snake_case__ ) lowerCamelCase = SpeechaTextaConfig.from_pretrained( snake_case__ , vocab_size=snake_case__ , decoder_layers=snake_case__ , do_stable_layer_norm=snake_case__ ) lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) lowerCamelCase , lowerCamelCase , lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowerCamelCase = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase = WavaVecaModel(snake_case__ ) lowerCamelCase = recursively_load_weights_wavaveca(model.encoder , snake_case__ ) lowerCamelCase = SpeechaTextaForCausalLM(snake_case__ ) lowerCamelCase , lowerCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowerCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase = SpeechEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) lowerCamelCase = False # add projection layer lowerCamelCase = nn.Parameter(projection_layer.weight ) lowerCamelCase = nn.Parameter(projection_layer.bias ) lowerCamelCase = create_vocab_dict(snake_case__ ) with open(os.path.join(snake_case__ , """vocab.json""" ) , """w""" ) as fp: json.dump(snake_case__ , snake_case__ ) lowerCamelCase = SpeechaTextaTokenizer(os.path.join(snake_case__ , """vocab.json""" ) ) tokenizer.save_pretrained(snake_case__ ) lowerCamelCase = hf_wavavec.config.to_dict() lowerCamelCase = tokenizer.pad_token_id lowerCamelCase = tokenizer.bos_token_id lowerCamelCase = tokenizer.eos_token_id lowerCamelCase = """speech_to_text_2""" lowerCamelCase = """wav2vec2""" lowerCamelCase = SpeechEncoderDecoderConfig.from_dict(snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) feature_extractor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") lowerCAmelCase : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
533
1
"""simple docstring""" from collections import Counter from timeit import timeit def __UpperCAmelCase ( __lowerCamelCase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def __UpperCAmelCase ( __lowerCamelCase = "" ) -> bool: if len(__lowerCamelCase ) == 0: return True lowercase__ : Dict = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase__ : dict[str, int] = {} for character in lower_case_input_str: lowercase__ : Any = character_freq_dict.get(__lowerCamelCase , 0 ) + 1 lowercase__ : Optional[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __UpperCAmelCase ( __lowerCamelCase = "" ) -> None: print('''\nFor string = ''' , __lowerCamelCase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__lowerCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__lowerCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowerCAmelCase_ = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) lowerCAmelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
560
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : '''simple docstring''' lowerCAmelCase : int lowerCAmelCase : TreeNode | None = None lowerCAmelCase : TreeNode | None = None lowerCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def __UpperCAmelCase ( __lowerCamelCase ) -> int: if root is None: return 0 # Validation def count_nodes(__lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCamelCase ) != count_coins(__lowerCamelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ : Optional[Any] = get_distrib(node.left ) lowercase__ , lowercase__ : Tuple = get_distrib(node.right ) lowercase__ : List[Any] = 1 - left_distrib_excess lowercase__ : Any = 1 - right_distrib_excess lowercase__ : List[str] = ( left_distrib_moves + right_distrib_moves + abs(__lowerCamelCase ) + abs(__lowerCamelCase ) ) lowercase__ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCamelCase , __lowerCamelCase ) return get_distrib(__lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
560
1
from itertools import count def a__ ( _UpperCamelCase : int = 50 ): __lowerCamelCase = [1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase ,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f"{solution() = }")
622
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : List[str] ,_UpperCamelCase : List[Any]=None ,_UpperCamelCase : Any=None ): if attention_mask is None: __lowerCamelCase = tf.cast(tf.math.not_equal(_UpperCamelCase ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : lowerCAmelCase__ = OPTConfig lowerCAmelCase__ = {} lowerCAmelCase__ = """gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = embed_dim __lowerCamelCase = word_embed_proj_dim __lowerCamelCase = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__UpperCAmelCase , **self.config_updates , ) __lowerCamelCase = prepare_opt_inputs_dict(__UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TFOPTModel(config=__UpperCAmelCase ) __lowerCamelCase = inputs_dict['''input_ids'''] __lowerCamelCase = input_ids[:1, :] __lowerCamelCase = inputs_dict['''attention_mask'''][:1, :] __lowerCamelCase = 1 # first forward pass __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) @require_tf class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TFOPTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__UpperCAmelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowerCamelCase = model_class(config=__UpperCAmelCase ) __lowerCamelCase = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) __lowerCamelCase = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__UpperCAmelCase ) __lowerCamelCase = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) __lowerCamelCase = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __UpperCAmelCase ) # check that weights remain the same after resizing __lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase = False self.assertTrue(__UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __UpperCAmelCase ) __lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase = False self.assertTrue(__UpperCAmelCase ) def a__ ( _UpperCamelCase : Optional[Any] ): return tf.constant(_UpperCamelCase ,dtype=tf.intaa ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): lowerCAmelCase__ = 9_9 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCamelCase = input_ids.shape[0] __lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowerCamelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowerCamelCase = tf.not_equal(__UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): __lowerCamelCase = model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ).last_hidden_state __lowerCamelCase = (1, 11, 512) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4E-3 ) ) __lowerCamelCase = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) __lowerCamelCase = xla_generate(__UpperCAmelCase , __UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() __lowerCamelCase = '''facebook/opt-350m''' def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCamelCase = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCamelCase = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) ) __lowerCamelCase = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) __lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-125m''' __lowerCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowerCamelCase = [] __lowerCamelCase = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: __lowerCamelCase = tokenizer(__UpperCAmelCase , return_tensors='''tf''' ).input_ids __lowerCamelCase = model.generate(__UpperCAmelCase , max_length=10 ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' __lowerCamelCase = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) __lowerCamelCase = '''left''' # use different length sentences to test batching __lowerCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowerCamelCase = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase ) __lowerCamelCase = inputs['''input_ids'''] __lowerCamelCase = model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs['''attention_mask'''] ) __lowerCamelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowerCamelCase = model.generate(input_ids=__UpperCAmelCase ) __lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowerCamelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowerCamelCase = model.generate(input_ids=__UpperCAmelCase , max_length=model.config.max_length - num_paddings ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' __lowerCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowerCamelCase = [] __lowerCamelCase = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: __lowerCamelCase = tokenizer(__UpperCAmelCase , return_tensors='''tf''' ).input_ids __lowerCamelCase = model.generate(__UpperCAmelCase , max_length=10 ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
622
1
'''simple docstring''' import argparse import os import re UpperCAmelCase_ : List[str] = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCAmelCase_ : Tuple = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings UpperCAmelCase_ : Dict = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : bool = False )-> str: '''simple docstring''' with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: __snake_case = f.read() __snake_case = content.split('''\n''' ) __snake_case = [] __snake_case = 0 while line_idx < len(_lowerCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __snake_case = len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __snake_case = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __snake_case = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __snake_case = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : _re_identifier.search(_lowerCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_lowerCamelCase ) ) elif "\n".join(_lowerCamelCase ) != content: return True def _UpperCamelCase (_lowerCamelCase : bool = False )-> Tuple: '''simple docstring''' __snake_case = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for f in os.listdir(_lowerCamelCase ) if f.endswith('''.py''' )] __snake_case = [sort_auto_mapping(_lowerCamelCase , overwrite=_lowerCamelCase ) for fname in fnames] if not overwrite and any(_lowerCamelCase ): __snake_case = [f for f, d in zip(_lowerCamelCase , _lowerCamelCase ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(_lowerCamelCase )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') UpperCAmelCase_ : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
24
from __future__ import annotations from typing import Any class A( UpperCamelCase ): '''simple docstring''' pass class A: '''simple docstring''' def __init__( self : List[str] , A_ : Any ) -> None: """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = None def __iter__( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self lowerCamelCase_ = [] while node: if node in visited: raise ContainsLoopError visited.append(A_ ) yield node.data lowerCamelCase_ = node.next_node @property def a__ ( self : List[str] ) -> bool: """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase : int = Node(1) lowerCamelCase : Optional[int] = Node(2) lowerCamelCase : Union[str, Any] = Node(3) lowerCamelCase : List[Any] = Node(4) print(root_node.has_loop) # False lowerCamelCase : int = root_node.next_node print(root_node.has_loop) # True lowerCamelCase : Dict = Node(5) lowerCamelCase : Optional[int] = Node(6) lowerCamelCase : str = Node(5) lowerCamelCase : Union[str, Any] = Node(6) print(root_node.has_loop) # False lowerCamelCase : List[str] = Node(1) print(root_node.has_loop) # False
70
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: List[str] _lowerCamelCase: Optional[List[str]] @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: List[int] _lowerCamelCase: List[int] _lowerCamelCase: Optional[List[int]] = None _lowerCamelCase: Optional[List[int]] = None class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''train''' _lowerCamelCase: Tuple = '''dev''' _lowerCamelCase: Optional[Any] = '''test''' class lowerCAmelCase_ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[str] ,A_ : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : str ) -> List[str]: raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[InputExample] ,A_ : List[str] ,A_ : int ,A_ : PreTrainedTokenizer ,A_ : int=False ,A_ : Optional[int]="[CLS]" ,A_ : Union[str, Any]=1 ,A_ : Union[str, Any]="[SEP]" ,A_ : int=False ,A_ : List[Any]=False ,A_ : Any=0 ,A_ : List[str]=0 ,A_ : int=-100 ,A_ : List[str]=0 ,A_ : Tuple=True ,) -> List[InputFeatures]: A = {label: i for i, label in enumerate(A_ )} A = [] for ex_index, example in enumerate(A_ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' ,A_ ,len(A_ ) ) A = [] A = [] for word, label in zip(example.words ,example.labels ): A = tokenizer.tokenize(A_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A_ ) > 0: tokens.extend(A_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A = tokenizer.num_special_tokens_to_add() if len(A_ ) > max_seq_length - special_tokens_count: A = tokens[: (max_seq_length - special_tokens_count)] A = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A = [sequence_a_segment_id] * len(A_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A = [cls_token] + tokens A = [pad_token_label_id] + label_ids A = [cls_token_segment_id] + segment_ids A = tokenizer.convert_tokens_to_ids(A_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A = [1 if mask_padding_with_zero else 0] * len(A_ ) # Zero-pad up to the sequence length. A = max_seq_length - len(A_ ) if pad_on_left: A = ([pad_token] * padding_length) + input_ids A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A = ([pad_token_segment_id] * padding_length) + segment_ids A = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' ,example.guid ) logger.info('tokens: %s' ,' '.join([str(A_ ) for x in tokens] ) ) logger.info('input_ids: %s' ,' '.join([str(A_ ) for x in input_ids] ) ) logger.info('input_mask: %s' ,' '.join([str(A_ ) for x in input_mask] ) ) logger.info('segment_ids: %s' ,' '.join([str(A_ ) for x in segment_ids] ) ) logger.info('label_ids: %s' ,' '.join([str(A_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A = None features.append( InputFeatures( input_ids=A_ ,attention_mask=A_ ,token_type_ids=A_ ,label_ids=A_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[InputFeatures] _lowerCamelCase: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple ,A_ : TokenClassificationTask ,A_ : str ,A_ : PreTrainedTokenizer ,A_ : List[str] ,A_ : str ,A_ : Optional[int] = None ,A_ : Optional[int]=False ,A_ : Split = Split.train ,) -> Dict: # Load data features from cache or dataset file A = os.path.join( A_ ,'cached_{}_{}_{}'.format(mode.value ,tokenizer.__class__.__name__ ,str(A_ ) ) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) A = torch.load(A_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) A = token_classification_task.read_examples_from_file(A_ ,A_ ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( A_ ,A_ ,A_ ,A_ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=A_ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features ,A_ ) def __len__( self : Optional[int] ) -> List[str]: return len(self.features ) def __getitem__( self : List[Any] ,A_ : Optional[int] ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: List[InputFeatures] _lowerCamelCase: int = -100 def __init__( self : Any ,A_ : TokenClassificationTask ,A_ : str ,A_ : PreTrainedTokenizer ,A_ : List[str] ,A_ : str ,A_ : Optional[int] = None ,A_ : str=False ,A_ : Split = Split.train ,) -> Tuple: A = token_classification_task.read_examples_from_file(A_ ,A_ ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( A_ ,A_ ,A_ ,A_ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=A_ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A = tf.data.Dataset.from_generator( A_ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) ,( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) ,) else: A = tf.data.Dataset.from_generator( A_ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) ,( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) ,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[Any] ) -> str: return len(self.features ) def __getitem__( self : Union[str, Any] ,A_ : Optional[Any] ) -> InputFeatures: return self.features[i]
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE : Optional[Any] = "" SCREAMING_SNAKE_CASE : Tuple = "" SCREAMING_SNAKE_CASE : str = "" SCREAMING_SNAKE_CASE : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def lowerCamelCase_ ( ): A_ , A_ = get_dataset(_lowercase , _lowercase ) print('''Processing...''' ) A_ , A_ , A_ = update_image_and_anno(_lowercase , _lowercase , _lowercase ) for index, image in enumerate(_lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A_ = random_chars(32 ) A_ = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] A_ = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(_lowercase )} with {file_name}" ) A_ = [] for anno in new_annos[index]: A_ = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_lowercase ) with open(F"/{file_root}.txt" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = [] A_ = [] for label_file in glob.glob(os.path.join(_lowercase , '''*.txt''' ) ): A_ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_lowercase ) as in_file: A_ = in_file.readlines() A_ = os.path.join(_lowercase , F"{label_name}.jpg" ) A_ = [] for obj_list in obj_lists: A_ = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ): A_ = [] A_ = [] A_ = [] for idx in range(len(_lowercase ) ): A_ = [] A_ = img_list[idx] path_list.append(_lowercase ) A_ = anno_list[idx] A_ = cva.imread(_lowercase ) if flip_type == 1: A_ = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: A_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A_ = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: A_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowercase ) new_imgs_list.append(_lowercase ) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase_ ( __UpperCamelCase = 32 ): assert number_char > 1, "The number of character should greater than 1" A_ = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
141
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase (_a ): _lowercase = """bert""" def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = [] lowerCAmelCase__ = len(A ) for i in range(A ): lowerCAmelCase__ = -1 for j in range(i + 1 , A ): if arr[i] < arr[j]: lowerCAmelCase__ = arr[j] break result.append(A ) return result def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = [] for i, outer in enumerate(A ): lowerCAmelCase__ = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase__ = inner break result.append(A ) return result def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = len(A ) lowerCAmelCase__ = [] lowerCAmelCase__ = [-1] * arr_size for index in reversed(range(A ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
98
'''simple docstring''' def _snake_case ( A , A ) -> bool: lowerCAmelCase__ = len(A ) + 1 lowerCAmelCase__ = len(A ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase__ = [[0 for i in range(A )] for j in range(A )] # since string of zero length match pattern of zero length lowerCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A ): lowerCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A ): lowerCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A ): for j in range(1 , A ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase__ = dp[i - 1][j] else: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCAmelCase = '''aab''' __UpperCAmelCase = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
98
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase = logging.getLogger() def _lowercase ( a__ : int ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(UpperCamelCase_ , "all_results.json" ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: _UpperCamelCase = json.load(UpperCamelCase_ ) else: raise ValueError(f'''can\'t find {path}''' ) return results __lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase_ ( A__ ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" import xla_spawn _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f'''\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '''.split() with patch.object(a__ , "argv" , a__ ): _UpperCamelCase = time() xla_spawn.main() _UpperCamelCase = time() _UpperCamelCase = get_results(a__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def lowercase ( self ) -> Any: """simple docstring""" import xla_spawn _UpperCamelCase = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(a__ , "argv" , a__ ): xla_spawn.main()
147
from manim import * class _UpperCAmelCase ( A__ ): def snake_case_ ( self): A__ = Rectangle(height=0.5 , width=0.5) A__ = Rectangle(height=0.2_5 , width=0.2_5) A__ = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) A__ = [mem.copy() for i in range(6)] A__ = [mem.copy() for i in range(6)] A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = VGroup(a__ , a__).arrange(a__ , buff=0) A__ = Text('''CPU''' , font_size=2_4) A__ = Group(a__ , a__).arrange(a__ , buff=0.5 , aligned_edge=a__) cpu.move_to([-2.5, -0.5, 0]) self.add(a__) A__ = [mem.copy() for i in range(4)] A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = Text('''GPU''' , font_size=2_4) A__ = Group(a__ , a__).arrange(a__ , buff=0.5 , aligned_edge=a__) gpu.move_to([-1, -1, 0]) self.add(a__) A__ = [mem.copy() for i in range(6)] A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = Text('''Model''' , font_size=2_4) A__ = Group(a__ , a__).arrange(a__ , buff=0.5 , aligned_edge=a__) model.move_to([3, -1.0, 0]) self.add(a__) A__ = [] A__ = [] A__ = [] for i, rect in enumerate(a__): rect.set_stroke(a__) A__ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3).set_stroke(width=0.0).set_fill(a__ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=a__) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0) self.add(a__) model_cpu_arr.append(a__) self.add(*a__ , *a__ , *a__) A__ = [mem.copy() for i in range(6)] A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = Text('''Loaded Checkpoint''' , font_size=2_4) A__ = Group(a__ , a__).arrange(a__ , buff=0.5 , aligned_edge=a__) checkpoint.move_to([3, 0.5, 0]) self.add(a__) A__ = [] A__ = [] for i, rect in enumerate(a__): A__ = fill.copy().set_fill(a__ , opacity=0.7) target.move_to(a__) ckpt_arr.append(a__) A__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(a__) self.add(*a__ , *a__) A__ = Square(side_length=2.2) key.move_to([-5, 2, 0]) A__ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0]) self.add(a__ , a__) A__ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(a__) A__ = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=2_4 , ) step_a.move_to([2, 2, 0]) A__ = [meta_mem.copy() for i in range(6)] A__ = [meta_mem.copy() for i in range(6)] A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = VGroup(*a__).arrange(a__ , buff=0) A__ = VGroup(a__ , a__).arrange(a__ , buff=0) A__ = Text('''Disk''' , font_size=2_4) A__ = Group(a__ , a__).arrange(a__ , buff=0.5 , aligned_edge=a__) disk.move_to([-4.0, -1.2_5, 0]) self.play(Write(a__ , run_time=3) , Write(a__ , run_time=1) , Create(a__ , run_time=1)) A__ = [] for i, rect in enumerate(a__): A__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(a__ , run_time=1.5)) self.play(*a__) self.play(FadeOut(a__)) A__ = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=2_4) step_a.move_to([2, 2, 0]) self.play(Write(a__ , run_time=3)) self.play( FadeOut(a__ , a__ , *a__ , *a__) , ) self.wait()
632
0
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
421
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Any = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _snake_case : Union[str, Any] = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _snake_case : List[str] = 0 _snake_case : int = 0XE000 _snake_case : Optional[int] = 0XE001 _snake_case : Dict = 0XE002 _snake_case : str = 0XE003 _snake_case : Optional[int] = 0XE004 # Maps special codepoints to human-readable names. _snake_case : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _snake_case : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , lowerCAmelCase_ : Dict=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Optional[Any]=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : str=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Union[str, Any]=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Dict=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : int=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=2_0_4_8 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[Any]: __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , model_max_length=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. __lowerCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __lowerCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __lowerCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __lowerCAmelCase = UNICODE_VOCAB_SIZE __lowerCAmelCase = len(self._special_codepoints ) @property def lowercase ( self : str ) -> int: return self._unicode_vocab_size def lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> List[str]: return list(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> int: try: return ord(lowerCAmelCase_ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def lowercase ( self : List[str] , lowerCAmelCase_ : int ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCAmelCase_ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: return "".join(lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = [1] + ([0] * len(lowerCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCAmelCase_ )) + [1] return result def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> int: return ()
421
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : int ) -> Tuple: """simple docstring""" if gpta_config_file == "": lowercase__ = GPTaConfig() else: lowercase__ = GPTaConfig.from_json_file(__magic_name__ ) lowercase__ = GPTaModel(__magic_name__ ) # Load weights from numpy load_tf_weights_in_gpta(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model lowercase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A : List[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
15
import argparse import json from tqdm import tqdm def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=SCREAMING_SNAKE_CASE , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed gold_data_path file''' , ) __UpperCamelCase :Any = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __UpperCamelCase :Any = json.load(SCREAMING_SNAKE_CASE ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[int] = dpr_record['''question'''] __UpperCamelCase :Optional[int] = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(SCREAMING_SNAKE_CASE ) + '''\n''' ) if __name__ == "__main__": main()
167
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Dict = KandinskyInpaintPipeline SCREAMING_SNAKE_CASE : Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE : int = False @property def UpperCAmelCase ( self ): """simple docstring""" return 32 @property def UpperCAmelCase ( self ): """simple docstring""" return 32 @property def UpperCAmelCase ( self ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self ): """simple docstring""" return 100 @property def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_ : List[Any] = MultilingualCLIP(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = text_encoder.eval() return text_encoder @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def UpperCAmelCase ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_movq SCREAMING_SNAKE_CASE_ : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='epsilon' , thresholding=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_SCREAMING_SNAKE_CASE ) # create init_image SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : str = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE_ : int = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : int = 0 if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 'cpu' SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : str = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCAmelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) SCREAMING_SNAKE_CASE_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE_ : int = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'a hat' SCREAMING_SNAKE_CASE_ : List[str] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : List[Any] = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='' , ).to_tuple() SCREAMING_SNAKE_CASE_ : Any = pipeline( _SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
353
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TaConfig.from_json_file(a ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tf_weights_in_ta(a , a , a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
353
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowercase: Union[str, Any], lowercase: List[Any], lowercase: List[Any], lowercase: Dict ) -> List[Any]: # Initialise PyTorch model A : Any =BigBirdConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: A : List[Any] =BigBirdForQuestionAnswering(lowercase ) else: A : int =BigBirdForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowercase, lowercase, is_trivia_qa=lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase ) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _lowercase : Union[str, Any] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowercase : Optional[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : uuid.UUID = None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Any: if not conversation_id: A : int =uuid.uuida() if past_user_inputs is None: A : Tuple =[] if generated_responses is None: A : Any =[] A : uuid.UUID =conversation_id A : List[str] =past_user_inputs A : List[str] =generated_responses A : Optional[str] =text def __eq__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) A : Union[str, Any] =text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: A : List[str] =text def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A : List[str] =None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.generated_responses.append(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> List[str]: A : int =f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): A : List[str] ='user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCAmelCase_ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> Any: super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.tokenizer.pad_token_id is None: A : Optional[int] =self.tokenizer.eos_token def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : str ) -> int: A : List[Any] ={} A : str ={} A : Any ={} if min_length_for_response is not None: A : Dict =min_length_for_response if minimum_tokens is not None: A : Union[str, Any] =minimum_tokens if "max_length" in generate_kwargs: A : str =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A : Dict =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE__ : Tuple=0 , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: A : int =super().__call__(SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) == 1: return outputs[0] return outputs def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Conversation , SCREAMING_SNAKE_CASE__ : Optional[int]=32 ) -> Dict[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): A : str =self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A : Any =self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE__ ) if self.framework == "pt": A : str =torch.LongTensor([input_ids] ) elif self.framework == "tf": A : List[Any] =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=10 , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: A : List[Any] =generate_kwargs.get('max_length' , self.model.config.max_length ) A : Any =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) A : Dict =max_length - minimum_tokens A : Dict =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: A : int =model_inputs['attention_mask'][:, -trim:] A : Union[str, Any] =model_inputs.pop('conversation' ) A : Optional[int] =max_length A : str =self.model.generate(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.model.config.is_encoder_decoder: A : str =1 else: A : Any =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=True ) -> Optional[Any]: A : Any =model_outputs['output_ids'] A : Dict =self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , ) A : int =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE__ ) return conversation def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Conversation ) -> Dict: A : List[str] =self.tokenizer.eos_token_id A : str =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > self.tokenizer.model_max_length: A : Dict =input_ids[-self.tokenizer.model_max_length :] return input_ids
305
1
"""simple docstring""" def __A ( a_ :int , a_ :int) -> int: return int((input_a, input_a).count(1) != 0) def __A ( ) -> None: assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
101
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants A = 300 # TEMPERATURE (unit = K) def __A ( a_ :float , a_ :float , a_ :float , ) -> float: if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''') elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''') elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''') elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''') elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
101
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=__lowerCamelCase ): snake_case_ = ["""onnx"""] def __init__( self : int ,*A : List[str] ,**A : int ): '''simple docstring''' requires_backends(self ,["""onnx"""] ) @classmethod def __lowercase ( cls : Optional[Any] ,*A : List[str] ,**A : Dict ): '''simple docstring''' requires_backends(cls ,["""onnx"""] ) @classmethod def __lowercase ( cls : List[Any] ,*A : Optional[int] ,**A : int ): '''simple docstring''' requires_backends(cls ,["""onnx"""] )
65
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Tuple = '''▁''' A : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} A : str = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } A : Any = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off A : Dict = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( a_ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["input_ids", "attention_mask"] a = [] a = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Dict="<s>" , SCREAMING_SNAKE_CASE : int="<unk>" , SCREAMING_SNAKE_CASE : Tuple="<pad>" , SCREAMING_SNAKE_CASE : List[str]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : str , ): # Mask token behave like a normal word, i.e. include the space before it _A : Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) else mask_token _A : Dict = {} if sp_model_kwargs is None else sp_model_kwargs _A : Optional[int] = kwargs.get('additional_special_tokens' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(SCREAMING_SNAKE_CASE)) _A : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : List[Any] = 1 _A : List[Any] = len(self.sp_model) _A : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE) } _A : Dict = {v: k for k, v in self.lang_code_to_id.items()} _A : List[str] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _A : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : str = src_lang if src_lang is not None else 'en_XX' _A : Any = self.lang_code_to_id[self._src_lang] _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A ( self : Optional[Any]): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : Union[str, Any]): return self._src_lang @src_lang.setter def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : Dict): _A : int = self.__dict__.copy() _A : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict): _A : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _A : Any = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A ( self : Any): _A : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A ( self : int , SCREAMING_SNAKE_CASE : str): return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any]): _A : Tuple = [] _A : Any = '' _A : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _A : Any = True _A : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) _A : Tuple = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string.strip() def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _A : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE , 'wb') as fi: _A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (out_vocab_file,) def A ( self : int , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE) _A : str = [1] * len(self.prefix_tokens) _A : Optional[Any] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[str] , **SCREAMING_SNAKE_CASE : str): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') _A : Optional[Any] = src_lang _A : Optional[int] = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) _A : List[str] = tgt_lang_id return inputs def A ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str = "en_XX" , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : str = "ro_RO" , **SCREAMING_SNAKE_CASE : Optional[Any] , ): _A : Any = src_lang _A : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : List[Any]): return self.set_src_lang_special_tokens(self.src_lang) def A ( self : Any): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A ( self : Tuple , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.lang_code_to_id[src_lang] _A : Dict = [self.cur_lang_code_id] _A : List[str] = [self.eos_token_id] def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : str = self.lang_code_to_id[tgt_lang] _A : int = [self.cur_lang_code_id] _A : str = [self.eos_token_id]
128
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( snake_case_ :Dict , snake_case_ :str , snake_case_ :Any ): __UpperCAmelCase = 1.5 __UpperCAmelCase = int(factor * num_class_images ) __UpperCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case_ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=snake_case_ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: __UpperCAmelCase = client.query(text=snake_case_ ) if len(snake_case_ ) >= factor * num_class_images or num_images > 1E4: break else: __UpperCAmelCase = int(factor * num_images ) __UpperCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case_ , aesthetic_weight=0.1 , ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = tqdm(desc='''downloading real regularization images''' , total=snake_case_ ) with open(F'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(F'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( F'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: __UpperCAmelCase = class_images[count] count += 1 try: __UpperCAmelCase = requests.get(images['''url'''] ) if img.status_code == 200: __UpperCAmelCase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser('''''' , add_help=snake_case_ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=snake_case_ , type=snake_case_ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=snake_case_ , type=snake_case_ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=snake_case_ ) return parser.parse_args() if __name__ == "__main__": _lowercase : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
715
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "codegen" a__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _lowercase : Optional[int]=5_04_00 , _lowercase : List[str]=20_48 , _lowercase : Optional[int]=20_48 , _lowercase : Tuple=40_96 , _lowercase : Optional[Any]=28 , _lowercase : Tuple=16 , _lowercase : str=64 , _lowercase : Dict=None , _lowercase : Any="gelu_new" , _lowercase : Any=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.0 , _lowercase : str=1E-5 , _lowercase : Union[str, Any]=0.02 , _lowercase : List[str]=True , _lowercase : Dict=5_02_56 , _lowercase : str=5_02_56 , _lowercase : Any=False , **_lowercase : Optional[Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = n_ctx __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_inner __UpperCAmelCase = rotary_dim __UpperCAmelCase = activation_function __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id super().__init__( bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[Any] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Dict ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head def a ( self : Tuple , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
397
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: _lowerCamelCase : Optional[int] = checkpoint _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[Any] = vae_state_dict['''encoder.conv_in.weight'''] _lowerCamelCase : str = vae_state_dict['''encoder.conv_in.bias'''] _lowerCamelCase : List[Any] = vae_state_dict['''encoder.conv_out.weight'''] _lowerCamelCase : Dict = vae_state_dict['''encoder.conv_out.bias'''] _lowerCamelCase : Dict = vae_state_dict['''encoder.norm_out.weight'''] _lowerCamelCase : Optional[Any] = vae_state_dict['''encoder.norm_out.bias'''] _lowerCamelCase : List[Any] = vae_state_dict['''decoder.conv_in.weight'''] _lowerCamelCase : Union[str, Any] = vae_state_dict['''decoder.conv_in.bias'''] _lowerCamelCase : Any = vae_state_dict['''decoder.conv_out.weight'''] _lowerCamelCase : Optional[Any] = vae_state_dict['''decoder.conv_out.bias'''] _lowerCamelCase : Tuple = vae_state_dict['''decoder.norm_out.weight'''] _lowerCamelCase : List[Any] = vae_state_dict['''decoder.norm_out.bias'''] _lowerCamelCase : str = vae_state_dict['''quant_conv.weight'''] _lowerCamelCase : Tuple = vae_state_dict['''quant_conv.bias'''] _lowerCamelCase : int = vae_state_dict['''post_quant_conv.weight'''] _lowerCamelCase : Optional[Any] = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only _lowerCamelCase : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) _lowerCamelCase : Optional[Any] = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the decoder up blocks only _lowerCamelCase : str = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) _lowerCamelCase : List[Any] = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(UpperCamelCase__ ) } for i in range(UpperCamelCase__ ): _lowerCamelCase : List[str] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: _lowerCamelCase : Tuple = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) _lowerCamelCase : int = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) _lowerCamelCase : Tuple = renew_vae_resnet_paths(UpperCamelCase__ ) _lowerCamelCase : Tuple = {'''old''': F'''down.{i}.block''', '''new''': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _lowerCamelCase : List[str] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] _lowerCamelCase : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCamelCase : Optional[Any] = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] _lowerCamelCase : Optional[int] = renew_vae_resnet_paths(UpperCamelCase__ ) _lowerCamelCase : List[str] = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] _lowerCamelCase : Tuple = renew_vae_attention_paths(UpperCamelCase__ ) _lowerCamelCase : List[str] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) conv_attn_to_linear(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): _lowerCamelCase : Optional[int] = num_up_blocks - 1 - i _lowerCamelCase : List[Any] = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: _lowerCamelCase : List[Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] _lowerCamelCase : Optional[Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] _lowerCamelCase : Union[str, Any] = renew_vae_resnet_paths(UpperCamelCase__ ) _lowerCamelCase : Optional[int] = {'''old''': F'''up.{block_id}.block''', '''new''': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _lowerCamelCase : Optional[int] = [key for key in vae_state_dict if '''decoder.mid.block''' in key] _lowerCamelCase : Tuple = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCamelCase : str = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] _lowerCamelCase : List[Any] = renew_vae_resnet_paths(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _lowerCamelCase : int = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] _lowerCamelCase : Dict = renew_vae_attention_paths(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) conv_attn_to_linear(UpperCamelCase__ ) return new_checkpoint def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) ->Dict: _lowerCamelCase : Optional[Any] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) _lowerCamelCase : Any = io.BytesIO(r.content ) _lowerCamelCase : Union[str, Any] = OmegaConf.load(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = 512 _lowerCamelCase : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open _lowerCamelCase : List[str] = {} with safe_open(UpperCamelCase__ , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): _lowerCamelCase : int = f.get_tensor(UpperCamelCase__ ) else: _lowerCamelCase : Optional[Any] = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ )['''state_dict'''] # Convert the VAE model. _lowerCamelCase : int = create_vae_diffusers_config(UpperCamelCase__ , image_size=UpperCamelCase__ ) _lowerCamelCase : List[str] = custom_convert_ldm_vae_checkpoint(UpperCamelCase__ , UpperCamelCase__ ) _lowerCamelCase : Tuple = AutoencoderKL(**UpperCamelCase__ ) vae.load_state_dict(UpperCamelCase__ ) vae.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE__ : str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
434
_lowercase : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
641
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __a : int = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @classmethod def __a ( cls ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = TOKEN HfFolder.save_token(lowerCamelCase ) @classmethod def __a ( cls ) -> int: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def __a ( self ) -> int: """simple docstring""" lowercase__ : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : List[Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase , repo_id="test-config" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowercase__ : int = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowercase__ : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) def __a ( self ) -> List[Any]: """simple docstring""" CustomConfig.register_for_auto_class() lowercase__ : Tuple = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : Optional[int] = c.n_embd + 1 # int lowercase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowercase__ : Optional[Any] = not c.scale_attn_weights # bool lowercase__ : int = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase , c.summary_type , "mismatch for key: summary_type" ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : str = PretrainedConfig() lowercase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase , lowerCamelCase )] if len(lowerCamelCase ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {", ".join(lowerCamelCase )}.""" ) def __a ( self ) -> List[Any]: """simple docstring""" with self.assertRaises(lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = mock.Mock() lowercase__ : int = 500 lowercase__ : List[str] = {} lowercase__ : Any = HTTPError lowercase__ : int = {} # Download this model to make sure it's in the cache. lowercase__ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase ) as mock_head: lowercase__ : str = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Tuple = AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : List[Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase ) lowercase__ : List[str] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Dict = ["config.42.0.0.json"] lowercase__ : int = 768 configuration.save_pretrained(lowerCamelCase ) shutil.move(os.path.join(lowerCamelCase , "config.4.0.0.json" ) , os.path.join(lowerCamelCase , "config.42.0.0.json" ) ) lowercase__ : str = AutoConfig.from_pretrained(lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 768 ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : List[str] = "v4.0.0" lowercase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase , return_unused_kwargs=lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict = "v3.0.0" lowercase__ : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase ) self.assertEqual(old_configuration.hidden_size , 768 )
707
__a : Union[str, Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 __a : int = True __a : int = False def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ : Tuple = chain(next_number(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : int = number_chain while number < 10_00_00_00: lowercase__ : Any = number_chain number *= 10 return number_chain def snake_case_ ( SCREAMING_SNAKE_CASE_ = 10_00_00_00 ) -> int: for i in range(1 ,SCREAMING_SNAKE_CASE_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
298
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =field( metadata={'''help''': '''The output directory where the model will be written.'''} ,) a__ =field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } ,) a__ =field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } ,) a__ =field( default=_lowercase ,metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) a__ =field( default=_lowercase ,metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def lowerCamelCase_ (): _UpperCAmelCase : str = HfArgumentParser((ModelArguments,) ) ((_UpperCAmelCase ) , ) : Union[str, Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _UpperCAmelCase : int = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _UpperCAmelCase : Any = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _UpperCAmelCase : Dict = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _UpperCAmelCase : Tuple = True _UpperCAmelCase : Dict = True _UpperCAmelCase : Optional[Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=snake_case__ , decoder_config=snake_case__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _UpperCAmelCase : Optional[int] = decoder_config.decoder_start_token_id _UpperCAmelCase : Dict = decoder_config.pad_token_id if decoder_start_token_id is None: _UpperCAmelCase : Dict = decoder_config.bos_token_id if pad_token_id is None: _UpperCAmelCase : Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _UpperCAmelCase : Dict = decoder_config.eos_token_id _UpperCAmelCase : List[Any] = decoder_start_token_id _UpperCAmelCase : int = pad_token_id _UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
506
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Any ,A_ : Callable ,A_ : Optional[Features] = None ,A_ : str = None ,A_ : bool = False ,A_ : bool = False ,A_ : Optional[dict] = None ,A_ : Optional[int] = None ,**A_ : int ,) -> str: super().__init__( features=A_ ,cache_dir=A_ ,keep_in_memory=A_ ,streaming=A_ ,num_proc=A_ ,**A_ ,) A = Generator( cache_dir=A_ ,features=A_ ,generator=A_ ,gen_kwargs=A_ ,**A_ ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # Build iterable dataset if self.streaming: A = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: A = None A = None A = None A = None self.builder.download_and_prepare( download_config=A_ ,download_mode=A_ ,verification_mode=A_ ,base_path=A_ ,num_proc=self.num_proc ,) A = self.builder.as_dataset( split='train' ,verification_mode=A_ ,in_memory=self.keep_in_memory ) return dataset
91
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowercase ( A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AlbertTokenizer __SCREAMING_SNAKE_CASE = AlbertTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = AlbertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = '''this is a test''' UpperCAmelCase = '''this is a test''' return input_text, output_text def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = '''<pad>''' UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_snake_case ) , 3_0000 ) def snake_case_ ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def snake_case_ ( self ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(_snake_case ) UpperCAmelCase = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) UpperCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) UpperCAmelCase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(_snake_case ) UpperCAmelCase = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = AlbertTokenizer(_snake_case , keep_accents=_snake_case ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [48, 25, 21, 1289] ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual(_snake_case , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = AlbertTokenizer(_snake_case ) UpperCAmelCase = tokenizer.encode('''sequence builders''' ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case_ ( self ) -> Any: """simple docstring""" # fmt: off UpperCAmelCase = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
391
def _lowerCAmelCase ( A__: float , A__: float , A__: int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
391
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Any = CpmAntTokenizer A_ : Any = False def UpperCAmelCase_ ( self ): super().setUp() _SCREAMING_SNAKE_CASE : Any = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _SCREAMING_SNAKE_CASE : str = """今天天气真好!""" _SCREAMING_SNAKE_CASE : List[str] = ["""今天""", """天气""", """真""", """好""", """!"""] _SCREAMING_SNAKE_CASE : str = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : str = """今天天气真好!""" _SCREAMING_SNAKE_CASE : int = [tokenizer.bos_token] + tokens _SCREAMING_SNAKE_CASE : Dict = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , __snake_case )
533
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase__ ( _snake_case ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ): super().__init__(**__snake_case ) _SCREAMING_SNAKE_CASE : int = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE : Any = get_size_dict(__snake_case , default_to_square=__snake_case , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Union[str, Any] = size _SCREAMING_SNAKE_CASE : List[str] = resample _SCREAMING_SNAKE_CASE : str = do_center_crop _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size _SCREAMING_SNAKE_CASE : Tuple = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize _SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE : Optional[int] = do_convert_rgb def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : int = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(__snake_case , size=size["""shortest_edge"""] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ): _SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Any = size if size is not None else self.size _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case , param_name="""size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__snake_case , param_name="""crop_size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE : Optional[int] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : str = [to_numpy_array(__snake_case ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : Tuple = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : List[Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : Dict = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _SCREAMING_SNAKE_CASE : int = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
533
1
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ): lowercase__ : List[Any] = tmp_path / """cache""" lowercase__ : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[Any] = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict ): lowercase__ : int = tmp_path / """cache""" lowercase__ : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : str = features.copy() if features else default_expected_features lowercase__ : List[str] = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Any = ParquetDatasetReader(lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): lowercase__ : List[str] = tmp_path / """cache""" lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : List[Any] = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , split=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : str ): if issubclass(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Union[str, Any] = parquet_path elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Union[str, Any] = [parquet_path] lowercase__ : Tuple = tmp_path / """cache""" lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : str = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int]=("train",) ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) for split in splits: lowercase__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] ): lowercase__ : Optional[Any] = tmp_path / """cache""" lowercase__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : List[Any] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any ): lowercase__ : Optional[Any] = tmp_path / """cache""" lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : Tuple = features.copy() if features else default_expected_features lowercase__ : Union[str, Any] = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : int = ParquetDatasetReader({"""train""": parquet_path} , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): if split: lowercase__ : List[str] = {split: parquet_path} else: lowercase__ : Any = """train""" lowercase__ : Optional[Any] = {"""train""": parquet_path, """test""": parquet_path} lowercase__ : Dict = tmp_path / """cache""" lowercase__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): lowercase__ : str = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 lowercase__ : Any = pq.ParquetFile(tmp_path / """foo.parquet""" ) lowercase__ : str = pf.read() assert dataset.data.table == output_table def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ): lowercase__ : int = str(shared_datadir / """test_image_rgb.jpg""" ) lowercase__ : int = {"""image""": [image_path]} lowercase__ : List[str] = Features({"""image""": Image()} ) lowercase__ : List[str] = Dataset.from_dict(lowerCamelCase__ , features=lowerCamelCase__ ) lowercase__ : str = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 lowercase__ : Dict = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features lowercase__ : List[str] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowerCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Any ): assert get_writer_batch_size(lowerCamelCase__ ) == expected
128
"""simple docstring""" import os def _lowerCamelCase ( lowerCamelCase__ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: lowercase__ : Optional[Any] = in_file.read() lowercase__ : Tuple = [[int(lowerCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowercase__ : List[str] = [[0 for cell in row] for row in grid] lowercase__ : Dict = len(grid[0] ) lowercase__ : List[Any] = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] lowercase__ : Any = grid[0][0] for i in range(1 , lowerCamelCase__ ): lowercase__ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): lowercase__ : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): lowercase__ : Dict = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
128
1
def __snake_case ( _UpperCamelCase ) -> list: if n_term == "": return [] _a = [] for temp in range(int(_UpperCamelCase ) ): series.append(f"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": lowerCamelCase :Any = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
487
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ) -> Any: _a , _a = 9, 14 # noqa: F841 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = defaultdict(_UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _a = mst(_UpperCamelCase ) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _a = tuple(answer[:2] ) _a = tuple(edge[::-1] ) assert edge in result or reverse in result
487
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class a_ ( unittest.TestCase ): @classmethod def UpperCamelCase ( cls : Tuple ) -> Optional[Any]: snake_case: List[str] =TOKEN HfFolder.save_token(a_ ) @classmethod def UpperCamelCase ( cls : List[Any] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCamelCase ( self : List[Any] ) -> List[str]: snake_case: Any =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) snake_case: Dict =FlaxBertModel(a_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) snake_case: List[str] =FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) snake_case: int =flatten_dict(unfreeze(model.params ) ) snake_case: Any =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case: Optional[Any] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ , repo_id='test-model-flax' , push_to_hub=a_ , use_auth_token=self._token ) snake_case: Dict =FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) snake_case: str =flatten_dict(unfreeze(model.params ) ) snake_case: Union[str, Any] =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case: Union[str, Any] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1E-3 , msg=F'''{key} not identical''' ) def UpperCamelCase ( self : List[Any] ) -> int: snake_case: str =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) snake_case: Optional[Any] =FlaxBertModel(a_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) snake_case: Optional[int] =FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) snake_case: str =flatten_dict(unfreeze(model.params ) ) snake_case: Optional[Any] =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case: Optional[Any] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( a_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=a_ , use_auth_token=self._token ) snake_case: str =FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) snake_case: List[str] =flatten_dict(unfreeze(model.params ) ) snake_case: Any =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case: Union[str, Any] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1E-3 , msg=F'''{key} not identical''' ) def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: """simple docstring""" snake_case: Union[str, Any] =True snake_case: List[Any] =flatten_dict(modela.params ) snake_case: str =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case: List[Any] =False return models_are_equal @require_flax class a_ ( unittest.TestCase ): def UpperCamelCase ( self : str ) -> Optional[int]: snake_case: List[Any] =BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) snake_case: Optional[Any] =FlaxBertModel(a_ ) snake_case: Any ='bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a_ , a_ ) ) with self.assertRaises(a_ ): snake_case: Tuple =FlaxBertModel.from_pretrained(a_ ) snake_case: Optional[int] =FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertTrue(check_models_equal(a_ , a_ ) ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: snake_case: Any =BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) snake_case: int =FlaxBertModel(a_ ) snake_case: List[Any] ='bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a_ , a_ ) , max_shard_size='10KB' ) with self.assertRaises(a_ ): snake_case: Tuple =FlaxBertModel.from_pretrained(a_ ) snake_case: Dict =FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertTrue(check_models_equal(a_ , a_ ) ) def UpperCamelCase ( self : List[Any] ) -> str: snake_case: Optional[int] ='bert' snake_case: List[Any] ='hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(a_ ): snake_case: List[Any] =FlaxBertModel.from_pretrained(a_ ) snake_case: Optional[Any] =FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertIsNotNone(a_ ) def UpperCamelCase ( self : Dict ) -> Union[str, Any]: snake_case: Any ='bert' snake_case: Union[str, Any] ='hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(a_ ): snake_case: int =FlaxBertModel.from_pretrained(a_ ) snake_case: List[str] =FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertIsNotNone(a_ )
347
'''simple docstring''' def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) snake_case: Optional[Any] =str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" snake_case: Union[str, Any] =str(bin(__UpperCAmelCase ) )[2:] snake_case: List[Any] =max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
347
1
'''simple docstring''' def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) _a = [True] * (num + 1) _a = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCamelCase ): _a = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Optional[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
22
'''simple docstring''' from math import pi, sqrt def snake_case_ (UpperCamelCase : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(UpperCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(UpperCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ (): '''simple docstring''' assert gamma(0.5 ) == sqrt(UpperCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _snake_case : Optional[Any] = 1.0 while num: _snake_case : Dict = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
22
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase__ : list[float], lowerCamelCase__ : Tuple ) -> Any: print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(lowerCamelCase__ ): print(f'''{i}\t\t{d}''' ) def _lowerCAmelCase ( lowerCamelCase__ : list[dict[str, int]], lowerCamelCase__ : list[float], lowerCamelCase__ : int ) -> Tuple: for j in range(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : str = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def _lowerCAmelCase ( lowerCamelCase__ : list[dict[str, int]], lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> list[float]: _SCREAMING_SNAKE_CASE : Tuple = [float("inf" )] * vertex_count _SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Dict = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE : Dict = distance[u] + w _SCREAMING_SNAKE_CASE : Union[str, Any] = check_negative_cycle(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Dict = int(input('''Enter number of vertices: ''').strip()) lowercase_ : Optional[int] = int(input('''Enter number of edges: ''').strip()) lowercase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowercase_ : str = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowercase_ : str = {'''src''': src, '''dst''': dest, '''weight''': weight} lowercase_ : Tuple = int(input('''\nEnter shortest path source:''').strip()) lowercase_ : int = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
705
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=4_2, ), ], ) def _lowerCAmelCase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : DatasetInfo ) -> List[Any]: _SCREAMING_SNAKE_CASE : Dict = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__, "dataset_info.json" ) ) def _lowerCAmelCase ( ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 4_2}], download_checksums={}, download_size=1_3_3_7, post_processing_size=4_4_2, dataset_size=1_2_3_4, size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4, ) _SCREAMING_SNAKE_CASE : List[str] = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _SCREAMING_SNAKE_CASE : Optional[Any] = yaml.safe_dump(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[Any] = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def _lowerCAmelCase ( ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = DatasetInfo() _SCREAMING_SNAKE_CASE : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=4_2, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ], ) def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : DatasetInfosDict ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _SCREAMING_SNAKE_CASE : List[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _SCREAMING_SNAKE_CASE : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__, "README.md" ) )
295
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __lowercase : int = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __lowercase : Dict = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase_ ( ): lowerCamelCase_ = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : Any ): lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Any = VOCAB_FILES_NAMES __lowercase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Dict = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Any: '''simple docstring''' lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ = json.load(UpperCamelCase__ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(UpperCamelCase__ ) lowerCamelCase_ = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: lowerCamelCase_ = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(UpperCamelCase__ ): try: lowerCamelCase_ = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(UpperCamelCase__ ) lowerCamelCase_ = new_word if len(UpperCamelCase__ ) == 1: break else: lowerCamelCase_ = get_pairs(UpperCamelCase__ ) lowerCamelCase_ = ''' '''.join(UpperCamelCase__ ) lowerCamelCase_ = word return word def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , UpperCamelCase__ ): lowerCamelCase_ = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = ''''''.join(UpperCamelCase__ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) lowerCamelCase_ = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ''' ''' + text return (text, kwargs) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) lowerCamelCase_ = ''' '''.join(UpperCamelCase__ ) lowerCamelCase_ = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
142
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __lowercase : List[str] = logging.getLogger(__name__) __lowercase : Dict = 5_0 # max width of layer names __lowercase : Any = 7_0 # max width of quantizer names def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): lowerCamelCase_ = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_lowerCamelCase , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_lowerCamelCase , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_lowerCamelCase , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_lowerCamelCase , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_lowerCamelCase , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_lowerCamelCase , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCamelCase_ ( _lowerCamelCase : str ): if args.calibrator == "max": lowerCamelCase_ = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) lowerCamelCase_ = '''histogram''' elif args.calibrator == "mse": lowerCamelCase_ = '''histogram''' else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) lowerCamelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase ) lowerCamelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False , _lowerCamelCase : List[Any]=False ): logger.info('''Configuring Model for Quantization''' ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ['''embeddings'''] , which='''weight''' , _disabled=_lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [''''''] , _disabled=_lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase ) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase ) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Dict ): logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def lowerCamelCase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any ): def fusea(_lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : str ): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return lowerCamelCase_ = qq._amax.detach().item() lowerCamelCase_ = qk._amax.detach().item() lowerCamelCase_ = qv._amax.detach().item() lowerCamelCase_ = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) qq._amax.fill_(_lowerCamelCase ) qk._amax.fill_(_lowerCamelCase ) qv._amax.fill_(_lowerCamelCase ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): lowerCamelCase_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase ) lowerCamelCase_ = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase_ ( _lowerCamelCase : Any ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: lowerCamelCase_ = mod.weight.shape[0] lowerCamelCase_ = mod._weight_quantizer._amax.detach() lowerCamelCase_ = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCamelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCamelCase_ = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCamelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowerCamelCase_ = amax def lowerCamelCase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict=2_5 , _lowerCamelCase : List[Any]=1_8_0 , _lowerCamelCase : str=None ): if ignore is None: lowerCamelCase_ = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = [ignore] lowerCamelCase_ = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , '''weight''' ): continue lowerCamelCase_ = max(_lowerCamelCase , len(_lowerCamelCase ) ) for name, mod in model.named_modules(): lowerCamelCase_ = getattr(_lowerCamelCase , '''_input_quantizer''' , _lowerCamelCase ) lowerCamelCase_ = getattr(_lowerCamelCase , '''_weight_quantizer''' , _lowerCamelCase ) if not hasattr(_lowerCamelCase , '''weight''' ): continue if type(_lowerCamelCase ) in ignore: continue if [True for s in ignore if type(_lowerCamelCase ) is str and s in name]: continue lowerCamelCase_ = F"""Act:{input_q.extra_repr()}""" lowerCamelCase_ = F"""Wgt:{weight_q.extra_repr()}""" lowerCamelCase_ = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(_lowerCamelCase ) <= line_width: logger.info(_lowerCamelCase ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{" ":{name_width}} {wgt_str}""" ) def lowerCamelCase_ ( _lowerCamelCase : int ): lowerCamelCase_ = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): lowerCamelCase_ = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: logger.warning(F"""{name} has no {quantizer}""" ) def lowerCamelCase_ ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]="both" , **_lowerCamelCase : Union[str, Any] ): lowerCamelCase_ = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '''_input_quantizer''' , _lowerCamelCase , _lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '''_weight_quantizer''' , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , **_lowerCamelCase : List[str] ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '''_input_quantizer''' ) or hasattr(_lowerCamelCase , '''_weight_quantizer''' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase )
142
1
from __future__ import annotations lowerCamelCase_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =len(snake_case__ ) for i in range(snake_case__ ): SCREAMING_SNAKE_CASE__ =-1 for j in range(i + 1, snake_case__ ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE__ =arr[j] break result.append(snake_case__ ) return result def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] for i, outer in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ =-1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE__ =inner break result.append(snake_case__ ) return result def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =len(snake_case__ ) SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =[-1] * arr_size for index in reversed(range(snake_case__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE__ =stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase_ = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
717
import functools def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) @functools.cache def min_distance(__UpperCamelCase, __UpperCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa SCREAMING_SNAKE_CASE__ =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, __UpperCamelCase ), 1 + min_distance(__UpperCamelCase, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
588
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _lowercase : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _lowercase : Dict = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" A = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A = bs[:] A = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 A = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def _lowerCAmelCase ( UpperCamelCase__: Tuple ) -> Optional[int]: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a__ , a__ , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , **a__ , ) -> List[Any]: A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: A = json.load(a__ ) A = {v: k for k, v in self.encoder.items()} A = errors # how to handle errors in decoding A = bytes_to_unicode() A = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in bpe_merges] A = dict(zip(a__ , range(len(a__ ) ) ) ) A = {} A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def _UpperCAmelCase ( self ) -> List[str]: return len(self.encoder ) def _UpperCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , a__ ) -> Any: if token in self.cache: return self.cache[token] A = tuple(a__ ) A = get_pairs(a__ ) if not pairs: return token while True: A = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(a__ ): try: A = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(a__ ) A = new_word if len(a__ ) == 1: break else: A = get_pairs(a__ ) A = """ """.join(a__ ) A = word return word def _UpperCAmelCase ( self , a__ ) -> List[str]: A = [] for token in re.findall(self.pat , a__ ): A = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(""" """ ) ) return bpe_tokens def _UpperCAmelCase ( self , a__ ) -> str: return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self , a__ ) -> Optional[Any]: return self.decoder.get(a__ ) def _UpperCAmelCase ( self , a__ ) -> List[str]: A = """""".join(a__ ) A = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _UpperCAmelCase ( self , a__ , a__ = None ) -> Tuple[str]: if not os.path.isdir(a__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) A = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , a__ , a__ = None , a__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , a__ , a__=False , **a__ ) -> Any: A = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): A = """ """ + text return (text, kwargs)
641
_lowercase : Dict = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
641
1
'''simple docstring''' import os import sys import unittest __snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __snake_case : Tuple = os.path.join(git_repo_path, 'src', 'diffusers') class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: A_ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A_ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A_ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: A_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''torch_and_transformers''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''flax_and_transformers''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''torch_and_transformers_and_onnx''' , _SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Any: A_ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''\nCONSTANT = None\n''' ) A_ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _SCREAMING_SNAKE_CASE , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) A_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A_ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: A_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A_ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _SCREAMING_SNAKE_CASE )
713
'''simple docstring''' __snake_case : List[Any] = 256 # Modulus to hash a string __snake_case : str = 1_000_003 def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str ) -> bool: A_ = len(_UpperCamelCase ) A_ = len(_UpperCamelCase ) if p_len > t_len: return False A_ = 0 A_ = 0 A_ = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCamelCase ): A_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _UpperCAmelCase ( ) -> None: A_ = '''abc1abc12''' A_ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) and not rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 2) A_ = '''ABABX''' A_ = '''ABABZABABYABABX''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 3) A_ = '''AAAB''' A_ = '''ABAAAAAB''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 4) A_ = '''abcdabcy''' A_ = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 5) A_ = '''Lü''' A_ = '''Lüsai''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) A_ = '''Lue''' assert not rabin_karp(_UpperCamelCase, _UpperCamelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
174
0
"""simple docstring""" import cva import numpy as np class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Optional[Any]: if k in (0.0_4, 0.0_6): UpperCAmelCase_ : Any = k UpperCAmelCase_ : List[Any] = window_size else: raise ValueError("invalid k value" ) def __str__( self : List[str] ) -> Tuple: return str(self.k ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: UpperCAmelCase_ : Any = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCAmelCase_ : Optional[Any] = img.shape UpperCAmelCase_ : list[list[int]] = [] UpperCAmelCase_ : Tuple = img.copy() UpperCAmelCase_ : int = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) UpperCAmelCase_ : int = np.gradient(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = dx**2 UpperCAmelCase_ : Union[str, Any] = dy**2 UpperCAmelCase_ : Optional[int] = dx * dy UpperCAmelCase_ : Optional[Any] = 0.0_4 UpperCAmelCase_ : int = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): UpperCAmelCase_ : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : Optional[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : List[Any] = (wxx * wyy) - (wxy**2) UpperCAmelCase_ : List[str] = wxx + wyy UpperCAmelCase_ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ = HarrisCorner(0.04, 3) lowerCamelCase_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
95
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : List[str] = {'vocab_file': 'spiece.model'} lowerCAmelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase : Optional[int] = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } lowerCAmelCase : Optional[int] = '▁' class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE_ : List[str] = [f"<extra_id_{i}>" for i in range(_SCREAMING_SNAKE_CASE )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE_ : Dict = len(set(filter(lambda _SCREAMING_SNAKE_CASE : bool('extra_id' in str(_SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) SCREAMING_SNAKE_CASE_ : int = legacy SCREAMING_SNAKE_CASE_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , extra_ids=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = vocab_file SCREAMING_SNAKE_CASE_ : Optional[Any] = extra_ids SCREAMING_SNAKE_CASE_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: SCREAMING_SNAKE_CASE_ : int = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _SCREAMING_SNAKE_CASE , ) return max_model_length @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase ( self ): """simple docstring""" return list( set(filter(lambda _SCREAMING_SNAKE_CASE : bool(re.search(r'<extra_id_\d+>' , _SCREAMING_SNAKE_CASE ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase ( self ): """simple docstring""" return [self._convert_token_to_id(_SCREAMING_SNAKE_CASE ) for token in self.get_sentinel_tokens()] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self._add_eos_if_not_present(_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE_ : int = self._add_eos_if_not_present(_SCREAMING_SNAKE_CASE ) return token_ids_a + token_ids_a def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.legacy: SCREAMING_SNAKE_CASE_ : Dict = SPIECE_UNDERLINE + text.replace(_SCREAMING_SNAKE_CASE , ' ' ) return super().tokenize(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.legacy: SCREAMING_SNAKE_CASE_ : List[str] = text.startswith(_SCREAMING_SNAKE_CASE ) if is_first: SCREAMING_SNAKE_CASE_ : Optional[int] = text[1:] SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if token.startswith('<extra_id_' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.match(r'<extra_id_(\d+)>' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE_ : str = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[Any] = f"<extra_id_{self.vocab_size - 1 - index}>" return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = '' SCREAMING_SNAKE_CASE_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
511
0
__A = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
716
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( A_ , A_ , A_ ): @register_to_config def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ) -> List[str]: super().__init__() __a = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) __a = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) __a = False __a = nn.Dropout(p=lowerCamelCase_ ) __a = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) __a = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): __a = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) __a = TaLayerNorm(lowerCamelCase_ ) __a = nn.Dropout(p=lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ) -> Tuple: __a = self.token_embedder(lowerCamelCase_ ) __a = encoder_input_tokens.shape[1] __a = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) __a = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask __a = encoder_input_tokens.size() __a = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: __a = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] __a = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
173
0
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A : snake_case__ :Dict = None def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(__magic_name__ , "feat_extract.json" ) feat_extract_first.to_json_file(__magic_name__ ) lowerCAmelCase__ = self.feature_extraction_class.from_json_file(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) lowerCAmelCase__ = self.feature_extraction_class.from_pretrained(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class() self.assertIsNotNone(__magic_name__ )
48
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = BertJapaneseTokenizer UpperCAmelCase_ = False UpperCAmelCase_ = True def lowerCAmelCase_ ( self : int ): """simple docstring""" super().setUp() _lowercase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : Dict ): """simple docstring""" _lowercase : List[str] = '''こんにちは、世界。 \nこんばんは、世界。''' _lowercase : List[str] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : Tuple ): """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_input_output_texts(UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _lowercase : Tuple = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : str = self.tokenizer_class(self.vocab_file ) _lowercase : List[str] = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Any = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : List[Any] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Any = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : int = pickle.load(UpperCamelCase ) _lowercase : Tuple = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : str = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" try: _lowercase : List[str] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" try: _lowercase : Any = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Tuple = MecabTokenizer(do_lower_case=UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : int ): """simple docstring""" try: _lowercase : Tuple = MecabTokenizer( do_lower_case=UpperCamelCase , normalize_text=UpperCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = MecabTokenizer(normalize_text=UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Dict = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : Dict = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : Tuple = pickle.load(UpperCamelCase ) _lowercase : Tuple = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[str] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : List[str] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : str = SudachiTokenizer(do_lower_case=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Optional[Any] = SudachiTokenizer(normalize_text=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Optional[Any] = SudachiTokenizer(trim_whitespace=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Optional[int] = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : str = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : List[Any] = pickle.load(UpperCamelCase ) _lowercase : Any = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Dict = JumanppTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = JumanppTokenizer(normalize_text=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Optional[int] = JumanppTokenizer(trim_whitespace=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _lowercase : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _lowercase : int = {} for i, token in enumerate(UpperCamelCase ): _lowercase : Optional[Any] = i _lowercase : str = WordpieceTokenizer(vocab=UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[Any] = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) _lowercase : Dict = tokenizer.subword_tokenizer _lowercase : Dict = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) _lowercase : int = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) _lowercase : str = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase ) _lowercase : List[Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = BertJapaneseTokenizer UpperCAmelCase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" super().setUp() _lowercase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Optional[int] , **UpperCamelCase : Optional[int] ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : List[Any] ): """simple docstring""" _lowercase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' _lowercase : List[str] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def lowerCAmelCase_ ( self : str ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) _lowercase : List[Any] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _lowercase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowercase : int = {} for i, token in enumerate(UpperCamelCase ): _lowercase : Dict = i _lowercase : List[str] = CharacterTokenizer(vocab=UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) _lowercase : Tuple = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase ) _lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): """simple docstring""" _lowercase : int = '''cl-tohoku/bert-base-japanese''' _lowercase : Any = AutoTokenizer.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Any = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) _lowercase : Any = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
322
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _UpperCAmelCase ): a : List[Any] = (DDPMScheduler,) def _snake_case ( self : List[str] , **__UpperCamelCase : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__UpperCamelCase ) return config def _snake_case ( self : Any ) ->Union[str, Any]: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def _snake_case ( self : int ) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def _snake_case ( self : int ) ->Union[str, Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def _snake_case ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def _snake_case ( self : int ) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def _snake_case ( self : int ) ->int: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__UpperCamelCase ) def _snake_case ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5 def _snake_case ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) _UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: _UpperCAmelCase = -1 else: _UpperCAmelCase = timesteps[i + 1] _UpperCAmelCase = scheduler.previous_timestep(__UpperCamelCase ) _UpperCAmelCase = prev_t.item() self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__UpperCamelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def _snake_case ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = [1_00, 87, 50, 1, 0] _UpperCAmelCase = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
19
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( _A , _A , _A ) -> float: """simple docstring""" _UpperCAmelCase = x _UpperCAmelCase = y for step in range(_A ): # noqa: B007 _UpperCAmelCase = a * a - b * b + x _UpperCAmelCase = 2 * a * b + y _UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) ) def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image: """simple docstring""" _UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) ) _UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(_A ): for image_y in range(_A ): # determine the figure-coordinates based on the image-coordinates _UpperCAmelCase = figure_width / image_width * image_height _UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width _UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height _UpperCAmelCase = get_distance(_A , _A , _A ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _UpperCAmelCase = get_color_coded_rgb(_A ) else: _UpperCAmelCase = get_black_and_white_rgb(_A ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
19
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a ( self ) -> Optional[int]: _UpperCAmelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) _UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house _UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1e-3 ) ) @slow def _a ( self ) -> str: _UpperCAmelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) _UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house _UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1e-3 ) )
657
import numpy as np def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case = 1E-12 , __snake_case = 100 , ): assert np.shape(__snake_case )[0] == np.shape(__snake_case )[1] # Ensure proper dimensionality. assert np.shape(__snake_case )[0] == np.shape(__snake_case )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__snake_case ) == np.iscomplexobj(__snake_case ) __lowerCAmelCase = np.iscomplexobj(__snake_case ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__snake_case , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(__snake_case , __snake_case ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(__snake_case ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(__snake_case , np.dot(__snake_case , __snake_case ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(__snake_case , __snake_case ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(__snake_case ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__snake_case ) - np.abs(__snake_case ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
367
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
1
import sys def lowerCAmelCase_ (lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = len(lowercase__ ) lowerCAmelCase__ = [[0 for x in range(lowercase__ )] for x in range(lowercase__ )] lowerCAmelCase__ = [[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase__ = a + chain_length - 1 lowerCAmelCase__ = sys.maxsize for c in range(lowercase__ , lowercase__ ): lowerCAmelCase__ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase__ = cost lowerCAmelCase__ = c return matrix, sol def lowerCAmelCase_ (lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if i == j: print('''A''' + str(lowercase__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(''')''' , end=''' ''' ) def lowerCAmelCase_ () -> str: '''simple docstring''' lowerCAmelCase__ = [30, 35, 15, 5, 10, 20, 25] lowerCAmelCase__ = len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase__ , lowerCAmelCase__ = matrix_chain_order(lowercase__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
668
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : str = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _UpperCAmelCase : str = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _UpperCAmelCase : List[str] = { "ctrl": 256, } _UpperCAmelCase : int = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def lowerCAmelCase_ (lowercase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(lowercase__ ) return pairs class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :int = VOCAB_FILES_NAMES UpperCamelCase_ :str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ :Optional[int] = CONTROL_CODES def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , **SCREAMING_SNAKE_CASE_ : Tuple ): super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCAmelCase__ = {} @property def __snake_case ( self : List[str] ): return len(self.encoder ) def __snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Any ): if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCAmelCase__ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCAmelCase__ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCAmelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word return word def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase__ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) lowerCAmelCase__ = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
668
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : Optional[int] = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def a__ ( ): """simple docstring""" _snake_case : Dict = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : Union[str, Any] = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def a__ ( a : int=None ): """simple docstring""" if subparsers is not None: _snake_case : Any = subparsers.add_parser("config" , description=a ) else: _snake_case : Optional[Any] = argparse.ArgumentParser("Accelerate config command" , description=a ) parser.add_argument( "--config_file" , default=a , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=a ) return parser def a__ ( a : Optional[Any] ): """simple docstring""" _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[Any] = args.config_file else: if not os.path.isdir(a ): os.makedirs(a ) _snake_case : Optional[Any] = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(a ) else: config.to_yaml_file(a ) print(f'accelerate configuration saved at {config_file}' ) def a__ ( ): """simple docstring""" _snake_case : Optional[int] = config_command_parser() _snake_case : str = parser.parse_args() config_command(a ) if __name__ == "__main__": main()
87
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _snake_case): __lowercase : int = """EncodecFeatureExtractor""" __lowercase : str = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) _snake_case : Dict = self.feature_extractor _snake_case : Any = False def lowerCamelCase__ ( self , snake_case_=None , snake_case_=None , snake_case_=True ): return self.tokenizer.get_decoder_prompt_ids(task=snake_case_ , language=snake_case_ , no_timestamps=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) _snake_case : str = kwargs.pop("audio" , snake_case_ ) _snake_case : Optional[int] = kwargs.pop("sampling_rate" , snake_case_ ) _snake_case : Optional[Any] = kwargs.pop("text" , snake_case_ ) if len(snake_case_ ) > 0: _snake_case : Any = args[0] _snake_case : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: _snake_case : Any = self.tokenizer(snake_case_ , **snake_case_ ) if audio is not None: _snake_case : Any = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if audio is None: return inputs elif text is None: return audio_inputs else: _snake_case : str = audio_inputs["input_values"] if "padding_mask" in audio_inputs: _snake_case : List[str] = audio_inputs["padding_mask"] return inputs def lowerCamelCase__ ( self , *snake_case_ , **snake_case_ ): _snake_case : Tuple = kwargs.pop("audio" , snake_case_ ) _snake_case : List[str] = kwargs.pop("padding_mask" , snake_case_ ) if len(snake_case_ ) > 0: _snake_case : Tuple = args[0] _snake_case : Dict = args[1:] if audio_values is not None: return self._decode_audio(snake_case_ , padding_mask=snake_case_ ) else: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ = None ): _snake_case : Optional[int] = to_numpy(snake_case_ ) _snake_case , _snake_case , _snake_case : Tuple = audio_values.shape if padding_mask is None: return list(snake_case_ ) _snake_case : Optional[int] = to_numpy(snake_case_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _snake_case : Any = seq_len - padding_mask.shape[-1] _snake_case : Optional[Any] = 1 - self.feature_extractor.padding_value _snake_case : Optional[int] = np.pad(snake_case_ , ((0, 0), (0, difference)) , "constant" , constant_values=snake_case_ ) _snake_case : Any = audio_values.tolist() for i in range(snake_case_ ): _snake_case : Tuple = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _snake_case : Tuple = sliced_audio.reshape(snake_case_ , -1 ) return audio_values
87
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase =get_tests_dir("fixtures/test_sentencepiece.model") lowerCamelCase =get_tests_dir("fixtures/test_sentencepiece_bpe.model") lowerCamelCase ="pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CamembertTokenizer SCREAMING_SNAKE_CASE_ = CamembertTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ : str = CamembertTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[Any] = '''<pad>''' UpperCamelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_0_0_4 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : Tuple = CamembertTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) UpperCamelCase__ : List[str] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCamelCase__ : Any = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCamelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase__ : Any = self.get_tokenizer() UpperCamelCase__ : List[Any] = self.get_rust_tokenizer() UpperCamelCase__ : int = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.get_rust_tokenizer() UpperCamelCase__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCamelCase__ : Tuple = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__SCREAMING_SNAKE_CASE , )
285
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : List[Any] = seq_length UpperCamelCase__ : List[Any] = is_training UpperCamelCase__ : Any = use_input_mask UpperCamelCase__ : Dict = use_token_type_ids UpperCamelCase__ : List[str] = use_labels UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : int = type_sequence_label_size UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[Any] = num_labels UpperCamelCase__ : List[str] = num_choices UpperCamelCase__ : Union[str, Any] = scope def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Tuple = None if self.use_input_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : int = None UpperCamelCase__ : Tuple = None if self.use_labels: UpperCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # create attention mask UpperCamelCase__ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.seq_length // 2 UpperCamelCase__ : List[str] = 0 # first forward pass UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase__ : Tuple = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1 UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase__ : int = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , ) # get two different outputs UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice UpperCamelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # first forward pass UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ ,UpperCamelCase__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[ '''last_hidden_state''' ] # select random slice UpperCamelCase__ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = BioGptForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Any = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) , ) : List[str] = config_and_inputs UpperCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : Dict = BioGptModelTester(self ) UpperCamelCase__ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ : Optional[Any] = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Optional[Any] = '''left''' # Define PAD Token = EOS Token = 50256 UpperCamelCase__ : Optional[int] = tokenizer.eos_token UpperCamelCase__ : List[str] = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase__ : Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCamelCase__ : Dict = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = inputs['''input_ids'''].to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''].to(__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCamelCase__ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) UpperCamelCase__ : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[int] = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : int = 3 UpperCamelCase__ : Tuple = input_dict['''input_ids'''] UpperCamelCase__ : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : List[str] = 3 UpperCamelCase__ : List[Any] = '''multi_label_classification''' UpperCamelCase__ : List[str] = input_dict['''input_ids'''] UpperCamelCase__ : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ : List[str] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : Optional[Any] = 4_2_3_8_4 UpperCamelCase__ : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : List[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) UpperCamelCase__ : Dict = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = model.generate( **__SCREAMING_SNAKE_CASE , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
285
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : Optional[Any] = logging.StreamHandler() # Set sys.stderr as stream. _a : Any = sys.stderr.flush # Apply our default configuration to the library root logger. _a : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[Any] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : Any = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : Tuple = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[str] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : int = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = _get_library_root_logger().handlers for handler in handlers: _a : Optional[int] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Dict , *__a : Any , **__a : List[Any] ): """simple docstring""" _a : Tuple = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : Optional[Any] , *__a : Union[str, Any] , **__a : int ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ,*_a : List[str] ,**_a : Tuple ): # pylint: disable=unused-argument '''simple docstring''' _a : Tuple = args[0] if args else None def __iter__( self : Optional[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : int ,_a : Dict ): '''simple docstring''' def empty_fn(*_a : Any ,**_a : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ): '''simple docstring''' return self def __exit__( self : Union[str, Any] ,_a : Any ,_a : Optional[int] ,_a : List[Any] ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Optional[int] ,**_a : List[Any] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : Union[str, Any] ,*_a : Dict ,**_a : Union[str, Any] ): '''simple docstring''' _a : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Any = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Optional[int] = False hf_hub_utils.disable_progress_bars()
319
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowerCAmelCase = [8, 5, 9, 7] __lowerCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ,_a : list[int] ,_a : list[list[int]] ,_a : list[list[int]] ,): '''simple docstring''' _a : Dict = claim_vector _a : List[str] = allocated_resources_table _a : List[Any] = maximum_claim_table def __lowercase ( self : Tuple ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self : Tuple ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self : int ): '''simple docstring''' return {self.__need().index(_a ): i for i in self.__need()} def __lowercase ( self : Optional[Any] ,**_a : Dict ): '''simple docstring''' _a : Optional[int] = self.__need() _a : str = self.__allocated_resources_table _a : int = self.__available_resources() _a : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _a : List[str] = False for each_need in need_list: _a : List[str] = True for index, need in enumerate(_a ): if need > available_resources[index]: _a : Dict = False break if execution: _a : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : int = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack _a : Optional[int] = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowercase ( self : Tuple ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
class _A : def __init__( self : Any ): """simple docstring""" __UpperCamelCase : Any = 0 __UpperCamelCase : int = 0 __UpperCamelCase : Optional[int] = {} def a ( self : Tuple , lowerCamelCase__ : int ): """simple docstring""" if vertex not in self.adjacency: __UpperCamelCase : List[str] = {} self.num_vertices += 1 def a ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ): """simple docstring""" self.add_vertex(lowerCamelCase__ ) self.add_vertex(lowerCamelCase__ ) if head == tail: return __UpperCamelCase : Optional[Any] = weight __UpperCamelCase : str = weight def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : str = self.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase__ ) ): __UpperCamelCase : Any = list(edges[i] ) edges.sort(key=lambda lowerCamelCase__ : e[2] ) for i in range(len(lowerCamelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCamelCase : Any = edges[i][2] + 1 for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = edge __UpperCamelCase : Any = weight __UpperCamelCase : str = weight def __str__( self : Dict ): """simple docstring""" __UpperCamelCase : str = """""" for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCamelCase : Tuple = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a ( self : Optional[Any] ): """simple docstring""" return self.adjacency.keys() @staticmethod def a ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=None ): """simple docstring""" __UpperCamelCase : Optional[Any] = Graph() if vertices is None: __UpperCamelCase : Optional[int] = [] if edges is None: __UpperCamelCase : str = [] for vertex in vertices: g.add_vertex(lowerCamelCase__ ) for edge in edges: g.add_edge(*lowerCamelCase__ ) return g class _A : def __init__( self : List[str] ): """simple docstring""" __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : List[Any] = {} def __len__( self : Optional[Any] ): """simple docstring""" return len(self.parent ) def a ( self : int , lowerCamelCase__ : Optional[int] ): """simple docstring""" if item in self.parent: return self.find(lowerCamelCase__ ) __UpperCamelCase : Dict = item __UpperCamelCase : Optional[int] = 0 return item def a ( self : List[str] , lowerCamelCase__ : List[Any] ): """simple docstring""" if item not in self.parent: return self.make_set(lowerCamelCase__ ) if item != self.parent[item]: __UpperCamelCase : Any = self.find(self.parent[item] ) return self.parent[item] def a ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict ): """simple docstring""" __UpperCamelCase : Dict = self.find(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = self.find(lowerCamelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCamelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCamelCase : Dict = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCamelCase : Tuple = roota return roota return None @staticmethod def a ( lowerCamelCase__ : List[Any] ): """simple docstring""" __UpperCamelCase : Dict = graph.num_vertices __UpperCamelCase : Any = Graph.UnionFind() __UpperCamelCase : int = [] while num_components > 1: __UpperCamelCase : Optional[int] = {} for vertex in graph.get_vertices(): __UpperCamelCase : Dict = -1 __UpperCamelCase : Tuple = graph.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = edge __UpperCamelCase : str = union_find.find(lowerCamelCase__ ) __UpperCamelCase : List[str] = union_find.find(lowerCamelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : List[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = cheap_edge[vertex] if union_find.find(lowerCamelCase__ ) != union_find.find(lowerCamelCase__ ): union_find.union(lowerCamelCase__ , lowerCamelCase__ ) mst_edges.append(cheap_edge[vertex] ) __UpperCamelCase : Optional[Any] = num_components - 1 __UpperCamelCase : Union[str, Any] = Graph.build(edges=lowerCamelCase__ ) return mst
269
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = '\nimport os\n' UpperCamelCase = '\ndef foo():\n import os\n return False\n' UpperCamelCase = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> str: __UpperCamelCase : str = os.path.join(__lowerCAmelCase , """test_file.py""" ) with open(__lowerCAmelCase , """w""" ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) __UpperCamelCase : Optional[int] = get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
269
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters lowerCamelCase = False lowerCamelCase = False def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Optional[int]: return TrainCommand(__UpperCamelCase ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _A ( __UpperCAmelCase ): """simple docstring""" a__ : List[Any] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=__UpperCAmelCase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=__UpperCAmelCase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=__UpperCAmelCase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=__UpperCAmelCase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=__UpperCAmelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=__UpperCAmelCase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=__UpperCAmelCase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=__UpperCAmelCase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=__UpperCAmelCase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=__UpperCAmelCase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=__UpperCAmelCase , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=__UpperCAmelCase , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = logging.get_logger("transformers-cli/training" ) a__ : str = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=__UpperCAmelCase ) a__ : Dict = args.output a__ : str = args.column_label a__ : Optional[int] = args.column_text a__ : List[Any] = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": a__ : List[str] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) a__ : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ : List[Any] = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) a__ : Any = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ : str = args.validation_split a__ : int = args.train_batch_size a__ : Dict = args.valid_batch_size a__ : Dict = args.learning_rate a__ : List[str] = args.adam_epsilon def _A ( self ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def _A ( self ): """simple docstring""" raise NotImplementedError def _A ( self ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
207
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''owlvit_text_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=4_9_4_0_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Dict="quick_gelu" , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=4_9_4_0_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_9_4_0_7 , **SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : List[Any] = vocab_size __a : Dict = hidden_size __a : Optional[Any] = intermediate_size __a : Any = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[Any] = max_position_embeddings __a : Dict = hidden_act __a : str = layer_norm_eps __a : List[str] = attention_dropout __a : Optional[int] = initializer_range __a : List[Any] = initializer_factor @classmethod def __lowerCAmelCase ( cls : int , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = '''owlvit_vision_model''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : Tuple="quick_gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : str = hidden_size __a : int = intermediate_size __a : Dict = num_hidden_layers __a : str = num_attention_heads __a : Optional[int] = num_channels __a : Tuple = image_size __a : str = patch_size __a : List[str] = hidden_act __a : Dict = layer_norm_eps __a : Union[str, Any] = attention_dropout __a : int = initializer_range __a : List[str] = initializer_factor @classmethod def __lowerCAmelCase ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = '''owlvit''' __SCREAMING_SNAKE_CASE : str = True def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=2.6_592 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: __a : int = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __a : Optional[int] = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __a : int = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = projection_dim __a : Union[str, Any] = logit_scale_init_value __a : Union[str, Any] = return_dict __a : int = 1.0 @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = {} __a : List[str] = text_config __a : Tuple = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : List[Any] = copy.deepcopy(self.__dict__ ) __a : Optional[Any] = self.text_config.to_dict() __a : Dict = self.vision_config.to_dict() __a : Dict = self.__class__.model_type return output class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def __lowerCAmelCase ( self : str ): '''simple docstring''' return 1e-4 def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : "ProcessorMixin" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , ): '''simple docstring''' __a : Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) __a : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 1_4
47
from ..utils import DummyObject, requires_backends class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
47
1
import string from math import logaa def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> int: '''simple docstring''' _A = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _A = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) -> tuple[int, int]: '''simple docstring''' _A = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _A = corpus_without_punctuation.split('\n' ) _A = term.lower() return (len([doc for doc in docs if term in doc] ), len(__UpperCamelCase )) def _snake_case ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : List[Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def _snake_case ( _snake_case : int , _snake_case : str ) -> float: '''simple docstring''' return round(tf * idf , 3 )
708
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gptsan-japanese''' UpperCAmelCase : List[Any] = [ '''past_key_values''', ] UpperCAmelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , _UpperCAmelCase : List[Any]=36_000 , _UpperCAmelCase : str=1_280 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Union[str, Any]=8_192 , _UpperCAmelCase : Any=4_096 , _UpperCAmelCase : Optional[int]=128 , _UpperCAmelCase : int=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[str]="float32" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[Any]=0.002 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=35_998 , _UpperCAmelCase : Any=35_995 , _UpperCAmelCase : Any=35_999 , **_UpperCAmelCase : Any , ): _A = vocab_size _A = max_position_embeddings _A = d_model _A = d_ff _A = d_ext _A = d_spout _A = num_switch_layers _A = num_ext_layers _A = num_switch_layers + num_ext_layers _A = num_heads _A = num_experts _A = expert_capacity _A = dropout_rate _A = layer_norm_epsilon _A = router_bias _A = router_jitter_noise _A = router_dtype _A = router_ignore_padding_tokens _A = output_hidden_states _A = output_attentions _A = initializer_factor _A = output_router_logits _A = use_cache super().__init__( separator_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
505
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
44
def _lowerCAmelCase ( _lowerCAmelCase = 100 ) -> int: '''simple docstring''' __snake_case = n * (n + 1) * (2 * n + 1) / 6 __snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
371
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a ={ "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a =logging.get_logger(__name__) a ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } a ={'mobilebert-uncased': 512} a ={} class __UpperCAmelCase ( __lowerCAmelCase ): A__ : Any = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) lowerCamelCase__ =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCamelCase ) != tokenize_chinese_chars ): lowerCamelCase__ =getattr(_lowerCamelCase , normalizer_state.pop("type" ) ) lowerCamelCase__ =do_lower_case lowerCamelCase__ =strip_accents lowerCamelCase__ =tokenize_chinese_chars lowerCamelCase__ =normalizer_class(**_lowerCamelCase ) lowerCamelCase__ =do_lower_case def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): lowerCamelCase__ =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =[self.sep_token_id] lowerCamelCase__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
132
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__lowercase , ) assert hasattr(self , 'env' ) def snake_case__ ( self , __lowercase=1 ): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def snake_case__ ( self , __lowercase ): """simple docstring""" TrainingJobAnalytics(__lowercase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe __A : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __A : Dict = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __A : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __A : str = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __lowercase )
365
def __snake_case ( _lowerCAmelCase : int ) -> bool: if num < 0: return False A_ : int = num A_ : int = 0 while num > 0: A_ : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
454
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Tuple: super().__init__() _lowerCAmelCase = value_function _lowerCAmelCase = unet _lowerCAmelCase = scheduler _lowerCAmelCase = env _lowerCAmelCase = env.get_dataset() _lowerCAmelCase = {} for key in self.data.keys(): try: _lowerCAmelCase = self.data[key].mean() except: # noqa: E722 pass _lowerCAmelCase = {} for key in self.data.keys(): try: _lowerCAmelCase = self.data[key].std() except: # noqa: E722 pass _lowerCAmelCase = env.observation_space.shape[0] _lowerCAmelCase = env.action_space.shape[0] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return (x_in - self.means[key]) / self.stds[key] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return x_in * self.stds[key] + self.means[key] def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: if type(_lowerCAmelCase ) is dict: return {k: self.to_torch(_lowerCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_lowerCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_lowerCAmelCase , device=self.unet.device ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: for key, val in cond.items(): _lowerCAmelCase = val.clone() return x_in def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = x.shape[0] _lowerCAmelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCAmelCase = torch.full((batch_size,) , _lowerCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_lowerCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , _lowerCAmelCase ).sample _lowerCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0] _lowerCAmelCase = self.scheduler._get_variance(_lowerCAmelCase ) _lowerCAmelCase = torch.exp(0.5 * posterior_variance ) _lowerCAmelCase = model_std * grad _lowerCAmelCase = 0 _lowerCAmelCase = x.detach() _lowerCAmelCase = x + scale * grad _lowerCAmelCase = self.reset_xa(_lowerCAmelCase , _lowerCAmelCase , self.action_dim ) _lowerCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , _lowerCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , predict_epsilon=_lowerCAmelCase )["prev_sample"] # apply conditions to the trajectory (set the initial state) _lowerCAmelCase = self.reset_xa(_lowerCAmelCase , _lowerCAmelCase , self.action_dim ) _lowerCAmelCase = self.to_torch(_lowerCAmelCase ) return x, y def __call__( self , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=0.1 ) -> str: # normalize the observations and create batch dimension _lowerCAmelCase = self.normalize(_lowerCAmelCase , "observations" ) _lowerCAmelCase = obs[None].repeat(_lowerCAmelCase , axis=0 ) _lowerCAmelCase = {0: self.to_torch(_lowerCAmelCase )} _lowerCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCAmelCase = randn_tensor(_lowerCAmelCase , device=self.unet.device ) _lowerCAmelCase = self.reset_xa(_lowerCAmelCase , _lowerCAmelCase , self.action_dim ) _lowerCAmelCase = self.to_torch(_lowerCAmelCase ) # run the diffusion process _lowerCAmelCase , _lowerCAmelCase = self.run_diffusion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # sort output trajectories by value _lowerCAmelCase = y.argsort(0 , descending=_lowerCAmelCase ).squeeze() _lowerCAmelCase = x[sorted_idx] _lowerCAmelCase = sorted_values[:, :, : self.action_dim] _lowerCAmelCase = actions.detach().cpu().numpy() _lowerCAmelCase = self.de_normalize(_lowerCAmelCase , key="actions" ) # select the action with the highest value if y is not None: _lowerCAmelCase = 0 else: # if we didn't run value guiding, select a random action _lowerCAmelCase = np.random.randint(0 , _lowerCAmelCase ) _lowerCAmelCase = denorm_actions[selected_index, 0] return denorm_actions
489
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE_ ) ) def __a(SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE_ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE_ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Color current vertex _lowerCAmelCase = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ): return True # Backtrack _lowerCAmelCase = -1 return False def __a(SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 ): return colored_vertices return []
489
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def UpperCamelCase( __UpperCamelCase : np.ndarray ,__UpperCamelCase : float ,__UpperCamelCase : int = 16000 ): lowerCAmelCase_ : Union[str, Any] = int(round(sample_rate * max_length ) ) if len(__UpperCamelCase ) <= sample_length: return wav lowerCAmelCase_ : Tuple = randint(0 ,len(__UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __snake_case : _a = field(default=UpperCamelCase_ ,metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) _a = field( default='''train''' ,metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } ,) _a = field( default='''validation''' ,metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } ,) _a = field( default='''audio''' ,metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} ,) _a = field( default='''label''' ,metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) _a = field( default=UpperCamelCase_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } ,) _a = field( default=UpperCamelCase_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } ,) _a = field( default=20 ,metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} ,) @dataclass class __snake_case : _a = field( default='''facebook/wav2vec2-base''' ,metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ,) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) _a = field( default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Name or path of preprocessor config.'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) _a = field( default=UpperCamelCase_ ,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } ,) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _a = field( default=UpperCamelCase_ ,metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} ,) def UpperCAmelCase__ ( self : Dict): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , A_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''') def UpperCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' ,__UpperCamelCase ,__UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase_ : Any = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCAmelCase_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowerCAmelCase_ : Optional[Any] = DatasetDict() lowerCAmelCase_ : Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase_ : Optional[Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' f"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCAmelCase_ : int = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCAmelCase_ : int = feature_extractor.model_input_names[0] def train_transforms(__UpperCamelCase : int ): lowerCAmelCase_ : List[Any] = [] for audio in batch[data_args.audio_column_name]: lowerCAmelCase_ : int = random_subsample( audio['''array'''] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__UpperCamelCase ) lowerCAmelCase_ : Dict = feature_extractor(__UpperCamelCase ,sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase_ : Union[str, Any] = {model_input_name: inputs.get(__UpperCamelCase )} lowerCAmelCase_ : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__UpperCamelCase : int ): lowerCAmelCase_ : str = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCAmelCase_ : Dict = feature_extractor(__UpperCamelCase ,sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase_ : Optional[Any] = {model_input_name: inputs.get(__UpperCamelCase )} lowerCAmelCase_ : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase_ : Optional[int] = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = {}, {} for i, label in enumerate(__UpperCamelCase ): lowerCAmelCase_ : int = str(__UpperCamelCase ) lowerCAmelCase_ : Dict = label # Load the accuracy metric from the datasets package lowerCAmelCase_ : List[str] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase : Any ): lowerCAmelCase_ : int = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=__UpperCamelCase ,references=eval_pred.label_ids ) lowerCAmelCase_ : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel=__UpperCamelCase ,finetuning_task='''audio-classification''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase_ : Optional[Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase_ : List[Any] = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__UpperCamelCase ,output_all_columns=__UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase_ : Union[str, Any] = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__UpperCamelCase ,output_all_columns=__UpperCamelCase ) # Initialize our trainer lowerCAmelCase_ : str = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=raw_datasets['''train'''] if training_args.do_train else None ,eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,) # Training if training_args.do_train: lowerCAmelCase_ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase_ : Union[str, Any] = last_checkpoint lowerCAmelCase_ : int = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''' ,train_result.metrics ) trainer.save_metrics('''train''' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase_ : Dict = trainer.evaluate() trainer.log_metrics('''eval''' ,__UpperCamelCase ) trainer.save_metrics('''eval''' ,__UpperCamelCase ) # Write model card and (optionally) push to hub lowerCAmelCase_ : Optional[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
171
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A__ : str = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') A__ : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() A__ : Any = '''|'''.join(sys.argv[1:]) A__ : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') A__ : List[str] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
171
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE = tuple[int, int] class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() __a = self.g_cost + self.h_cost def snake_case_ ( self ): __a = self.pos_x - self.goal_x __a = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__A ) + abs(__A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , __A ): return self.f_cost < other.f_cost class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __A ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __A ) __a = [self.start] __a = [] __a = False def snake_case_ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__A ) self.closed_nodes.append(__A ) __a = self.get_successors(__A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__A ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(__A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__A ) else: self.open_nodes.append(__A ) return [self.start.pos] def snake_case_ ( self , __A ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __A , __A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __A , ) ) return successors def snake_case_ ( self , __A ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A ): __a = AStar(__A , __A ) __a = AStar(__A , __A ) __a = False def snake_case_ ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __a = self.fwd_astar.open_nodes.pop(0 ) __a = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __A , __A ) self.fwd_astar.closed_nodes.append(__A ) self.bwd_astar.closed_nodes.append(__A ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_astar: self.fwd_astar.get_successors(__A ), self.bwd_astar: self.bwd_astar.get_successors(__A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__A ) else: # retrieve the best current path __a = astar.open_nodes.pop( astar.open_nodes.index(__A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__A ) else: astar.open_nodes.append(__A ) return [self.fwd_astar.start.pos] def snake_case_ ( self , __A , __A ): __a = self.fwd_astar.retrace_path(__A ) __a = self.bwd_astar.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = AStar(init, goal) SCREAMING_SNAKE_CASE = a_star.search() SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
209
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """imagegpt""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __A=512 + 1 , __A=32 * 32 , __A=512 , __A=24 , __A=8 , __A=None , __A="quick_gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=1E-5 , __A=0.02 , __A=True , __A=True , __A=False , __A=False , __A=False , **__A , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = scale_attn_by_inverse_layer_idx __a = reorder_and_upcast_attn __a = tie_word_embeddings super().__init__(tie_word_embeddings=__A , **__A ) class __UpperCAmelCase ( __A ): """simple docstring""" @property def snake_case_ ( self ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def snake_case_ ( self , __A , __A = 1 , __A = -1 , __A = False , __A = None , __A = 3 , __A = 32 , __A = 32 , ): __a = self._generate_dummy_images(__A , __A , __A , __A ) __a = dict(preprocessor(images=__A , return_tensors=__A ) ) return inputs
209
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case , _snake_case = set(SCREAMING_SNAKE_CASE__ ), [start] while stack: _snake_case = stack.pop() explored.add(SCREAMING_SNAKE_CASE__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE__ ) return explored __magic_name__ : Union[str, Any] = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): """simple docstring""" A_ = 'vit_msn' def __init__( self , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=2_2_4 , _lowerCamelCase=1_6 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , )-> Optional[Any]: super().__init__(**_lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias
161
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase : lowercase = PegasusConfig lowercase = {} lowercase = """gelu""" def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict=1_3 , __magic_name__ : List[str]=7 , __magic_name__ : int=True , __magic_name__ : List[Any]=False , __magic_name__ : List[Any]=9_9 , __magic_name__ : int=3_2 , __magic_name__ : int=2 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[str]=3_7 , __magic_name__ : Tuple=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : Any=4_0 , __magic_name__ : List[str]=2 , __magic_name__ : Any=1 , __magic_name__ : int=0 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def lowerCamelCase_ ( self : Any , __magic_name__ : str , __magic_name__ : List[Any] ): """simple docstring""" UpperCamelCase = TFPegasusModel(config=__magic_name__ ).get_decoder() UpperCamelCase = inputs_dict["""input_ids"""] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase = inputs_dict["""head_mask"""] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ )[0] UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) def _lowercase ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , ): """simple docstring""" if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): lowercase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowercase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowercase = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFPegasusModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): lowercase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowercase = """google/pegasus-xsum""" @cached_property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : str , **__magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.translate_src_text(**__magic_name__ ) assert self.expected_text == generated_words def lowerCamelCase_ ( self : Tuple , **__magic_name__ : str ): """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , **__magic_name__ , padding=__magic_name__ , return_tensors="""tf""" ) UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__magic_name__ , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ ) return generated_words @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self._assert_generated_batch_equal_expected()
708
def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
181
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = """▁""" _a = {"""vocab_file""": """sentencepiece.bpe.model"""} _a = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } _a = { """facebook/xglm-564M""": 2048, } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] def __init__( self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a = None , **__a , ) -> None: '''simple docstring''' _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCamelCase = 7 _UpperCamelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words)] _UpperCamelCase = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__a)) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _UpperCamelCase = len(self.sp_model) _UpperCamelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(__a) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCamelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a) if token_ids_a is None: return [1] + ([0] * len(__a)) return [1] + ([0] * len(__a)) + [1, 1] + ([0] * len(__a)) def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def UpperCAmelCase ( self) -> str: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(__a) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' _UpperCamelCase = ''''''.join(__a).replace(__a , ''' ''').strip() return out_string def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __a) elif not os.path.isfile(self.vocab_file): with open(__a , '''wb''') as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a) return (out_vocab_file,)
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCamelCase = { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCamelCase = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = RoFormerTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents ): _lowercase : Any = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) _lowercase : Union[str, Any] = do_lower_case _lowercase : Optional[int] = strip_accents _lowercase : int = pre_tok_class(**_lowerCAmelCase ) _lowercase : Tuple = do_lower_case def __getstate__( self ): _lowercase : Tuple = self.__dict__.copy() _lowercase : str = BertPreTokenizer() return state def __setstate__( self , _lowerCAmelCase ): _lowercase : int = d _lowercase : Any = self.__dict__['_tokenizer'].get_vocab() _lowercase : int = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowercase : str = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys snake_case_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
195
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( _snake_case : float ,_snake_case : int ): '''simple docstring''' lowercase__ = u for i in range(1 ,_snake_case ): lowercase__ = temp * (u - i) return temp def lowerCamelCase ( ): '''simple docstring''' lowercase__ = int(input("enter the numbers of values: " ) ) lowercase__ = [] for _ in range(_snake_case ): y.append([] ) for i in range(_snake_case ): for j in range(_snake_case ): y[i].append(_snake_case ) lowercase__ = 0 print("enter the values of parameters in a list: " ) lowercase__ = list(map(_snake_case ,input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_snake_case ): lowercase__ = float(input() ) lowercase__ = int(input("enter the value to interpolate: " ) ) lowercase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,_snake_case ): for j in range(n - i ): lowercase__ = y[j + 1][i - 1] - y[j][i - 1] lowercase__ = y[0][0] for i in range(1 ,_snake_case ): summ += (ucal(_snake_case ,_snake_case ) * y[0][i]) / math.factorial(_snake_case ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
267
0
"""simple docstring""" a : int = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
700
"""simple docstring""" a : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def lowercase__(A ) ->bytes: """simple docstring""" if not isinstance(A , A ): lowercase__ : Union[str, Any]= f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ : str= "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ : Tuple= len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ : Union[str, Any]= b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ : str= b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def lowercase__(A ) ->bytes: """simple docstring""" if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ : str= ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ : Optional[Any]= encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ : List[Any]= encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ : str= encoded_data[:-padding] lowercase__ : Tuple= "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ : Tuple= "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ : Any= [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
85
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a : List[str] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Tuple ) -> List[str]: _lowerCAmelCase : List[str] = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ) -> int: _lowerCAmelCase : Optional[int] = random.randint(0 ,len(lowercase_ ) - 1 ) _lowerCAmelCase : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] _lowerCAmelCase : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : str ) -> Optional[Any]: _lowerCAmelCase : Tuple = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _lowerCAmelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[Any] ,) -> List[str]: _lowerCAmelCase : Optional[int] = [] # Generate more children proportionally to the fitness score. _lowerCAmelCase : Union[str, Any] = int(parent_a[1] * 100 ) + 1 _lowerCAmelCase : Any = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _lowerCAmelCase : Any = population_score[random.randint(0 ,lowercase_ )][0] _lowerCAmelCase : int = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : str = True ) -> Optional[Any]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowerCAmelCase : Optional[Any] = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _lowerCAmelCase : Optional[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _lowerCAmelCase : str = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(lowercase_ ) # Generate random starting population. _lowerCAmelCase : List[Any] = [] for _ in range(lowercase_ ): population.append("""""".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _lowerCAmelCase : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowerCAmelCase : List[str] = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _lowerCAmelCase : Tuple = sorted(lowercase_ ,key=lambda _lowerCamelCase : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowerCAmelCase : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _lowerCAmelCase : List[str] = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": _a : str = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _a : Optional[int] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _a , _a , _a : Optional[Any] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
213
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = """vit_msn""" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.02 , a__=1e-06 , a__=224 , a__=16 , a__=3 , a__=True , **a__ , ): """simple docstring""" super().__init__(**a__) _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Dict = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Optional[int] = qkv_bias
114
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase ( self) -> int: '''simple docstring''' torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__a , ) _UpperCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) _UpperCamelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) _UpperCamelCase = ClapTextModelWithProjection(__a) _UpperCamelCase = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77) _UpperCamelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__a , ) _UpperCamelCase = SpeechTaHifiGan(__a) _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def UpperCAmelCase ( self , __a , __a=0) -> str: '''simple docstring''' if str(__a).startswith('''mps'''): _UpperCamelCase = torch.manual_seed(__a) else: _UpperCamelCase = torch.Generator(device=__a).manual_seed(__a) _UpperCamelCase = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = audioldm_pipe(**__a) _UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a) == 2_56 _UpperCamelCase = audio[:10] _UpperCamelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = audioldm_pipe(**__a) _UpperCamelCase = output.audios[0] _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = 3 * [inputs.pop('''prompt''')] _UpperCamelCase = audioldm_pipe.tokenizer( __a , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs['''input_ids'''].to(__a) _UpperCamelCase = audioldm_pipe.text_encoder( __a , ) _UpperCamelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCamelCase = F.normalize(__a , dim=-1) _UpperCamelCase = prompt_embeds # forward _UpperCamelCase = audioldm_pipe(**__a) _UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = 3 * ['''this is a negative prompt'''] _UpperCamelCase = negative_prompt _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = audioldm_pipe(**__a) _UpperCamelCase = output.audios[0] _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = 3 * [inputs.pop('''prompt''')] _UpperCamelCase = [] for p in [prompt, negative_prompt]: _UpperCamelCase = audioldm_pipe.tokenizer( __a , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs['''input_ids'''].to(__a) _UpperCamelCase = audioldm_pipe.text_encoder( __a , ) _UpperCamelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCamelCase = F.normalize(__a , dim=-1) embeds.append(__a) _UpperCamelCase , _UpperCamelCase = embeds # forward _UpperCamelCase = audioldm_pipe(**__a) _UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler(skip_prk_steps=__a) _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = '''egg cracking''' _UpperCamelCase = audioldm_pipe(**__a , negative_prompt=__a) _UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a) == 2_56 _UpperCamelCase = audio[:10] _UpperCamelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler(skip_prk_steps=__a) _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) _UpperCamelCase = audioldm_pipe(__a , num_inference_steps=2).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts _UpperCamelCase = 2 _UpperCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt _UpperCamelCase = 2 _UpperCamelCase = audioldm_pipe(__a , num_inference_steps=2 , num_waveforms_per_prompt=__a).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts _UpperCamelCase = 2 _UpperCamelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__a).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = audioldm_pipe.vocoder.config.sampling_rate _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = audioldm_pipe(audio_length_in_s=0.016 , **__a) _UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a) / vocoder_sampling_rate == 0.016 _UpperCamelCase = audioldm_pipe(audio_length_in_s=0.032 , **__a) _UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = AudioLDMPipeline(**__a) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = ['''hey'''] _UpperCamelCase = audioldm_pipe(__a , num_inference_steps=1) _UpperCamelCase = output.audios.shape assert audio_shape == (1, 2_56) _UpperCamelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _UpperCamelCase = SpeechTaHifiGan(__a).to(__a) _UpperCamelCase = audioldm_pipe(__a , num_inference_steps=1) _UpperCamelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__a) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a) @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __a , __a="cpu" , __a=torch.floataa , __a=0) -> List[Any]: '''simple docstring''' _UpperCamelCase = torch.Generator(device=__a).manual_seed(__a) _UpperCamelCase = np.random.RandomState(__a).standard_normal((1, 8, 1_28, 16)) _UpperCamelCase = torch.from_numpy(__a).to(device=__a , dtype=__a) _UpperCamelCase = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''') _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_inputs(__a) _UpperCamelCase = 25 _UpperCamelCase = audioldm_pipe(**__a).audios[0] assert audio.ndim == 1 assert len(__a) == 8_19_20 _UpperCamelCase = audio[7_72_30:7_72_40] _UpperCamelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]) _UpperCamelCase = np.abs(expected_slice - audio_slice).max() assert max_diff < 1e-2 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''') _UpperCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) _UpperCamelCase = audioldm_pipe.to(__a) audioldm_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_inputs(__a) _UpperCamelCase = audioldm_pipe(**__a).audios[0] assert audio.ndim == 1 assert len(__a) == 8_19_20 _UpperCamelCase = audio[2_77_80:2_77_90] _UpperCamelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212]) _UpperCamelCase = np.abs(expected_slice - audio_slice).max() assert max_diff < 3e-2
78
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _UpperCAmelCase: lowercase__ = MBartConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_mbart_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFMBartModel(config=__a).get_decoder() _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = inputs_dict['''head_mask'''] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() _UpperCamelCase = past_key_values[1] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, ) -> Optional[int]: """simple docstring""" if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFMBartModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase( unittest.TestCase ): lowercase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase__ = 'facebook/mbart-large-en-ro' @cached_property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name) @cached_property def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model def UpperCAmelCase ( self , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.translate_src_text(**__a) self.assertListEqual(self.expected_text , __a) def UpperCAmelCase ( self , **__a) -> Dict: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , **__a , return_tensors='''tf''') _UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2) _UpperCamelCase = self.tokenizer.batch_decode(__a , skip_special_tokens=__a) return generated_words @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' self._assert_generated_batch_equal_expected()
78
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : Dict = (32, 32) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(a__ ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Any = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : Optional[int] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Dict = self.dummy_vae SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : str = Image.fromarray(np.uinta(a__ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : Tuple = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE_ : Any = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : Dict = output.images SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=a__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=a__ , )[0] SCREAMING_SNAKE_CASE_ : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : str = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Any = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : Optional[int] = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_vae SCREAMING_SNAKE_CASE_ : str = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : str = Image.fromarray(np.uinta(a__ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : List[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : int = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=a__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = sd_pipe( [prompt] , image=a__ , generator=a__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : Optional[Any] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : int = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : str = self.dummy_vae SCREAMING_SNAKE_CASE_ : str = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = Image.fromarray(np.uinta(a__ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE_ : Optional[Any] = unet.half() SCREAMING_SNAKE_CASE_ : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE_ : int = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = sd_pipe( [prompt] , image=a__ , generator=a__ , num_inference_steps=2 , output_type='np' , ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) SCREAMING_SNAKE_CASE_ : List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionUpscalePipeline.from_pretrained(a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Any = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=a__ , image=a__ , generator=a__ , output_type='np' , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) SCREAMING_SNAKE_CASE_ : List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : str = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : int = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = pipe( prompt=a__ , image=a__ , generator=a__ , output_type='np' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCAmelCase ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE_ : Any = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : str = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe( prompt=a__ , image=a__ , generator=a__ , num_inference_steps=5 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
511
"""simple docstring""" import math from collections.abc import Callable def UpperCAmelCase ( snake_case : Callable[[float], float] , snake_case : float , snake_case : float ): _lowerCAmelCase:float = xa _lowerCAmelCase:float = xa while True: if x_n == x_na or function(snake_case ) == function(snake_case ): raise ZeroDivisionError('''float division by zero, could not find root''' ) _lowerCAmelCase:float = x_na - ( function(snake_case ) / ((function(snake_case ) - function(snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase:Optional[int] = x_na _lowerCAmelCase:Dict = x_na def UpperCAmelCase ( snake_case : float ): return math.pow(snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
227
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Tuple: if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowercase__ : List[Any] = parser.parse_args() lowercase__ : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
338
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Union[str, Any]: __A : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 __A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __A : Union[str, Any] = min(__snake_case , __snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
338
1
'''simple docstring''' import numpy as np import qiskit def A__ ( __lowerCAmelCase : int = 8 , __lowerCAmelCase : int | None = None ): lowerCamelCase__ = np.random.default_rng(seed=__lowerCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowerCamelCase__ = 6 * key_len # Measurement basis for Alice's qubits. lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase ) # The set of states Alice will prepare. lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase ) # Measurement basis for Bob's qubits. lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase ) # Quantum Circuit to simulate BB84 lowerCamelCase__ = qiskit.QuantumCircuit(__lowerCAmelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(__lowerCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowerCamelCase__ = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowerCamelCase__ = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1 , seed_simulator=__lowerCAmelCase ) # Returns the result of measurement. lowerCamelCase__ = job.result().get_counts(__lowerCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowerCamelCase__ = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowerCamelCase__ = gen_key[:key_len] if len(__lowerCAmelCase ) >= key_len else gen_key.ljust(__lowerCAmelCase , """0""" ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
50
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __magic_name__ = True except ImportError: __magic_name__ = False try: from torch.hub import _get_torch_home __magic_name__ = _get_torch_home() except ImportError: __magic_name__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) __magic_name__ = os.path.join(torch_cache_home, "transformers") __magic_name__ = "https://cdn.huggingface.co" __magic_name__ = "https://s3.amazonaws.com/models.huggingface.co/bert" __magic_name__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) __magic_name__ = os.path.join(PATH, "config.yaml") __magic_name__ = os.path.join(PATH, "attributes.txt") __magic_name__ = os.path.join(PATH, "objects.txt") __magic_name__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) __magic_name__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) __magic_name__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) __magic_name__ = "pytorch_model.bin" __magic_name__ = "config.yaml" def _lowerCamelCase ( UpperCAmelCase__=OBJECTS,UpperCAmelCase__=ATTRIBUTES ) -> Optional[Any]: '''simple docstring''' a__ = [] with open(UpperCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) a__ = [] with open(UpperCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = OrderedDict() with open(UpperCAmelCase__,'rb' ) as f: a__ = pkl.load(UpperCAmelCase__ )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): a__ = ckp.pop(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__,np.ndarray ): a__ = torch.tensor(UpperCAmelCase__ ) else: assert isinstance(UpperCAmelCase__,torch.tensor ), type(UpperCAmelCase__ ) a__ = v return r class SCREAMING_SNAKE_CASE : """simple docstring""" a_ : str ={} def __init__( self : List[str] , _snake_case : dict , _snake_case : str = "root" , _snake_case : List[Any]=0 ) -> List[str]: '''simple docstring''' a__ = name a__ = level a__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() a__ = copy.deepcopy(_snake_case ) a__ = copy.deepcopy(_snake_case ) if isinstance(_snake_case , _snake_case ): a__ = Config(_snake_case , name=_snake_case , level=level + 1 ) a__ = v setattr(self , _snake_case , _snake_case ) a__ = d def __repr__( self : Union[str, Any] ) -> int: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : str , _snake_case : int , _snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' a__ = val a__ = val a__ = key.split('.' ) a__ = len(_snake_case ) - 1 a__ = self._pointer if len(_snake_case ) > 1: for i, l in enumerate(_snake_case ): if hasattr(self , _snake_case ) and isinstance(getattr(self , _snake_case ) , _snake_case ): setattr(getattr(self , _snake_case ) , '.'.join(levels[i:] ) , _snake_case ) if l == last_level: a__ = val else: a__ = pointer[l] def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return self._pointer def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Dict ) -> Any: '''simple docstring''' with open(F'''{file_name}''' , 'w' ) as stream: dump(_snake_case , _snake_case ) def _lowerCAmelCase ( self : Tuple , _snake_case : Tuple , _snake_case : Any ) -> Optional[int]: '''simple docstring''' with open(F'''{file_name}''' , 'w' ) as stream: json.dump(_snake_case , _snake_case ) @staticmethod def _lowerCAmelCase ( _snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_snake_case ) as stream: a__ = load(_snake_case , Loader=_snake_case ) return data def __str__( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ = ' ' if self._name != "root": a__ = F'''{t * (self._level-1)}{self._name}:\n''' else: a__ = '' a__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_snake_case , _snake_case ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_snake_case ).__name__})\n''' a__ = level return r[:-1] @classmethod def _lowerCAmelCase ( cls : Any , _snake_case : str , **_snake_case : Dict ) -> List[str]: '''simple docstring''' a__ , a__ = cls.get_config_dict(_snake_case , **_snake_case ) return cls(_snake_case ) @classmethod def _lowerCAmelCase ( cls : Optional[Any] , _snake_case : str , **_snake_case : str ) -> List[str]: '''simple docstring''' a__ = kwargs.pop('cache_dir' , _snake_case ) a__ = kwargs.pop('force_download' , _snake_case ) a__ = kwargs.pop('resume_download' , _snake_case ) a__ = kwargs.pop('proxies' , _snake_case ) a__ = kwargs.pop('local_files_only' , _snake_case ) if os.path.isdir(_snake_case ): a__ = os.path.join(_snake_case , _snake_case ) elif os.path.isfile(_snake_case ) or is_remote_url(_snake_case ): a__ = pretrained_model_name_or_path else: a__ = hf_bucket_url(_snake_case , filename=_snake_case , use_cdn=_snake_case ) try: # Load from URL or cache if already cached a__ = cached_path( _snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a__ = Config.load_yaml(_snake_case ) except EnvironmentError: a__ = 'Can\'t load config for' raise EnvironmentError(_snake_case ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_snake_case ), kwargs def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = torch.load('dump.pt',map_location=in_tensor.device ) a__ = in_tensor.numpy() a__ = out_tensor.numpy()[0] print(na.shape,na[0, 0, :5] ) print(na.shape,na[0, 0, :5] ) assert np.allclose(UpperCAmelCase__,UpperCAmelCase__,rtol=0.01,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(UpperCAmelCase__,UpperCAmelCase__,rtol=0.01,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = urlparse(UpperCAmelCase__ ) return parsed.scheme in ("http", "https") def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=True ) -> str: '''simple docstring''' a__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a__ = '/' not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None,UpperCAmelCase__=0,UpperCAmelCase__=None,) -> Optional[Any]: '''simple docstring''' a__ = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCAmelCase__,UpperCAmelCase__ ): ua += "; " + "; ".join('{}/{}'.format(UpperCAmelCase__,UpperCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(UpperCAmelCase__,UpperCAmelCase__ ): ua += "; " + user_agent a__ = {'user-agent': ua} if resume_size > 0: a__ = 'bytes=%d-' % (resume_size,) a__ = requests.get(UpperCAmelCase__,stream=UpperCAmelCase__,proxies=UpperCAmelCase__,headers=UpperCAmelCase__ ) if response.status_code == 4_16: # Range not satisfiable return a__ = response.headers.get('Content-Length' ) a__ = resume_size + int(UpperCAmelCase__ ) if content_length is not None else None a__ = tqdm( unit='B',unit_scale=UpperCAmelCase__,total=UpperCAmelCase__,initial=UpperCAmelCase__,desc='Downloading',) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCAmelCase__ ) ) temp_file.write(UpperCAmelCase__ ) progress.close() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__=None,UpperCAmelCase__=False,UpperCAmelCase__=None,UpperCAmelCase__=10,UpperCAmelCase__=False,UpperCAmelCase__=None,UpperCAmelCase__=False,) -> Dict: '''simple docstring''' if cache_dir is None: a__ = TRANSFORMERS_CACHE if isinstance(UpperCAmelCase__,UpperCAmelCase__ ): a__ = str(UpperCAmelCase__ ) os.makedirs(UpperCAmelCase__,exist_ok=UpperCAmelCase__ ) a__ = None if not local_files_only: try: a__ = requests.head(UpperCAmelCase__,allow_redirects=UpperCAmelCase__,proxies=UpperCAmelCase__,timeout=UpperCAmelCase__ ) if response.status_code == 2_00: a__ = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a__ = url_to_filename(UpperCAmelCase__,UpperCAmelCase__ ) # get cache path to put the file a__ = os.path.join(UpperCAmelCase__,UpperCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCAmelCase__ ): return cache_path else: a__ = [ file for file in fnmatch.filter(os.listdir(UpperCAmelCase__ ),filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(UpperCAmelCase__ ) > 0: return os.path.join(UpperCAmelCase__,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(UpperCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a__ = cache_path + '.lock' with FileLock(UpperCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(UpperCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a__ = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(UpperCAmelCase__,'a+b' ) as f: yield f a__ = _resumable_file_manager if os.path.exists(UpperCAmelCase__ ): a__ = os.stat(UpperCAmelCase__ ).st_size else: a__ = 0 else: a__ = partial(tempfile.NamedTemporaryFile,dir=UpperCAmelCase__,delete=UpperCAmelCase__ ) a__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s',UpperCAmelCase__,temp_file.name,) http_get( UpperCAmelCase__,UpperCAmelCase__,proxies=UpperCAmelCase__,resume_size=UpperCAmelCase__,user_agent=UpperCAmelCase__,) os.replace(temp_file.name,UpperCAmelCase__ ) a__ = {'url': url, 'etag': etag} a__ = cache_path + '.json' with open(UpperCAmelCase__,'w' ) as meta_file: json.dump(UpperCAmelCase__,UpperCAmelCase__ ) return cache_path def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__=None ) -> Tuple: '''simple docstring''' a__ = url.encode('utf-8' ) a__ = shaaaa(UpperCAmelCase__ ) a__ = url_hash.hexdigest() if etag: a__ = etag.encode('utf-8' ) a__ = shaaaa(UpperCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__=None,UpperCAmelCase__=False,UpperCAmelCase__=None,UpperCAmelCase__=False,UpperCAmelCase__=None,UpperCAmelCase__=False,UpperCAmelCase__=False,UpperCAmelCase__=False,) -> str: '''simple docstring''' if cache_dir is None: a__ = TRANSFORMERS_CACHE if isinstance(UpperCAmelCase__,UpperCAmelCase__ ): a__ = str(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__,UpperCAmelCase__ ): a__ = str(UpperCAmelCase__ ) if is_remote_url(UpperCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) a__ = get_from_cache( UpperCAmelCase__,cache_dir=UpperCAmelCase__,force_download=UpperCAmelCase__,proxies=UpperCAmelCase__,resume_download=UpperCAmelCase__,user_agent=UpperCAmelCase__,local_files_only=UpperCAmelCase__,) elif os.path.exists(UpperCAmelCase__ ): # File, and it exists. a__ = url_or_filename elif urlparse(UpperCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(UpperCAmelCase__ ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(UpperCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(UpperCAmelCase__ ) and not tarfile.is_tarfile(UpperCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a__ , a__ = os.path.split(UpperCAmelCase__ ) a__ = output_file.replace('.','-' ) + '-extracted' a__ = os.path.join(UpperCAmelCase__,UpperCAmelCase__ ) if os.path.isdir(UpperCAmelCase__ ) and os.listdir(UpperCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a__ = output_path + '.lock' with FileLock(UpperCAmelCase__ ): shutil.rmtree(UpperCAmelCase__,ignore_errors=UpperCAmelCase__ ) os.makedirs(UpperCAmelCase__ ) if is_zipfile(UpperCAmelCase__ ): with ZipFile(UpperCAmelCase__,'r' ) as zip_file: zip_file.extractall(UpperCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(UpperCAmelCase__ ): a__ = tarfile.open(UpperCAmelCase__ ) tar_file.extractall(UpperCAmelCase__ ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(UpperCAmelCase__ ) ) return output_path_extracted return output_path def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__="," ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCAmelCase__,UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ): with open(UpperCAmelCase__ ) as f: a__ = eval(f.read() ) else: a__ = requests.get(UpperCAmelCase__ ) try: a__ = requests.json() except Exception: a__ = req.content.decode() assert data is not None, "could not connect" try: a__ = eval(UpperCAmelCase__ ) except Exception: a__ = data.split('\n' ) req.close() return data def _lowerCamelCase ( UpperCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ = requests.get(UpperCAmelCase__ ) a__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCAmelCase__ ) with open(UpperCAmelCase__,'rb' ) as stream: a__ = pkl.load(UpperCAmelCase__ ) a__ = weights.pop('model' ) a__ = {} for k, v in model.items(): a__ = torch.from_numpy(UpperCAmelCase__ ) if "running_var" in k: a__ = torch.tensor([0] ) a__ = k.replace('running_var','num_batches_tracked' ) a__ = zero return new def _lowerCamelCase ( ) -> int: '''simple docstring''' print(f'''{os.path.abspath(os.path.join(UpperCAmelCase__,os.pardir ) )}/demo.ipynb''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__="RGB" ) -> Dict: '''simple docstring''' assert isinstance(UpperCAmelCase__,UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ): a__ = cva.imread(UpperCAmelCase__ ) else: a__ = get_image_from_url(UpperCAmelCase__ ) assert img is not None, f'''could not connect to: {im}''' a__ = cva.cvtColor(UpperCAmelCase__,cva.COLOR_BGR2RGB ) if input_format == "RGB": a__ = img[:, :, ::-1] return img def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__=1 ) -> str: '''simple docstring''' return (images[i : i + batch] for i in range(0,len(UpperCAmelCase__ ),UpperCAmelCase__ ))
232
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): @require_torch def _a ( self ): lowerCamelCase__ =pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowerCamelCase__ =load_dataset("ashraq/esc50" ) lowerCamelCase__ =dataset["train"]["audio"][-1]["array"] lowerCamelCase__ =audio_classifier(_lowerCamelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def _a ( self ): pass @slow @require_torch def _a ( self ): lowerCamelCase__ =pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog lowerCamelCase__ =load_dataset("ashraq/esc50" ) lowerCamelCase__ =dataset["train"]["audio"][-1]["array"] lowerCamelCase__ =audio_classifier(_lowerCamelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ] , ) lowerCamelCase__ =audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) lowerCamelCase__ =audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def _a ( self ): pass
714
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING A__ : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =AudioClassificationPipeline(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) # test with a raw waveform lowerCamelCase__ =np.zeros((34000,) ) lowerCamelCase__ =np.zeros((14000,) ) return audio_classifier, [audioa, audio] def _a ( self , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ =examples lowerCamelCase__ =audio_classifier(_lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) self.run_torchaudio(_lowerCamelCase ) @require_torchaudio def _a ( self , _lowerCamelCase ): import datasets # test with a local file lowerCamelCase__ =datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) lowerCamelCase__ =dataset[0]["audio"]["array"] lowerCamelCase__ =audio_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) @require_torch def _a ( self ): lowerCamelCase__ ="anton-l/wav2vec2-random-tiny-classifier" lowerCamelCase__ =pipeline("audio-classification" , model=_lowerCamelCase ) lowerCamelCase__ =np.ones((8000,) ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) lowerCamelCase__ =[ {"score": 0.0_8_4_2, "label": "no"}, {"score": 0.0_8_3_8, "label": "up"}, {"score": 0.0_8_3_7, "label": "go"}, {"score": 0.0_8_3_4, "label": "right"}, ] lowerCamelCase__ =[ {"score": 0.0_8_4_5, "label": "stop"}, {"score": 0.0_8_4_4, "label": "on"}, {"score": 0.0_8_4_1, "label": "right"}, {"score": 0.0_8_3_4, "label": "left"}, ] self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowerCamelCase__ ={"array": np.ones((8000,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _a ( self ): import datasets lowerCamelCase__ ="superb/wav2vec2-base-superb-ks" lowerCamelCase__ =pipeline("audio-classification" , model=_lowerCamelCase ) lowerCamelCase__ =datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) lowerCamelCase__ =np.array(dataset[3]["speech"] , dtype=np.floataa ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=3 ) , [ {"score": 0.9_8_1, "label": "go"}, {"score": 0.0_0_7, "label": "up"}, {"score": 0.0_0_6, "label": "_unknown_"}, {"score": 0.0_0_1, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def _a ( self ): pass
132
0
'''simple docstring''' import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1E-12 , SCREAMING_SNAKE_CASE__ = 100 , ): assert np.shape(SCREAMING_SNAKE_CASE__ )[0] == np.shape(SCREAMING_SNAKE_CASE__ )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE__ )[0] == np.shape(SCREAMING_SNAKE_CASE__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE__ ) == np.iscomplexobj(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = np.iscomplexobj(SCREAMING_SNAKE_CASE__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __a : Dict = False __a : List[str] = 0 __a : Union[str, Any] = 0 __a : Optional[Any] = 1E12 while not convergence: # Multiple matrix by the vector. __a : List[Any] = np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Normalize the resulting output vector. __a : Dict = w / np.linalg.norm(SCREAMING_SNAKE_CASE__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __a : Dict = vector.conj().T if is_complex else vector.T __a : Union[str, Any] = np.dot(SCREAMING_SNAKE_CASE__ , np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Check convergence. __a : str = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __a : Tuple = True __a : Dict = lambda_ if is_complex: __a : Optional[Any] = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase__ ( ): __a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __a : Any = np.array([41, 4, 20] ) __a : Any = real_input_matrix.astype(np.complexaaa ) __a : Union[str, Any] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __a : str = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __a : Union[str, Any] = real_input_matrix __a : Optional[Any] = real_vector elif problem_type == "complex": __a : Tuple = complex_input_matrix __a : Any = complex_vector # Our implementation. __a , __a : List[Any] = power_iteration(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __a , __a : Tuple = np.linalg.eigh(SCREAMING_SNAKE_CASE__ ) # Last eigenvalue is the maximum one. __a : Any = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __a : str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE__ ) - np.abs(SCREAMING_SNAKE_CASE__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
597
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" def __magic_name__ ( self , _A ) -> float: return 0.0 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __a : List[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Dict = 512 __a : Dict = [1] + [0] * (size - 1) __a : Optional[int] = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __a : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __a : Union[str, Any] = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = 20 * np.logaa(SCREAMING_SNAKE_CASE__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __a : Dict = get_bounds(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(SCREAMING_SNAKE_CASE__ ) plt.show() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = 512 __a : List[str] = [1] + [0] * (size - 1) __a : List[str] = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] __a : Any = [0] * (samplerate - size) # zero-padding outputs += filler __a : Tuple = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE__ , -2 * pi ) ) plt.show()
597
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir('fixtures/test_sentencepiece.model') lowercase__ = {'target_lang': 'fi', 'source_lang': 'en'} lowercase__ = '>>zh<<' lowercase__ = 'Helsinki-NLP/' if is_torch_available(): lowercase__ = 'pt' elif is_tf_available(): lowercase__ = 'tf' else: lowercase__ = 'jax' @require_sentencepiece class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = MarianTokenizer a__ = False a__ = True def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' super().setUp() a__: int = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] a__: Dict = dict(zip(lowercase , range(len(lowercase)))) a__: Union[str, Any] = Path(self.tmpdirname) save_json(lowercase , save_dir / VOCAB_FILES_NAMES['vocab']) save_json(lowercase , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file']) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase , save_dir / VOCAB_FILES_NAMES['source_spm']) copyfile(lowercase , save_dir / VOCAB_FILES_NAMES['target_spm']) a__: int = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase_ ( self , **lowercase) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase) def lowerCamelCase_ ( self , lowercase) -> str: '''simple docstring''' return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: int = '</s>' a__: List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) , lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) , lowercase) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Any = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '</s>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '<pad>') self.assertEqual(len(lowercase) , 9) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[Any] = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de') a__: str = en_de_tokenizer(['I am a small frog'] , return_tensors=lowercase) self.assertIsInstance(lowercase , lowercase) a__: str = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase , batch.input_ids[0]) a__: int = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase) a__: Dict = [x.name for x in Path(lowercase).glob('*')] self.assertIn('source.spm' , lowercase) MarianTokenizer.from_pretrained(lowercase) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: List[Any] = self.get_tokenizer() a__: int = tok( ['I am a small frog' * 10_00, 'I am a small frog'] , padding=lowercase , truncation=lowercase , return_tensors=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(batch.input_ids.shape , (2, 5_12)) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = self.get_tokenizer() a__: List[str] = tok(['I am a tiny frog', 'I am a small frog'] , padding=lowercase , return_tensors=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(batch_smaller.input_ids.shape , (2, 10)) @slow def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Dict = {'input_ids': [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[Any] = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs') a__: Optional[int] = 'Tämä on testi' a__: Tuple = 'This is a test' a__: Union[str, Any] = [76, 7, 20_47, 2] a__: Dict = [69, 12, 11, 9_40, 2] a__: str = tokenizer(lowercase).input_ids self.assertListEqual(lowercase , lowercase) a__: List[str] = tokenizer(text_target=lowercase).input_ids self.assertListEqual(lowercase , lowercase) a__: Tuple = tokenizer.decode(lowercase , skip_special_tokens=lowercase) self.assertEqual(lowercase , lowercase)
217
"""simple docstring""" from math import ceil def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: a__: List[Any] = list(range(0 , _SCREAMING_SNAKE_CASE ) ) a__: Dict = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check a__: Union[str, Any] = [] for i in device_map_blocks: if device_map_blocks.count(_SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_SCREAMING_SNAKE_CASE ) # Missing blocks a__: Any = [i for i in blocks if i not in device_map_blocks] a__: List[str] = [i for i in device_map_blocks if i not in blocks] if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Any = list(range(_SCREAMING_SNAKE_CASE ) ) a__: Optional[Any] = int(ceil(n_layers / len(_SCREAMING_SNAKE_CASE ) ) ) a__: List[str] = [layers[i : i + n_blocks] for i in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
217
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'open-llama' def __init__( self , lowercase_=100_000 , lowercase_=4_096 , lowercase_=11_008 , lowercase_=32 , lowercase_=32 , lowercase_="silu" , lowercase_=2_048 , lowercase_=0.02 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=False , lowercase_=True , lowercase_=0.1 , lowercase_=0.1 , lowercase_=True , lowercase_=True , lowercase_=None , **lowercase_ , ): _snake_case : Tuple = vocab_size _snake_case : Optional[Any] = max_position_embeddings _snake_case : Dict = hidden_size _snake_case : Tuple = intermediate_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Tuple = hidden_act _snake_case : str = initializer_range _snake_case : int = rms_norm_eps _snake_case : Dict = use_cache _snake_case : Optional[Any] = kwargs.pop( "use_memorry_efficient_attention" , lowercase_ ) _snake_case : List[Any] = hidden_dropout_prob _snake_case : Optional[Any] = attention_dropout_prob _snake_case : Union[str, Any] = use_stable_embedding _snake_case : Optional[int] = shared_input_output_embedding _snake_case : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) _snake_case : List[Any] = self.rope_scaling.get("type" , lowercase_ ) _snake_case : str = self.rope_scaling.get("factor" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
670
from cva import destroyAllWindows, imread, imshow, waitKey def snake_case (__lowercase ) -> Tuple: '''simple docstring''' _snake_case ,_snake_case : int = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowercase ): for j in range(__lowercase ): _snake_case : Optional[Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __SCREAMING_SNAKE_CASE : Optional[Any] = imread('image_data/lena.jpg', 1) # convert to its negative __SCREAMING_SNAKE_CASE : Tuple = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
670
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a , a=13 , a=7 , a=True , a=True , a=False , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ) -> Optional[Any]: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self , a , a , a , a , a , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = DistilBertModel(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , a ) _UpperCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , a , a , a , a , a , a ) -> Dict: '''simple docstring''' _UpperCamelCase = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() _UpperCamelCase = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , a , a , a , a , a , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , a , a , a , a , a , a ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : Optional[int] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Any = True UpperCamelCase_ : Optional[Any] = True def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = DistilBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=a , dim=37 ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def A_ ( self ) -> Dict: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=a ) _UpperCamelCase = self._prepare_for_class(a , a ) _UpperCamelCase = torch.jit.trace( a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , """traced_model.pt""" ) ) _UpperCamelCase = torch.jit.load(os.path.join(a , """traced_model.pt""" ) , map_location=a ) loaded(inputs_dict["""input_ids"""].to(a ) , inputs_dict["""attention_mask"""].to(a ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(a , attention_mask=a )[0] _UpperCamelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a ) _UpperCamelCase = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
709
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" if "model" in orig_key: _UpperCamelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: _UpperCamelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: _UpperCamelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: _UpperCamelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: _UpperCamelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] _UpperCamelCase = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _UpperCamelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: _UpperCamelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: _UpperCamelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: _UpperCamelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: _UpperCamelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: _UpperCamelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: _UpperCamelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: _UpperCamelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: _UpperCamelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: _UpperCamelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: _UpperCamelCase = """yoso.""" + orig_key return orig_key def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase = val _UpperCamelCase = orig_state_dict["""cls.predictions.decoder.bias"""] _UpperCamelCase = torch.arange(lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""model_state_dict"""] _UpperCamelCase = YosoConfig.from_json_file(lowerCAmelCase ) _UpperCamelCase = YosoForMaskedLM(lowerCAmelCase ) _UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase ) print(model.load_state_dict(lowerCAmelCase ) ) model.eval() model.save_pretrained(lowerCAmelCase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
202
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase :str = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , *lowercase , **lowercase ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowercase , ) super().__init__(*lowercase , **lowercase )
667
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase = None , ): super().__init__() self.register_modules(transformer=lowercase , vae=lowercase , scheduler=lowercase ) # create a imagenet -> id dictionary for easier use A_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): A_ : Optional[Any] = int(lowercase ) A_ : List[Any] = dict(sorted(self.labels.items() ) ) def _a (self , lowercase ): if not isinstance(lowercase , lowercase ): A_ : Optional[int] = list(lowercase ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__(self , lowercase , lowercase = 4.0 , lowercase = None , lowercase = 50 , lowercase = "pil" , lowercase = True , ): A_ : Tuple = len(lowercase ) A_ : Optional[Any] = self.transformer.config.sample_size A_ : int = self.transformer.config.in_channels A_ : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase , device=self.device , dtype=self.transformer.dtype , ) A_ : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A_ : Optional[int] = torch.tensor(lowercase , device=self.device ).reshape(-1 ) A_ : Optional[int] = torch.tensor([1000] * batch_size , device=self.device ) A_ : Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A_ : List[Any] = latent_model_input[: len(lowercase ) // 2] A_ : List[str] = torch.cat([half, half] , dim=0 ) A_ : Any = self.scheduler.scale_model_input(lowercase , lowercase ) A_ : Tuple = t if not torch.is_tensor(lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A_ : Optional[Any] = latent_model_input.device.type == """mps""" if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.floataa if is_mps else torch.floataa else: A_ : List[Any] = torch.intaa if is_mps else torch.intaa A_ : List[Any] = torch.tensor([timesteps] , dtype=lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A_ : List[Any] = self.transformer( lowercase , timestep=lowercase , class_labels=lowercase ).sample # perform guidance if guidance_scale > 1: A_, A_ : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A_, A_ : List[Any] = torch.split(lowercase , len(lowercase ) // 2 , dim=0 ) A_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A_ : str = torch.cat([half_eps, half_eps] , dim=0 ) A_ : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A_, A_ : int = torch.split(lowercase , lowercase , dim=1 ) else: A_ : Optional[int] = noise_pred # compute previous image: x_t -> x_t-1 A_ : Union[str, Any] = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample if guidance_scale > 1: A_, A_ : int = latent_model_input.chunk(2 , dim=0 ) else: A_ : Union[str, Any] = latent_model_input A_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents A_ : List[Any] = self.vae.decode(lowercase ).sample A_ : List[str] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : int = self.numpy_to_pil(lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase )
667
1
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowercase ( _A , _A , _A=0 ) -> Optional[Any]: # Format the message. if name is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: SCREAMING_SNAKE_CASE : Optional[int] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE : List[Any] = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , """:""" , val.size() ) else: print(_A , """:""" , _A ) def __lowercase ( _A , _A , _A , _A , _A ) -> Tuple: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE : List[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE : Any = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE : Union[str, Any] = param.view(*_A ) SCREAMING_SNAKE_CASE : List[str] = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE : Optional[int] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE : Optional[Any] = param.view(*_A ) SCREAMING_SNAKE_CASE : str = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE : str = param.view(*_A ) return param def __lowercase ( _A , _A , _A ) -> Union[str, Any]: # The converted output model. SCREAMING_SNAKE_CASE : Optional[int] = {} # old versions did not store training args SCREAMING_SNAKE_CASE : str = input_state_dict.get("""args""" , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE : List[str] = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE : Any = ds_args.hidden_size SCREAMING_SNAKE_CASE : List[str] = ds_args.num_layers SCREAMING_SNAKE_CASE : int = ds_args.num_attention_heads SCREAMING_SNAKE_CASE : Dict = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE : List[Any] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE : Optional[int] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE : Optional[Any] = input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE : List[Any] = 0.0 # The model. SCREAMING_SNAKE_CASE : List[str] = input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE : List[str] = model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE : Any = lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE : int = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE : Dict = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE : Dict = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. SCREAMING_SNAKE_CASE : Union[str, Any] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE : int = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE : List[Any] = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE : Any = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE : Union[str, Any] = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE : Any = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE : List[Any] = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE : int = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE : List[Any] = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE : List[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE : List[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) SCREAMING_SNAKE_CASE : str = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE : Dict = torch.tensor(-1e4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = masked_bias SCREAMING_SNAKE_CASE : Any = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE : Optional[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE : Dict = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. SCREAMING_SNAKE_CASE : Optional[int] = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE : int = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE : Union[str, Any] = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE : Optional[int] = transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE : Any = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE : int = word_embeddings # It should be done! return output_state_dict def __lowercase ( ) -> List[Any]: # Create the argument parser. SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=_A , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=_A , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE : Dict = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE : Tuple = torch.load(_A , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE : Optional[Any] = input_state_dict.get("""args""" , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE : Any = """gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE : Optional[Any] = """gelu_new""" else: SCREAMING_SNAKE_CASE : Tuple = """gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE : int = """gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE : Dict = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=50256 , eos_token_id=50256 , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE : Tuple = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE : List[str] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE : Optional[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: SCREAMING_SNAKE_CASE : Optional[Any] = """gpt2""" SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = type(_A ).__name__ SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_A ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. SCREAMING_SNAKE_CASE : str = os.path.join(_A , """pytorch_model.bin""" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
711
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] =["""input_features""", """attention_mask"""] def __init__( self : List[str] , UpperCAmelCase__ : Optional[Any]=8_0 , UpperCAmelCase__ : List[str]=1_6_0_0_0 , UpperCAmelCase__ : Optional[int]=8_0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[int] , ) ->Optional[int]: """simple docstring""" super().__init__(feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = num_mel_bins SCREAMING_SNAKE_CASE : Dict = do_ceptral_normalize SCREAMING_SNAKE_CASE : Optional[int] = normalize_means SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_vars SCREAMING_SNAKE_CASE : Union[str, Any] = True def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , ) ->np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(UpperCAmelCase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = ta_kaldi.fbank(UpperCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowercase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[bool] = True , UpperCAmelCase__ : Optional[bool] = True , UpperCAmelCase__ : float = 0.0 , ) ->np.ndarray: """simple docstring""" if normalize_means: SCREAMING_SNAKE_CASE : Tuple = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE : List[Any] = np.subtract(UpperCAmelCase__ , UpperCAmelCase__ ) if normalize_vars: SCREAMING_SNAKE_CASE : Optional[Any] = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.divide(UpperCAmelCase__ , UpperCAmelCase__ ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE : Tuple = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE : Optional[Any] = x.astype(np.floataa ) return x def _lowercase ( self : List[str] , UpperCAmelCase__ : List[np.ndarray] , UpperCAmelCase__ : Optional[np.ndarray] = None ) ->List[np.ndarray]: """simple docstring""" SCREAMING_SNAKE_CASE : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase__ , UpperCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ] def __call__( self : str , UpperCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE : Tuple = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : Optional[Any] = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Dict = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Optional[Any] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE : Tuple = [self._extract_fbank_features(UpperCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE : str = self.pad( UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) # make sure list is in array format SCREAMING_SNAKE_CASE : Dict = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE : int = [np.asarray(UpperCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE : Tuple = ( np.array(UpperCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE : str = self.normalize( padded_inputs["""input_features"""] , attention_mask=UpperCAmelCase__ ) if return_tensors is not None: SCREAMING_SNAKE_CASE : Any = padded_inputs.convert_to_tensors(UpperCAmelCase__ ) return padded_inputs
446
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowercase__ : Tuple ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 3_2 ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,lowercase__ : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,lowercase__ : bool = True ,lowercase__ : Any=7 ,lowercase__ : Optional[int]=3_0 ,lowercase__ : Tuple=4_0_0 ,lowercase__ : List[Any]=3 ,): __lowercase = parent __lowercase = do_resize __lowercase = size if size is not None else {'''shortest_edge''': 2_8_8} __lowercase = size_divisor __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = do_center_crop __lowercase = image_mean __lowercase = image_std __lowercase = do_pad __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution def SCREAMING_SNAKE_CASE ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int]=False ): if not batched: __lowercase = self.size['''shortest_edge'''] __lowercase = image_inputs[0] if isinstance(lowercase__ ,Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] __lowercase = size / min(lowercase__ ,lowercase__ ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size __lowercase = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase__ ,lowercase__ ) > max_size: __lowercase = max_size / max(lowercase__ ,lowercase__ ) __lowercase = newh * scale __lowercase = neww * scale __lowercase , __lowercase = int(newh + 0.5 ), int(neww + 0.5 ) __lowercase , __lowercase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[0] )[0] __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BridgeTowerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = BridgeTowerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size_divisor''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """Speech2TextFeatureExtractor""" __snake_case = """Speech2TextTokenizer""" def __init__( self: int , a: Tuple , a: Optional[Any] ): super().__init__(a , a ) __lowerCamelCase : List[str] = self.feature_extractor __lowerCamelCase : Optional[Any] = False def __call__( self: Optional[int] , *a: Optional[Any] , **a: str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __lowerCamelCase : Any = kwargs.pop('raw_speech' ) else: __lowerCamelCase : List[Any] = kwargs.pop('audio' , a ) __lowerCamelCase : List[str] = kwargs.pop('sampling_rate' , a ) __lowerCamelCase : Any = kwargs.pop('text' , a ) if len(a ) > 0: __lowerCamelCase : List[Any] = args[0] __lowerCamelCase : List[str] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __lowerCamelCase : Tuple = self.feature_extractor(a , *a , sampling_rate=a , **a ) if text is not None: __lowerCamelCase : Dict = self.tokenizer(a , **a ) if text is None: return inputs elif audio is None: return encodings else: __lowerCamelCase : Dict = encodings['input_ids'] return inputs def _snake_case ( self: Union[str, Any] , *a: str , **a: List[Any] ): return self.tokenizer.batch_decode(*a , **a ) def _snake_case ( self: Any , *a: str , **a: List[Any] ): return self.tokenizer.decode(*a , **a ) @contextmanager def _snake_case ( self: Tuple ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = self.tokenizer yield __lowerCamelCase : Dict = self.feature_extractor __lowerCamelCase : Tuple = False
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
230
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DDIMPipeline lowerCAmelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowerCAmelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ = False def __lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __lowercase =DDIMScheduler() __lowercase ={'unet': unet, 'scheduler': scheduler} return components def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any=0): '''simple docstring''' if str(lowercase__).startswith('mps'): __lowercase =torch.manual_seed(lowercase__) else: __lowercase =torch.Generator(device=lowercase__).manual_seed(lowercase__) __lowercase ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase ='cpu' __lowercase =self.get_dummy_components() __lowercase =self.pipeline_class(**lowercase__) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) __lowercase =self.get_dummy_inputs(lowercase__) __lowercase =pipe(**lowercase__).images __lowercase =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3)) __lowercase =np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04]) __lowercase =np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowercase__ , 1e-3) def __lowerCamelCase ( self : List[str]): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def __lowerCamelCase ( self : List[str]): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3) def __lowerCamelCase ( self : Tuple): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3) def __lowerCamelCase ( self : Any): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='google/ddpm-cifar10-32' __lowercase =UNetaDModel.from_pretrained(lowercase__) __lowercase =DDIMScheduler() __lowercase =DDIMPipeline(unet=lowercase__ , scheduler=lowercase__) ddim.to(lowercase__) ddim.set_progress_bar_config(disable=lowercase__) __lowercase =torch.manual_seed(0) __lowercase =ddim(generator=lowercase__ , eta=0.0 , output_type='numpy').images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase =np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase ='google/ddpm-ema-bedroom-256' __lowercase =UNetaDModel.from_pretrained(lowercase__) __lowercase =DDIMScheduler.from_pretrained(lowercase__) __lowercase =DDIMPipeline(unet=lowercase__ , scheduler=lowercase__) ddpm.to(lowercase__) ddpm.set_progress_bar_config(disable=lowercase__) __lowercase =torch.manual_seed(0) __lowercase =ddpm(generator=lowercase__ , output_type='numpy').images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase =np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
474
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , lowercase__ ) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): SCREAMING_SNAKE_CASE : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = 'sgugger/tiny-distilbert-classification' SCREAMING_SNAKE_CASE : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , only_pretrain_model=lowercase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Dict = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , torchscript=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Any = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , fpaa=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowercase__ ) # set architectures equal to `None` SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase__ , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Any = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : List[str] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(lowercase__ , configs=[config] ) SCREAMING_SNAKE_CASE : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , save_to_csv=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowercase__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowercase__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowercase__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowercase__ , 'env.csv' ) , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Any = PyTorchBenchmark(lowercase__ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase__ , 'env.csv' ) ).exists() ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase__ ): self.assertTrue(hasattr(lowercase__ , 'sequential' ) ) self.assertTrue(hasattr(lowercase__ , 'cumulative' ) ) self.assertTrue(hasattr(lowercase__ , 'current' ) ) self.assertTrue(hasattr(lowercase__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase__ , inference=lowercase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase__ , 'log.txt' ) , log_print=lowercase__ , trace_memory_line_by_line=lowercase__ , multi_process=lowercase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmark(lowercase__ ) SCREAMING_SNAKE_CASE : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase__ , 'log.txt' ) ).exists() )
251
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCAmelCase : ClassVar[Features] = Features({'audio': Audio()} ) UpperCAmelCase : ClassVar[Features] = Features({'transcription': Value('string' )} ) UpperCAmelCase : str = "audio" UpperCAmelCase : str = "transcription" def snake_case_ ( self : Tuple , __snake_case : Union[str, Any] ) -> Any: if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __snake_case ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) _a : Any = copy.deepcopy(self ) _a : Optional[Any] = self.input_schema.copy() _a : Optional[int] = features[self.audio_column] _a : int = input_schema return task_template @property def snake_case_ ( self : List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
713
from __future__ import annotations import numpy as np def lowerCamelCase_ ( UpperCamelCase_ ): return np.maximum(0 , UpperCamelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
249
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=13 ,__lowerCamelCase=30 ,__lowerCamelCase=2 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=32 ,__lowerCamelCase=2 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=10 ,__lowerCamelCase=0.02 ,__lowerCamelCase=3 ,__lowerCamelCase=0.6 ,__lowerCamelCase=None ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Any = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = mask_ratio lowerCAmelCase__ : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase__ : str = (image_size // patch_size) ** 2 lowerCAmelCase__ : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : int = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : str = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=a_ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = TFViTMAEModel(config=a_ ) lowerCAmelCase__ : List[Any] = model(a_ ,training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = TFViTMAEForPreTraining(a_ ) lowerCAmelCase__ : Optional[Any] = model(a_ ,training=a_ ) # expected sequence length = num_patches lowerCAmelCase__ : Dict = (self.image_size // self.patch_size) ** 2 lowerCAmelCase__ : Dict = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : str = TFViTMAEForPreTraining(a_ ) lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(a_ ,training=a_ ) lowerCAmelCase__ : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() (lowerCAmelCase__) : Dict = config_and_inputs lowerCAmelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( a_ , a_ , unittest.TestCase): '''simple docstring''' snake_case_ =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () snake_case_ ={"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = TFViTMAEModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=a_ ,has_text_modality=a_ ,hidden_size=37 ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ ,tf.keras.layers.Layer ) ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(a_ ) lowerCAmelCase__ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] ,a_ ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : str = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = model_class(a_ ) lowerCAmelCase__ : int = self._prepare_for_class(a_ ,a_ ) lowerCAmelCase__ : Any = model(a_ ,noise=a_ ) lowerCAmelCase__ : int = copy.deepcopy(self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ : Any = model(**a_ ,noise=a_ ) lowerCAmelCase__ : Union[str, Any] = outputs_dict[0].numpy() lowerCAmelCase__ : Any = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowerCamelCase ): lowerCAmelCase__ : Union[str, Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(a_ ): lowerCAmelCase__ : Optional[int] = v.numpy() else: lowerCAmelCase__ : List[Any] = np.array(a_ ) return inputs_np_dict for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(a_ ) lowerCAmelCase__ : Optional[Any] = self._prepare_for_class(a_ ,a_ ) lowerCAmelCase__ : Dict = prepare_numpy_arrays(a_ ) lowerCAmelCase__ : Optional[int] = model(a_ ,noise=a_ ) lowerCAmelCase__ : Optional[int] = model(**a_ ,noise=a_ ) self.assert_outputs_same(a_ ,a_ ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : str = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCAmelCase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase__ : Tuple = tf.constant(a_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase__ : Any = tf_noise super().check_pt_tf_models(a_ ,a_ ,a_ ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(a_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(a_ ,a_ ),) if isinstance(a_ ,a_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(a_ ,'''_keras_serializable''' ,a_ ) } lowerCAmelCase__ : int = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase__ : Dict = tf.convert_to_tensor(a_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowerCAmelCase__ : Dict = main_layer_class(a_ ) lowerCAmelCase__ : int = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCAmelCase__ : str = tf.keras.Model(a_ ,outputs=main_layer(a_ ) ) lowerCAmelCase__ : Tuple = model(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[int] = os.path.join(a_ ,'''keras_model.h5''' ) model.save(a_ ) lowerCAmelCase__ : List[Any] = tf.keras.models.load_model( a_ ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(a_ ,tf.keras.Model ) lowerCAmelCase__ : int = model(a_ ) self.assert_outputs_same(a_ ,a_ ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Any = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(a_ ) lowerCAmelCase__ : List[Any] = self._prepare_for_class(a_ ,a_ ) lowerCAmelCase__ : Any = model(a_ ,noise=a_ ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase__ : Optional[int] = outputs.last_hidden_state.numpy() lowerCAmelCase__ : List[str] = 0 else: lowerCAmelCase__ : List[Any] = outputs.logits.numpy() lowerCAmelCase__ : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ,saved_model=a_ ) lowerCAmelCase__ : Union[str, Any] = model_class.from_pretrained(a_ ) lowerCAmelCase__ : Dict = model(a_ ,noise=a_ ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase__ : Optional[int] = after_outputs["last_hidden_state"].numpy() lowerCAmelCase__ : str = 0 else: lowerCAmelCase__ : Union[str, Any] = after_outputs["logits"].numpy() lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ ,1e-5 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(a_ ) lowerCAmelCase__ : int = self._prepare_for_class(a_ ,a_ ) lowerCAmelCase__ : Optional[Any] = model(a_ ,noise=a_ ) lowerCAmelCase__ : Optional[int] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(a_ ) lowerCAmelCase__ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCAmelCase__ : Dict = model_class.from_config(model.config ) lowerCAmelCase__ : List[str] = new_model(a_ ) # Build model new_model.set_weights(model.get_weights() ) lowerCAmelCase__ : List[Any] = new_model(a_ ,noise=a_ ) self.assert_outputs_same(a_ ,a_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(a_ ) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCAmelCase__ (self ) -> Any: """simple docstring""" np.random.seed(2 ) lowerCAmelCase__ : Union[str, Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Tuple = image_processor(images=a_ ,return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase__ : List[str] = ViTMAEConfig() lowerCAmelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase__ : str = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCAmelCase__ : int = model(**a_ ,noise=a_ ) # verify the logits lowerCAmelCase__ : str = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,a_ ) lowerCAmelCase__ : List[Any] = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,a_ ,atol=1e-4 )
647
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: a_ : Tuple = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["projector.weight"] a_ : Dict = downstream_dict["projector.bias"] a_ : Tuple = downstream_dict["model.post_net.linear.weight"] a_ : int = downstream_dict["model.post_net.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = downstream_dict["model.linear.weight"] a_ : List[Any] = downstream_dict["model.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["connector.weight"] a_ : Tuple = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ : List[str] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ : int = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ : List[str] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location="cpu" ) a_ : List[str] = checkpoint["Downstream"] a_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ : Any = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForXVector" ): a_ : Any = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
237
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : str = logging.get_logger(__name__) class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' def __init__( self , *A , **A ) ->None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , A , ) super().__init__(*A , **A )
433
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Optional[int] = ["""image_processor""", """tokenizer"""] __a : int = """OwlViTImageProcessor""" __a : Optional[int] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , A=None , A=None , **A ) ->str: UpperCAmelCase__ :str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A , ) UpperCAmelCase__ :List[Any] = kwargs.pop('feature_extractor' ) UpperCAmelCase__ :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) ->Tuple: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase__ :Optional[Any] = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase__ :Dict = [] # Maximum number of queries across batch UpperCAmelCase__ :Dict = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase__ :List[str] = t + [' '] * (max_num_queries - len(A )) UpperCAmelCase__ :List[str] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": UpperCAmelCase__ :Any = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :int = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Optional[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :List[str] = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :int = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :List[str] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :List[str] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Any = input_ids UpperCAmelCase__ :str = attention_mask if query_images is not None: UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Tuple = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase__ :str = query_pixel_values if images is not None: UpperCAmelCase__ :Optional[int] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase__ :Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process(*A , **A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process_object_detection(*A , **A ) def A__ ( self , *A , **A ) ->Any: return self.image_processor.post_process_image_guided_detection(*A , **A ) def A__ ( self , *A , **A ) ->Optional[int]: return self.tokenizer.batch_decode(*A , **A ) def A__ ( self , *A , **A ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A , ) return self.image_processor_class @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A , ) return self.image_processor
433
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) lowercase : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowercase : Union[str, Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __a ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase = "lm_head" lowerCAmelCase = getattr(A__ , A__ ) if weight_type is not None: lowerCAmelCase = getattr(A__ , A__ ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __a ( A__ , A__ , A__ ) -> Tuple: lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(A__ )[0].split("." )[-2] lowerCAmelCase = mapped_key.replace("*" , A__ ) if "weight_g" in name: lowerCAmelCase = "weight_g" elif "weight_v" in name: lowerCAmelCase = "weight_v" elif "bias" in name: lowerCAmelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase = "weight" else: lowerCAmelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(f"Unused weights: {unused_weights}" ) def __a ( A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: lowerCAmelCase = full_name.split("conv_layers." )[-1] lowerCAmelCase = name.split("." ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) lowerCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) lowerCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A__ ) @torch.no_grad() def __a ( A__ , A__ , A__=None , A__=None , A__=True ) -> List[str]: if config_path is not None: lowerCAmelCase = UniSpeechConfig.from_pretrained(A__ ) else: lowerCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load_from_json(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(A__ , "vocab.json" ) if not os.path.isdir(A__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase = 42 lowerCAmelCase = 43 with open(A__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(A__ , A__ ) lowerCAmelCase = WavaVecaPhonemeCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=A__ , ) lowerCAmelCase = True if config.feat_extract_norm == "layer" else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) lowerCAmelCase = UniSpeechForCTC(A__ ) else: lowerCAmelCase = UniSpeechForPreTraining(A__ ) if is_finetuned: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase = model[0].eval() recursively_load_weights(A__ , A__ , A__ ) hf_unispeech.save_pretrained(A__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
649
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowercase : Dict = None lowercase : Union[str, Any] = { '7B': 1_1_0_0_8, '13B': 1_3_8_2_4, '30B': 1_7_9_2_0, '65B': 2_2_0_1_6, '70B': 2_8_6_7_2, } lowercase : Tuple = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __a ( A__ , A__=1 , A__=256 ) -> List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __a ( A__ ) -> Optional[int]: with open(A__ , "r" ) as f: return json.load(A__ ) def __a ( A__ , A__ ) -> Any: with open(A__ , "w" ) as f: json.dump(A__ , A__ ) def __a ( A__ , A__ , A__ , A__=True ) -> Union[str, Any]: os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = os.path.join(A__ , "tmp" ) os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = read_json(os.path.join(A__ , "params.json" ) ) lowerCAmelCase = NUM_SHARDS[model_size] lowerCAmelCase = params["n_layers"] lowerCAmelCase = params["n_heads"] lowerCAmelCase = n_heads // num_shards lowerCAmelCase = params["dim"] lowerCAmelCase = dim // n_heads lowerCAmelCase = 10_000.0 lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , A__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase = params["n_kv_heads"] # for GQA / MQA lowerCAmelCase = n_heads_per_shard // num_key_value_heads lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase = n_heads lowerCAmelCase = n_heads_per_shard lowerCAmelCase = dim # permute for sliced rotary def permute(A__ , A__=n_heads , A__=dim , A__=dim ): return w.view(A__ , dima // n_heads // 2 , 2 , A__ ).transpose(1 , 2 ).reshape(A__ , A__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase = torch.load(os.path.join(A__ , "consolidated.00.pth" ) , map_location="cpu" ) else: # Sharded lowerCAmelCase = [ torch.load(os.path.join(A__ , f"consolidated.{i:02d}.pth" ) , map_location="cpu" ) for i in range(A__ ) ] lowerCAmelCase = 0 lowerCAmelCase = {"weight_map": {}} for layer_i in range(A__ ): lowerCAmelCase = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) ) lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) , A__ , A__ , A__ , ) lowerCAmelCase = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = inv_freq for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) lowerCAmelCase = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: lowerCAmelCase = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(A__ )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(A__ )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) # Write configs lowerCAmelCase = {"total_size": param_count * 2} write_json(A__ , os.path.join(A__ , "pytorch_model.bin.index.json" ) ) lowerCAmelCase = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 lowerCAmelCase = params["multiple_of"] if "multiple_of" in params else 256 lowerCAmelCase = LlamaConfig( hidden_size=A__ , intermediate_size=compute_intermediate_size(A__ , A__ , A__ ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=A__ , ) config.save_pretrained(A__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) lowerCAmelCase = LlamaForCausalLM.from_pretrained(A__ , torch_dtype=torch.floataa , low_cpu_mem_usage=A__ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(A__ , safe_serialization=A__ ) shutil.rmtree(A__ ) def __a ( A__ , A__ ) -> Any: # Initialize the tokenizer based on the `spm` model lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) lowerCAmelCase = tokenizer_class(A__ ) tokenizer.save_pretrained(A__ ) def __a ( ) -> Any: lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=A__ , help="Whether or not to save using `safetensors`." ) lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase = os.path.join(args.input_dir , "tokenizer.model" ) write_tokenizer(args.output_dir , A__ ) if __name__ == "__main__": main()
649
1
def a_ ( ) -> int: '''simple docstring''' return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__snake_case , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
559
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __a : Any = logging.getLogger(__name__) __a : Dict = 50 # max width of layer names __a : int = 70 # max width of quantizer names def a_ ( __snake_case ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase_ = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__snake_case , type=__snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def a_ ( __snake_case ) -> Optional[int]: '''simple docstring''' if args.calibrator == "max": UpperCamelCase_ = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) UpperCamelCase_ = 'histogram' elif args.calibrator == "mse": UpperCamelCase_ = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) UpperCamelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=__snake_case ) UpperCamelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(__snake_case ) def a_ ( __snake_case , __snake_case , __snake_case=False , __snake_case=False ) -> List[str]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__snake_case , ['embeddings'] , which='weight' , _disabled=__snake_case ) if args.quant_disable: set_quantizer_by_name(__snake_case , [''] , _disabled=__snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(__snake_case , args.quant_disable_keyword , _disabled=__snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(__snake_case , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(__snake_case , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__snake_case ) if args.recalibrate_weights: recalibrate_weights(__snake_case ) if args.fuse_qkv: fuse_qkv(__snake_case , __snake_case ) if args.clip_gelu: clip_gelu(__snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__snake_case ) def a_ ( __snake_case ) -> Tuple: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def a_ ( __snake_case , __snake_case ) -> Any: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__snake_case ) def a_ ( __snake_case , __snake_case ) -> int: '''simple docstring''' def fusea(__snake_case , __snake_case , __snake_case ): for mod in [qq, qk, qv]: if not hasattr(__snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return UpperCamelCase_ = qq._amax.detach().item() UpperCamelCase_ = qk._amax.detach().item() UpperCamelCase_ = qv._amax.detach().item() UpperCamelCase_ = max(__snake_case , __snake_case , __snake_case ) qq._amax.fill_(__snake_case ) qk._amax.fill_(__snake_case ) qv._amax.fill_(__snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def a_ ( __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__snake_case ) UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def a_ ( __snake_case ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: UpperCamelCase_ = mod.weight.shape[0] UpperCamelCase_ = mod._weight_quantizer._amax.detach() UpperCamelCase_ = torch.ones(__snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def a_ ( __snake_case ) -> List[Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCamelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCamelCase_ = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCamelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__snake_case , keepdims=__snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCamelCase_ = amax def a_ ( __snake_case , __snake_case=2_5 , __snake_case=1_8_0 , __snake_case=None ) -> Tuple: '''simple docstring''' if ignore is None: UpperCamelCase_ = [] elif not isinstance(__snake_case , __snake_case ): UpperCamelCase_ = [ignore] UpperCamelCase_ = 0 for name, mod in model.named_modules(): if not hasattr(__snake_case , 'weight' ): continue UpperCamelCase_ = max(__snake_case , len(__snake_case ) ) for name, mod in model.named_modules(): UpperCamelCase_ = getattr(__snake_case , '_input_quantizer' , __snake_case ) UpperCamelCase_ = getattr(__snake_case , '_weight_quantizer' , __snake_case ) if not hasattr(__snake_case , 'weight' ): continue if type(__snake_case ) in ignore: continue if [True for s in ignore if type(__snake_case ) is str and s in name]: continue UpperCamelCase_ = F'''Act:{input_q.extra_repr()}''' UpperCamelCase_ = F'''Wgt:{weight_q.extra_repr()}''' UpperCamelCase_ = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(__snake_case ) <= line_width: logger.info(__snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def a_ ( __snake_case ) -> List[str]: '''simple docstring''' UpperCamelCase_ = 0 for name, mod in model.named_modules(): if isinstance(__snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def a_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' UpperCamelCase_ = getattr(__snake_case , __snake_case , __snake_case ) if quantizer_mod is not None: assert hasattr(__snake_case , __snake_case ) setattr(__snake_case , __snake_case , __snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def a_ ( __snake_case , __snake_case , __snake_case="both" , **__snake_case ) -> Optional[int]: '''simple docstring''' UpperCamelCase_ = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__snake_case , __snake_case , '_input_quantizer' , __snake_case , __snake_case ) if which in ["weight", "both"]: set_quantizer(__snake_case , __snake_case , '_weight_quantizer' , __snake_case , __snake_case ) logger.info(__snake_case ) def a_ ( __snake_case , __snake_case , **__snake_case ) -> str: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__snake_case , '_input_quantizer' ) or hasattr(__snake_case , '_weight_quantizer' ): for n in names: if re.search(__snake_case , __snake_case ): set_quantizers(__snake_case , __snake_case , **__snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(__snake_case , __snake_case ): UpperCamelCase_ = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(__snake_case , __snake_case , __snake_case ) logger.info(__snake_case )
559
1
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase: def __init__( self , __a) -> None: '''simple docstring''' _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None def lowerCamelCase__ ( __snake_case ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase__ ( ) -> None: # Main function for testing. """simple docstring""" _UpperCamelCase = Node(1 ) _UpperCamelCase = Node(2 ) _UpperCamelCase = Node(3 ) _UpperCamelCase = Node(4 ) _UpperCamelCase = Node(5 ) _UpperCamelCase = Node(6 ) _UpperCamelCase = Node(7 ) _UpperCamelCase = Node(8 ) _UpperCamelCase = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print('''Tree is: ''' ) display(__snake_case ) if __name__ == "__main__": main()
19
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a : List[Any] = True except ImportError: a : str = False try: from torch.hub import _get_torch_home a : List[Any] = _get_torch_home() except ImportError: a : int = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) a : Optional[Any] = os.path.join(torch_cache_home, "transformers") a : Optional[Any] = "https://cdn.huggingface.co" a : List[str] = "https://s3.amazonaws.com/models.huggingface.co/bert" a : Any = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) a : Optional[int] = os.path.join(PATH, "config.yaml") a : Dict = os.path.join(PATH, "attributes.txt") a : Tuple = os.path.join(PATH, "objects.txt") a : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) a : Dict = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) a : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) a : Any = "pytorch_model.bin" a : int = "config.yaml" def lowerCamelCase__ ( __lowerCamelCase : str=OBJECTS , __lowerCamelCase : Union[str, Any]=ATTRIBUTES ): __UpperCAmelCase : Union[str, Any] = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) __UpperCAmelCase : Dict = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : List[str] = OrderedDict() with open(__lowerCamelCase , """rb""" ) as f: __UpperCAmelCase : int = pkl.load(__lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase : List[Any] = ckp.pop(__lowerCamelCase ) if isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase ) else: assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase ) __UpperCAmelCase : List[str] = v return r class a : """simple docstring""" a : Dict = {} def __init__( self : Dict , __lowercase : dict , __lowercase : str = "root" , __lowercase : Any=0 ) -> Dict: __UpperCAmelCase : List[str] = name __UpperCAmelCase : str = level __UpperCAmelCase : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase : List[str] = copy.deepcopy(__lowercase ) __UpperCAmelCase : Dict = copy.deepcopy(__lowercase ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Union[str, Any] = Config(__lowercase , name=__lowercase , level=level + 1 ) __UpperCAmelCase : Union[str, Any] = v setattr(self , __lowercase , __lowercase ) __UpperCAmelCase : Any = d def __repr__( self : Optional[Any] ) -> Optional[int]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : List[str] , __lowercase : List[str] , __lowercase : Tuple ) -> int: __UpperCAmelCase : int = val __UpperCAmelCase : List[str] = val __UpperCAmelCase : Union[str, Any] = key.split(""".""" ) __UpperCAmelCase : List[Any] = len(__lowercase ) - 1 __UpperCAmelCase : List[Any] = self._pointer if len(__lowercase ) > 1: for i, l in enumerate(__lowercase ): if hasattr(self , __lowercase ) and isinstance(getattr(self , __lowercase ) , __lowercase ): setattr(getattr(self , __lowercase ) , """.""".join(levels[i:] ) , __lowercase ) if l == last_level: __UpperCAmelCase : Union[str, Any] = val else: __UpperCAmelCase : Union[str, Any] = pointer[l] def UpperCAmelCase ( self : Tuple ) -> Optional[int]: return self._pointer def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: with open(f"""{file_name}""" , """w""" ) as stream: dump(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Any: with open(f"""{file_name}""" , """w""" ) as stream: json.dump(__lowercase , __lowercase ) @staticmethod def UpperCAmelCase ( __lowercase : List[Any] ) -> Optional[Any]: with open(__lowercase ) as stream: __UpperCAmelCase : Any = load(__lowercase , Loader=__lowercase ) return data def __str__( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = """ """ if self._name != "root": __UpperCAmelCase : Optional[Any] = f"""{t * (self._level-1)}{self._name}:\n""" else: __UpperCAmelCase : List[Any] = """""" __UpperCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowercase , __lowercase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__lowercase ).__name__})\n""" __UpperCAmelCase : int = level return r[:-1] @classmethod def UpperCAmelCase ( cls : List[str] , __lowercase : str , **__lowercase : Any ) -> Any: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) return cls(__lowercase ) @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : str , **__lowercase : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : int = kwargs.pop("""cache_dir""" , __lowercase ) __UpperCAmelCase : int = kwargs.pop("""force_download""" , __lowercase ) __UpperCAmelCase : str = kwargs.pop("""resume_download""" , __lowercase ) __UpperCAmelCase : Dict = kwargs.pop("""proxies""" , __lowercase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""local_files_only""" , __lowercase ) if os.path.isdir(__lowercase ): __UpperCAmelCase : List[Any] = os.path.join(__lowercase , __lowercase ) elif os.path.isfile(__lowercase ) or is_remote_url(__lowercase ): __UpperCAmelCase : Tuple = pretrained_model_name_or_path else: __UpperCAmelCase : Optional[int] = hf_bucket_url(__lowercase , filename=__lowercase , use_cdn=__lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase : Optional[int] = cached_path( __lowercase , cache_dir=__lowercase , force_download=__lowercase , proxies=__lowercase , resume_download=__lowercase , local_files_only=__lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase : Optional[int] = Config.load_yaml(__lowercase ) except EnvironmentError: __UpperCAmelCase : str = """Can't load config for""" raise EnvironmentError(__lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(__lowercase ), kwargs def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Optional[int] = torch.load("""dump.pt""" , map_location=in_tensor.device ) __UpperCAmelCase : Tuple = in_tensor.numpy() __UpperCAmelCase : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = urlparse(__lowerCamelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int=True ): __UpperCAmelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase : Optional[int] = """/""" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[int]=None , ): __UpperCAmelCase : Optional[int] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + user_agent __UpperCAmelCase : List[str] = {"""user-agent""": ua} if resume_size > 0: __UpperCAmelCase : Union[str, Any] = """bytes=%d-""" % (resume_size,) __UpperCAmelCase : Union[str, Any] = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase : List[str] = response.headers.get("""Content-Length""" ) __UpperCAmelCase : str = resume_size + int(__lowerCamelCase ) if content_length is not None else None __UpperCAmelCase : List[Any] = tqdm( unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCamelCase ) ) temp_file.write(__lowerCamelCase ) progress.close() def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=None , __lowerCamelCase : List[str]=False , ): if cache_dir is None: __UpperCAmelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = str(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[Any] = None if not local_files_only: try: __UpperCAmelCase : Optional[Any] = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase ) if response.status_code == 200: __UpperCAmelCase : Dict = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase : List[str] = url_to_filename(__lowerCamelCase , __lowerCamelCase ) # get cache path to put the file __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCamelCase ): return cache_path else: __UpperCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(__lowerCamelCase ) > 0: return os.path.join(__lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(__lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase : str = cache_path + """.lock""" with FileLock(__lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase : int = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(__lowerCamelCase , """a+b""" ) as f: yield f __UpperCAmelCase : str = _resumable_file_manager if os.path.exists(__lowerCamelCase ): __UpperCAmelCase : List[Any] = os.stat(__lowerCamelCase ).st_size else: __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : str = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , ) http_get( __lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , ) os.replace(temp_file.name , __lowerCamelCase ) __UpperCAmelCase : Any = {"""url""": url, """etag""": etag} __UpperCAmelCase : Union[str, Any] = cache_path + """.json""" with open(__lowerCamelCase , """w""" ) as meta_file: json.dump(__lowerCamelCase , __lowerCamelCase ) return cache_path def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any]=None ): __UpperCAmelCase : Tuple = url.encode("""utf-8""" ) __UpperCAmelCase : Optional[Any] = shaaaa(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = url_hash.hexdigest() if etag: __UpperCAmelCase : int = etag.encode("""utf-8""" ) __UpperCAmelCase : List[str] = shaaaa(__lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , ): if cache_dir is None: __UpperCAmelCase : List[str] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = str(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = str(__lowerCamelCase ) if is_remote_url(__lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase : Tuple = get_from_cache( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , ) elif os.path.exists(__lowerCamelCase ): # File, and it exists. __UpperCAmelCase : Tuple = url_or_filename elif urlparse(__lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase : int = os.path.split(__lowerCamelCase ) __UpperCAmelCase : Any = output_file.replace(""".""" , """-""" ) + """-extracted""" __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase : str = output_path + """.lock""" with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase ) os.makedirs(__lowerCamelCase ) if is_zipfile(__lowerCamelCase ): with ZipFile(__lowerCamelCase , """r""" ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCamelCase ): __UpperCAmelCase : Any = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) ) return output_path_extracted return output_path def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int="," ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase ) as f: __UpperCAmelCase : List[Any] = eval(f.read() ) else: __UpperCAmelCase : List[str] = requests.get(__lowerCamelCase ) try: __UpperCAmelCase : int = requests.json() except Exception: __UpperCAmelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase : str = eval(__lowerCamelCase ) except Exception: __UpperCAmelCase : List[Any] = data.split("""\n""" ) req.close() return data def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = requests.get(__lowerCamelCase ) __UpperCAmelCase : List[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : int = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as stream: __UpperCAmelCase : List[str] = pkl.load(__lowerCamelCase ) __UpperCAmelCase : Dict = weights.pop("""model""" ) __UpperCAmelCase : Union[str, Any] = {} for k, v in model.items(): __UpperCAmelCase : int = torch.from_numpy(__lowerCamelCase ) if "running_var" in k: __UpperCAmelCase : Optional[int] = torch.tensor([0] ) __UpperCAmelCase : Tuple = k.replace("""running_var""" , """num_batches_tracked""" ) __UpperCAmelCase : Any = zero return new def lowerCamelCase__ ( ): print(f"""{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]="RGB" ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): __UpperCAmelCase : List[str] = cva.imread(__lowerCamelCase ) else: __UpperCAmelCase : int = get_image_from_url(__lowerCamelCase ) assert img is not None, f"""could not connect to: {im}""" __UpperCAmelCase : Any = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase : Optional[int] = img[:, :, ::-1] return img def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int=1 ): return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
63
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( UpperCamelCase_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[Any] = (DEISMultistepScheduler,) _SCREAMING_SNAKE_CASE : int = (("num_inference_steps", 25),) def lowerCAmelCase__ ( self , **_lowerCAmelCase ): a ={ 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**__a ) return config def lowerCAmelCase__ ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ): a =dict(self.forward_default_kwargs ) a =kwargs.pop("""num_inference_steps""" , __a ) a =self.dummy_sample a =0.1 * sample a =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a =self.get_scheduler_config(**__a ) a =scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals a =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) a =scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals a =dummy_past_residuals[: new_scheduler.config.solver_order] a =sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): a =scheduler.step(__a , __a , __a , **__a ).prev_sample a =new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ): a =dict(self.forward_default_kwargs ) a =kwargs.pop("""num_inference_steps""" , __a ) a =self.dummy_sample a =0.1 * sample a =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a =self.get_scheduler_config() a =scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) a =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) a =scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) a =dummy_past_residuals[: new_scheduler.config.solver_order] a =scheduler.step(__a , __a , __a , **__a ).prev_sample a =new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self , _lowerCAmelCase=None , **_lowerCAmelCase ): if scheduler is None: a =self.scheduler_classes[0] a =self.get_scheduler_config(**__a ) a =scheduler_class(**__a ) a =self.scheduler_classes[0] a =self.get_scheduler_config(**__a ) a =scheduler_class(**__a ) a =10 a =self.dummy_model() a =self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): a =model(__a , __a ) a =scheduler.step(__a , __a , __a ).prev_sample return sample def lowerCAmelCase__ ( self ): a =dict(self.forward_default_kwargs ) a =kwargs.pop("""num_inference_steps""" , __a ) for scheduler_class in self.scheduler_classes: a =self.get_scheduler_config() a =scheduler_class(**__a ) a =self.dummy_sample a =0.1 * sample if num_inference_steps is not None and hasattr(__a , """set_timesteps""" ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , """set_timesteps""" ): a =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a =[residual + 0.2, residual + 0.15, residual + 0.10] a =dummy_past_residuals[: scheduler.config.solver_order] a =scheduler.timesteps[5] a =scheduler.timesteps[6] a =scheduler.step(__a , __a , __a , **__a ).prev_sample a =scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self ): a =DEISMultistepScheduler(**self.get_scheduler_config() ) a =self.full_loop(scheduler=__a ) a =torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 a =DPMSolverSinglestepScheduler.from_config(scheduler.config ) a =DPMSolverMultistepScheduler.from_config(scheduler.config ) a =UniPCMultistepScheduler.from_config(scheduler.config ) a =DEISMultistepScheduler.from_config(scheduler.config ) a =self.full_loop(scheduler=__a ) a =torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def lowerCAmelCase__ ( self ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase__ ( self ): self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type="""deis""" , solver_order=__a , solver_type=__a , ) def lowerCAmelCase__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase__ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) a =self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def lowerCAmelCase__ ( self ): self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def lowerCAmelCase__ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def lowerCAmelCase__ ( self ): a =self.full_loop() a =torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def lowerCAmelCase__ ( self ): a =self.full_loop(prediction_type="""v_prediction""" ) a =torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.0_91 ) < 1E-3 def lowerCAmelCase__ ( self ): a =self.scheduler_classes[0] a =self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) a =scheduler_class(**__a ) a =10 a =self.dummy_model() a =self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): a =model(__a , __a ) a =scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
717
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowerCamelCase = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _lowerCamelCase = 10 _lowerCamelCase = 256 def lowerCamelCase ( UpperCAmelCase_ : List[str] )-> Optional[MinHash]: """simple docstring""" if len(UpperCAmelCase_ ) < MIN_NUM_TOKENS: return None a =MinHash(num_perm=UpperCAmelCase_ ) for token in set(UpperCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase ( UpperCAmelCase_ : str )-> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(UpperCAmelCase_ ) if len(t.strip() ) > 0} class UpperCAmelCase__ : '''simple docstring''' def __init__( self , *, _lowerCAmelCase = 0.85 , ): a =duplication_jaccard_threshold a =NUM_PERM a =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a =defaultdict(_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase ): a =self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a =[] for base, duplicates in self._duplicate_clusters.items(): a =[base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict a =[{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =self.get_duplicate_clusters() with open(_lowerCAmelCase , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] )-> str: """simple docstring""" a , a =element a =get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase ( UpperCAmelCase_ : Type[Dataset] )-> Any: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCAmelCase_ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase ( UpperCAmelCase_ : Type[Dataset] , UpperCAmelCase_ : float )-> Union[str, Any]: """simple docstring""" a =DuplicationIndex(duplication_jaccard_threshold=UpperCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(UpperCAmelCase_ , UpperCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str )-> float: """simple docstring""" a =get_tokens(UpperCAmelCase_ ) a =get_tokens(UpperCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowerCamelCase = None def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] )-> List[str]: """simple docstring""" a =[] for elementa in cluster: a =_shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: a =_shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(UpperCAmelCase_ , UpperCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: a =1 extremes.append(UpperCAmelCase_ ) return extremes def lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] )-> int: """simple docstring""" global _shared_dataset a =dataset a =[] a =partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCAmelCase_ , UpperCAmelCase_ , ) , total=len(UpperCAmelCase_ ) , ): extremes_list.append(UpperCAmelCase_ ) return extremes_list def lowerCamelCase ( UpperCAmelCase_ : Type[Dataset] , UpperCAmelCase_ : float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" a =make_duplicate_clusters(UpperCAmelCase_ , UpperCAmelCase_ ) a ={x["""base_index"""] for cluster in duplicate_clusters for x in cluster} a ={} a =find_extremes(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: a =element a =duplicate_indices - set(extreme_dict.keys() ) a =dataset.filter(lambda UpperCAmelCase_ , UpperCAmelCase_ : idx not in remove_indices , with_indices=UpperCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a =element["""base_index"""] in extreme_dict if element["is_extreme"]: a =extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(UpperCAmelCase_ )}''' ) print(F'''Number of duplicate clusters: {len(UpperCAmelCase_ )}''' ) print(F'''Files in duplicate cluster: {len(UpperCAmelCase_ )}''' ) print(F'''Unique files in duplicate cluster: {len(UpperCAmelCase_ )}''' ) print(F'''Filtered dataset size: {len(UpperCAmelCase_ )}''' ) return ds_filter, duplicate_clusters
321
0
import random def A__ ( lowercase: int, lowercase: Tuple, lowercase: List[str] ) -> Tuple: A : List[str] =a[left_index] A : List[Any] =left_index + 1 for j in range(left_index + 1, lowercase ): if a[j] < pivot: A , A : Any =a[i], a[j] i += 1 A , A : List[Any] =a[i - 1], a[left_index] return i - 1 def A__ ( lowercase: str, lowercase: List[str], lowercase: List[Any] ) -> int: if left < right: A : Union[str, Any] =random.randint(lowercase, right - 1 ) A , A : int =( a[left], a[pivot], ) # switches the pivot with the left most bound A : Any =partition(lowercase, lowercase, lowercase ) quick_sort_random( lowercase, lowercase, lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase, pivot_index + 1, lowercase ) # recursive quicksort to the right of the pivot point def A__ ( ) -> Any: A : Optional[int] =input('Enter numbers separated by a comma:\n' ).strip() A : Tuple =[int(lowercase ) for item in user_input.split(',' )] quick_sort_random(lowercase, 0, len(lowercase ) ) print(lowercase ) if __name__ == "__main__": main()
305
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : Tuple = BlenderbotConfig lowercase : Optional[int] = {} lowercase : Union[str, Any] = "gelu" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=37 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=20 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : str=0 , ) -> List[str]: A : List[Any] =parent A : str =batch_size A : int =seq_length A : Optional[Any] =is_training A : List[str] =use_labels A : List[Any] =vocab_size A : Tuple =hidden_size A : List[Any] =num_hidden_layers A : int =num_attention_heads A : Optional[int] =intermediate_size A : List[Any] =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Optional[Any] =eos_token_id A : List[str] =pad_token_id A : Union[str, Any] =bos_token_id def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: A : Dict =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A : Optional[int] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) A : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Any =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A : int =prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: A : List[Any] =TFBlenderbotModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() A : int =inputs_dict['input_ids'] A : Any =input_ids[:1, :] A : Optional[Any] =inputs_dict['attention_mask'][:1, :] A : List[str] =inputs_dict['head_mask'] A : List[Any] =1 # first forward pass A : Any =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) A , A : Any =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A : List[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A : Union[str, Any] =tf.concat([input_ids, next_tokens] , axis=-1 ) A : List[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A : List[str] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A : Tuple =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A : Tuple =output_from_no_past[:, -3:, random_slice_idx] A : str =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) def A__ ( lowercase: List[str], lowercase: List[str], lowercase: Optional[Any], lowercase: Optional[Any]=None, lowercase: Tuple=None, lowercase: List[str]=None, lowercase: Union[str, Any]=None, lowercase: Dict=None, ) -> Dict: if attention_mask is None: A : Any =tf.cast(tf.math.not_equal(lowercase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A : Optional[Any] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A : List[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A : Tuple =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase : Any = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase : Tuple = True lowercase : Dict = False lowercase : int = False def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: A : Optional[Any] =TFBlenderbotModelTester(self ) A : Dict =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ["My friends are cool but they eat too many carbs."] lowercase : str = "facebook/blenderbot-400M-distill" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]: A : Tuple =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: A : Optional[Any] =self.tokenizer(self.src_text , return_tensors='tf' ) A : Tuple =self.model.generate( model_inputs.input_ids , ) A : Union[str, Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
305
1
from __future__ import annotations from math import pi def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = 'levit' def __init__(self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.02 , **A , ) -> Any: """simple docstring""" super().__init__(**A ) _a = image_size _a = num_channels _a = kernel_size _a = stride _a = padding _a = hidden_sizes _a = num_attention_heads _a = depths _a = key_dim _a = drop_path_rate _a = patch_size _a = attention_ratio _a = mlp_ratio _a = initializer_range _a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A ( A ): '''simple docstring''' __lowerCamelCase : str = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase : Optional[int] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
284
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ ,snake_case_ = image.size snake_case_ ,snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ = image.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) snake_case_ = np.array(__UpperCAmelCase ).astype(np.floataa ) / 2_5_5.0 snake_case_ = image[None].transpose(0, 3, 1, 2 ) snake_case_ = torch.from_numpy(__UpperCAmelCase ) return 2.0 * image - 1.0 class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : VQModel , lowercase_ : UNetaDModel , lowercase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=lowercase_ , unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : Union[torch.Tensor, PIL.Image.Image] = None , lowercase_ : Optional[int] = 1 , lowercase_ : Optional[int] = 100 , lowercase_ : Optional[float] = 0.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): if isinstance(lowercase_ , PIL.Image.Image ): snake_case_ = 1 elif isinstance(lowercase_ , torch.Tensor ): snake_case_ = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase_ )}" ) if isinstance(lowercase_ , PIL.Image.Image ): snake_case_ = preprocess(lowercase_ ) snake_case_ ,snake_case_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case_ = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case_ = next(self.unet.parameters() ).dtype snake_case_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) snake_case_ = image.to(device=self.device , dtype=lowercase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase_ , device=self.device ) snake_case_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ = {} if accepts_eta: snake_case_ = eta for t in self.progress_bar(lowercase_ ): # concat latents and low resolution image in the channel dimension. snake_case_ = torch.cat([latents, image] , dim=1 ) snake_case_ = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual snake_case_ = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # decode the image latents with the VQVAE snake_case_ = self.vqvae.decode(lowercase_ ).sample snake_case_ = torch.clamp(lowercase_ , -1.0 , 1.0 ) snake_case_ = image / 2 + 0.5 snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
593
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' snake_case_ ,snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ ,snake_case_ = fa, f index += 1 for _ in str(__UpperCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
593
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self : str,__A : int,__A : Union[str, Any]=1_3,__A : Optional[int]=7,__A : Dict=True,__A : Dict=True,__A : Optional[int]=True,__A : List[str]=True,__A : int=True,__A : int=False,__A : List[Any]=False,__A : Union[str, Any]=False,__A : Union[str, Any]=2,__A : str=9_9,__A : List[str]=0,__A : Any=3_2,__A : Optional[Any]=5,__A : Union[str, Any]=4,__A : List[Any]=0.1,__A : Tuple=0.1,__A : Dict=5_1_2,__A : Optional[int]=2,__A : List[str]=0.02,__A : Tuple=2,__A : Optional[int]=4,__A : List[Any]="last",__A : Optional[Any]=True,__A : Any=None,__A : Optional[Any]=0,): _lowerCamelCase : Any = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Any = use_input_lengths _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Union[str, Any] = gelu_activation _lowerCamelCase : Optional[Any] = sinusoidal_embeddings _lowerCamelCase : Optional[int] = causal _lowerCamelCase : str = asm _lowerCamelCase : Optional[int] = n_langs _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = n_special _lowerCamelCase : Any = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[str] = summary_type _lowerCamelCase : Union[str, Any] = use_proj _lowerCamelCase : Dict = scope _lowerCamelCase : List[Any] = bos_token_id def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Tuple = None if self.use_input_lengths: _lowerCamelCase : Optional[Any] = ( ids_tensor([self.batch_size],vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length],self.n_langs ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : int = ids_tensor([self.batch_size],2 ).float() _lowerCamelCase : Dict = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase_ ( self : Union[str, Any] ): return XLMConfig( vocab_size=self.vocab_size,n_special=self.n_special,emb_dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,gelu_activation=self.gelu_activation,sinusoidal_embeddings=self.sinusoidal_embeddings,asm=self.asm,causal=self.causal,n_langs=self.n_langs,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,summary_type=self.summary_type,use_proj=self.use_proj,num_labels=self.num_labels,bos_token_id=self.bos_token_id,) def lowerCamelCase_ ( self : Union[str, Any],__A : Optional[int],__A : Optional[int],__A : int,__A : List[Any],__A : List[str],__A : Optional[Any],__A : Optional[int],__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : List[Any] = XLMModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : int = model(__A,lengths=__A,langs=__A ) _lowerCamelCase : str = model(__A,langs=__A ) _lowerCamelCase : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Dict,__A : Optional[int],__A : int,__A : Optional[int],__A : Union[str, Any],__A : Union[str, Any],__A : int,__A : Optional[int],__A : int,__A : List[str],): _lowerCamelCase : List[str] = XLMWithLMHeadModel(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = model(__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.loss.shape,() ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[int],__A : int,__A : List[Any],__A : Optional[int],__A : Union[str, Any],__A : str,__A : Tuple,__A : List[Any],__A : str,__A : List[Any],): _lowerCamelCase : List[str] = XLMForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A ) _lowerCamelCase : str = model(__A,start_positions=__A,end_positions=__A ) _lowerCamelCase : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Tuple,__A : int,__A : Union[str, Any],__A : Optional[Any],__A : Optional[int],__A : Optional[Any],__A : Dict,__A : int,__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : List[str] = XLMForQuestionAnswering(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A ) _lowerCamelCase : Dict = model( __A,start_positions=__A,end_positions=__A,cls_index=__A,is_impossible=__A,p_mask=__A,) _lowerCamelCase : str = model( __A,start_positions=__A,end_positions=__A,cls_index=__A,is_impossible=__A,) ((_lowerCamelCase) , ) : int = result_with_labels.to_tuple() _lowerCamelCase : int = model(__A,start_positions=__A,end_positions=__A ) ((_lowerCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape,() ) self.parent.assertEqual(result.start_top_log_probs.shape,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape,(self.batch_size,) ) def lowerCamelCase_ ( self : List[Any],__A : Optional[int],__A : str,__A : int,__A : Any,__A : str,__A : str,__A : Tuple,__A : int,__A : List[str],): _lowerCamelCase : Union[str, Any] = XLMForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Any = model(__A,labels=__A ) self.parent.assertEqual(result.loss.shape,() ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : List[Any],__A : Dict,__A : Union[str, Any],__A : List[str],__A : List[str],__A : Optional[int],__A : Optional[Any],__A : List[str],__A : str,__A : Optional[int],): _lowerCamelCase : int = self.num_labels _lowerCamelCase : List[Any] = XLMForTokenClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Optional[Any],__A : Dict,__A : Dict,__A : Union[str, Any],__A : Any,__A : int,__A : Tuple,__A : Any,__A : Union[str, Any],__A : List[Any],): _lowerCamelCase : Optional[int] = self.num_choices _lowerCamelCase : List[Any] = XLMForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : str = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase_ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self : int,__A : Tuple,__A : Union[str, Any],__A : Optional[int],__A : Union[str, Any],__A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase_ ( self : List[Any],__A : List[Any],__A : Dict,__A : Union[str, Any]=False ): _lowerCamelCase : List[str] = super()._prepare_for_class(__A,__A,return_labels=__A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowerCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) return inputs_dict def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = XLMModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self,config_class=__A,emb_dim=3_7 ) def lowerCamelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : str,__A : Optional[Any],__A : str,__A : List[str],__A : Tuple,__A : Optional[Any],__A : Optional[int]=False,__A : Optional[int]=1 ): self.assertIsInstance(__A,__A ) self.assertListEqual( [isinstance(__A,__A ) for iter_attentions in attentions],[True] * len(__A ) ) self.assertEqual(len(__A ),(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__A ): # adds PAD dummy token _lowerCamelCase : Optional[Any] = min_length + idx + 1 _lowerCamelCase : int = min_length + idx + 1 _lowerCamelCase : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions],[expected_shape] * len(__A ) ) def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any],__A : Dict,__A : List[Any],__A : Dict,__A : List[str],__A : Union[str, Any]=False,__A : Dict=1 ): self.assertIsInstance(__A,__A ) self.assertListEqual( [isinstance(__A,__A ) for iter_hidden_states in hidden_states],[True] * len(__A ),) self.assertEqual(len(__A ),(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__A ): # adds PAD dummy token _lowerCamelCase : int = min_length + idx + 1 _lowerCamelCase : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],[expected_shape] * len(__A ),) pass @slow def lowerCamelCase_ ( self : Tuple ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = XLMModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(__A ) _lowerCamelCase : int = torch.tensor([[1_4, 4_4_7]],dtype=torch.long,device=__A ) # the president _lowerCamelCase : Optional[Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowerCamelCase : Optional[Any] = model.generate(__A,do_sample=__A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist(),__A )
44
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = True a__ = False a__ = False a__ = False a__ = jnp.floataa def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ = [] __magic_name__ = [] for i in range(self.num_layers ): __magic_name__ = self.in_channels if i == 0 else self.out_channels __magic_name__ = FlaxResnetBlockaD( in_channels=UpperCamelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) __magic_name__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) __magic_name__ = resnets __magic_name__ = attentions if self.add_downsample: __magic_name__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=True ) -> Any: """simple docstring""" __magic_name__ = () for resnet, attn in zip(self.resnets , self.attentions ): __magic_name__ = resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) __magic_name__ = attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) output_states += (hidden_states,) if self.add_downsample: __magic_name__ = self.downsamplers_a(UpperCamelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = True a__ = jnp.floataa def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = [] for i in range(self.num_layers ): __magic_name__ = self.in_channels if i == 0 else self.out_channels __magic_name__ = FlaxResnetBlockaD( in_channels=UpperCamelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) __magic_name__ = resnets if self.add_downsample: __magic_name__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int=True ) -> Dict: """simple docstring""" __magic_name__ = () for resnet in self.resnets: __magic_name__ = resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) output_states += (hidden_states,) if self.add_downsample: __magic_name__ = self.downsamplers_a(UpperCamelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = True a__ = False a__ = False a__ = False a__ = jnp.floataa def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ = [] __magic_name__ = [] for i in range(self.num_layers ): __magic_name__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__ = self.prev_output_channel if i == 0 else self.out_channels __magic_name__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) __magic_name__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) __magic_name__ = resnets __magic_name__ = attentions if self.add_upsample: __magic_name__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict=True ) -> Union[str, Any]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __magic_name__ = res_hidden_states_tuple[-1] __magic_name__ = res_hidden_states_tuple[:-1] __magic_name__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__ = resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) __magic_name__ = attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) if self.add_upsample: __magic_name__ = self.upsamplers_a(UpperCamelCase__ ) return hidden_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = True a__ = jnp.floataa def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = [] for i in range(self.num_layers ): __magic_name__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__ = self.prev_output_channel if i == 0 else self.out_channels __magic_name__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) __magic_name__ = resnets if self.add_upsample: __magic_name__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=True ) -> Dict: """simple docstring""" for resnet in self.resnets: # pop res hidden states __magic_name__ = res_hidden_states_tuple[-1] __magic_name__ = res_hidden_states_tuple[:-1] __magic_name__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__ = resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) if self.add_upsample: __magic_name__ = self.upsamplers_a(UpperCamelCase__ ) return hidden_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = False a__ = False a__ = jnp.floataa def _lowercase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __magic_name__ = [] for _ in range(self.num_layers ): __magic_name__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) __magic_name__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) __magic_name__ = resnets __magic_name__ = attentions def __call__( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=True ) -> str: """simple docstring""" __magic_name__ = self.resnets[0](UpperCamelCase__ , UpperCamelCase__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __magic_name__ = attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) __magic_name__ = resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) return hidden_states
529
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : List[Any] = 16 __lowerCamelCase : List[Any] = 32 def _snake_case ( lowerCAmelCase : Accelerator , lowerCAmelCase : int = 1_6 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase , max_length=lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : Optional[Any] = datasets.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : List[str] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Tuple = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : int = 8 else: SCREAMING_SNAKE_CASE_ : List[Any] = None return tokenizer.pad( lowerCAmelCase , padding="longest" , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : Dict = mocked_dataloaders # noqa: F811 def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase ) == "1": SCREAMING_SNAKE_CASE_ : int = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : Dict = config["lr"] SCREAMING_SNAKE_CASE_ : Dict = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE_ : str = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_ : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ : Dict = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ : Any = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_dataloaders(lowerCAmelCase , lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Now we train the model for epoch in range(lowerCAmelCase ): model.train() for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ : str = model(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = outputs.loss SCREAMING_SNAKE_CASE_ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE_ : Any = 0 for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE_ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase , references=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase , default=lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() SCREAMING_SNAKE_CASE_ : str = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
316
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : Optional[int] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowerCamelCase : List[str] = { '''camembert-base''': 5_12, } __lowerCamelCase : Tuple = '''▁''' class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = CamembertTokenizer def __init__( self : int,_A : Optional[int]=None,_A : str=None,_A : Dict="<s>",_A : List[Any]="</s>",_A : Optional[int]="</s>",_A : Optional[Any]="<s>",_A : Any="<unk>",_A : str="<pad>",_A : int="<mask>",_A : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"],**_A : Union[str, Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( _A,tokenizer_file=_A,bos_token=_A,eos_token=_A,sep_token=_A,cls_token=_A,unk_token=_A,pad_token=_A,mask_token=_A,additional_special_tokens=_A,**_A,) SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE_ : Optional[int] = False if not self.vocab_file else True def __UpperCamelCase ( self : int,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Optional[int],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file,_A ) return (out_vocab_file,)
316
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=True , a=False , a=False , a=False , a=2 , a=99 , a=0 , a=32 , a=5 , a=4 , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=2 , a=4 , a="last" , a=True , a=None , a=0 , ) -> Tuple: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_lengths SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = gelu_activation SCREAMING_SNAKE_CASE = sinusoidal_embeddings SCREAMING_SNAKE_CASE = causal SCREAMING_SNAKE_CASE = asm SCREAMING_SNAKE_CASE = n_langs SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_special SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = summary_type SCREAMING_SNAKE_CASE = use_proj SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = bos_token_id def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE = None if self.use_input_lengths: SCREAMING_SNAKE_CASE = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2).float() SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> List[Any]: SCREAMING_SNAKE_CASE = XLMModel(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , lengths=a , langs=a) SCREAMING_SNAKE_CASE = model(a , langs=a) SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Optional[int]: SCREAMING_SNAKE_CASE = XLMWithLMHeadModel(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> str: SCREAMING_SNAKE_CASE = XLMForQuestionAnsweringSimple(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) SCREAMING_SNAKE_CASE = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Tuple: SCREAMING_SNAKE_CASE = XLMForQuestionAnswering(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = XLMForSequenceClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> int: SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = XLMForTokenClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Optional[int]: SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = XLMForMultipleChoice(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class _snake_case ( A__ , A__ , A__ , unittest.TestCase ): _lowercase : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Union[str, Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : List[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> List[Any]: SCREAMING_SNAKE_CASE = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = XLMModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , emb_dim=37) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a=False , a=1) -> List[str]: self.assertIsInstance(a , a) self.assertListEqual( [isinstance(a , a) for iter_attentions in attentions] , [True] * len(a)) self.assertEqual(len(a) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(a): # adds PAD dummy token SCREAMING_SNAKE_CASE = min_length + idx + 1 SCREAMING_SNAKE_CASE = min_length + idx + 1 SCREAMING_SNAKE_CASE = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(a)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a=False , a=1) -> Dict: self.assertIsInstance(a , a) self.assertListEqual( [isinstance(a , a) for iter_hidden_states in hidden_states] , [True] * len(a) , ) self.assertEqual(len(a) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(a): # adds PAD dummy token SCREAMING_SNAKE_CASE = min_length + idx + 1 SCREAMING_SNAKE_CASE = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(a) , ) pass @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = XLMModel.from_pretrained(a) self.assertIsNotNone(a) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(a) SCREAMING_SNAKE_CASE = torch.tensor([[14, 447]] , dtype=torch.long , device=a) # the president SCREAMING_SNAKE_CASE = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference SCREAMING_SNAKE_CASE = model.generate(a , do_sample=a) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , a)
73
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCAmelCase : def __init__( self : str , a__ : Union[str, Any] , a__ : Union[str, Any]=13 , a__ : Union[str, Any]=7 , a__ : Any=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Any=99 , a__ : Dict=32 , a__ : Tuple=5 , a__ : List[Any]=4 , a__ : List[Any]=37 , a__ : List[str]="gelu" , a__ : Dict=0.1 , a__ : str=0.1 , a__ : str=512 , a__ : List[str]=16 , a__ : Dict=2 , a__ : Union[str, Any]=0.02 , a__ : Dict=3 , a__ : List[Any]=4 , a__ : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : int = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = max_position_embeddings lowerCAmelCase__ : str = type_vocab_size lowerCAmelCase__ : List[Any] = type_sequence_label_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : Optional[Any] = num_choices lowerCAmelCase__ : int = scope lowerCAmelCase__ : List[str] = self.vocab_size - 1 def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Dict = None if self.use_token_type_ids: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Any = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _A ( self : Dict , a__ : Any , a__ : Any , a__ : int , a__ : str , *a__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = OpenAIGPTModel(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a__ , token_type_ids=a__ , head_mask=a__ ) lowerCAmelCase__ : Optional[int] = model(a__ , token_type_ids=a__ ) lowerCAmelCase__ : Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Optional[int] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : Any , *a__ : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = OpenAIGPTLMHeadModel(a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Dict = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[str] , a__ : str , a__ : Dict , a__ : Union[str, Any] , a__ : int , *a__ : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = OpenAIGPTDoubleHeadsModel(a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Any , a__ : Any , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Any , *a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Union[str, Any] = OpenAIGPTForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Tuple = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): A_ : str = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A_ : Any = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A_ : int = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _A ( self : List[Any] , a__ : Optional[Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[Any] , a__ : int ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _A ( self : Dict , a__ : Optional[int] , a__ : List[Any] , a__ : List[Any]=False ): '''simple docstring''' lowerCAmelCase__ : Any = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase__ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a__ , ) lowerCAmelCase__ : Union[str, Any] = inputs_dict["labels"] lowerCAmelCase__ : int = inputs_dict["labels"] lowerCAmelCase__ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a__ , ) lowerCAmelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def _A ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = OpenAIGPTModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=a__ , n_embd=37 ) def _A ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a__ ) def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a__ ) def _A ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a__ ) def _A ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a__ ) @slow def _A ( self : Tuple ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Any = OpenAIGPTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(a__ ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=a__ ) # the president is lowerCAmelCase__ : Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase__ : Optional[int] = model.generate(a__ , do_sample=a__ ) self.assertListEqual(output_ids[0].tolist() , a__ )
378
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = 42 __snake_case = 42 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(_UpperCamelCase ) )] def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) _lowerCamelCase : Optional[int] = all_rotations(_UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCamelCase : List[Any] = { '''bwt_string''': ''''''.join([word[-1] for word in rotations] ), '''idx_original_string''': rotations.index(_UpperCamelCase ), } return response def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: _lowerCamelCase : str = int(_UpperCamelCase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(_UpperCamelCase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) _lowerCamelCase : List[Any] = [''''''] * len(_UpperCamelCase ) for _ in range(len(_UpperCamelCase ) ): for i in range(len(_UpperCamelCase ) ): _lowerCamelCase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] ="Provide a string that I will generate its BWT transform: " SCREAMING_SNAKE_CASE__ : List[Any] =input(entry_msg).strip() SCREAMING_SNAKE_CASE__ : Any =bwt_transform(s) print( F"""Burrows Wheeler transform for string \'{s}\' results """ F"""in \'{result['bwt_string']}\'""" ) SCREAMING_SNAKE_CASE__ : Dict =reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' """ F"""we get original string \'{original_string}\'""" )
721
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = False , ) -> Tuple: super().__init__() _lowerCamelCase : Tuple = nn.Embedding(_lowercase , _lowercase ) _lowerCamelCase : Dict = nn.Embedding(_lowercase , _lowercase ) _lowerCamelCase : Tuple = False _lowerCamelCase : Any = nn.Dropout(p=_lowercase ) _lowerCamelCase : List[Any] = TaConfig( vocab_size=_lowercase , d_model=_lowercase , num_heads=_lowercase , d_kv=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , feed_forward_proj=_lowercase , is_decoder=_lowercase , is_encoder_decoder=_lowercase , ) _lowerCamelCase : List[Any] = nn.ModuleList() for lyr_num in range(_lowercase ): _lowerCamelCase : Tuple = TaBlock(_lowercase ) self.encoders.append(_lowercase ) _lowerCamelCase : str = TaLayerNorm(_lowercase ) _lowerCamelCase : List[Any] = nn.Dropout(p=_lowercase ) def a__ ( self , _lowercase , _lowercase ) -> Optional[Any]: _lowerCamelCase : List[Any] = self.token_embedder(_lowercase ) _lowerCamelCase : Union[str, Any] = encoder_input_tokens.shape[1] _lowerCamelCase : int = torch.arange(_lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowercase ) _lowerCamelCase : Tuple = self.dropout_pre(_lowercase ) # inverted the attention mask _lowerCamelCase : int = encoder_input_tokens.size() _lowerCamelCase : Union[str, Any] = self.get_extended_attention_mask(_lowercase , _lowercase ) for lyr in self.encoders: _lowerCamelCase : List[Any] = lyr(_lowercase , _lowercase )[0] _lowerCamelCase : str = self.layer_norm(_lowercase ) return self.dropout_post(_lowercase ), encoder_inputs_mask
558
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class a_ ( unittest.TestCase ): UpperCamelCase_ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase_ : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator("""This is a test""" , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) lowerCAmelCase__ = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( snake_case__ , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) lowerCAmelCase__ = text_generator("""This is a test""" , do_sample=snake_case__ , num_return_sequences=2 , return_tensors=snake_case__ ) self.assertEqual( snake_case__ , [ {"""generated_token_ids""": ANY(snake_case__ )}, {"""generated_token_ids""": ANY(snake_case__ )}, ] , ) lowerCAmelCase__ = text_generator.model.config.eos_token_id lowerCAmelCase__ = """<pad>""" lowerCAmelCase__ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=snake_case__ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case__ , ) self.assertEqual( snake_case__ , [ [ {"""generated_token_ids""": ANY(snake_case__ )}, {"""generated_token_ids""": ANY(snake_case__ )}, ], [ {"""generated_token_ids""": ANY(snake_case__ )}, {"""generated_token_ids""": ANY(snake_case__ )}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator("""This is a test""" , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) lowerCAmelCase__ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): lowerCAmelCase__ = TextGenerationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return text_generator, ["This is a test", "Another test"] def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = """Hello I believe in""" lowerCAmelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase__ = text_generator(snake_case__ ) self.assertEqual( snake_case__ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) lowerCAmelCase__ = text_generator(snake_case__ , stop_sequence=""" fe""" ) self.assertEqual(snake_case__ , [{"""generated_text""": """Hello I believe in fe"""}] ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = text_generator.model lowerCAmelCase__ = text_generator.tokenizer lowerCAmelCase__ = text_generator("""This is a test""" ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCAmelCase__ = text_generator("""This is a test""" , return_full_text=snake_case__ ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCAmelCase__ = pipeline(task="""text-generation""" , model=snake_case__ , tokenizer=snake_case__ , return_full_text=snake_case__ ) lowerCAmelCase__ = text_generator("""This is a test""" ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCAmelCase__ = text_generator("""This is a test""" , return_full_text=snake_case__ ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCAmelCase__ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], ] , ) with self.assertRaises(snake_case__ ): lowerCAmelCase__ = text_generator("""test""" , return_full_text=snake_case__ , return_text=snake_case__ ) with self.assertRaises(snake_case__ ): lowerCAmelCase__ = text_generator("""test""" , return_full_text=snake_case__ , return_tensors=snake_case__ ) with self.assertRaises(snake_case__ ): lowerCAmelCase__ = text_generator("""test""" , return_text=snake_case__ , return_tensors=snake_case__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ = text_generator("""""" ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) lowerCAmelCase__ = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(snake_case__ ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : str ): import torch # Classic `model_kwargs` lowerCAmelCase__ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe("""This is a test""" ) self.assertEqual( snake_case__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe("""This is a test""" ) self.assertEqual( snake_case__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ = pipe("""This is a test""" ) self.assertEqual( snake_case__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): import torch lowerCAmelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): import torch lowerCAmelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=snake_case__ , top_p=0.5 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = """Hello world""" lowerCAmelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": lowerCAmelCase__ = logging.get_logger("""transformers.generation.tf_utils""" ) else: lowerCAmelCase__ = logging.get_logger("""transformers.generation.utils""" ) lowerCAmelCase__ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(snake_case__ ) as cl: lowerCAmelCase__ = text_generator(snake_case__ , max_length=10 , max_new_tokens=1 ) self.assertIn(snake_case__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(snake_case__ ) as cl: lowerCAmelCase__ = text_generator(snake_case__ , max_new_tokens=1 ) self.assertNotIn(snake_case__ , cl.out ) with CaptureLogger(snake_case__ ) as cl: lowerCAmelCase__ = text_generator(snake_case__ , max_length=10 ) self.assertNotIn(snake_case__ , cl.out )
644
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a_ : def __init__( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : int=13 , snake_case__ : List[str]=7 , snake_case__ : Any=True , snake_case__ : Any=True , snake_case__ : Dict=True , snake_case__ : List[Any]=True , snake_case__ : List[str]=99 , snake_case__ : Any=32 , snake_case__ : List[str]=2 , snake_case__ : Any=4 , snake_case__ : Dict=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[int]=512 , snake_case__ : Union[str, Any]=16 , snake_case__ : str=2 , snake_case__ : Dict=0.02 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : List[Any]=None , snake_case__ : str=0 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = projection_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) lowerCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = TFDPRContextEncoder(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : str , snake_case__ : Dict , snake_case__ : str , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict ): lowerCAmelCase__ = TFDPRQuestionEncoder(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Tuple ): lowerCAmelCase__ = TFDPRReader(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase_ : Any = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = TFDPRModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRReader.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCAmelCase__ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase__ = model(snake_case__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
644
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A : Dict = None __A : List[str] = logging.get_logger(__name__) __A : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A : List[Any] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __A : Union[str, Any] = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } __A : Tuple = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = BigBirdTokenizer SCREAMING_SNAKE_CASE_ : Tuple = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self : Union[str, Any] , A : Union[str, Any]=None , A : List[str]=None , A : int="<unk>" , A : List[Any]="<s>" , A : List[str]="</s>" , A : List[Any]="<pad>" , A : Optional[int]="[SEP]" , A : int="[MASK]" , A : Optional[int]="[CLS]" , **A : Dict , ) -> Any: lowercase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token lowercase_ : List[str] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token lowercase_ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token lowercase_ : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token lowercase_ : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token lowercase_ : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowercase_ : str = vocab_file lowercase_ : str = False if not self.vocab_file else True def A ( self : Any , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : List[str] = [self.sep_token_id] lowercase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Tuple , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def A ( self : Any , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Any , A : str , A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Union[str, Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
704
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : def __init__( self : Tuple , A : Union[str, Any] , A : Optional[int]=13 , A : Dict=30 , A : List[Any]=2 , A : List[Any]=3 , A : Tuple=True , A : Dict=True , A : Union[str, Any]=32 , A : Optional[int]=5 , A : Tuple=4 , A : Any=37 , A : Dict="gelu" , A : Optional[Any]=0.1 , A : Union[str, Any]=0.1 , A : Any=10 , A : Dict=0.02 , A : Any=3 , A : str=None , A : Dict=2 , ) -> Optional[int]: lowercase_ : str = parent lowercase_ : Optional[int] = batch_size lowercase_ : int = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Optional[Any] = is_training lowercase_ : str = use_labels lowercase_ : Tuple = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Any = initializer_range lowercase_ : Optional[int] = scope lowercase_ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ : Optional[Any] = (image_size // patch_size) ** 2 lowercase_ : List[Any] = num_patches + 2 def A ( self : Dict ) -> str: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : int = self.get_config() return config, pixel_values, labels def A ( self : Tuple ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Optional[Any] , A : Optional[int] , A : Any , A : Any ) -> int: lowercase_ : Any = DeiTModel(config=A ) model.to(A ) model.eval() lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , A : int , A : Optional[int] , A : Optional[Any] ) -> str: lowercase_ : int = DeiTForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowercase_ : int = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : Any = DeiTForMaskedImageModeling(A ) model.to(A ) model.eval() lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A ( self : int , A : str , A : Optional[int] , A : List[str] ) -> List[Any]: lowercase_ : str = self.type_sequence_label_size lowercase_ : Tuple = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Optional[Any] = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Dict ) -> Optional[Any]: lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = config_and_inputs lowercase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False def A ( self : Optional[Any] ) -> Dict: lowercase_ : List[Any] = DeiTModelTester(self ) lowercase_ : int = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def A ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def A ( self : int ) -> List[Any]: pass def A ( self : Any ) -> Tuple: lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def A ( self : Tuple ) -> Optional[int]: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(A ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : Tuple ) -> Optional[int]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : Dict ) -> List[str]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def A ( self : int ) -> Union[str, Any]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def A ( self : Tuple , A : Optional[int] , A : int , A : Optional[Any]=False ) -> int: lowercase_ : Dict = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self : int ) -> str: if not self.model_tester.is_training: return lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ : Any = model_class(A ) model.to(A ) model.train() lowercase_ : Any = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Dict ) -> Union[str, Any]: lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = False lowercase_ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ : Optional[Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() lowercase_ : str = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Tuple ) -> Any: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), *get_values(A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): lowercase_ : int = problem_type['''title'''] lowercase_ : int = problem_type['''num_labels'''] lowercase_ : Dict = model_class(A ) model.to(A ) model.train() lowercase_ : Tuple = self._prepare_for_class(A , A , return_labels=A ) if problem_type["num_labels"] > 1: lowercase_ : Any = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) lowercase_ : Dict = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: lowercase_ : str = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = DeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ) -> Dict: return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def A ( self : Optional[Any] ) -> Dict: lowercase_ : Dict = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( A ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Dict = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**A ) # verify the logits lowercase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : int = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase_ : Any = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=A , return_tensors='''pt''' ) lowercase_ : Any = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : List[Any] = model(A )
141
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[str] = """▁""" __lowerCamelCase : str = {"""vocab_file""": """spiece.model"""} __lowerCamelCase : Dict = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } __lowerCamelCase : Any = { """google/reformer-crime-and-punishment""": 52_4288, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : str , __A : int , __A : str="</s>" , __A : Optional[int]="<unk>" , __A : int=[] , __A : Optional[Dict[str, Any]] = None , **__A : Any , ): snake_case__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__A , unk_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) snake_case__ : List[str] = vocab_file snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def _lowercase ( self : Optional[int] ): return self.sp_model.get_piece_size() def _lowercase ( self : int ): snake_case__ : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): snake_case__ : int = self.__dict__.copy() snake_case__ : List[str] = None return state def __setstate__( self : List[str] , __A : Tuple ): snake_case__ : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case__ : Dict = {} snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def _lowercase ( self : List[str] , __A : List[str] ): return self.sp_model.piece_to_id(__A ) def _lowercase ( self : Optional[int] , __A : Any ): if index < self.sp_model.get_piece_size(): snake_case__ : Tuple = self.sp_model.IdToPiece(__A ) return token def _lowercase ( self : Optional[int] , __A : Union[str, Any] ): snake_case__ : Any = [] snake_case__ : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token snake_case__ : int = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def _lowercase ( self : Any , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Union[str, Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: snake_case__ : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
297
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : str = {"""vocab_file""": """vocab.txt"""} __lowerCamelCase : str = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } __lowerCamelCase : Dict = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } __lowerCamelCase : List[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ConvBertTokenizer def __init__( self : Tuple , __A : Any=None , __A : Union[str, Any]=None , __A : List[Any]=True , __A : Optional[Any]="[UNK]" , __A : Tuple="[SEP]" , __A : Tuple="[PAD]" , __A : List[str]="[CLS]" , __A : Optional[Any]="[MASK]" , __A : List[str]=True , __A : Optional[Any]=None , **__A : Any , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) snake_case__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __A ) != do_lower_case or normalizer_state.get("strip_accents" , __A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __A ) != tokenize_chinese_chars ): snake_case__ : Dict = getattr(__A , normalizer_state.pop("type" ) ) snake_case__ : str = do_lower_case snake_case__ : Optional[int] = strip_accents snake_case__ : int = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__A ) snake_case__ : Union[str, Any] = do_lower_case def _lowercase ( self : Any , __A : int , __A : Union[str, Any]=None ): snake_case__ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): snake_case__ : Tuple = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
297
1
def A(__a: int ): if not isinstance(__a , __a ): raise TypeError("only integers accepted as input" ) else: lowerCAmelCase_ = str(abs(__a ) ) lowerCAmelCase_ = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int("".join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
707
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase__ = '''Usage of script: script_name <size_of_canvas:int>''' lowerCamelCase__ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def A(__a: int ): lowerCAmelCase_ = [[False for i in range(__a )] for j in range(__a )] return canvas def A(__a: list[list[bool]] ): for i, row in enumerate(__a ): for j, _ in enumerate(__a ): lowerCAmelCase_ = bool(random.getrandbits(1 ) ) def A(__a: list[list[bool]] ): lowerCAmelCase_ = np.array(__a ) lowerCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): lowerCAmelCase_ = __judge_point( __a , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCAmelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCAmelCase_ = current_canvas.tolist() return return_canvas def A(__a: bool , __a: list[list[bool]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCAmelCase_ = pt if pt: if alive < 2: lowerCAmelCase_ = False elif alive == 2 or alive == 3: lowerCAmelCase_ = True elif alive > 3: lowerCAmelCase_ = False else: if alive == 3: lowerCAmelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase__ = int(sys.argv[1]) # main working structure of this module. lowerCamelCase__ = create_canvas(canvas_size) seed(c) lowerCamelCase__ , lowerCamelCase__ = plt.subplots() fig.show() lowerCamelCase__ = ListedColormap(['''w''', '''k''']) try: while True: lowerCamelCase__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
226
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _a ( __lowerCAmelCase : Tuple ): """simple docstring""" snake_case__ : Dict = model.config snake_case__ : Optional[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case__ : List[str] = MBartConfig( is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCAmelCase , add_final_layer_norm=_lowerCAmelCase , ) return encoder_config, decoder_config def _a ( __lowerCAmelCase : Optional[Any] ): """simple docstring""" if "encoder.model" in name: snake_case__ : Dict = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: snake_case__ : Union[str, Any] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: snake_case__ : List[Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case__ : List[str] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: snake_case__ : Any = '''encoder.''' + name if "attn.proj" in name: snake_case__ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: snake_case__ : List[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case__ : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": snake_case__ : List[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": snake_case__ : str = '''encoder.layernorm.bias''' return name def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case__ : Optional[Any] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: snake_case__ : int = key.split('''.''' ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : Any = int(key_split[5] ) snake_case__ : Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : str = val[:dim, :] snake_case__ : int = val[dim : dim * 2, :] snake_case__ : int = val[-dim:, :] else: snake_case__ : Optional[Any] = val[:dim] snake_case__ : Union[str, Any] = val[dim : dim * 2] snake_case__ : List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case__ : List[str] = val return orig_state_dict def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=False ): """simple docstring""" snake_case__ : Tuple = DonutModel.from_pretrained(_lowerCAmelCase ).eval() # load HuggingFace model snake_case__ , snake_case__ : Optional[Any] = get_configs(_lowerCAmelCase ) snake_case__ : Dict = DonutSwinModel(_lowerCAmelCase ) snake_case__ : str = MBartForCausalLM(_lowerCAmelCase ) snake_case__ : Dict = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() snake_case__ : List[Any] = original_model.state_dict() snake_case__ : Tuple = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify results on scanned document snake_case__ : List[str] = load_dataset('''hf-internal-testing/example-documents''' ) snake_case__ : Union[str, Any] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) snake_case__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(_lowerCAmelCase , from_slow=_lowerCAmelCase ) snake_case__ : Optional[int] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case__ : str = DonutProcessor(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Dict = processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case__ : Union[str, Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' snake_case__ : Dict = '''When is the coffee break?''' snake_case__ : List[Any] = task_prompt.replace('''{user_input}''' , _lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case__ : Tuple = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case__ : Optional[int] = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case__ : Tuple = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case__ : Optional[int] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case__ : List[Any] = '''hello world''' else: raise ValueError('''Model name not supported''' ) snake_case__ : Optional[int] = original_model.decoder.tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] snake_case__ : Optional[int] = original_model.encoder.model.patch_embed(_lowerCAmelCase ) snake_case__ , snake_case__ : List[Any] = model.encoder.embeddings(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) # verify encoder hidden states snake_case__ : int = original_model.encoder(_lowerCAmelCase ) snake_case__ : Optional[int] = model.encoder(_lowerCAmelCase ).last_hidden_state assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) # verify decoder hidden states snake_case__ : Union[str, Any] = original_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).logits snake_case__ : List[Any] = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) lowerCAmelCase__ : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
347
def _lowerCAmelCase ( _lowerCAmelCase = 1000 ) -> int: '''simple docstring''' __snake_case = 2**power __snake_case = str(_lowerCAmelCase ) __snake_case = list(_lowerCAmelCase ) __snake_case = 0 for i in list_num: sum_of_num += int(_lowerCAmelCase ) return sum_of_num if __name__ == "__main__": A : Optional[Any] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) A : List[Any] = solution(power) print('Sum of the digits is: ', result)
371
0
'''simple docstring''' def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCamelCase = 6 UpperCamelCase = 1 UpperCamelCase = 1_901 UpperCamelCase = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCamelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCamelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCamelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCamelCase = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
704
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase : Tuple = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase : str = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def A ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any="auto" , UpperCamelCase__ : List[str]=-1 , UpperCamelCase__ : int=0.9 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Union[str, Any]=5_0_0 , UpperCamelCase__ : Union[str, Any]="gpt2-large" , UpperCamelCase__ : Union[str, Any]=-1 , UpperCamelCase__ : Dict=1_0_2_4 , UpperCamelCase__ : Dict=2_5 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=2_5 , ): """simple docstring""" UpperCamelCase = compute_mauve( p_text=UpperCamelCase__ , q_text=UpperCamelCase__ , p_features=UpperCamelCase__ , q_features=UpperCamelCase__ , p_tokens=UpperCamelCase__ , q_tokens=UpperCamelCase__ , num_buckets=UpperCamelCase__ , pca_max_data=UpperCamelCase__ , kmeans_explained_var=UpperCamelCase__ , kmeans_num_redo=UpperCamelCase__ , kmeans_max_iter=UpperCamelCase__ , featurize_model_name=UpperCamelCase__ , device_id=UpperCamelCase__ , max_text_length=UpperCamelCase__ , divergence_curve_discretization_size=UpperCamelCase__ , mauve_scaling_factor=UpperCamelCase__ , verbose=UpperCamelCase__ , seed=UpperCamelCase__ , ) return out
324
0
import math def lowercase ( ) -> None: UpperCAmelCase_: Any = input("Enter message: " ) UpperCAmelCase_: Optional[Any] = int(input(f"Enter key [2-{len(_a ) - 1}]: " ) ) UpperCAmelCase_: Any = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_: Optional[int] = encrypt_message(_a ,_a ) elif mode.lower().startswith("d" ): UpperCAmelCase_: List[Any] = decrypt_message(_a ,_a ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def lowercase ( _a ,_a ) -> str: UpperCAmelCase_: Optional[Any] = [''] * key for col in range(_a ): UpperCAmelCase_: Optional[Any] = col while pointer < len(_a ): cipher_text[col] += message[pointer] pointer += key return "".join(_a ) def lowercase ( _a ,_a ) -> str: UpperCAmelCase_: List[Any] = math.ceil(len(_a ) / key ) UpperCAmelCase_: Tuple = key UpperCAmelCase_: Optional[Any] = (num_cols * num_rows) - len(_a ) UpperCAmelCase_: int = [''] * num_cols UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_: Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_: List[str] = 0 row += 1 return "".join(_a ) if __name__ == "__main__": import doctest doctest.testmod() main()
137
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1_0001 ) -> int: try: SCREAMING_SNAKE_CASE_ : int = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE_ : list[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 while len(SCREAMING_SNAKE_CASE ) < nth: if is_prime(SCREAMING_SNAKE_CASE ): primes.append(SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
345
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case_ ( SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=10_26 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE__="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _snake_case , _snake_case = generate_datasets( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model _snake_case = load_gpta("gpt2" ).to(SCREAMING_SNAKE_CASE__ ) print("computing perplexity on objective set" ) _snake_case = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).item() print("perplexity on objective set:" , SCREAMING_SNAKE_CASE__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=15 , SCREAMING_SNAKE_CASE__=1_28 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model _snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model _snake_case = SecondaryLearner(SCREAMING_SNAKE_CASE__ ) # Train secondary learner _snake_case = train_secondary_learner( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_epochs=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , eval_freq=1_00 , igf_model_path=SCREAMING_SNAKE_CASE__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=10_00 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=recopy_gpta , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__="gpt2_finetuned.pt" , ): '''simple docstring''' _snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) _snake_case = RandomSampler(SCREAMING_SNAKE_CASE__ ) _snake_case = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ ) _snake_case = max_steps // (len(SCREAMING_SNAKE_CASE__ )) + 1 _snake_case = 0 _snake_case = torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case , _snake_case = recopy_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.train() if secondary_learner is not None: secondary_learner.to(SCREAMING_SNAKE_CASE__ ) secondary_learner.eval() _snake_case = [] _snake_case = 0 _snake_case = [] _snake_case = [] # Compute the performance of the transformer model at the beginning _snake_case = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print("Test perplexity, step" , SCREAMING_SNAKE_CASE__ , ":" , SCREAMING_SNAKE_CASE__ ) for epoch in range(int(SCREAMING_SNAKE_CASE__ ) ): for step, example in enumerate(SCREAMING_SNAKE_CASE__ ): torch.cuda.empty_cache() _snake_case = random.randint(0 , example.size(2 ) - context_len - 1 ) _snake_case = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _snake_case = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) _snake_case = True if secondary_learner is not None: _snake_case = secondary_learner.forward( torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(SCREAMING_SNAKE_CASE__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _snake_case = -1 if predicted_q < threshold: _snake_case = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _snake_case = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _snake_case = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _snake_case = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print("Test perplexity, step" , SCREAMING_SNAKE_CASE__ , ":" , SCREAMING_SNAKE_CASE__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case_ ( ): '''simple docstring''' _snake_case = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=SCREAMING_SNAKE_CASE__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=SCREAMING_SNAKE_CASE__ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=SCREAMING_SNAKE_CASE__ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=SCREAMING_SNAKE_CASE__ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=SCREAMING_SNAKE_CASE__ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=SCREAMING_SNAKE_CASE__ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=SCREAMING_SNAKE_CASE__ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=SCREAMING_SNAKE_CASE__ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner _snake_case = joblib.load("data/IGF_values.jbl" ) # Train secondary learner _snake_case = training_secondary_learner( SCREAMING_SNAKE_CASE__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model _snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _snake_case , _snake_case = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE__ , secondary_learner=SCREAMING_SNAKE_CASE__ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
368
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __magic_name__ : Union[str, Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __magic_name__ : int = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(rows * cols * num_images ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) _snake_case = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = labels_dense.shape[0] _snake_case = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes _snake_case = numpy.zeros((num_labels, num_classes) ) _snake_case = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(SCREAMING_SNAKE_CASE__ ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class __SCREAMING_SNAKE_CASE : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=dtypes.floataa , lowerCamelCase=True , lowerCamelCase=None , ): _snake_case , _snake_case = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _snake_case = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _snake_case = 10_000 _snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' _snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _snake_case = images.astype(numpy.floataa ) _snake_case = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) _snake_case = images _snake_case = labels _snake_case = 0 _snake_case = 0 @property def UpperCamelCase( self ): return self._images @property def UpperCamelCase( self ): return self._labels @property def UpperCamelCase( self ): return self._num_examples @property def UpperCamelCase( self ): return self._epochs_completed def UpperCamelCase( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=True ): if fake_data: _snake_case = [1] * 784 _snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) _snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perma] _snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _snake_case = self._num_examples - start _snake_case = self._images[start : self._num_examples] _snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perm] _snake_case = self.labels[perm] # Start next epoch _snake_case = 0 _snake_case = batch_size - rest_num_examples _snake_case = self._index_in_epoch _snake_case = self._images[start:end] _snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: _snake_case = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=dtypes.floataa , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50_00 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) _snake_case = fake() _snake_case = fake() _snake_case = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check _snake_case = DEFAULT_SOURCE_URL _snake_case = "train-images-idx3-ubyte.gz" _snake_case = "train-labels-idx1-ubyte.gz" _snake_case = "t10k-images-idx3-ubyte.gz" _snake_case = "t10k-labels-idx1-ubyte.gz" _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): _snake_case = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) _snake_case = train_images[:validation_size] _snake_case = train_labels[:validation_size] _snake_case = train_images[validation_size:] _snake_case = train_labels[validation_size:] _snake_case = {"dtype": dtype, "reshape": reshape, "seed": seed} _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
368
1