code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def __init__( self , a , a = True , a = None , a = 32 , a = True , a = 1 / 255 , a = True , a = True , a = [0.48_145_466, 0.4_578_275, 0.40_821_073] , a = [0.26_862_954, 0.26_130_258, 0.27_577_711] , a = True , a=7 , a=30 , a=400 , a=3 , ): lowercase__ : List[str] = parent lowercase__ : str = do_resize lowercase__ : str = size if size is not None else {'shortest_edge': 288} lowercase__ : Tuple = size_divisor lowercase__ : List[str] = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : str = image_mean lowercase__ : List[Any] = image_std lowercase__ : str = do_pad lowercase__ : Tuple = batch_size lowercase__ : List[str] = num_channels lowercase__ : Any = min_resolution lowercase__ : Optional[Any] = max_resolution def snake_case_ ( self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case_ ( self , a , a=False): if not batched: lowercase__ : Optional[Any] = self.size['shortest_edge'] lowercase__ : List[str] = image_inputs[0] if isinstance(snake_case_ , Image.Image): lowercase__ , lowercase__ : Optional[int] = image.size else: lowercase__ , lowercase__ : Optional[int] = image.shape[1], image.shape[2] lowercase__ : List[Any] = size / min(snake_case_ , snake_case_) if h < w: lowercase__ , lowercase__ : Union[str, Any] = size, scale * w else: lowercase__ , lowercase__ : Optional[Any] = scale * h, size lowercase__ : Dict = int((1333 / 800) * size) if max(snake_case_ , snake_case_) > max_size: lowercase__ : str = max_size / max(snake_case_ , snake_case_) lowercase__ : Any = newh * scale lowercase__ : Tuple = neww * scale lowercase__ , lowercase__ : Union[str, Any] = int(newh + 0.5), int(neww + 0.5) lowercase__ , lowercase__ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ : Optional[Any] = [] for image in image_inputs: lowercase__ , lowercase__ : str = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowercase__ : Union[str, Any] = max(snake_case_ , key=lambda a: item[0])[0] lowercase__ : Optional[Any] = max(snake_case_ , key=lambda a: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ (lowerCAmelCase_ , unittest.TestCase ): __lowerCamelCase : str = BridgeTowerImageProcessor if is_vision_available() else None def snake_case_ ( self): lowercase__ : Optional[int] = BridgeTowerImageProcessingTester(self) @property def snake_case_ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self): lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case_ , 'image_mean')) self.assertTrue(hasattr(snake_case_ , 'image_std')) self.assertTrue(hasattr(snake_case_ , 'do_normalize')) self.assertTrue(hasattr(snake_case_ , 'do_resize')) self.assertTrue(hasattr(snake_case_ , 'size')) self.assertTrue(hasattr(snake_case_ , 'size_divisor')) def snake_case_ ( self): pass def snake_case_ ( self): # Initialize image processor lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Tuple = image_processing(snake_case_ , return_tensors='pt').pixel_values lowercase__ , lowercase__ : str = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self): # Initialize image processor lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray) # Test not batched input lowercase__ : Any = image_processing(image_inputs[0] , return_tensors='pt').pixel_values lowercase__ , lowercase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Any = image_processing(snake_case_ , return_tensors='pt').pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self): # Initialize image processor lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values lowercase__ , lowercase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : List[str] = image_processing(snake_case_ , return_tensors='pt').pixel_values lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
164
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __SCREAMING_SNAKE_CASE :Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __SCREAMING_SNAKE_CASE :Any = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __SCREAMING_SNAKE_CASE :Any = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __lowercase ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowercase ): _UpperCAmelCase = None if _re_tf_models.match(__lowercase ) is not None: _UpperCAmelCase = tf_models _UpperCAmelCase = _re_tf_models.match(__lowercase ).groups()[0] elif _re_flax_models.match(__lowercase ) is not None: _UpperCAmelCase = flax_models _UpperCAmelCase = _re_flax_models.match(__lowercase ).groups()[0] elif _re_pt_models.match(__lowercase ) is not None: _UpperCAmelCase = pt_models _UpperCAmelCase = _re_pt_models.match(__lowercase ).groups()[0] if lookup_dict is not None: while len(__lowercase ) > 0: if attr_name in model_prefix_to_model_type: _UpperCAmelCase = True break # Try again after removing the last word in the name _UpperCAmelCase = "".join(camel_case_split(__lowercase )[:-1] ) _UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _UpperCAmelCase = list(__lowercase ) all_models.sort() _UpperCAmelCase = {"model_type": all_models} _UpperCAmelCase = [pt_models[t] for t in all_models] _UpperCAmelCase = [tf_models[t] for t in all_models] _UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _UpperCAmelCase = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _UpperCAmelCase = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _UpperCAmelCase = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _UpperCAmelCase = "AutoTokenizer" _UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _UpperCAmelCase = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] _UpperCAmelCase = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__lowercase , __lowercase , __lowercase ): # The type of pipeline may not exist in this framework if not hasattr(__lowercase , __lowercase ): continue # First extract all model_names _UpperCAmelCase = [] for name in getattr(__lowercase , __lowercase ).values(): if isinstance(__lowercase , __lowercase ): model_names.append(__lowercase ) else: model_names.extend(list(__lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = get_frameworks_table() _UpperCAmelCase = Dataset.from_pandas(__lowercase ) _UpperCAmelCase = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__lowercase ) _UpperCAmelCase = Dataset.from_json(__lowercase ) _UpperCAmelCase = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__lowercase ) ) } _UpperCAmelCase = update_pipeline_and_auto_class_table(__lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _UpperCAmelCase = sorted(table.keys() ) _UpperCAmelCase = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) _UpperCAmelCase = Dataset.from_pandas(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowercase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__lowercase , "pipeline_tags.json" ) ) if commit_sha is not None: _UpperCAmelCase = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: _UpperCAmelCase = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__lowercase , repo_type="dataset" , token=__lowercase , commit_message=__lowercase , ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS _UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: _UpperCAmelCase = pipeline_tasks[key]["pt"] if isinstance(__lowercase , (list, tuple) ): _UpperCAmelCase = model[0] _UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ", ".join(__lowercase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
236
0
import numpy as np class _a : '''simple docstring''' def __init__( self ): __A : Optional[int] = (0, 0) __A : Union[str, Any] = None __A : Tuple = 0 __A : List[str] = 0 __A : Dict = 0 def __eq__( self , __UpperCAmelCase ): return self.position == cell.position def __UpperCAmelCase( self ): print(self.position ) class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase=(5, 5) ): __A : Tuple = np.zeros(__UpperCAmelCase ) __A : Tuple = world_size[0] __A : List[str] = world_size[1] def __UpperCAmelCase( self ): print(self.w ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : Tuple = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __A : str = cell.position[0] __A : Tuple = cell.position[1] __A : Optional[Any] = [] for n in neughbour_cord: __A : Optional[int] = current_x + n[0] __A : Optional[int] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __A : Optional[Any] = Cell() __A : int = (x, y) __A : Any = cell neighbours.append(__UpperCAmelCase ) return neighbours def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> List[Any]: __A : Optional[int] = [] __A : Dict = [] _open.append(_lowercase ) while _open: __A : List[str] = np.argmin([n.f for n in _open] ) __A : List[str] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue __A : List[str] = current.g + 1 __A , __A : Dict = n.position __A , __A : Dict = goal.position __A : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 __A : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) __A : Dict = [] while current.parent is not None: path.append(current.position ) __A : List[Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase = Gridworld() # Start position and goal UpperCamelCase = Cell() UpperCamelCase = (0, 0) UpperCamelCase = Cell() UpperCamelCase = (4, 4) print(F'''path from {start.position} to {goal.position}''') UpperCamelCase = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase = 1 print(world.w)
387
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['MobileNetV2FeatureExtractor'] UpperCamelCase = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
387
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase (__snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[int] = True def __snake_case ( self :Optional[int] ) ->List[str]: super().setUp() # We have a SentencePiece fixture for testing lowercase : List[str] = XLMProphetNetTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self :int ) ->Any: lowercase : Dict = """[PAD]""" lowercase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __snake_case ( self :Any ) ->Union[str, Any]: lowercase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__magic_name__ ) , 1_012 ) def __snake_case ( self :int ) ->int: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def __snake_case ( self :Optional[Any] ) ->List[Any]: lowercase : Optional[Any] = XLMProphetNetTokenizer(__magic_name__ , keep_accents=__magic_name__ ) lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def __snake_case ( self :List[Any] ) ->str: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def __snake_case ( self :int ) ->Optional[Any]: lowercase : str = """Hello World!""" lowercase : Optional[Any] = [35_389, 6_672, 49, 2] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def __snake_case ( self :Optional[int] ) ->Union[str, Any]: # fmt: off lowercase : Optional[int] = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
264
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _lowerCAmelCase = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCamelCase ( _A ) -> List[str]: lowercase : List[str] = EfficientNetConfig() lowercase : Any = CONFIG_MAP[model_name]["""hidden_dim"""] lowercase : List[str] = CONFIG_MAP[model_name]["""width_coef"""] lowercase : str = CONFIG_MAP[model_name]["""depth_coef"""] lowercase : int = CONFIG_MAP[model_name]["""image_size"""] lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] lowercase : int = CONFIG_MAP[model_name]["""dw_padding"""] lowercase : Optional[int] = """huggingface/label-files""" lowercase : int = """imagenet-1k-id2label.json""" lowercase : Any = 1_000 lowercase : Any = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[int] = {int(_A ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCamelCase ( _A ) -> Optional[Any]: lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[int] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_A , ) return preprocessor def UpperCamelCase ( _A ) -> Optional[int]: lowercase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowercase : Optional[Any] = sorted(set(_A ) ) lowercase : Dict = len(_A ) lowercase : List[str] = {b: str(_A ) for b, i in zip(_A , range(_A ) )} lowercase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowercase : str = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowercase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[int] = """efficientnet.""" + item[1] lowercase : Any = """classifier.weight""" lowercase : Tuple = """classifier.bias""" return key_mapping def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowercase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : str = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : List[Any] = torch.from_numpy(np.transpose(_A ) ) else: lowercase : Optional[int] = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> str: lowercase : Any = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_000 , classifier_activation="""softmax""" , ) lowercase : Dict = original_model.trainable_variables lowercase : Any = original_model.non_trainable_variables lowercase : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict = param.numpy() lowercase : List[str] = list(tf_params.keys() ) # Load HuggingFace model lowercase : str = get_efficientnet_config(_A ) lowercase : List[Any] = EfficientNetForImageClassification(_A ).eval() lowercase : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowercase : int = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] = convert_image_processor(_A ) lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Union[str, Any] = hf_model(**_A ) lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase : Optional[Any] = False lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Optional[Any] = image.img_to_array(_A ) lowercase : Dict = np.expand_dims(_A , axis=0 ) lowercase : List[str] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase : Dict = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
264
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _snake_case : int = logging.getLogger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # save results if os.path.exists(__lowerCamelCase ): if os.path.exists(os.path.join(__lowerCamelCase , "config.json" ) ) and os.path.isfile( os.path.join(__lowerCamelCase , "config.json" ) ): os.remove(os.path.join(__lowerCamelCase , "config.json" ) ) if os.path.exists(os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ) else: os.makedirs(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case : List[Any] = 2 if unlogit: __snake_case : Union[str, Any] = torch.pow(__lowerCamelCase , __lowerCamelCase ) __snake_case : str = p * torch.log(__lowerCamelCase ) __snake_case : List[Any] = 0 return -plogp.sum(dim=-1 ) def lowerCAmelCase_ ( __lowerCamelCase ): logger.info("lv, h >\t" + "\t".join(F'{x + 1}' for x in range(len(__lowerCamelCase ) ) ) ) for row in range(len(__lowerCamelCase ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=False ): __snake_case : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case : Optional[Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) __snake_case : Union[str, Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) if head_mask is None: __snake_case : List[str] = torch.ones(__lowerCamelCase , __lowerCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case : Optional[int] = None __snake_case : Optional[Any] = 0.0 __snake_case : Tuple = 0.0 for step, inputs in enumerate(tqdm(__lowerCamelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __snake_case : int = tuple(t.to(args.device ) for t in inputs ) (__snake_case ) : Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case : int = model(__lowerCamelCase , labels=__lowerCamelCase , head_mask=__lowerCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCamelCase ): __snake_case : str = entropy(attn.detach() , __lowerCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case : List[Any] = 2 __snake_case : Tuple = torch.pow(torch.pow(__lowerCamelCase , __lowerCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __snake_case : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowerCamelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowerCamelCase ) logger.info("Head ranked by importance scores" ) __snake_case : List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case : Tuple = torch.arange( head_importance.numel() , device=args.device ) __snake_case : Optional[int] = head_ranks.view_as(__lowerCamelCase ) print_ad_tensor(__lowerCamelCase ) return attn_entropy, head_importance, total_loss def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase ) __snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowerCamelCase , original_score * args.masking_threshold ) __snake_case : List[Any] = torch.ones_like(__lowerCamelCase ) __snake_case : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: __snake_case : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case : List[Any] = float("Inf" ) __snake_case : int = head_importance.view(-1 ).sort()[1] if len(__lowerCamelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __snake_case : Optional[Any] = new_head_mask.view(-1 ) __snake_case : str = 0.0 __snake_case : List[str] = new_head_mask.view_as(__lowerCamelCase ) __snake_case : Any = new_head_mask.clone().detach() print_ad_tensor(__lowerCamelCase ) # Compute metric and head importance again __snake_case : Union[str, Any] = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , head_mask=__lowerCamelCase ) __snake_case : List[str] = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("Final head mask" ) print_ad_tensor(__lowerCamelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : int = datetime.now() __snake_case : Any = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase ) __snake_case : Dict = 1 / loss __snake_case : Optional[Any] = datetime.now() - before_time __snake_case : int = sum(p.numel() for p in model.parameters() ) __snake_case : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = [ v, ] assert sum(len(__lowerCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCamelCase ) __snake_case : Dict = sum(p.numel() for p in model.parameters() ) __snake_case : int = datetime.now() __snake_case : Optional[Any] = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase , actually_pruned=__lowerCamelCase , ) __snake_case : Optional[Any] = 1 / loss __snake_case : Union[str, Any] = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowerCamelCase , __lowerCamelCase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowerCamelCase , __lowerCamelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_0_0 ) save_model(__lowerCamelCase , args.output_dir ) def lowerCAmelCase_ ( ): __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowerCamelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowerCamelCase , type=__lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowerCamelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowerCamelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowerCamelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowerCamelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_2_8 , type=__lowerCamelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowerCamelCase , help="Batch size." ) parser.add_argument("--seed" , type=__lowerCamelCase , default=4_2 ) parser.add_argument("--local_rank" , type=__lowerCamelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowerCamelCase , default="" , help="Can be used for distant debugging." ) __snake_case : Union[str, Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case : str = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __snake_case : Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case : Tuple = torch.device("cuda" , args.local_rank ) __snake_case : int = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case : Tuple = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case : int = nn.parallel.DistributedDataParallel( __lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCamelCase ) elif args.n_gpu > 1: __snake_case : str = nn.DataParallel(__lowerCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowerCamelCase ) # Prepare dataset __snake_case : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case : Any = (torch.from_numpy(__lowerCamelCase ),) __snake_case : str = TensorDataset(*__lowerCamelCase ) __snake_case : Optional[Any] = RandomSampler(__lowerCamelCase ) __snake_case : Optional[int] = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case : List[Any] = mask_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) prune_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
721
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case : List[Any] = "src/diffusers" _snake_case : str = "." # This is to make sure the diffusers module imported is the one in the repo. _snake_case : List[str] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) _snake_case : Dict = spec.loader.load_module() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , __lowerCamelCase ) is not None def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = object_name.split("." ) __snake_case : Any = 0 # First let's find the module where our object lives. __snake_case : Optional[int] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , F'{module}.py' ) ): i += 1 if i < len(__lowerCamelCase ): __snake_case : Dict = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__lowerCamelCase , F'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: __snake_case : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __snake_case : Any = "" __snake_case : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __snake_case : Optional[Any] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __snake_case : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) _snake_case : Any = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") _snake_case : Union[str, Any] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") _snake_case : Optional[int] = re.compile(R"<FILL\s+[^>]*>") def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = code.split("\n" ) __snake_case : List[str] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[str] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __snake_case : str = F'class Bla:\n{code}' __snake_case : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__lowerCamelCase ) __snake_case : int = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __snake_case , __snake_case : List[str] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): with open(__lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __snake_case : List[Any] = f.readlines() __snake_case : int = [] __snake_case : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __snake_case : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __snake_case , __snake_case , __snake_case : List[str] = search.groups() __snake_case : List[str] = find_code_in_diffusers(__lowerCamelCase ) __snake_case : str = get_indent(__lowerCamelCase ) __snake_case : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 __snake_case : Tuple = theoretical_indent __snake_case : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __snake_case : str = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __snake_case : Union[str, Any] = lines[line_index] __snake_case : Any = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(F'^{indent}# End copy' , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __snake_case : int = lines[start_index:line_index] __snake_case : int = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __snake_case : Union[str, Any] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __snake_case : Optional[Any] = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __snake_case : Optional[int] = replace_pattern.replace("with" , "" ).split("," ) __snake_case : Tuple = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __snake_case , __snake_case , __snake_case : Optional[Any] = pattern.groups() __snake_case : Tuple = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __snake_case : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __snake_case : Union[str, Any] = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __snake_case : str = blackify(lines[start_index - 1] + theoretical_code ) __snake_case : Tuple = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __snake_case : str = lines[:start_index] + [theoretical_code] + lines[line_index:] __snake_case : List[Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCAmelCase_ ( __lowerCamelCase = False ): __snake_case : Optional[Any] = glob.glob(os.path.join(__lowerCamelCase , "**/*.py" ) , recursive=__lowerCamelCase ) __snake_case : Dict = [] for filename in all_files: __snake_case : Union[str, Any] = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __snake_case : Optional[Any] = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
203
0
"""simple docstring""" from pathlib import Path import fire def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): lowerCAmelCase__ :Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ :Optional[Any] = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open('w' ).write('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
93
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] =MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Dict =TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output __lowerCAmelCase : Optional[Any] = text_generator("""This is a test""" , do_sample=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) __lowerCAmelCase : List[str] = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( lowerCAmelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) __lowerCAmelCase : List[Any] = text_generator("""This is a test""" , do_sample=lowerCAmelCase , num_return_sequences=2 , return_tensors=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ {"""generated_token_ids""": ANY(lowerCAmelCase )}, {"""generated_token_ids""": ANY(lowerCAmelCase )}, ] , ) __lowerCAmelCase : List[Any] = text_generator.model.config.eos_token_id __lowerCAmelCase : str = """<pad>""" __lowerCAmelCase : Any = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase , ) self.assertEqual( lowerCAmelCase , [ [ {"""generated_token_ids""": ANY(lowerCAmelCase )}, {"""generated_token_ids""": ANY(lowerCAmelCase )}, ], [ {"""generated_token_ids""": ANY(lowerCAmelCase )}, {"""generated_token_ids""": ANY(lowerCAmelCase )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output __lowerCAmelCase : str = text_generator("""This is a test""" , do_sample=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) __lowerCAmelCase : str = text_generator(["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = TextGenerationPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: """simple docstring""" __lowerCAmelCase : Tuple = """Hello I believe in""" __lowerCAmelCase : Optional[int] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : Optional[int] = text_generator(lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) __lowerCAmelCase : Optional[Any] = text_generator(lowerCAmelCase , stop_sequence=""" fe""" ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : int , lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = text_generator.model __lowerCAmelCase : Optional[int] = text_generator.tokenizer __lowerCAmelCase : int = text_generator("""This is a test""" ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": ANY(lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __lowerCAmelCase : Dict = text_generator("""This is a test""" , return_full_text=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": ANY(lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __lowerCAmelCase : Tuple = pipeline(task="""text-generation""" , model=lowerCAmelCase , tokenizer=lowerCAmelCase , return_full_text=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = text_generator("""This is a test""" ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": ANY(lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __lowerCAmelCase : Tuple = text_generator("""This is a test""" , return_full_text=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": ANY(lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __lowerCAmelCase : Any = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ [{"""generated_text""": ANY(lowerCAmelCase )}, {"""generated_text""": ANY(lowerCAmelCase )}], [{"""generated_text""": ANY(lowerCAmelCase )}, {"""generated_text""": ANY(lowerCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: __lowerCAmelCase : Dict = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ [{"""generated_text""": ANY(lowerCAmelCase )}, {"""generated_text""": ANY(lowerCAmelCase )}], [{"""generated_text""": ANY(lowerCAmelCase )}, {"""generated_text""": ANY(lowerCAmelCase )}], ] , ) with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : List[Any] = text_generator("""test""" , return_full_text=lowerCAmelCase , return_text=lowerCAmelCase ) with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : List[Any] = text_generator("""test""" , return_full_text=lowerCAmelCase , return_tensors=lowerCAmelCase ) with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : List[str] = text_generator("""test""" , return_text=lowerCAmelCase , return_tensors=lowerCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __lowerCAmelCase : Union[str, Any] = text_generator("""""" ) self.assertEqual(lowerCAmelCase , [{"""generated_text""": ANY(lowerCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __lowerCAmelCase : Union[str, Any] = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __lowerCAmelCase : int = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_00 , max_new_tokens=20 ) __lowerCAmelCase : Dict = text_generator("""This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowerCAmelCase ): text_generator( """This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" import torch # Classic `model_kwargs` __lowerCAmelCase : Union[str, Any] = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowerCAmelCase : Tuple = pipe("""This is a test""" ) self.assertEqual( lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __lowerCAmelCase : Dict = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowerCAmelCase : int = pipe("""This is a test""" ) self.assertEqual( lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __lowerCAmelCase : Dict = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __lowerCAmelCase : str = pipe("""This is a test""" ) self.assertEqual( lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" import torch __lowerCAmelCase : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" import torch __lowerCAmelCase : Optional[int] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=lowerCAmelCase , top_p=0.5 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = """Hello world""" __lowerCAmelCase : Dict = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": __lowerCAmelCase : Optional[Any] = logging.get_logger("""transformers.generation.tf_utils""" ) else: __lowerCAmelCase : Optional[Any] = logging.get_logger("""transformers.generation.utils""" ) __lowerCAmelCase : Dict = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCAmelCase ) as cl: __lowerCAmelCase : Optional[Any] = text_generator(lowerCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(lowerCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowerCAmelCase ) as cl: __lowerCAmelCase : Dict = text_generator(lowerCAmelCase , max_new_tokens=1 ) self.assertNotIn(lowerCAmelCase , cl.out ) with CaptureLogger(lowerCAmelCase ) as cl: __lowerCAmelCase : str = text_generator(lowerCAmelCase , max_length=10 ) self.assertNotIn(lowerCAmelCase , cl.out )
651
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __a ( unittest.TestCase ): def UpperCamelCase ( self : int)-> List[str]: __lowerCAmelCase ={ """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } __lowerCAmelCase ={ """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(snake_case_) , snake_case_) def UpperCamelCase ( self : Tuple)-> Union[str, Any]: __lowerCAmelCase =np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(snake_case_) , x.transpose())) __lowerCAmelCase =np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def UpperCamelCase ( self : Union[str, Any])-> Optional[int]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_) , transpose(snake_case_).numpy())) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0)) , transpose(snake_case_ , axes=(1, 2, 0)).numpy())) @require_tf def UpperCamelCase ( self : Union[str, Any])-> List[str]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_) , transpose(snake_case_).numpy())) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0)) , transpose(snake_case_ , axes=(1, 2, 0)).numpy())) @require_flax def UpperCamelCase ( self : Optional[int])-> Optional[int]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_) , np.asarray(transpose(snake_case_)))) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0)) , np.asarray(transpose(snake_case_ , axes=(1, 2, 0))))) def UpperCamelCase ( self : Union[str, Any])-> Any: __lowerCAmelCase =np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3)) , np.reshape(snake_case_ , (4, 3)))) __lowerCAmelCase =np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5)) , np.reshape(snake_case_ , (12, 5)))) @require_torch def UpperCamelCase ( self : List[Any])-> Any: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3)) , reshape(snake_case_ , (4, 3)).numpy())) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5)) , reshape(snake_case_ , (12, 5)).numpy())) @require_tf def UpperCamelCase ( self : Optional[Any])-> Union[str, Any]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3)) , reshape(snake_case_ , (4, 3)).numpy())) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5)) , reshape(snake_case_ , (12, 5)).numpy())) @require_flax def UpperCamelCase ( self : Any)-> str: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3)) , np.asarray(reshape(snake_case_ , (4, 3))))) __lowerCAmelCase =np.random.randn(3 , 4 , 5) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5)) , np.asarray(reshape(snake_case_ , (12, 5))))) def UpperCamelCase ( self : Tuple)-> List[str]: __lowerCAmelCase =np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(snake_case_) , np.squeeze(snake_case_))) __lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2) , np.squeeze(snake_case_ , axis=2))) @require_torch def UpperCamelCase ( self : int)-> List[str]: __lowerCAmelCase =np.random.randn(1 , 3 , 4) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_) , squeeze(snake_case_).numpy())) __lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2) , squeeze(snake_case_ , axis=2).numpy())) @require_tf def UpperCamelCase ( self : Optional[int])-> List[str]: __lowerCAmelCase =np.random.randn(1 , 3 , 4) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_) , squeeze(snake_case_).numpy())) __lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2) , squeeze(snake_case_ , axis=2).numpy())) @require_flax def UpperCamelCase ( self : Optional[int])-> Optional[int]: __lowerCAmelCase =np.random.randn(1 , 3 , 4) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_) , np.asarray(squeeze(snake_case_)))) __lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2) , np.asarray(squeeze(snake_case_ , axis=2)))) def UpperCamelCase ( self : List[Any])-> Any: __lowerCAmelCase =np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1) , np.expand_dims(snake_case_ , axis=1))) @require_torch def UpperCamelCase ( self : Optional[int])-> Optional[int]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =torch.tensor(snake_case_) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1) , expand_dims(snake_case_ , axis=1).numpy())) @require_tf def UpperCamelCase ( self : List[Any])-> List[Any]: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =tf.constant(snake_case_) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1) , expand_dims(snake_case_ , axis=1).numpy())) @require_flax def UpperCamelCase ( self : List[str])-> str: __lowerCAmelCase =np.random.randn(3 , 4) __lowerCAmelCase =jnp.array(snake_case_) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1) , np.asarray(expand_dims(snake_case_ , axis=1))))
709
def __lowerCAmelCase ( __lowerCamelCase : int = 3 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 1000000 ) -> int: __lowerCAmelCase =0 __lowerCAmelCase =1 for current_denominator in range(1 , limit + 1 ): __lowerCAmelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCAmelCase =current_numerator __lowerCAmelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
456
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : List[Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 'canine' def __init__( self , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1_6_3_8_4 , lowercase=1_6 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=0Xe000 , lowercase=0Xe001 , lowercase=4 , lowercase=4 , lowercase=8 , lowercase=1_6_3_8_4 , lowercase=1_2_8 , **lowercase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = type_vocab_size __UpperCamelCase = layer_norm_eps # Character config: __UpperCamelCase = downsampling_rate __UpperCamelCase = upsampling_kernel_size __UpperCamelCase = num_hash_functions __UpperCamelCase = num_hash_buckets __UpperCamelCase = local_transformer_stride
601
import operator as op def a_ ( __magic_name__ ) -> Any: """simple docstring""" snake_case : str = [] snake_case : Any = lambda __magic_name__ , __magic_name__ : int(x / y ) # noqa: E731 integer division operation snake_case : Optional[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(__magic_name__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__magic_name__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' ) else: snake_case : Optional[int] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' ) snake_case : Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(__magic_name__ ) , int(__magic_name__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": _a : Union[str, Any] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
598
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __magic_name__ : '''simple docstring''' def __init__( self : Tuple , snake_case_ : Any ): __snake_case = str(id_ ) __snake_case = None __snake_case = None __snake_case = [] __snake_case = {} # {vertex:distance} def __lt__( self : int , snake_case_ : List[Any] ): return self.key < other.key def __repr__( self : List[str] ): return self.id def lowerCAmelCase ( self : List[str] , snake_case_ : Optional[int] ): self.neighbors.append(__A ) def lowerCAmelCase ( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : int ): __snake_case = weight def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" __snake_case = [] for u in graph: __snake_case = math.inf __snake_case = None __snake_case = 0 __snake_case = graph[:] while q: __snake_case = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __snake_case = u __snake_case = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for u in graph: __snake_case = math.inf __snake_case = None __snake_case = 0 __snake_case = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: __snake_case = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __snake_case = u __snake_case = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from __future__ import annotations from typing import Any def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {"+", "-", "*", "/"} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
614
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( a__, a__ ): @register_to_config def __init__( self , _a , _a = None , _a = None ): super().__init__() lowercase : Union[str, Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowercase : List[Any] = torch.zeros(_lowerCamelCase , _lowerCamelCase ) else: lowercase : str = None lowercase : Optional[int] = torch.nn.Parameter(_lowerCamelCase ) class a__ ( a__ ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 def __init__( self , _a , _a , _a , _a , _a , _a , ): super().__init__() self.register_modules( vqvae=_lowerCamelCase , transformer=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , scheduler=_lowerCamelCase , learned_classifier_free_sampling_embeddings=_lowerCamelCase , ) def __magic_name__ ( self , _a , _a , _a ): lowercase : int = len(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else 1 # get prompt text embeddings lowercase : Tuple = self.tokenizer( _lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowercase : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] lowercase : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowercase : Any = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowerCamelCase ) # duplicate text embeddings for each generation per prompt lowercase : str = prompt_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowercase : Any = self.learned_classifier_free_sampling_embeddings.embeddings lowercase : Tuple = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowerCamelCase , 1 , 1 ) else: lowercase : List[str] = [""""""] * batch_size lowercase : Optional[Any] = text_input_ids.shape[-1] lowercase : Optional[Any] = self.tokenizer( _lowerCamelCase , padding="max_length" , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors="pt" , ) lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowercase : Union[str, Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase : int = negative_prompt_embeds.shape[1] lowercase : Tuple = negative_prompt_embeds.repeat(1 , _lowerCamelCase , 1 ) lowercase : Union[str, Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : int = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _a , _a = 100 , _a = 5.0 , _a = 1.0 , _a = 1 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , ): if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase : List[str] = 1 elif isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase : int = len(_lowerCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_lowerCamelCase )}""" ) lowercase : Optional[Any] = batch_size * num_images_per_prompt lowercase : List[str] = guidance_scale > 1.0 lowercase : Any = self._encode_prompt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_lowerCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it lowercase : List[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowercase : Dict = self.transformer.num_vector_embeds - 1 lowercase : List[str] = torch.full(_lowerCamelCase , _lowerCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) lowercase : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCamelCase , device=self.device ) lowercase : List[str] = self.scheduler.timesteps.to(self.device ) lowercase : str = latents for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the sample if we are doing classifier free guidance lowercase : Optional[int] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowercase : Union[str, Any] = self.transformer(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase ).sample if do_classifier_free_guidance: lowercase : Union[str, Any] = model_output.chunk(2 ) lowercase : Tuple = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowerCamelCase , dim=1 , keepdim=_lowerCamelCase ) lowercase : Union[str, Any] = self.truncate(_lowerCamelCase , _lowerCamelCase ) # remove `log(0)`'s (`-inf`s) lowercase : Tuple = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowercase : Union[str, Any] = self.scheduler.step(_lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase : Union[str, Any] = self.vqvae.config.vq_embed_dim lowercase : Union[str, Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowercase : Optional[Any] = self.vqvae.quantize.get_codebook_entry(_lowerCamelCase , shape=_lowerCamelCase ) lowercase : Optional[Any] = self.vqvae.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase ).sample lowercase : Any = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : List[str] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase ) def __magic_name__ ( self , _a , _a ): lowercase : Tuple = torch.sort(_lowerCamelCase , 1 , descending=_lowerCamelCase ) lowercase : str = torch.exp(_lowerCamelCase ) lowercase : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowercase : int = torch.full_like(keep_mask[:, 0:1, :] , _lowerCamelCase ) lowercase : List[str] = torch.cat((all_true, keep_mask) , dim=1 ) lowercase : Dict = keep_mask[:, :-1, :] lowercase : int = keep_mask.gather(1 , indices.argsort(1 ) ) lowercase : List[str] = log_p_x_0.clone() lowercase : List[str] = -torch.inf # -inf = log(0) return rv
361
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): super().__init__(features=_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = Sql( cache_dir=_lowerCamelCase , features=_lowerCamelCase , sql=_lowerCamelCase , con=_lowerCamelCase , **_lowerCamelCase , ) def snake_case__ ( self): UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : int = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[Any] = None self.builder.download_and_prepare( download_config=_lowerCamelCase , download_mode=_lowerCamelCase , verification_mode=_lowerCamelCase , base_path=_lowerCamelCase , ) # Build dataset for splits UpperCAmelCase__ : Union[str, Any] = self.builder.as_dataset( split="""train""" , verification_mode=_lowerCamelCase , in_memory=self.keep_in_memory) return dataset class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''') UpperCAmelCase__ : Optional[Any] = dataset UpperCAmelCase__ : Optional[int] = name UpperCAmelCase__ : str = con UpperCAmelCase__ : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase__ : Union[str, Any] = num_proc UpperCAmelCase__ : List[str] = to_sql_kwargs def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.to_sql_kwargs.pop("""sql""" , _lowerCamelCase) UpperCAmelCase__ : List[Any] = self.to_sql_kwargs.pop("""con""" , _lowerCamelCase) UpperCAmelCase__ : int = self.to_sql_kwargs.pop("""index""" , _lowerCamelCase) UpperCAmelCase__ : Any = self._write(index=_lowerCamelCase , **self.to_sql_kwargs) return written def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = args UpperCAmelCase__ : Tuple = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase__ : str = query_table( table=self.dataset.data , key=slice(_lowerCamelCase , offset + self.batch_size) , indices=self.dataset._indices , ) UpperCAmelCase__ : List[str] = batch.to_pandas() UpperCAmelCase__ : List[str] = df.to_sql(self.name , self.con , index=_lowerCamelCase , **_lowerCamelCase) return num_rows or len(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: UpperCAmelCase__ , UpperCAmelCase__ : Dict = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _lowerCamelCase , _lowerCamelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
407
0
from __future__ import annotations def _UpperCamelCase ( UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" if len(snake_case_ ) == 0: return array lowerCAmelCase__ = min(snake_case_ ), max(snake_case_ ) # Compute the variables lowerCAmelCase__ = _max - _min + 1 lowerCAmelCase__ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowerCAmelCase__ = i - _min lowerCAmelCase__ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowerCAmelCase__ = 0 for i in range(snake_case_ ): while holes_repeat[i] > 0: lowerCAmelCase__ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : str = input("""Enter numbers separated by comma:\n""") lowerCamelCase_ : Any = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
710
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __snake_case : List[str] = True from torch.cuda.amp import autocast __snake_case : Union[str, Any] = logging.getLogger(__name__) def _UpperCamelCase ( UpperCamelCase_ : Any=None , UpperCamelCase_ : str=None ) -> Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''}) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''}) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''}) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) _SCREAMING_SNAKE_CASE : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class __SCREAMING_SNAKE_CASE : _SCREAMING_SNAKE_CASE : WavaVecaProcessor _SCREAMING_SNAKE_CASE : Union[bool, str] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self , _UpperCamelCase ): """simple docstring""" # split inputs and labels since they have to be of different lenghts and need # different padding methods lowerCAmelCase__ = [{'input_values': feature['input_values']} for feature in features] lowerCAmelCase__ = [{'input_ids': feature['labels']} for feature in features] lowerCAmelCase__ = self.processor.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowerCAmelCase__ = self.processor.pad( labels=_UpperCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly lowerCAmelCase__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) lowerCAmelCase__ = labels return batch class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" model.train() lowerCAmelCase__ = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): lowerCAmelCase__ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: lowerCAmelCase__ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase__ = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() return loss.detach() def _UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , UpperCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCAmelCase__ = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) lowerCAmelCase__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer lowerCAmelCase__ = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(UpperCamelCase_ : Any ): lowerCAmelCase__ = re.sub(UpperCamelCase_ , '' , batch['sentence'] ).lower() + ' ' return batch lowerCAmelCase__ = train_dataset.map(UpperCamelCase_ , remove_columns=['sentence'] ) lowerCAmelCase__ = eval_dataset.map(UpperCamelCase_ , remove_columns=['sentence'] ) def extract_all_chars(UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = ' '.join(batch['text'] ) lowerCAmelCase__ = list(set(UpperCamelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , batch_size=-1 , keep_in_memory=UpperCamelCase_ , remove_columns=train_dataset.column_names , ) lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , batch_size=-1 , keep_in_memory=UpperCamelCase_ , remove_columns=eval_dataset.column_names , ) lowerCAmelCase__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) lowerCAmelCase__ = {v: k for k, v in enumerate(UpperCamelCase_ )} lowerCAmelCase__ = vocab_dict[' '] del vocab_dict[" "] lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = len(UpperCamelCase_ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowerCAmelCase__ = min(len(UpperCamelCase_ ) , data_args.max_train_samples ) lowerCAmelCase__ = train_dataset.select(range(UpperCamelCase_ ) ) if data_args.max_val_samples is not None: lowerCAmelCase__ = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCAmelCase__ = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCamelCase_ : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = torchaudio.load(batch['path'] ) lowerCAmelCase__ = resampler(UpperCamelCase_ ).squeeze().numpy() lowerCAmelCase__ = 1_6000 lowerCAmelCase__ = batch['text'] return batch lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase__ = eval_dataset.map( UpperCamelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCamelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." lowerCAmelCase__ = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(UpperCamelCase_ ) return batch lowerCAmelCase__ = train_dataset.map( UpperCamelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase__ = eval_dataset.map( UpperCamelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric lowerCAmelCase__ = datasets.load_metric('wer' ) def compute_metrics(UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = pred.predictions lowerCAmelCase__ = np.argmax(UpperCamelCase_ , axis=-1 ) lowerCAmelCase__ = processor.tokenizer.pad_token_id lowerCAmelCase__ = processor.batch_decode(UpperCamelCase_ ) # we do not want to group tokens when computing the metrics lowerCAmelCase__ = processor.batch_decode(pred.label_ids , group_tokens=UpperCamelCase_ ) lowerCAmelCase__ = wer_metric.compute(predictions=UpperCamelCase_ , references=UpperCamelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCAmelCase__ = DataCollatorCTCWithPadding(processor=UpperCamelCase_ , padding=UpperCamelCase_ ) # Initialize our Trainer lowerCAmelCase__ = CTCTrainer( model=UpperCamelCase_ , data_collator=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase__ = model_args.model_name_or_path else: lowerCAmelCase__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() lowerCAmelCase__ = train_result.metrics lowerCAmelCase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ ) ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('train' , UpperCamelCase_ ) trainer.save_metrics('train' , UpperCamelCase_ ) trainer.save_state() # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCamelCase_ ) lowerCAmelCase__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('eval' , UpperCamelCase_ ) trainer.save_metrics('eval' , UpperCamelCase_ ) return results if __name__ == "__main__": main()
365
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : List[Any] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
511
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : str = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Optional[Any] = BASE_URL + '/user' # https://github.com/settings/tokens lowerCAmelCase : Optional[int] = os.environ.get('USER_TOKEN', '') def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = { 'Authorization': f"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(a , headers=a ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
511
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''mask2former''' _UpperCamelCase : Tuple = ['''swin'''] _UpperCamelCase : Optional[Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[int] , _A : Optional[Dict] = None , _A : int = 256 , _A : int = 256 , _A : int = 256 , _A : int = 1_024 , _A : str = "relu" , _A : int = 6 , _A : int = 10 , _A : int = 8 , _A : float = 0.0 , _A : int = 2_048 , _A : bool = False , _A : bool = False , _A : int = 4 , _A : int = 255 , _A : int = 100 , _A : float = 0.1 , _A : float = 2.0 , _A : float = 5.0 , _A : float = 5.0 , _A : int = 12_544 , _A : float = 3.0 , _A : float = 0.75 , _A : float = 0.02 , _A : float = 1.0 , _A : bool = True , _A : List[int] = [4, 8, 16, 32] , _A : bool = None , **_A : Tuple , ) -> Any: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) lowercase : str = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_A , _A ): lowercase : int = backbone_config.pop('''model_type''' ) lowercase : Any = CONFIG_MAPPING[backbone_model_type] lowercase : Dict = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) lowercase : Optional[int] = backbone_config lowercase : Optional[Any] = feature_size lowercase : Tuple = mask_feature_size lowercase : Dict = hidden_dim lowercase : Union[str, Any] = encoder_feedforward_dim lowercase : List[Any] = activation_function lowercase : Optional[int] = encoder_layers lowercase : Optional[Any] = decoder_layers lowercase : Optional[Any] = num_attention_heads lowercase : int = dropout lowercase : str = dim_feedforward lowercase : Optional[int] = pre_norm lowercase : List[str] = enforce_input_projection lowercase : Any = common_stride lowercase : Any = ignore_value lowercase : Optional[int] = num_queries lowercase : str = no_object_weight lowercase : Optional[int] = class_weight lowercase : List[Any] = mask_weight lowercase : Optional[int] = dice_weight lowercase : str = train_num_points lowercase : Optional[Any] = oversample_ratio lowercase : Optional[int] = importance_sample_ratio lowercase : List[Any] = init_std lowercase : Optional[Any] = init_xavier_std lowercase : Union[str, Any] = use_auxiliary_loss lowercase : List[str] = feature_strides lowercase : List[str] = output_auxiliary_logits lowercase : List[Any] = decoder_layers super().__init__(**_A ) @classmethod def __a ( cls : Optional[int] , _A : PretrainedConfig , **_A : List[Any] ) -> str: """simple docstring""" return cls( backbone_config=_A , **_A , ) def __a ( self : int ) -> Dict[str, any]: """simple docstring""" lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : str = self.backbone_config.to_dict() lowercase : Any = self.__class__.model_type return output
596
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A : _UpperCamelCase : Dict = None @experimental def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return _map_with_joblib(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = num_proc if num_proc <= len(__magic_name__ ) else len(__magic_name__ ) lowercase : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(__magic_name__ ): lowercase : Optional[int] = len(__magic_name__ ) // num_proc lowercase : List[str] = len(__magic_name__ ) % num_proc lowercase : Union[str, Any] = div * index + min(__magic_name__ , __magic_name__ ) lowercase : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__magic_name__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(__magic_name__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(__magic_name__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowercase , lowercase : Optional[int] = None, None if not disable_tqdm: lowercase , lowercase : Any = (RLock(),), tqdm.set_lock with Pool(__magic_name__ , initargs=__magic_name__ , initializer=__magic_name__ ) as pool: lowercase : Tuple = pool.map(__magic_name__ , __magic_name__ ) logger.info(F"""Finished {num_proc} processes""" ) lowercase : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(__magic_name__ )} objects""" ) return mapped def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__magic_name__ ): return joblib.Parallel()( joblib.delayed(__magic_name__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowercase : List[Any] = None
596
1
"""simple docstring""" def snake_case__ ( _snake_case : float ): """simple docstring""" return 10 - x * x def snake_case__ ( _snake_case : float , _snake_case : float ): """simple docstring""" if equation(_snake_case ) * equation(_snake_case ) >= 0: raise ValueError("Wrong space!" ) UpperCamelCase__ = a while (b - a) >= 0.01: # Find middle point UpperCamelCase__ = (a + b) / 2 # Check if middle point is root if equation(_snake_case ) == 0.0: break # Decide the side to repeat the steps if equation(_snake_case ) * equation(_snake_case ) < 0: UpperCamelCase__ = c else: UpperCamelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
516
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def snake_case__ ( _snake_case : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(_snake_case , 0 , _snake_case , args=(_snake_case) )[0] def snake_case__ ( _snake_case : float , _snake_case : float ): """simple docstring""" return math.pow(_snake_case , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
516
1
import doctest from collections import deque import numpy as np class snake_case__: """simple docstring""" def __init__( self : str ): lowercase__ : Tuple = [2, 1, 2, -1] lowercase__ : List[str] = [1, 2, 3, 4] def snake_case ( self : str ): lowercase__ : int = len(self.first_signal ) lowercase__ : int = len(self.second_signal ) lowercase__ : Optional[Any] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create a zero matrix of max_length x max_length lowercase__ : Tuple = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(SCREAMING_SNAKE_CASE ): lowercase__ : Optional[int] = deque(self.second_signal ) rotated_signal.rotate(SCREAMING_SNAKE_CASE ) for j, item in enumerate(SCREAMING_SNAKE_CASE ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ : List[str] = np.matmul(np.transpose(SCREAMING_SNAKE_CASE ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(SCREAMING_SNAKE_CASE , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
710
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = DiTPipeline lowercase_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowercase_ = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } lowercase_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowercase_ = False def snake_case ( self : int ): torch.manual_seed(0 ) lowercase__ : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=SCREAMING_SNAKE_CASE , ) lowercase__ : Dict = AutoencoderKL() lowercase__ : Any = DDIMScheduler() lowercase__ : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int=0 ): if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): lowercase__ : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: lowercase__ : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) lowercase__ : int = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self : Any ): lowercase__ : List[Any] = "cpu" lowercase__ : str = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**SCREAMING_SNAKE_CASE ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) lowercase__ : str = pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowercase__ : Tuple = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowercase__ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1E-3 ) def snake_case ( self : str ): self._test_inference_batch_single_identical(relax_max_difference=SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : str ): lowercase__ : List[Any] = torch.manual_seed(0 ) lowercase__ : Dict = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) lowercase__ : Tuple = ["vase", "umbrella", "white shark", "white wolf"] lowercase__ : Optional[Any] = pipe.get_label_ids(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = pipe(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ : Optional[Any] = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def snake_case ( self : Union[str, Any] ): lowercase__ : int = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) lowercase__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) lowercase__ : Dict = ["vase", "umbrella"] lowercase__ : Any = pipe.get_label_ids(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = torch.manual_seed(0 ) lowercase__ : str = pipe(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
81
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase_ = Features({"""audio""": Audio()} ) lowercase_ = Features({"""transcription""": Value("""string""" )} ) lowercase_ = "audio" lowercase_ = "transcription" def snake_case ( self : str , SCREAMING_SNAKE_CASE : Any ): if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , SCREAMING_SNAKE_CASE ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) lowercase__ : int = copy.deepcopy(self ) lowercase__ : List[str] = self.input_schema.copy() lowercase__ : str = features[self.audio_column] lowercase__ : int = input_schema return task_template @property def snake_case ( self : Optional[int] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
496
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
496
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger(__name__) def lowercase__( A ): snake_case__ : Optional[int] = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) snake_case__ : Dict = DetaConfig( backbone_config=A , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=A , with_box_refine=A , two_stage=A , ) # set labels snake_case__ : List[Any] = 'huggingface/label-files' if "o365" in model_name: snake_case__ : str = 3_6_6 snake_case__ : Tuple = 'object365-id2label.json' else: snake_case__ : Optional[int] = 9_1 snake_case__ : List[str] = 'coco-detection-id2label.json' snake_case__ : str = num_labels snake_case__ : List[str] = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case__ : Union[str, Any] = {int(A ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} return config def lowercase__( A ): snake_case__ : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowercase__( A , A , A ): snake_case__ : Any = dct.pop(A ) snake_case__ : Tuple = val def lowercase__( A , A ): snake_case__ : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ : str = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case__ : List[Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[Any] = in_proj_weight[:dim, :] snake_case__ : Optional[int] = in_proj_bias[: dim] snake_case__ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case__ : Dict = in_proj_bias[ dim : dim * 2 ] snake_case__ : List[str] = in_proj_weight[ -dim :, : ] snake_case__ : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def lowercase__( A , A ): # transformer decoder self-attention layers snake_case__ : List[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case__ : Dict = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : Any = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Tuple = in_proj_weight[:hidden_size, :] snake_case__ : Optional[int] = in_proj_bias[:hidden_size] snake_case__ : Optional[int] = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case__ : Dict = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : Optional[int] = in_proj_weight[-hidden_size:, :] snake_case__ : Dict = in_proj_bias[-hidden_size:] def lowercase__( ): snake_case__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Tuple = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase__( A , A , A ): snake_case__ : Tuple = get_deta_config(A ) # load original state dict if model_name == "deta-swin-large": snake_case__ : Any = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": snake_case__ : List[str] = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) snake_case__ : Dict = torch.load(A , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(A , param.shape ) # rename keys snake_case__ : int = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case__ : Dict = state_dict.pop(A ) snake_case__ : int = val if "input_proj" in key: snake_case__ : int = state_dict.pop(A ) snake_case__ : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case__ : Tuple = state_dict.pop(A ) snake_case__ : List[str] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = DetaForObjectDetection(A ) model.load_state_dict(A ) model.eval() snake_case__ : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(A ) # load image processor snake_case__ : Tuple = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image snake_case__ : Optional[int] = prepare_img() snake_case__ : Dict = processor(images=A , return_tensors='pt' ) snake_case__ : List[Any] = encoding['pixel_values'] snake_case__ : Optional[int] = model(pixel_values.to(A ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case__ : Tuple = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) snake_case__ : Union[str, Any] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": snake_case__ : Optional[int] = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) snake_case__ : Optional[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =DanceDiffusionPipeline _lowerCAmelCase =UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCAmelCase =PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } _lowerCAmelCase =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCAmelCase =False _lowerCAmelCase =False def UpperCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) snake_case__ : str = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_lowerCamelCase , use_timestep_embedding=_lowerCamelCase , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) snake_case__ : Any = IPNDMScheduler() snake_case__ : Any = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCAmelCase__ ( self : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=0 ): if str(_lowerCamelCase ).startswith('mps' ): snake_case__ : Dict = torch.manual_seed(_lowerCamelCase ) else: snake_case__ : Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) snake_case__ : List[str] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCAmelCase__ ( self : int ): snake_case__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Dict = self.get_dummy_components() snake_case__ : Optional[int] = DanceDiffusionPipeline(**_lowerCamelCase ) snake_case__ : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(_lowerCamelCase ) snake_case__ : Tuple = pipe(**_lowerCamelCase ) snake_case__ : Optional[Any] = output.audios snake_case__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) snake_case__ : Optional[int] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase__ ( self : int ): return super().test_save_load_local() @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCAmelCase__ ( self : Union[str, Any] ): return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase__ ( self : Optional[Any] ): return super().test_attention_slicing_forward_pass() def UpperCAmelCase__ ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ): snake_case__ : Dict = torch_device snake_case__ : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) snake_case__ : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Tuple = pipe(generator=_lowerCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) snake_case__ : int = output.audios snake_case__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case__ : Optional[Any] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): snake_case__ : Optional[int] = torch_device snake_case__ : Any = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) snake_case__ : Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Dict = pipe(generator=_lowerCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) snake_case__ : Dict = output.audios snake_case__ : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case__ : Any = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
303
1
def _lowercase ( a__ : str ) -> list: """simple docstring""" _UpperCamelCase = [0] * len(a__ ) for i in range(1 , len(a__ ) ): # use last results for better performance - dynamic programming _UpperCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCamelCase = j return prefix_result def _lowercase ( a__ : str ) -> int: """simple docstring""" return max(prefix_function(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
147
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowercase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCamelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="np" , ).images _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type="np" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
147
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : Dict = ReformerTokenizer _A : Optional[int] = ReformerTokenizerFast _A : Union[str, Any] = True _A : Union[str, Any] = False _A : List[Any] = True def lowerCamelCase(self ): super().setUp() A_ : str = ReformerTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase(self ): A_ : Tuple = """<s>""" A_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase_ ) , 1000 ) def lowerCamelCase(self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase(self ): if not self.test_rust_tokenizer: return A_ : Optional[Any] = self.get_tokenizer() A_ : Any = self.get_rust_tokenizer() A_ : Optional[Any] = """I was born in 92000, and this is falsé.""" A_ : int = tokenizer.tokenize(lowerCAmelCase_ ) A_ : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : List[Any] = self.get_rust_tokenizer() A_ : List[Any] = tokenizer.encode(lowerCAmelCase_ ) A_ : Dict = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input A_ : Tuple = """This is a simple input""" A_ : Any = ["""This is a simple input 1""", """This is a simple input 2"""] A_ : Optional[int] = ("""This is a simple input""", """This is a pair""") A_ : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) def lowerCamelCase(self ): pass def lowerCamelCase(self ): A_ : str = ReformerTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) A_ : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [285, 46, 10, 170, 382] , ) A_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ : Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A_ : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCamelCase(self ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCamelCase(self ): A_ : Optional[int] = """Hello World!""" A_ : List[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowerCamelCase(self ): A_ : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A_ : int = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @require_torch @slow def lowerCamelCase(self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence A_ : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] A_ : Optional[int] = """ """.join(lowerCAmelCase_ ) A_ : Dict = self.big_tokenizer.encode_plus(lowerCAmelCase_ , return_tensors="""pt""" ) A_ : Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) A_ : Dict = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A_ : Any = encoded_sequence["""input_ids"""].shape A_ : Optional[Any] = ReformerModel(lowerCAmelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase_ ) model(**lowerCAmelCase_ ) @slow def lowerCamelCase(self ): # fmt: off A_ : Optional[Any] = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A_ : str = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=lowerCAmelCase_ , sequences=lowerCAmelCase_ , )
707
"""simple docstring""" import math def __UpperCamelCase ( snake_case__ , snake_case__ ): if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __UpperCamelCase ( snake_case__ , snake_case__ ): if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
480
0
import math def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 while num > 0: UpperCamelCase__ = num % 8 UpperCamelCase__ = octal + (remainder * math.floor(math.pow(10 , __a ) )) counter += 1 UpperCamelCase__ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(__a )}" def __magic_name__ ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
513
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def __magic_name__ ( __a : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
513
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __snake_case ( self , **A_ ) -> int: lowerCAmelCase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**A_ ) return config def __snake_case ( self ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def __snake_case ( self ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=A_ ) def __snake_case ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __snake_case ( self ) -> List[Any]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=A_ ) def __snake_case ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=A_ ) def __snake_case ( self ) -> Optional[Any]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=A_ , prev_timestep=A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowerCAmelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(variance_type="""learned_range""" ) lowerCAmelCase = scheduler_class(**A_ ) lowerCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=A_ ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=A_ ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=A_ ) - -0.0_0_1_0_0_1_1 < 1e-5 def __snake_case ( self ) -> Dict: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**A_ ) lowerCAmelCase = scheduler.timesteps lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual lowerCAmelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(A_ ) ) lowerCAmelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def __snake_case ( self ) -> int: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**A_ ) scheduler.set_timesteps(25 ) lowerCAmelCase = scheduler.timesteps lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual lowerCAmelCase = model(A_ , A_ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase = None else: lowerCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step( A_ , A_ , A_ , prev_timestep=A_ , generator=A_ ).prev_sample lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(A_ ) ) lowerCAmelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def __snake_case ( self ) -> Dict: pass def __snake_case ( self ) -> List[str]: pass
344
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=32 , A_=3 , A_=4 , A_=[10, 20, 30, 40] , A_=[2, 2, 3, 2] , A_=True , A_=True , A_=37 , A_="gelu" , A_=10 , A_=0.0_2 , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=None , ) -> List[str]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = num_stages lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = scope def __snake_case ( self ) -> str: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self ) -> Union[str, Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , A_ , A_ , A_ ) -> Tuple: lowerCAmelCase = ConvNextVaModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , A_ , A_ , A_ ) -> str: lowerCAmelCase = ConvNextVaForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = ConvNextVaBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = ConvNextVaBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCAmelCase : Dict = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : Any = False UpperCAmelCase : Any = False UpperCAmelCase : Dict = False UpperCAmelCase : List[str] = False def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = ConvNextVaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __snake_case ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self ) -> List[Any]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __snake_case ( self ) -> List[str]: pass def __snake_case ( self ) -> Any: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = True if model_class.__name__ in [ *get_values(A_ ), *get_values(A_ ), ]: continue lowerCAmelCase = model_class(A_ ) model.to(A_ ) model.train() lowerCAmelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) lowerCAmelCase = model(**A_ ).loss loss.backward() def __snake_case ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = False lowerCAmelCase = True if ( model_class.__name__ in [*get_values(A_ ), *get_values(A_ )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase = model_class(A_ ) model.to(A_ ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) lowerCAmelCase = model(**A_ ).loss loss.backward() def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Optional[Any]: def check_hidden_states_output(A_ , A_ , A_ ): lowerCAmelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __snake_case ( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ConvNextVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A_ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = preprocessor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) # verify the logits lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCAmelCase = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
344
1
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class a ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = ["a", "b", "c"] # Defaults to last layer if both are None _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(snake_case_ , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ["c"] ) self.assertEqual(snake_case_ , [2] ) # Out indices set to match out features _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(["a", "c"] , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ["a", "c"] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features set to match out indices _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(snake_case_ , [0, 2] , snake_case_ ) self.assertEqual(snake_case_ , ["a", "c"] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features selected from negative indices _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(snake_case_ , [-3, -1] , snake_case_ ) self.assertEqual(snake_case_ , ["a", "c"] ) self.assertEqual(snake_case_ , [-3, -1] ) def __A ( self ) -> Dict: # Stage names must be set with self.assertRaises(snake_case_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , snake_case_ ) # Out features must be a list with self.assertRaises(snake_case_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(snake_case_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(snake_case_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(snake_case_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def __A ( self ) -> List[Any]: _UpperCAmelCase = BackboneMixin() _UpperCAmelCase = ["a", "b", "c"] _UpperCAmelCase = ["a", "c"] _UpperCAmelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCAmelCase = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCAmelCase = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
426
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A__ ( A__ , A__ , **A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(A__ , **A__ ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(A__ ) model.save_pretrained(A__ ) AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
426
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = embedding_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = MegatronBertModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' __magic_name__ = MegatronBertForMaskedLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForCausalLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = MegatronBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForPreTraining(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForQuestionAnswering(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForTokenClassification(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_choices __magic_name__ = MegatronBertForMultipleChoice(config=A ) model.to(A ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _a = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _a = True # test_resize_embeddings = False _a = False def __A ( self , A , A , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , hidden_size=37 ) def __A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) a_ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __magic_name__ = os.path.join(os.environ['''MYDIR'''] , A ) __magic_name__ = MegatronBertModel.from_pretrained(A ) model.to(A ) model.half() __magic_name__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __magic_name__ = model(A )[0] __magic_name__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , A ) __magic_name__ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __magic_name__ = output[0, ii, jj] __magic_name__ = expected[3 * ii + jj] __magic_name__ = '''ii={} jj={} a={} b={}'''.format(A , A , A , A ) self.assertTrue(math.isclose(A , A , rel_tol=A , abs_tol=A ) , msg=A )
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFInpaintingSuperResolutionPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCAmelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowerCAmelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
543
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 _A : Optional[Any] = 1 for i in range(1,n + 1 ): # to compute current row from previous row. _A : int = min(snake_case_,snake_case_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
from math import factorial def SCREAMING_SNAKE_CASE__ ( snake_case_ = 2_0 ) -> int: A__ : Tuple =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... A__ : Optional[int] =n // 2 return int(factorial(lowercase_ ) / (factorial(lowercase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __lowerCamelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
416
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A_ ( ) -> int: _snake_case : Optional[int] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _snake_case : Tuple = Dataset.from_dict(lowercase_ ) return dataset class A (__UpperCAmelCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' _snake_case : int = get_dataset() _snake_case : Dict = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __a ( self ) -> Tuple: '''simple docstring''' _snake_case : Tuple = get_dataset() _snake_case , _snake_case : Optional[int] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase_ )
326
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __A : Optional[Any] = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __A : Union[str, Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : int = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[int] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
714
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self: Tuple, _lowercase: int): '''simple docstring''' __lowerCAmelCase = num_of_nodes __lowerCAmelCase = [] __lowerCAmelCase = {} def _lowercase ( self: str, _lowercase: int, _lowercase: int, _lowercase: int): '''simple docstring''' self.m_edges.append([u_node, v_node, weight]) def _lowercase ( self: Optional[Any], _lowercase: int): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def _lowercase ( self: Any, _lowercase: int): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowerCAmelCase = self.find_component(_lowercase) def _lowercase ( self: Tuple, _lowercase: list[int], _lowercase: int, _lowercase: int): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowerCAmelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase) elif component_size[u_node] >= component_size[v_node]: __lowerCAmelCase = self.find_component(_lowercase) component_size[u_node] += component_size[v_node] self.set_component(_lowercase) def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) __lowerCAmelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edge __lowerCAmelCase = self.m_component[u] __lowerCAmelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowerCAmelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase, _lowercase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edge __lowerCAmelCase = self.m_component[u] __lowerCAmelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase, _lowercase, _lowercase) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''') num_of_components -= 1 __lowerCAmelCase = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''') def UpperCAmelCase ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
334
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCamelCase = sys.version_info >= (3, 10) def a__ ( _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Any=None ) -> int: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _snake_case : __A : int __A : float __A : str __A : bool @dataclass class _snake_case : __A : int =42 __A : str =field(default="toto" , metadata={"help": "help message"}) @dataclass class _snake_case : __A : bool =False __A : bool =True __A : Optional[bool] =None class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[int] ="titi" __A : str ="toto" class _snake_case (__SCREAMING_SNAKE_CASE): __A : List[Any] ="titi" __A : List[Any] ="toto" __A : Optional[Any] =42 @dataclass class _snake_case : __A : BasicEnum ="toto" def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = BasicEnum(self.foo ) @dataclass class _snake_case : __A : MixedTypeEnum ="toto" def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = MixedTypeEnum(self.foo ) @dataclass class _snake_case : __A : Optional[int] =None __A : Optional[float] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"}) __A : Optional[str] =None __A : Optional[List[str]] =list_field(default=[]) __A : Optional[List[int]] =list_field(default=[]) @dataclass class _snake_case : __A : List[int] =list_field(default=[]) __A : List[int] =list_field(default=[1, 2, 3]) __A : List[str] =list_field(default=["Hallo", "Bonjour", "Hello"]) __A : List[float] =list_field(default=[0.1, 0.2, 0.3]) @dataclass class _snake_case : __A : List[int] =field() __A : str =field() __A : BasicEnum =field() def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = BasicEnum(self.required_enum ) @dataclass class _snake_case : __A : int __A : "BasicEnum" =field() __A : "Optional[bool]" =None __A : "str" =field(default="toto" , metadata={"help": "help message"}) __A : "List[str]" =list_field(default=["Hallo", "Bonjour", "Hello"]) if is_python_no_less_than_3_10: @dataclass class _snake_case : __A : bool =False __A : bool =True __A : bool | None =None @dataclass class _snake_case : __A : int | None =None __A : float | None =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"}) __A : str | None =None __A : list[str] | None =list_field(default=[]) __A : list[int] | None =list_field(default=[]) class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): self.assertEqual(len(a._actions ) ,len(b._actions ) ) for x, y in zip(a._actions ,b._actions ): UpperCAmelCase_ : List[str] = {k: v for k, v in vars(_snake_case ).items() if k != "container"} UpperCAmelCase_ : List[Any] = {k: v for k, v in vars(_snake_case ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" ,_snake_case ) and yy.get("choices" ,_snake_case ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_snake_case ) ,yy["type"](_snake_case ) ) del xx["type"], yy["type"] self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Dict = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_snake_case ,required=_snake_case ) expected.add_argument("--bar" ,type=_snake_case ,required=_snake_case ) expected.add_argument("--baz" ,type=_snake_case ,required=_snake_case ) expected.add_argument("--flag" ,type=_snake_case ,default=_snake_case ,const=_snake_case ,nargs="?" ) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : int = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCAmelCase_) , ) : int = parser.parse_args_into_dataclasses(_snake_case ,look_for_args_file=_snake_case ) self.assertFalse(example.flag ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo" ,default=42 ,type=_snake_case ) expected.add_argument("--baz" ,default="toto" ,type=_snake_case ,help="help message" ) self.argparsersEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_snake_case ,default=_snake_case ,const=_snake_case ,nargs="?" ) expected.add_argument("--baz" ,type=_snake_case ,default=_snake_case ,const=_snake_case ,nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" ,action="store_false" ,default=_snake_case ,dest="baz" ) expected.add_argument("--opt" ,type=_snake_case ,default=_snake_case ) UpperCAmelCase_ : Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_snake_case ) for dataclass_type in dataclass_types: UpperCAmelCase_ : Union[str, Any] = HfArgumentParser(_snake_case ) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,baz=_snake_case ,opt=_snake_case ) ) UpperCAmelCase_ : List[str] = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,baz=_snake_case ,opt=_snake_case ) ) UpperCAmelCase_ : Any = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,baz=_snake_case ,opt=_snake_case ) ) UpperCAmelCase_ : List[str] = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,baz=_snake_case ,opt=_snake_case ) ) UpperCAmelCase_ : int = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,baz=_snake_case ,opt=_snake_case ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Any = argparse.ArgumentParser() expected.add_argument( "--foo" ,default="toto" ,choices=["titi", "toto", 42] ,type=make_choice_type_function(["titi", "toto", 42] ) ,) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : List[str] = parser.parse_args([] ) self.assertEqual(args.foo ,"toto" ) UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.toto ) UpperCAmelCase_ : Dict = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo ,"titi" ) UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.titi ) UpperCAmelCase_ : int = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo ,42 ) UpperCAmelCase_ : Any = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.fourtytwo ) def UpperCamelCase__ ( self ): @dataclass class _snake_case : __A : Literal["titi", "toto", 42] ="toto" UpperCAmelCase_ : List[Any] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( "--foo" ,default="toto" ,choices=("titi", "toto", 42) ,type=make_choice_type_function(["titi", "toto", 42] ) ,) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo ,"toto" ) UpperCAmelCase_ : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo ,"titi" ) UpperCAmelCase_ : int = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo ,42 ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument("--foo_int" ,nargs="+" ,default=[] ,type=_snake_case ) expected.add_argument("--bar_int" ,nargs="+" ,default=[1, 2, 3] ,type=_snake_case ) expected.add_argument("--foo_str" ,nargs="+" ,default=["Hallo", "Bonjour", "Hello"] ,type=_snake_case ) expected.add_argument("--foo_float" ,nargs="+" ,default=[0.1, 0.2, 0.3] ,type=_snake_case ) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Any = parser.parse_args([] ) self.assertEqual( _snake_case ,Namespace(foo_int=[] ,bar_int=[1, 2, 3] ,foo_str=["Hallo", "Bonjour", "Hello"] ,foo_float=[0.1, 0.2, 0.3] ) ,) UpperCAmelCase_ : Tuple = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_snake_case ,Namespace(foo_int=[1] ,bar_int=[2, 3] ,foo_str=["a", "b", "c"] ,foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = argparse.ArgumentParser() expected.add_argument("--foo" ,default=_snake_case ,type=_snake_case ) expected.add_argument("--bar" ,default=_snake_case ,type=_snake_case ,help="help message" ) expected.add_argument("--baz" ,default=_snake_case ,type=_snake_case ) expected.add_argument("--ces" ,nargs="+" ,default=[] ,type=_snake_case ) expected.add_argument("--des" ,nargs="+" ,default=[] ,type=_snake_case ) UpperCAmelCase_ : Dict = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_snake_case ) for dataclass_type in dataclass_types: UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_snake_case ) self.argparsersEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(_snake_case ,Namespace(foo=_snake_case ,bar=_snake_case ,baz=_snake_case ,ces=[] ,des=[] ) ) UpperCAmelCase_ : List[str] = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_snake_case ,Namespace(foo=12 ,bar=3.14 ,baz="42" ,ces=["a", "b", "c"] ,des=[1, 2, 3] ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = HfArgumentParser(_snake_case ) UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() expected.add_argument("--required_list" ,nargs="+" ,type=_snake_case ,required=_snake_case ) expected.add_argument("--required_str" ,type=_snake_case ,required=_snake_case ) expected.add_argument( "--required_enum" ,type=make_choice_type_function(["titi", "toto"] ) ,choices=["titi", "toto"] ,required=_snake_case ,) self.argparsersEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Tuple = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_snake_case ,required=_snake_case ) expected.add_argument( "--required_enum" ,type=make_choice_type_function(["titi", "toto"] ) ,choices=["titi", "toto"] ,required=_snake_case ,) expected.add_argument("--opt" ,type=_snake_case ,default=_snake_case ) expected.add_argument("--baz" ,default="toto" ,type=_snake_case ,help="help message" ) expected.add_argument("--foo_str" ,nargs="+" ,default=["Hallo", "Bonjour", "Hello"] ,type=_snake_case ) self.argparsersEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : List[str] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCAmelCase_ : Any = parser.parse_dict(_snake_case )[0] UpperCAmelCase_ : Dict = BasicExample(**_snake_case ) self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = HfArgumentParser(_snake_case ) UpperCAmelCase_ : str = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(_snake_case ,parser.parse_dict ,_snake_case ,allow_extra_keys=_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = HfArgumentParser(_snake_case ) UpperCAmelCase_ : Any = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(_snake_case ,"temp_json" ) os.mkdir(_snake_case ) with open(temp_local_path + ".json" ,"w+" ) as f: json.dump(_snake_case ,_snake_case ) UpperCAmelCase_ : str = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCAmelCase_ : Union[str, Any] = BasicExample(**_snake_case ) self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = HfArgumentParser(_snake_case ) UpperCAmelCase_ : int = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Dict = os.path.join(_snake_case ,"temp_yaml" ) os.mkdir(_snake_case ) with open(temp_local_path + ".yaml" ,"w+" ) as f: yaml.dump(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCAmelCase_ : str = BasicExample(**_snake_case ) self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = HfArgumentParser(_snake_case ) self.assertIsNotNone(_snake_case )
71
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
317
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Union[str, Any] = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=_SCREAMING_SNAKE_CASE , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=_SCREAMING_SNAKE_CASE , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=_SCREAMING_SNAKE_CASE , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=_SCREAMING_SNAKE_CASE , default='''data/dump''' , help='''The dump file prefix.''' ) _UpperCAmelCase = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": _UpperCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` _UpperCAmelCase = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": _UpperCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['''cls_token'''] # `<s>` _UpperCAmelCase = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": _UpperCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` _UpperCAmelCase = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: _UpperCAmelCase = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'{len(_SCREAMING_SNAKE_CASE )} examples to process.' ) _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 1_0000 _UpperCAmelCase = time.time() for text in data: _UpperCAmelCase = f'{bos} {text.strip()} {sep}' _UpperCAmelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) rslt.append(_SCREAMING_SNAKE_CASE ) iter += 1 if iter % interval == 0: _UpperCAmelCase = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) _UpperCAmelCase = time.time() logger.info('''Finished binarization''' ) logger.info(f'{len(_SCREAMING_SNAKE_CASE )} examples processed.' ) _UpperCAmelCase = f'{args.dump_file}.{args.tokenizer_name}.pickle' _UpperCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _UpperCAmelCase = [np.uintaa(_SCREAMING_SNAKE_CASE ) for d in rslt] else: _UpperCAmelCase = [np.intaa(_SCREAMING_SNAKE_CASE ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as handle: pickle.dump(rslt_ , _SCREAMING_SNAKE_CASE , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
95
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __A : List[str] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , **__UpperCamelCase : Optional[Any] )->List[Any]: super().__init__(**__UpperCamelCase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Optional[int] , __UpperCamelCase : Union[np.ndarray, bytes, str] , **__UpperCamelCase : Tuple )->List[str]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , **__UpperCamelCase : Any )->Union[str, Any]: _UpperCAmelCase = {} if "candidate_labels" in kwargs: _UpperCAmelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _UpperCAmelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple="This is a sound of {}." )->int: if isinstance(__UpperCamelCase , __UpperCamelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCAmelCase = requests.get(__UpperCamelCase ).content else: with open(__UpperCamelCase , '''rb''' ) as f: _UpperCAmelCase = f.read() if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = ffmpeg_read(__UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(__UpperCamelCase , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) _UpperCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) _UpperCAmelCase = candidate_labels _UpperCAmelCase = [hypothesis_template.format(__UpperCamelCase ) for x in candidate_labels] _UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=self.framework , padding=__UpperCamelCase ) _UpperCAmelCase = [text_inputs] return inputs def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Any: _UpperCAmelCase = model_inputs.pop('''candidate_labels''' ) _UpperCAmelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __UpperCamelCase ): _UpperCAmelCase = text_inputs[0] else: # Batching case. _UpperCAmelCase = text_inputs[0][0] _UpperCAmelCase = self.model(**__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : List[str] , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = model_outputs.pop('''candidate_labels''' ) _UpperCAmelCase = model_outputs['''logits'''][0] if self.framework == "pt": _UpperCAmelCase = logits.softmax(dim=0 ) _UpperCAmelCase = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) _UpperCAmelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : -x[0] ) ] return result
95
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a = logging.getLogger(__name__) def UpperCamelCase_( __magic_name__ : torch.nn.Module , __magic_name__ : BnbQuantizationConfig , __magic_name__ : Union[str, os.PathLike] = None , __magic_name__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , __magic_name__ : Optional[List[str]] = None , __magic_name__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = bnb_quantization_config.load_in_abit _lowerCAmelCase :Union[str, Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _lowerCAmelCase :List[Any] = [] # custom device map if isinstance(__magic_name__ , __magic_name__ ) and len(device_map.keys() ) > 1: _lowerCAmelCase :Optional[Any] = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _lowerCAmelCase :str = get_keys_to_not_convert(__magic_name__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__magic_name__ ) _lowerCAmelCase :int = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _lowerCAmelCase :List[str] = [] _lowerCAmelCase :Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__magic_name__ ) # compatibility with peft _lowerCAmelCase :Union[str, Any] = load_in_abit _lowerCAmelCase :int = load_in_abit _lowerCAmelCase :List[str] = get_parameter_device(__magic_name__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _lowerCAmelCase :List[str] = replace_with_bnb_layers(__magic_name__ , __magic_name__ , modules_to_not_convert=__magic_name__ ) # convert param to the right dtype _lowerCAmelCase :Optional[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _lowerCAmelCase :Dict = name.replace('.weight' , '' ).replace('.bias' , '' ) _lowerCAmelCase :Tuple = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__magic_name__ ): param.to(__magic_name__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): _lowerCAmelCase :Dict = replace_with_bnb_layers( __magic_name__ , __magic_name__ , modules_to_not_convert=__magic_name__ ) _lowerCAmelCase :Optional[Any] = get_quantized_model_device_map( __magic_name__ , __magic_name__ , __magic_name__ , max_memory=__magic_name__ , no_split_module_classes=__magic_name__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _lowerCAmelCase :Any = True _lowerCAmelCase :Tuple = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __magic_name__ , __magic_name__ , __magic_name__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=__magic_name__ , offload_state_dict=__magic_name__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__magic_name__ , device_map=__magic_name__ , offload_dir=__magic_name__ ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): _lowerCAmelCase :Union[str, Any] = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__magic_name__ , __magic_name__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _lowerCAmelCase :Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _lowerCAmelCase :List[str] = {} _lowerCAmelCase :List[str] = special_dtypes _lowerCAmelCase :Tuple = no_split_module_classes _lowerCAmelCase :Optional[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _lowerCAmelCase :Optional[int] = get_balanced_memory( __magic_name__ , low_zero=(device_map == 'balanced_low_0') , max_memory=__magic_name__ , **__magic_name__ , ) _lowerCAmelCase :Tuple = max_memory _lowerCAmelCase :str = infer_auto_device_map(__magic_name__ , **__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): # check if don't have any quantized module on the cpu _lowerCAmelCase :Dict = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _lowerCAmelCase :Tuple = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : str=None , __magic_name__ : int=None ): """simple docstring""" if modules_to_not_convert is None: _lowerCAmelCase :Dict = [] _lowerCAmelCase , _lowerCAmelCase :List[Any] = _replace_with_bnb_layers( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=None , ): """simple docstring""" _lowerCAmelCase :Any = False for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase :Dict = [] current_key_name.append(__magic_name__ ) if isinstance(__magic_name__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _lowerCAmelCase :Dict = '.'.join(__magic_name__ ) _lowerCAmelCase :Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _lowerCAmelCase :Tuple = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _lowerCAmelCase :Any = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__magic_name__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _lowerCAmelCase :Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _lowerCAmelCase :int = module.weight.data if module.bias is not None: _lowerCAmelCase :str = module.bias.data bnb_module.requires_grad_(__magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :int = True if len(list(module.children() ) ) > 0: _lowerCAmelCase , _lowerCAmelCase :Any = _replace_with_bnb_layers( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" with init_empty_weights(): _lowerCAmelCase :str = deepcopy(__magic_name__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _lowerCAmelCase :Optional[Any] = find_tied_parameters(__magic_name__ ) # For compatibility with Accelerate < 0.18 if isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase :int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase :Union[str, Any] = sum(__magic_name__ , [] ) _lowerCAmelCase :Any = len(__magic_name__ ) > 0 # Check if it is a base model _lowerCAmelCase :List[Any] = False if hasattr(__magic_name__ , 'base_model_prefix' ): _lowerCAmelCase :str = not hasattr(__magic_name__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase :Tuple = list(model.named_children() ) _lowerCAmelCase :Optional[int] = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase :Tuple = set(__magic_name__ ) - set(__magic_name__ ) _lowerCAmelCase :Any = list(set(__magic_name__ ) ) + list(__magic_name__ ) # remove ".weight" from the keys _lowerCAmelCase :Optional[int] = ['.weight', '.bias'] _lowerCAmelCase :Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase :List[Any] = name.replace(__magic_name__ , '' ) filtered_module_names.append(__magic_name__ ) return filtered_module_names def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" for m in model.modules(): if isinstance(__magic_name__ , bnb.nn.Linearabit ): return True return False def UpperCamelCase_( __magic_name__ : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__magic_name__ , __magic_name__ , 0 , dtype=__magic_name__ , value=__magic_name__ ) _lowerCAmelCase :List[Any] = param_name _lowerCAmelCase :Dict = model if "." in tensor_name: _lowerCAmelCase :List[Any] = tensor_name.split('.' ) for split in splits[:-1]: _lowerCAmelCase :int = getattr(__magic_name__ , __magic_name__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _lowerCAmelCase :Tuple = new_module _lowerCAmelCase :Optional[Any] = splits[-1] # offload weights _lowerCAmelCase :Union[str, Any] = False offload_weight(module._parameters[tensor_name] , __magic_name__ , __magic_name__ , index=__magic_name__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __magic_name__ , index=__magic_name__ , ) else: offload_weight(__magic_name__ , __magic_name__ , __magic_name__ , index=__magic_name__ ) offload_weight(__magic_name__ , param_name.replace('weight' , 'SCB' ) , __magic_name__ , index=__magic_name__ ) set_module_tensor_to_device(__magic_name__ , __magic_name__ , 'meta' , dtype=__magic_name__ , value=torch.empty(*param.size() ) )
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=1_000 , ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Any = range_bbox def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : Dict = bbox[i, j, 3] SCREAMING_SNAKE_CASE : Optional[int] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Union[str, Any] = t SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMModel(config=lowercase__ ) SCREAMING_SNAKE_CASE : Any = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = model(lowercase__ , lowercase__ , token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ , lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = TFLayoutLMForMaskedLM(config=lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFLayoutLMForSequenceClassification(config=lowercase__ ) SCREAMING_SNAKE_CASE : str = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : int = TFLayoutLMForTokenClassification(config=lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> str: SCREAMING_SNAKE_CASE : str = TFLayoutLMForQuestionAnswering(config=lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Union[str, Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ : str = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Union[str, Any] = False snake_case__ : List[Any] = True snake_case__ : int = 1_0 def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = TFLayoutLMModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @slow def _UpperCamelCase ( self ) -> int: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def _UpperCamelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) SCREAMING_SNAKE_CASE : List[Any] = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE : Optional[int] = model(input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) # test the sequence output on [0, :3, :3] SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1E-3 ) ) # test the pooled output on [1, :3] SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowercase__ , atol=1E-3 ) ) @slow def _UpperCamelCase ( self ) -> Any: # initialize model with randomly initialized sequence classification head SCREAMING_SNAKE_CASE : int = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) SCREAMING_SNAKE_CASE : str = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE : List[str] = model( input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar SCREAMING_SNAKE_CASE : Optional[Any] = outputs.loss SCREAMING_SNAKE_CASE : int = (2,) self.assertEqual(loss.shape , lowercase__ ) # test the shape of the logits SCREAMING_SNAKE_CASE : Dict = outputs.logits SCREAMING_SNAKE_CASE : Any = (2, 2) self.assertEqual(logits.shape , lowercase__ ) @slow def _UpperCamelCase ( self ) -> str: # initialize model with randomly initialized token classification head SCREAMING_SNAKE_CASE : Union[str, Any] = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) SCREAMING_SNAKE_CASE : Tuple = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE : int = model( input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) # test the shape of the logits SCREAMING_SNAKE_CASE : int = outputs.logits SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , lowercase__ ) @slow def _UpperCamelCase ( self ) -> Optional[int]: # initialize model with randomly initialized token classification head SCREAMING_SNAKE_CASE : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) SCREAMING_SNAKE_CASE : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE : List[str] = model(input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) # test the shape of the logits SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , lowercase__ ) self.assertEqual(outputs.end_logits.shape , lowercase__ )
707
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase :int = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _lowerCAmelCase :str = { """allenai/led-base-16384""": 16_384, } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = LEDTokenizer snake_case__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , lowercase__=True , **lowercase__ , ) -> str: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Dict = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : Dict = 'post_processor' SCREAMING_SNAKE_CASE : Dict = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE : Tuple = tuple(state['cls'] ) SCREAMING_SNAKE_CASE : str = False if state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : Dict = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = True if state.get('trim_offsets' , lowercase__ ) != trim_offsets: SCREAMING_SNAKE_CASE : Optional[Any] = trim_offsets SCREAMING_SNAKE_CASE : Optional[Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : str = getattr(lowercase__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE : Dict = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase ( self , lowercase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value SCREAMING_SNAKE_CASE : Union[str, Any] = value def _UpperCamelCase ( self , *lowercase__ , **lowercase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE : int = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , *lowercase__ , **lowercase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE : Dict = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def _UpperCamelCase ( self , lowercase__ , lowercase__=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self , lowercase__ , lowercase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = PaddingStrategy.DO_NOT_PAD , lowercase__ = None , lowercase__ = None , ) -> dict: SCREAMING_SNAKE_CASE : int = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : str = len(encoded_inputs['global_attention_mask'] ) != len(lowercase__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : Dict = len(lowercase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Tuple = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
179
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase__ : str = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Union[str, Any] , **snake_case_ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case_ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(snake_case_ ) def __magic_name__ ( self : Dict , **snake_case_ : Dict ): '''simple docstring''' snake_case__ : Tuple = {} snake_case__ : Dict = {} snake_case__ : Union[str, Any] = {} # preprocess args if "points_per_batch" in kwargs: snake_case__ : Any = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: snake_case__ : List[str] = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: snake_case__ : int = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: snake_case__ : int = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: snake_case__ : List[str] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: snake_case__ : Union[str, Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: snake_case__ : int = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: snake_case__ : Optional[Any] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: snake_case__ : List[str] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: snake_case__ : int = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: snake_case__ : str = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: snake_case__ : Union[str, Any] = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : str , snake_case_ : Optional[int] , *snake_case_ : Any , snake_case_ : str=None , snake_case_ : List[Any]=None , **snake_case_ : List[Any] ): '''simple docstring''' return super().__call__(snake_case_ , *snake_case_ , num_workers=snake_case_ , batch_size=snake_case_ , **snake_case_ ) def __magic_name__ ( self : List[str] , snake_case_ : Any , snake_case_ : Optional[Any]=6_4 , snake_case_ : int = 0 , snake_case_ : float = 5_1_2 / 1_5_0_0 , snake_case_ : Optional[int] = 3_2 , snake_case_ : Optional[int] = 1 , ): '''simple docstring''' snake_case__ : Dict = load_image(snake_case_ ) snake_case__ : Optional[int] = self.image_processor.size['''longest_edge'''] snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.image_processor.generate_crop_boxes( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self.image_processor(images=snake_case_ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": snake_case__ : List[str] = self.get_inference_context() with inference_context(): snake_case__ : Dict = self._ensure_tensor_on_device(snake_case_ , device=self.device ) snake_case__ : Tuple = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) snake_case__ : str = image_embeddings snake_case__ : Dict = grid_points.shape[1] snake_case__ : int = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , snake_case_ , snake_case_ ): snake_case__ : str = grid_points[:, i : i + points_per_batch, :, :] snake_case__ : Optional[Any] = input_labels[:, i : i + points_per_batch] snake_case__ : List[str] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __magic_name__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : Optional[Any]=0.8_8 , snake_case_ : Dict=0.9_5 , snake_case_ : List[str]=0 , snake_case_ : Dict=1 , ): '''simple docstring''' snake_case__ : Union[str, Any] = model_inputs.pop('''input_boxes''' ) snake_case__ : Union[str, Any] = model_inputs.pop('''is_last''' ) snake_case__ : List[str] = model_inputs.pop('''original_sizes''' ).tolist() snake_case__ : int = model_inputs.pop('''reshaped_input_sizes''' ).tolist() snake_case__ : List[Any] = self.model(**snake_case_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case__ : Optional[int] = model_outputs['''pred_masks'''] snake_case__ : Optional[Any] = self.image_processor.post_process_masks( snake_case_ , snake_case_ , snake_case_ , snake_case_ , binarize=snake_case_ ) snake_case__ : str = model_outputs['''iou_scores'''] snake_case__ , snake_case__ , snake_case__ : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __magic_name__ ( self : List[str] , snake_case_ : Optional[int] , snake_case_ : List[str]=False , snake_case_ : int=False , snake_case_ : Tuple=0.7 , ): '''simple docstring''' snake_case__ : Tuple = [] snake_case__ : str = [] snake_case__ : Optional[int] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) snake_case__ : Union[str, Any] = torch.cat(snake_case_ ) snake_case__ : Dict = torch.cat(snake_case_ ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.image_processor.post_process_for_mask_generation( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Tuple = defaultdict(snake_case_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(snake_case_ ) snake_case__ : str = {} if output_rle_mask: snake_case__ : Union[str, Any] = rle_mask if output_bboxes_mask: snake_case__ : Union[str, Any] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
347
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase : __lowerCamelCase: str __lowerCamelCase: str = None @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' raise NotImplementedError def lowerCAmelCase__ ( self : str , a : int , a : int , a : str , **a : Dict ): '''simple docstring''' raise NotImplementedError def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict ): '''simple docstring''' raise NotImplementedError def lowerCAmelCase__ ( self : Any ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def lowerCAmelCase__ ( cls : List[Any] ): '''simple docstring''' return f"""`pip install {cls.pip_package or cls.name}`""" class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'optuna' @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' return is_optuna_available() def lowerCAmelCase__ ( self : str , a : Any , a : int , a : str , **a : Dict ): '''simple docstring''' return run_hp_search_optuna(a , a , a , **a ) def lowerCAmelCase__ ( self : Optional[int] , a : Dict ): '''simple docstring''' return default_hp_space_optuna(a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Any = 'ray' __lowerCamelCase: Optional[Any] = '\'ray[tune]\'' @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' return is_ray_available() def lowerCAmelCase__ ( self : List[str] , a : List[Any] , a : int , a : str , **a : List[str] ): '''simple docstring''' return run_hp_search_ray(a , a , a , **a ) def lowerCAmelCase__ ( self : Optional[int] , a : Tuple ): '''simple docstring''' return default_hp_space_ray(a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Dict = 'sigopt' @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' return is_sigopt_available() def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any] , a : int , a : str , **a : int ): '''simple docstring''' return run_hp_search_sigopt(a , a , a , **a ) def lowerCAmelCase__ ( self : List[str] , a : Tuple ): '''simple docstring''' return default_hp_space_sigopt(a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'wandb' @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' return is_wandb_available() def lowerCAmelCase__ ( self : Dict , a : Optional[Any] , a : int , a : str , **a : Optional[Any] ): '''simple docstring''' return run_hp_search_wandb(a , a , a , **a ) def lowerCAmelCase__ ( self : List[Any] , a : Optional[Any] ): '''simple docstring''' return default_hp_space_wandb(a ) UpperCamelCase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_UpperCamelCase ) > 0: lowercase_ : List[str] = available_backends[0].name if len(_UpperCamelCase ) > 1: logger.info( F"""{len(_UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
640
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
1
import math def UpperCamelCase_ ( __a , __a ) -> Dict: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__a ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase : Tuple = """Enter the base and the power separated by a comma: """ UpperCamelCase , UpperCamelCase : str = map(int, input(prompt).split(""",""")) UpperCamelCase , UpperCamelCase : Tuple = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase : Any = res(xa, ya) UpperCamelCase : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
37
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowercase_ :Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase_ :Optional[int] = 1 if upper_limit > 0: lowercase_ :str = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 ,upper_limit + 1 ): for j in range(__lowerCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: lowerCAmelCase : Optional[int] =int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
172
0
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__SCREAMING_SNAKE_CASE , max_perimeter + 1 ): _UpperCamelCase =(base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__SCREAMING_SNAKE_CASE ): _UpperCamelCase =int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a (__SCREAMING_SNAKE_CASE = 1000 ): """simple docstring""" _UpperCamelCase =pythagorean_triple(__SCREAMING_SNAKE_CASE ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
271
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCamelCase : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value __lowerCamelCase : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCamelCase , __lowerCamelCase : Any = gray_img.shape # set different points to rotate image __lowerCamelCase : Optional[Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCamelCase : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCamelCase : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCamelCase : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCamelCase : int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCamelCase : Optional[Any] = plt.figure(1) __lowerCamelCase : Tuple = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
271
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase__ : Tuple = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def SCREAMING_SNAKE_CASE ( __UpperCamelCase=None) -> Optional[Any]: if subparsers is not None: a = subparsers.add_parser("tpu-config" , description=_description) else: a = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description) # Core arguments a = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`.") config_args.add_argument( "--config_file" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=__UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=__UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) a = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=__UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it.") if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase) return parser def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[str]: a = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCAmelCase): a = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: a = defaults.command_file if not args.command and defaults.commands is not None: a = defaults.commands if not args.tpu_name: a = defaults.tpu_name if not args.tpu_zone: a = defaults.tpu_zone if args.accelerate_version == "dev": a = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": a = "accelerate -U" elif isinstance(parse(args.accelerate_version) , __UpperCAmelCase): a = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file , "r") as f: a = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCAmelCase): a = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate a = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command a = "; ".join(__UpperCAmelCase) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess a = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(__UpperCAmelCase)}''') return subprocess.run(__UpperCAmelCase) print("Successfully setup pod.") def SCREAMING_SNAKE_CASE ( ) -> Tuple: a = tpu_command_parser() a = parser.parse_args() tpu_command_launcher(__UpperCAmelCase)
515
import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: a__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) a__ = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE ) a__ = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE ) if self.isEnabledFor(SCREAMING_SNAKE_CASE ): if self._should_log(SCREAMING_SNAKE_CASE ): a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif in_order: a__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def __a ( __UpperCAmelCase , __UpperCAmelCase = None ): if log_level is None: a__ = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __UpperCAmelCase ) a__ = logging.getLogger(__UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__UpperCAmelCase , {} )
194
0
'''simple docstring''' import torch from torch import nn class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=1 , __lowercase=False ): super().__init__() __lowerCAmelCase = n_token __lowerCAmelCase = d_embed __lowerCAmelCase = d_proj __lowerCAmelCase = cutoffs + [n_token] __lowerCAmelCase = [0] + self.cutoffs __lowerCAmelCase = div_val __lowerCAmelCase = self.cutoffs[0] __lowerCAmelCase = len(self.cutoffs ) - 1 __lowerCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowerCAmelCase = nn.ModuleList() __lowerCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowercase , __lowercase ) ) ) else: self.out_projs.append(__lowercase ) self.out_layers.append(nn.Linear(__lowercase , __lowercase ) ) else: for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowercase , __lowercase ) ) ) self.out_layers.append(nn.Linear(__lowercase , r_idx - l_idx ) ) __lowerCAmelCase = keep_order def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ): if proj is None: __lowerCAmelCase = nn.functional.linear(__lowercase , __lowercase , bias=__lowercase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowerCAmelCase = nn.functional.linear(__lowercase , proj.t().contiguous() ) __lowerCAmelCase = nn.functional.linear(__lowercase , __lowercase , bias=__lowercase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case (self , __lowercase , __lowercase=None , __lowercase=False ): if labels is not None: # Shift so that tokens < n predict n __lowerCAmelCase = hidden[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) __lowerCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __lowerCAmelCase = self._compute_logit(__lowercase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __lowerCAmelCase = labels != -1_00 __lowerCAmelCase = torch.zeros_like(__lowercase , dtype=hidden.dtype , device=hidden.device ) __lowerCAmelCase = ( -nn.functional.log_softmax(__lowercase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowerCAmelCase = nn.functional.log_softmax(__lowercase , dim=-1 ) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase = self.out_layers[i].weight __lowerCAmelCase = self.out_layers[i].bias if i == 0: __lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowercase ) biases.append(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase = self._compute_logit(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = nn.functional.log_softmax(__lowercase , dim=1 ) if labels is None: __lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowerCAmelCase = torch.zeros_like(__lowercase , dtype=hidden.dtype , device=hidden.device ) __lowerCAmelCase = 0 __lowerCAmelCase = [0] + self.cutoffs for i in range(len(__lowercase ) - 1 ): __lowerCAmelCase , __lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowerCAmelCase = (labels >= l_idx) & (labels < r_idx) __lowerCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowerCAmelCase = labels.index_select(0 , __lowercase ) - l_idx __lowerCAmelCase = head_logprob.index_select(0 , __lowercase ) __lowerCAmelCase = hidden.index_select(0 , __lowercase ) else: __lowerCAmelCase = hidden if i == 0: if labels is not None: __lowerCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __lowerCAmelCase = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase = self._compute_logit(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = nn.functional.log_softmax(__lowercase , dim=1 ) __lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowerCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __lowerCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowerCAmelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowercase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case (self , __lowercase ): if self.n_clusters == 0: __lowerCAmelCase = self._compute_logit(__lowercase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowercase , dim=-1 ) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase = self.out_layers[i].weight __lowerCAmelCase = self.out_layers[i].bias if i == 0: __lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowercase ) biases.append(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase = self._compute_logit(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowerCAmelCase = nn.functional.log_softmax(__lowercase , dim=1 ) __lowerCAmelCase = [0] + self.cutoffs for i in range(len(__lowercase ) - 1 ): __lowerCAmelCase , __lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowerCAmelCase = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase = self._compute_logit(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = nn.functional.log_softmax(__lowercase , dim=1 ) __lowerCAmelCase = head_logprob[:, -i] + tail_logprob_i __lowerCAmelCase = logprob_i return out
474
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
474
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs snake_case_ : Tuple = imread(r'digital_image_processing/image_data/lena_small.jpg') snake_case_ : Dict = cvtColor(img, COLOR_BGR2GRAY) def A__ ( ): _UpperCamelCase : Any = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def A__ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__ , 1_1_0 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def A__ ( ): _UpperCamelCase : Any = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def A__ ( ): _UpperCamelCase : Union[str, Any] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCamelCase : List[str] = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def A__ ( ): assert gg.gaussian_filter(UpperCAmelCase__ , 5 , sigma=0.9 ).all() def A__ ( ): # laplace diagonals _UpperCamelCase : Optional[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _UpperCamelCase : Tuple = conv.img_convolve(UpperCAmelCase__ , UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def A__ ( ): assert med.median_filter(UpperCAmelCase__ , 3 ).any() def A__ ( ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def A__ ( ): _UpperCamelCase : Dict = sp.make_sepia(UpperCAmelCase__ , 2_0 ) assert sepia.all() def A__ ( UpperCAmelCase_ = "digital_image_processing/image_data/lena_small.jpg" ): _UpperCamelCase : str = bs.Burkes(imread(UpperCAmelCase__ , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def A__ ( UpperCAmelCase_ = "digital_image_processing/image_data/lena_small.jpg" , ): _UpperCamelCase : int = rs.NearestNeighbour(imread(UpperCAmelCase__ , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def A__ ( ): _UpperCamelCase : Optional[int] = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _UpperCamelCase : List[str] = imread(UpperCAmelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None _UpperCamelCase : Dict = 0 _UpperCamelCase : str = 0 _UpperCamelCase : Dict = image[x_coordinate][y_coordinate] _UpperCamelCase : Union[str, Any] = lbp.get_neighbors_pixel( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCamelCase : Optional[int] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _UpperCamelCase : List[Any] = lbp.local_binary_value(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) assert lbp_image.any()
195
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( UpperCAmelCase__ ) -> int: if len(UpperCAmelCase__ ) <= 1: return arr, 0 __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // 2 __SCREAMING_SNAKE_CASE = arr[0:mid] __SCREAMING_SNAKE_CASE = arr[mid:] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _count_cross_inversions(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = 0 while i < len(UpperCAmelCase__ ) and j < len(UpperCAmelCase__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase__ ) # an empty list should also have zero inversions __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase__ ) if __name__ == "__main__": main()
482
0
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCamelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
703
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase_ ( ): '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) benchmark()
450
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
417
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowercase ( snake_case_ ): lowercase = 'convbert' def __init__( self : Union[str, Any] , snake_case : Tuple=3_0_5_2_2 , snake_case : List[Any]=7_6_8 , snake_case : Any=1_2 , snake_case : Optional[int]=1_2 , snake_case : Optional[int]=3_0_7_2 , snake_case : Tuple="gelu" , snake_case : Any=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : str=2 , snake_case : Tuple=0.02 , snake_case : Any=1e-12 , snake_case : List[str]=1 , snake_case : Any=0 , snake_case : Tuple=2 , snake_case : Any=7_6_8 , snake_case : Any=2 , snake_case : Tuple=9 , snake_case : int=1 , snake_case : str=None , **snake_case : Dict , ) -> Optional[int]: """simple docstring""" super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) UpperCamelCase_ : List[Any] = vocab_size UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : int = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : List[Any] = intermediate_size UpperCamelCase_ : str = hidden_act UpperCamelCase_ : Union[str, Any] = hidden_dropout_prob UpperCamelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase_ : Dict = max_position_embeddings UpperCamelCase_ : Dict = type_vocab_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Any = layer_norm_eps UpperCamelCase_ : Union[str, Any] = embedding_size UpperCamelCase_ : int = head_ratio UpperCamelCase_ : Optional[Any] = conv_kernel_size UpperCamelCase_ : Any = num_groups UpperCamelCase_ : int = classifier_dropout class _lowercase ( snake_case_ ): @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
417
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): def __init__( self : Optional[Any] , a_ : List[str] , a_ : Dict=13 , a_ : str=7 , a_ : int=True , a_ : Union[str, Any]=True , a_ : Union[str, Any]=False , a_ : Tuple=True , a_ : Any=99 , a_ : Any=32 , a_ : Dict=5 , a_ : Optional[int]=4 , a_ : Tuple=37 , a_ : Dict="gelu" , a_ : Dict=0.1 , a_ : Any=0.1 , a_ : List[Any]=512 , a_ : Union[str, Any]=16 , a_ : Any=2 , a_ : List[str]=0.02 , a_ : Optional[Any]=3 , a_ : Union[str, Any]=4 , a_ : Tuple=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Any , a_ : Optional[int] , a_ : str , a_ : List[str] , a_ : Tuple , a_ : Union[str, Any] , a_ : Any ): """simple docstring""" __snake_case = DistilBertModel(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , __A ) __snake_case = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : List[Any] , a_ : str , a_ : int , a_ : int ): """simple docstring""" __snake_case = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , a_ : Tuple , a_ : Optional[int] , a_ : Optional[int] , a_ : Tuple , a_ : Dict , a_ : Any ): """simple docstring""" __snake_case = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __snake_case = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int , a_ : str , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[int] , a_ : List[Any] , a_ : Dict ): """simple docstring""" __snake_case = self.num_labels __snake_case = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , a_ : Dict , a_ : Optional[Any] , a_ : int , a_ : List[str] , a_ : Tuple , a_ : Any ): """simple docstring""" __snake_case = self.num_labels __snake_case = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , a_ : str , a_ : str , a_ : Dict , a_ : Optional[Any] , a_ : Any , a_ : Tuple ): """simple docstring""" __snake_case = self.num_choices __snake_case = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() (__snake_case) = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Tuple ): """simple docstring""" __snake_case = DistilBertModelTester(self ) __snake_case = ConfigTester(self , config_class=__A , dim=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case = True __snake_case = model_class(config=__A ) __snake_case = self._prepare_for_class(__A , __A ) __snake_case = torch.jit.trace( __A , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , "traced_model.pt" ) ) __snake_case = torch.jit.load(os.path.join(__A , "traced_model.pt" ) , map_location=__A ) loaded(inputs_dict["input_ids"].to(__A ) , inputs_dict["attention_mask"].to(__A ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case = model(__A , attention_mask=__A )[0] __snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) __snake_case = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
import math import random from typing import Any from .hill_climbing import SearchProblem def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 1_00 , SCREAMING_SNAKE_CASE = 0.01 , SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" lowercase__ = False lowercase__ = search_prob lowercase__ = start_temperate lowercase__ = [] lowercase__ = 0 lowercase__ = None while not search_end: lowercase__ = current_state.score() if best_state is None or current_score > best_state.score(): lowercase__ = current_state scores.append(SCREAMING_SNAKE_CASE ) iterations += 1 lowercase__ = None lowercase__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase__ = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor lowercase__ = neighbors.pop(SCREAMING_SNAKE_CASE ) lowercase__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase__ = picked_neighbor else: lowercase__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase__ = picked_neighbor lowercase__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase__ = True else: lowercase__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
43
from typing import Any def __A ( _A ): """simple docstring""" if not input_list: return [] __a = [input_list.count(_A ) for value in input_list] __a = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
197
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = CustomTokenizer pass
81
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class snake_case__: """simple docstring""" lowercase_ = 42 # setable values lowercase_ = 42 lowercase_ = 42 lowercase_ = None @classmethod def snake_case ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): return cls(common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE ) @dataclass class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = 42 class snake_case__(_UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase_ = 42 @property def snake_case ( self : Dict ): return True @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE : int = 1_000 , SCREAMING_SNAKE_CASE : float = 0.0_001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[jnp.ndarray] = None , SCREAMING_SNAKE_CASE : str = "fixed_small" , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa , ): lowercase__ : List[Any] = dtype def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Optional[CommonSchedulerState] = None ): if common is None: lowercase__ : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ : Dict = jnp.array(1.0 , dtype=self.dtype ) lowercase__ : Dict = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Optional[int] = None ): return sample def snake_case ( self : int , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple = () ): lowercase__ : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ : Union[str, Any] = (jnp.arange(0 , SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[Any]=None ): lowercase__ : Tuple = state.common.alphas_cumprod[t] lowercase__ : Any = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ : Union[str, Any] = jnp.clip(SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ : Optional[int] = jnp.log(jnp.clip(SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ : List[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ : List[Any] = variance lowercase__ : Union[str, Any] = state.common.betas[t] lowercase__ : Tuple = (predicted_variance + 1) / 2 lowercase__ : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Optional[jax.random.KeyArray] = None , SCREAMING_SNAKE_CASE : bool = True , ): lowercase__ : Tuple = timestep if key is None: lowercase__ : Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : str = jnp.split(SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowercase__ : Any = None # 1. compute alphas, betas lowercase__ : Dict = state.common.alphas_cumprod[t] lowercase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ : Optional[Any] = 1 - alpha_prod_t lowercase__ : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Optional[Any] = model_output elif self.config.prediction_type == "v_prediction": lowercase__ : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = jnp.clip(SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ : Any = jax.random.split(SCREAMING_SNAKE_CASE , num=1 ) lowercase__ : Any = jax.random.normal(SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , predicted_variance=SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase__ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , state=SCREAMING_SNAKE_CASE ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , ): return add_noise_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , ): return get_velocity_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return self.config.num_train_timesteps
81
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a = "src/transformers" __a = "docs/source/en/tasks" def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ : List[str] = f.readlines() # Find the start prompt. snake_case__ : Union[str, Any] = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 snake_case__ : Tuple = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) __a = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : List[str] = TASK_GUIDE_TO_MODELS[task_guide] snake_case__ : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() ) snake_case__ : List[str] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) snake_case__ : List[Any] = get_model_list_for_task(_lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" """ to fix this.""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __a = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
374
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __snake_case( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Optional[Any]: snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : List[str] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case__ : Tuple = 8 else: snake_case__ : int = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) snake_case__ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCAmelCase ) == "1": snake_case__ : int = 2 # New Code # snake_case__ : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[Any] = config["""lr"""] snake_case__ : Optional[Any] = int(config["""num_epochs"""] ) snake_case__ : Union[str, Any] = int(config["""seed"""] ) snake_case__ : List[str] = int(config["""batch_size"""] ) snake_case__ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) set_seed(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Any = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCAmelCase ): snake_case__ : Any = model(**_lowerCAmelCase ) snake_case__ : str = output.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str = model(**_lowerCAmelCase ) snake_case__ : Optional[int] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) snake_case__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _lowerCAmelCase ) def __snake_case( ) -> List[str]: snake_case__ : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Tuple = parser.parse_args() snake_case__ : Dict = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
374
1
'''simple docstring''' import argparse import os import re import packaging.version __a : List[Any] = """examples/""" __a : List[Any] = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } __a : int = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } __a : int = """README.md""" def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' with open(lowercase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.read() UpperCamelCase , UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace("VERSION" , lowercase_ ) UpperCamelCase = re_pattern.sub(lowercase_ , lowercase_ ) with open(lowercase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase_ ) def __magic_name__ ( lowercase_ ) -> Tuple: '''simple docstring''' for folder, directories, fnames in os.walk(lowercase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase_ , lowercase_ ) , lowercase_ , pattern="examples" ) def __magic_name__ ( lowercase_ , lowercase_=False ) -> List[str]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase_ , lowercase_ , lowercase_ ) if not patch: update_version_in_examples(lowercase_ ) def __magic_name__ ( ) -> Dict: '''simple docstring''' UpperCamelCase = "🤗 Transformers currently provides the following architectures" UpperCamelCase = "1. Want to contribute a new model?" with open(lowercase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCamelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase_ ) def __magic_name__ ( ) -> List[str]: '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS["init"][0].search(lowercase_ ).groups()[0] return packaging.version.parse(lowercase_ ) def __magic_name__ ( lowercase_=False ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCamelCase = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCamelCase = input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowercase_ ) == 0: UpperCamelCase = default_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase_ , patch=lowercase_ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __magic_name__ ( ) -> Tuple: '''simple docstring''' UpperCamelCase = get_version() UpperCamelCase = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase_ ) == 0: UpperCamelCase = dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase_ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") __a : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
700
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) def __magic_name__ ( lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = torch.load(lowercase_ , map_location="cpu" ) if "model" in sd.keys(): UpperCamelCase = torch.load(lowercase_ , map_location="cpu" )["model"] # pop unnecessary weights UpperCamelCase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) UpperCamelCase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCamelCase = sd.pop(lowercase_ ) UpperCamelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCamelCase = sd[key] # We split QKV in separate Q,K,V UpperCamelCase = key.replace(".qkv_proj." , ".q_proj." ) UpperCamelCase = key.replace(".qkv_proj." , ".k_proj." ) UpperCamelCase = key.replace(".qkv_proj." , ".v_proj." ) UpperCamelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCamelCase , UpperCamelCase , UpperCamelCase = torch.split(lowercase_ , depth // 3 , dim=0 ) UpperCamelCase = q UpperCamelCase = k UpperCamelCase = v del sd[key] return sd @torch.no_grad() def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' UpperCamelCase = load_checkpoint(lowercase_ ) if config is not None: UpperCamelCase = OPTConfig.from_pretrained(lowercase_ ) else: UpperCamelCase = OPTConfig() UpperCamelCase = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": __a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __a : Dict = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
414
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = (DDPMScheduler,) def __snake_case( self , **A_ ): _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**A_ ) return config def __snake_case( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def __snake_case( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __snake_case( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __snake_case( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __snake_case( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __snake_case( self ): self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __snake_case( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __snake_case( self ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=A_ ) def __snake_case( self ): _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5 def __snake_case( self ): _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**A_ ) _UpperCAmelCase : List[Any] = len(A_ ) _UpperCAmelCase : Tuple = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter _UpperCAmelCase : Dict = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual _UpperCAmelCase : str = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Any = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Any = pred_prev_sample _UpperCAmelCase : Any = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __snake_case( self ): _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : Union[str, Any] = scheduler_class(**A_ ) _UpperCAmelCase : str = len(A_ ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual _UpperCAmelCase : Optional[Any] = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : str = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Optional[Any] = pred_prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __snake_case( self ): _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**A_ ) _UpperCAmelCase : Tuple = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) _UpperCAmelCase : Tuple = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: _UpperCAmelCase : Optional[Any] = -1 else: _UpperCAmelCase : List[Any] = timesteps[i + 1] _UpperCAmelCase : Optional[Any] = scheduler.previous_timestep(A_ ) _UpperCAmelCase : Tuple = prev_t.item() self.assertEqual(A_ , A_ ) def __snake_case( self ): _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**A_ ) _UpperCAmelCase : Union[str, Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(A_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A_ ) def __snake_case( self ): _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A_ ) _UpperCAmelCase : Union[str, Any] = [1_00, 87, 50, 1, 0] _UpperCAmelCase : Optional[int] = len(A_ ) with self.assertRaises(A_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __snake_case( self ): _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**A_ ) _UpperCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A_ )
643
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _SCREAMING_SNAKE_CASE ( A , unittest.TestCase ): # TODO: is there an appropriate internal test set? __SCREAMING_SNAKE_CASE = '''ssube/stable-diffusion-x4-upscaler-onnx''' def __snake_case( self , A_=0 ): _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(A_ ) ) _UpperCAmelCase : Any = torch.manual_seed(A_ ) _UpperCAmelCase : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __snake_case( self ): _UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() _UpperCAmelCase : List[str] = pipe(**A_ ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Any = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __snake_case( self ): _UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() _UpperCAmelCase : Optional[Any] = pipe(**A_ ).images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Optional[Any] = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case( self ): _UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : str = self.get_dummy_inputs() _UpperCAmelCase : List[Any] = pipe(**A_ ).images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Tuple = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case( self ): _UpperCAmelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : Union[str, Any] = pipe(**A_ ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case( self ): _UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : str = pipe(**A_ ).images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Tuple = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def __snake_case( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case( self ): _UpperCAmelCase : List[str] = ort.SessionOptions() _UpperCAmelCase : Union[str, Any] = False return options def __snake_case( self ): _UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase : Any = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Union[str, Any] = """A fantasy landscape, trending on artstation""" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Tuple = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type="""np""" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : List[str] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __snake_case( self ): _UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase : Optional[int] = init_image.resize((1_28, 1_28) ) _UpperCAmelCase : Optional[int] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Union[str, Any] = """A fantasy landscape, trending on artstation""" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type="""np""" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Dict = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
643
1
"""simple docstring""" def _snake_case ( UpperCamelCase : int = 10**9 ): UpperCAmelCase : int = 1 UpperCAmelCase : List[Any] = 2 UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
359
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Any = XLMTokenizer __lowerCAmelCase : List[Any] = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCAmelCase : str = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : List[Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] = """lower newer""" UpperCAmelCase : Dict = """lower newer""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase : Optional[int] = """lower""" UpperCAmelCase : Optional[int] = ["""low""", """er</w>"""] UpperCAmelCase : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = tokens + ["""<unk>"""] UpperCAmelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[Any] = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) UpperCAmelCase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
359
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Any =0.0_0 lowercase : Tuple =0 for resistor in resistors: if resistor <= 0: lowercase : Dict =f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__magic_name__ ) first_sum += 1 / float(__magic_name__ ) index += 1 return 1 / first_sum def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Optional[Any] =0.0_0 lowercase : int =0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase : Tuple =f'''Resistor at index {index} has a negative value!''' raise ValueError(__magic_name__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCAmelCase_ ( __A : list ): '''simple docstring''' if not postfix_notation: return 0 snake_case: List[str] = {'+', '-', '*', '/'} snake_case: list[Any] = [] for token in postfix_notation: if token in operations: snake_case , snake_case: int = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
329
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''maskformer-swin''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , lowercase__ : List[str]=224 , lowercase__ : Dict=4 , lowercase__ : List[Any]=3 , lowercase__ : int=96 , lowercase__ : int=[2, 2, 6, 2] , lowercase__ : Any=[3, 6, 12, 24] , lowercase__ : int=7 , lowercase__ : Optional[int]=4.0 , lowercase__ : Tuple=True , lowercase__ : Tuple=0.0 , lowercase__ : Dict=0.0 , lowercase__ : List[str]=0.1 , lowercase__ : Tuple="gelu" , lowercase__ : Optional[Any]=False , lowercase__ : Tuple=0.0_2 , lowercase__ : List[Any]=1e-5 , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , **lowercase__ : str , ) ->List[str]: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : List[Any] = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : str = num_channels _UpperCamelCase : int = embed_dim _UpperCamelCase : int = depths _UpperCamelCase : Tuple = len(lowercase__ ) _UpperCamelCase : Optional[int] = num_heads _UpperCamelCase : int = window_size _UpperCamelCase : List[Any] = mlp_ratio _UpperCamelCase : int = qkv_bias _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : Dict = drop_path_rate _UpperCamelCase : List[Any] = hidden_act _UpperCamelCase : Optional[int] = use_absolute_embeddings _UpperCamelCase : Optional[Any] = layer_norm_eps _UpperCamelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase : int = int(embed_dim * 2 ** (len(lowercase__ ) - 1) ) _UpperCamelCase : int = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(lowercase__ ) + 1 )] _UpperCamelCase , _UpperCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names )
204
'''simple docstring''' def __A ( UpperCAmelCase ) -> List[Any]: '''simple docstring''' _UpperCamelCase : str = [] _UpperCamelCase : Optional[Any] = set({"(", "[", "{"} ) _UpperCamelCase : int = set({")", "]", "}"} ) _UpperCamelCase : Dict = {"{": "}", "[": "]", "(": ")"} for i in range(len(UpperCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase ) == 0 or (len(UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase ) == 0 def __A ( ) -> str: '''simple docstring''' _UpperCamelCase : Any = input("Enter sequence of brackets: " ) if is_balanced(UpperCAmelCase ): print(UpperCAmelCase ,"is balanced" ) else: print(UpperCAmelCase ,"is not balanced" ) if __name__ == "__main__": main()
204
1
"""simple docstring""" def snake_case ( lowerCAmelCase_ = 4000000 ) -> int: _snake_case = [] _snake_case , _snake_case = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase_ ) _snake_case , _snake_case = b, a + b return sum(lowerCAmelCase_ ) if __name__ == "__main__": print(F"{solution() = }")
103
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __snake_case( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Optional[Any]: snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : List[str] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case__ : Tuple = 8 else: snake_case__ : int = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) snake_case__ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCAmelCase ) == "1": snake_case__ : int = 2 # New Code # snake_case__ : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[Any] = config["""lr"""] snake_case__ : Optional[Any] = int(config["""num_epochs"""] ) snake_case__ : Union[str, Any] = int(config["""seed"""] ) snake_case__ : List[str] = int(config["""batch_size"""] ) snake_case__ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) set_seed(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Any = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCAmelCase ): snake_case__ : Any = model(**_lowerCAmelCase ) snake_case__ : str = output.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str = model(**_lowerCAmelCase ) snake_case__ : Optional[int] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) snake_case__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _lowerCAmelCase ) def __snake_case( ) -> List[str]: snake_case__ : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Tuple = parser.parse_args() snake_case__ : Dict = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
374
0
from __future__ import annotations __magic_name__ = '''Muhammad Umer Farooq''' __magic_name__ = '''MIT''' __magic_name__ = '''1.0.0''' __magic_name__ = '''Muhammad Umer Farooq''' __magic_name__ = '''contact@muhammadumerfarooq.me''' __magic_name__ = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): def __init__( self , lowerCamelCase ): super().__init__() snake_case__ = [] snake_case__ = domain def A_ ( self , lowerCamelCase , lowerCamelCase ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ = parse.urljoin(self.domain , lowerCamelCase ) self.urls.append(lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return ".".join(get_sub_domain_name(__lowerCAmelCase ).split("." )[-2:] ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return parse.urlparse(__lowerCAmelCase ).netloc def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = "https://github.com" ): snake_case__ = get_domain_name(__lowerCAmelCase ) # Initialize the parser snake_case__ = Parser(__lowerCAmelCase ) try: # Open URL snake_case__ = requests.get(__lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ = requests.get(__lowerCAmelCase ) # Get the valid email. snake_case__ = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
530
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ = ksize + 1 snake_case__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center snake_case__ = x - ksize // 2 snake_case__ = y - ksize // 2 # degree to radiant snake_case__ = theta / 180 * np.pi snake_case__ = np.cos(_theta ) snake_case__ = np.sin(_theta ) # get kernel x snake_case__ = cos_theta * px + sin_theta * py # get kernel y snake_case__ = -sin_theta * px + cos_theta * py # fill kernel snake_case__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 255 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
530
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class _lowercase ( __lowercase ): def __init__( self : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> List[str]: __snake_case = {} if "candidate_labels" in kwargs: __snake_case = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __snake_case = kwargs['hypothesis_template'] return preprocess_params, {}, {} def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="This is a photo of {}." ) -> Dict: __snake_case = load_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.image_processor(images=[image] , return_tensors=self.framework ) __snake_case = candidate_labels __snake_case = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __snake_case = [text_inputs] return inputs def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: __snake_case = model_inputs.pop('candidate_labels' ) __snake_case = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __snake_case = text_inputs[0] else: # Batching case. __snake_case = text_inputs[0][0] __snake_case = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: __snake_case = model_outputs.pop('candidate_labels' ) __snake_case = model_outputs['logits'][0] if self.framework == "pt": __snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) __snake_case = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [scores] elif self.framework == "tf": __snake_case = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __snake_case = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __snake_case = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
56
def __lowerCAmelCase ( _A ,_A ): """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowercase = str(bin(_A ) )[2:] # remove the leading "0b" _lowercase = str(bin(_A ) )[2:] _lowercase = max(len(_A ) ,len(_A ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_A ) ,b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
398
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
369
import cva import numpy as np class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , lowerCAmelCase : float , lowerCAmelCase : int ) -> Tuple: """simple docstring""" if k in (0.04, 0.06): __lowerCAmelCase : List[Any] = k __lowerCAmelCase : str = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Dict ) -> str: """simple docstring""" return str(self.k ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __lowerCAmelCase : List[Any] = cva.imread(lowerCAmelCase , 0 ) __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = img.shape __lowerCAmelCase : list[list[int]] = [] __lowerCAmelCase : Dict = img.copy() __lowerCAmelCase : Any = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB ) __lowerCAmelCase ,__lowerCAmelCase : List[str] = np.gradient(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = dx**2 __lowerCAmelCase : Dict = dy**2 __lowerCAmelCase : Any = dx * dy __lowerCAmelCase : Dict = 0.04 __lowerCAmelCase : List[str] = self.window_size // 2 for y in range(lowerCAmelCase , h - offset ): for x in range(lowerCAmelCase , w - offset ): __lowerCAmelCase : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Optional[Any] = (wxx * wyy) - (wxy**2) __lowerCAmelCase : List[Any] = wxx + wyy __lowerCAmelCase : int = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCAmelCase = HarrisCorner(0.04, 3) __UpperCAmelCase , __UpperCAmelCase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
651
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a__ : """simple docstring""" def __init__( self :Optional[Any] , lowercase__ :Optional[int] , lowercase__ :int = 13 , lowercase__ :int = 64 , lowercase__ :int = 2 , lowercase__ :int = 3 , lowercase__ :int = 3 , lowercase__ :bool = True , lowercase__ :bool = True , lowercase__ :int = 128 , lowercase__ :List[str]=[16, 32, 64, 128] , lowercase__ :int = 7 , lowercase__ :int = 4 , lowercase__ :int = 37 , lowercase__ :str = "gelu" , lowercase__ :float = 0.1 , lowercase__ :float = 0.1 , lowercase__ :int = 10 , lowercase__ :float = 0.02 , lowercase__ :int = 2 , lowercase__ :int = 1 , lowercase__ :int = 128 , lowercase__ :List[int] = [2, 2, 2, 2] , lowercase__ :int = 2 , lowercase__ :int = 2 , ): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = encoder_stride lowercase = num_attention_outputs lowercase = embed_dim lowercase = embed_dim + 1 lowercase = resolution lowercase = depths lowercase = hidden_sizes lowercase = dim lowercase = mlp_expansion_ratio def __UpperCAmelCase ( self :int ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self :Any ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __UpperCAmelCase ( self :Any , lowercase__ :Union[str, Any] , lowercase__ :str , lowercase__ :Dict ): lowercase = TFEfficientFormerModel(config=lowercase__ ) lowercase = model(lowercase__ , training=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :Optional[int] , lowercase__ :List[str] , lowercase__ :str ): lowercase = self.type_sequence_label_size lowercase = TFEfficientFormerForImageClassification(lowercase__ ) lowercase = model(lowercase__ , labels=lowercase__ , training=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = TFEfficientFormerForImageClassification(lowercase__ ) lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self :Optional[Any] ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a__ ( _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" A__ : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) A__ : Dict = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) A__ : Dict = False A__ : Any = False A__ : str = False A__ : List[Any] = False A__ : int = False def __UpperCAmelCase ( self :Dict ): lowercase = TFEfficientFormerModelTester(self ) lowercase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def __UpperCAmelCase ( self :Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def __UpperCAmelCase ( self :str ): pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def __UpperCAmelCase ( self :List[str] ): pass def __UpperCAmelCase ( self :List[Any] ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowercase__ ) lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__ ) def __UpperCAmelCase ( self :str ): def check_hidden_states_output(lowercase__ :Tuple , lowercase__ :int , lowercase__ :int ): lowercase = model_class(lowercase__ ) lowercase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) , training=lowercase__ ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase__ ) , lowercase__ ) if hasattr(self.model_tester , 'encoder_seq_length' ): lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: lowercase = seq_length * self.model_tester.chunk_length else: lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowercase = outputs.decoder_hidden_states self.asseretIsInstance(lowercase__ , (list, tuple) ) self.assertEqual(len(lowercase__ ) , lowercase__ ) lowercase = getattr(self.model_tester , 'seq_length' , lowercase__ ) lowercase = getattr(self.model_tester , 'decoder_seq_length' , lowercase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :Tuple , lowercase__ :Tuple , lowercase__ :List[str] , lowercase__ :Union[str, Any]=False ): lowercase = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCAmelCase ( self :Any ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def __UpperCAmelCase ( self :Tuple ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__ ) def __UpperCAmelCase ( self :str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def __UpperCAmelCase ( self :Any ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFEfficientFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def __UpperCAmelCase ( self :Tuple ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = getattr(self.model_tester , 'seq_length' , lowercase__ ) lowercase = getattr(self.model_tester , 'encoder_seq_length' , lowercase__ ) lowercase = getattr(self.model_tester , 'key_length' , lowercase__ ) lowercase = getattr(self.model_tester , 'chunk_length' , lowercase__ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = True lowercase = model_class(lowercase__ ) lowercase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) , training=lowercase__ ) lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(lowercase__ ) lowercase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) , training=lowercase__ ) lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __UpperCAmelCase ( self :str ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowercase = model_class(lowercase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowercase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowercase = model(lowercase__ ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): """simple docstring""" lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self :Tuple ): return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self :int ): lowercase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=lowercase__ , return_tensors='tf' ) # forward pass lowercase = model(**lowercase__ , training=lowercase__ ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) lowercase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self :Optional[Any] ): lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=lowercase__ , return_tensors='tf' ) # forward pass lowercase = model(**lowercase__ , training=lowercase__ ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) lowercase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
314
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
1
from __future__ import annotations from collections import deque class A__ : """simple docstring""" def __init__( self : Any , lowerCamelCase__ : list[str] ): a__ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(lowerCamelCase__ ) self.set_fail_transitions() def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _UpperCamelCase( self : Any , lowerCamelCase__ : str ): a__ : List[str] = 0 for character in keyword: a__ : Tuple = self.find_next_state(lowerCamelCase__ , lowerCamelCase__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) a__ : Union[str, Any] = len(self.adlist ) - 1 else: a__ : List[str] = next_state self.adlist[current_state]["output"].append(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = 0 while q: a__ : str = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = self.adlist[r]["fail_state"] while ( self.find_next_state(lowerCamelCase__ , self.adlist[child]["value"] ) is None and state != 0 ): a__ : List[Any] = self.adlist[state]["fail_state"] a__ : Optional[int] = self.find_next_state( lowerCamelCase__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: a__ : Dict = 0 a__ : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str ): a__ : dict = {} # returns a dict with keywords and list of its occurrences a__ : Tuple = 0 for i in range(len(lowerCamelCase__ ) ): while ( self.find_next_state(lowerCamelCase__ , string[i] ) is None and current_state != 0 ): a__ : Union[str, Any] = self.adlist[current_state]["fail_state"] a__ : Optional[Any] = self.find_next_state(lowerCamelCase__ , string[i] ) if next_state is None: a__ : str = 0 else: a__ : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: a__ : Optional[Any] = [] result[key].append(i - len(lowerCamelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = KandinskyVaaImgaImgPipeline lowerCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image'] lowerCamelCase_ = [ 'image_embeds', 'negative_image_embeds', 'image', ] lowerCamelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase_ = False @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return 100 @property def lowerCamelCase_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase : List[str] ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase : Optional[int] =UNetaDConditionModel(**UpperCAmelCase__ ) return model @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase : int =VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Optional[int] =self.dummy_unet lowercase : Any =self.dummy_movq lowercase : Dict ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase : Optional[int] =DDIMScheduler(**UpperCAmelCase__ ) lowercase : int ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=0 ): '''simple docstring''' lowercase : List[Any] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : List[str] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase__ ) # create init_image lowercase : List[str] =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Any =Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCAmelCase__ ).startswith('''mps''' ): lowercase : Optional[Any] =torch.manual_seed(UpperCAmelCase__ ) else: lowercase : Optional[Any] =torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase : Tuple ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] ='''cpu''' lowercase : int =self.get_dummy_components() lowercase : List[str] =self.pipeline_class(**UpperCAmelCase__ ) lowercase : Optional[int] =pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) lowercase : Optional[int] =output.images lowercase : Optional[Any] =pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] lowercase : Optional[int] =image[0, -3:, -3:, -1] lowercase : Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : str =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase : List[str] ='''A red cartoon frog, 4k''' lowercase : Any =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase__ ) lowercase : List[str] =KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase : Optional[int] =pipeline.to(UpperCAmelCase__ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[Any] =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase , lowercase : Any =pipe_prior( UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase : str =pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowercase : Optional[int] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
708
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ) -> List[Any]: lowercase : Tuple =HfArgumentParser(__magic_name__ ) lowercase : Union[str, Any] =parser.parse_args_into_dataclasses()[0] lowercase : Any =TensorFlowBenchmark(args=__magic_name__ ) try: lowercase : List[Any] =parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase : List[Any] ='''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowercase : Any =''' '''.join(str(__magic_name__ ).split(''' ''' )[:-1] ) lowercase : Optional[Any] ='''''' lowercase : List[str] =eval(str(__magic_name__ ).split(''' ''' )[-1] ) lowercase : Optional[Any] =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase : int =full_error_msg + begin_error_msg + str(__magic_name__ ) raise ValueError(__magic_name__ ) benchmark.run() if __name__ == "__main__": main()
88
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :str , _UpperCAmelCase :Optional[int] , _UpperCAmelCase :Optional[int] ) -> List[str]: '''simple docstring''' A_ = s.rsplit(_UpperCAmelCase , _UpperCAmelCase ) return new.join(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase :int ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase_ ( _UpperCAmelCase :List[str] ) -> Union[str, Any]: '''simple docstring''' A_ = {} A_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A_ = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: A_ = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): A_ = rreplace(_UpperCAmelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): A_ = rreplace(_UpperCAmelCase , '''.b''' , '''.bias''' , 1 ) A_ = value.float() return upgrade @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase :Dict , _UpperCAmelCase :Tuple , _UpperCAmelCase :int=None , _UpperCAmelCase :Optional[int]=True ) -> int: '''simple docstring''' from dall_e import Encoder A_ = Encoder() if os.path.exists(_UpperCAmelCase ): A_ = torch.load(_UpperCAmelCase ) else: A_ = torch.hub.load_state_dict_from_url(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ = ckpt.state_dict() encoder.load_state_dict(_UpperCAmelCase ) if config_path is not None: A_ = FlavaImageCodebookConfig.from_pretrained(_UpperCAmelCase ) else: A_ = FlavaImageCodebookConfig() A_ = FlavaImageCodebook(_UpperCAmelCase ).eval() A_ = encoder.state_dict() A_ = upgrade_state_dict(_UpperCAmelCase ) hf_model.load_state_dict(_UpperCAmelCase ) A_ = hf_model.state_dict() A_ = count_parameters(_UpperCAmelCase ) A_ = count_parameters(_UpperCAmelCase ) assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_UpperCAmelCase ) else: return hf_state_dict if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a__ : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
188
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : '''simple docstring''' __A = 42 __A = None __A = None _lowerCamelCase : str = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCAmelCase ( __magic_name__ :TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__magic_name__ :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
121
0
def A ( _lowercase = 1_000_000 ): SCREAMING_SNAKE_CASE : Dict = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
719
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Tuple = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['MaskFormerFeatureExtractor'] __UpperCamelCase : List[Any] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __UpperCamelCase : Union[str, Any] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def _lowercase ( self ): snake_case_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowercase ( self ): with self.assertRaises(UpperCAmelCase_ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _lowercase ( self ): with self.assertRaises(UpperCAmelCase_ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowercase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _lowercase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _lowercase ( self ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _lowercase ( self ): import PIL.Image snake_case_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=UpperCAmelCase_ ) as mock_cast_to_python_objects: snake_case_ = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) snake_case_ , snake_case_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , UpperCAmelCase_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def __snake_case ( lowercase : Optional[int] , lowercase : int ): snake_case_ = pa.BufferReader(lowercase ) if isinstance(lowercase , pa.Buffer ) else pa.memory_map(lowercase ) snake_case_ = pa.ipc.open_stream(lowercase ) snake_case_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( lowercase : Union[str, Any] , lowercase : int ): snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(lowercase ) if fields else None with ArrowWriter(stream=lowercase , schema=lowercase , writer_batch_size=lowercase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __snake_case ( ): snake_case_ = pa.BufferOutputStream() snake_case_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=lowercase , features=lowercase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pa.ipc.open_stream(lowercase ) snake_case_ = f.read_all() snake_case_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowercase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def __snake_case ( lowercase : Tuple ): snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase , writer_batch_size=lowercase , hash_salt="split_name" , check_duplicates=lowercase , ) as writer: with pytest.raises(lowercase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def __snake_case ( lowercase : Dict ): snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase , writer_batch_size=lowercase , hash_salt="split_name" , check_duplicates=lowercase , ) as writer: with pytest.raises(lowercase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def __snake_case ( lowercase : Union[str, Any] ): snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase , writer_batch_size=lowercase , hash_salt="split_name" , check_duplicates=lowercase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( lowercase : List[str] , lowercase : Dict ): snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(lowercase ) if fields else None with ArrowWriter(stream=lowercase , schema=lowercase , writer_batch_size=lowercase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( lowercase : Dict , lowercase : List[Any] ): snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(lowercase ) if fields else None with ArrowWriter(stream=lowercase , schema=lowercase , writer_batch_size=lowercase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __snake_case ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ): snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(lowercase ) if fields else None with ArrowWriter(stream=lowercase , schema=lowercase , writer_batch_size=lowercase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __snake_case ( ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case_ = os.path.join(lowercase , "test.arrow" ) with ArrowWriter(path=lowercase , schema=pa.schema(lowercase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowercase , metadata=writer._schema.metadata ) _check_output(lowercase , 1 ) def __snake_case ( lowercase : Optional[Any] ): if pa.types.is_list(lowercase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __snake_case ( lowercase : Optional[Any] , lowercase : Union[str, Any] ): if isinstance(lst[0] , lowercase ): change_first_primitive_element_in_list(lst[0] , lowercase ) else: snake_case_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __snake_case ( lowercase : int , lowercase : List[str] , lowercase : Union[str, Any] ): snake_case_ = pa.array(TypedSequence(lowercase , optimized_int_type=lowercase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __snake_case ( lowercase : Dict , lowercase : Union[str, Any] , lowercase : List[Any] ): # in range snake_case_ = pa.array(OptimizedTypedSequence(lowercase , col=lowercase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ = copy.deepcopy(lowercase ) snake_case_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowercase , lowercase ) snake_case_ = pa.array(OptimizedTypedSequence(lowercase , col=lowercase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def __snake_case ( lowercase : Union[str, Any] , lowercase : int ): snake_case_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=lowercase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __snake_case ( lowercase : Optional[int] ): snake_case_ = "mock://dataset-train.arrow" with ArrowWriter(path=lowercase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowercase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowercase ) def __snake_case ( ): snake_case_ = pa.BufferOutputStream() with ParquetWriter(stream=lowercase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(lowercase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def __snake_case ( lowercase : str , lowercase : str ): import PIL.Image snake_case_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowercase , format="png" ) snake_case_ = pa.BufferOutputStream() with ParquetWriter( stream=lowercase , features=Features({"image": Image()} ) , embed_local_files=lowercase ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(lowercase ) snake_case_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , lowercase ) with open(lowercase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __snake_case ( ): snake_case_ = pa.schema([pa.field("col_1" , pa.string() , nullable=lowercase )] ) snake_case_ = pa.BufferOutputStream() with ArrowWriter(stream=lowercase ) as writer: writer._build_writer(inferred_schema=lowercase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
508
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.2 , snake_case__=0.2 ): lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[Any] = conva_get[:2] lowerCAmelCase : Union[str, Any] = conva_get[2] lowerCAmelCase : Dict = size_pa lowerCAmelCase : Dict = rate_w lowerCAmelCase : List[Any] = rate_t lowerCAmelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase ( self , snake_case__ ): # save model dict with pickle lowerCAmelCase : Union[str, Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(snake_case__ , 'wb' ) as f: pickle.dump(snake_case__ , snake_case__ ) print(f"Model saved: {save_path}" ) @classmethod def lowercase ( cls , snake_case__ ): # read saved model with open(snake_case__ , 'rb' ) as f: lowerCAmelCase : Tuple = pickle.load(snake_case__ ) # noqa: S301 lowerCAmelCase : Dict = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowerCAmelCase : Any = model_dic.get('size_pooling1' ) lowerCAmelCase : str = model_dic.get('num_bp1' ) lowerCAmelCase : Dict = model_dic.get('num_bp2' ) lowerCAmelCase : List[str] = model_dic.get('num_bp3' ) lowerCAmelCase : str = model_dic.get('rate_weight' ) lowerCAmelCase : List[str] = model_dic.get('rate_thre' ) # create model instance lowerCAmelCase : int = CNN(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # modify model parameter lowerCAmelCase : Optional[Any] = model_dic.get('w_conv1' ) lowerCAmelCase : Any = model_dic.get('wkj' ) lowerCAmelCase : int = model_dic.get('vji' ) lowerCAmelCase : str = model_dic.get('thre_conv1' ) lowerCAmelCase : Union[str, Any] = model_dic.get('thre_bp2' ) lowerCAmelCase : Dict = model_dic.get('thre_bp3' ) return conv_ins def lowercase ( self , snake_case__ ): return 1 / (1 + np.exp(-1 * x )) def lowercase ( self , snake_case__ ): return round(snake_case__ , 3 ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # convolution process lowerCAmelCase : List[str] = convs[0] lowerCAmelCase : str = convs[1] lowerCAmelCase : Tuple = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): lowerCAmelCase : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowerCAmelCase : Optional[int] = [] for i_focus in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowerCAmelCase : List[Any] = np.asmatrix(snake_case__ ).reshape( snake_case__ , snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowerCAmelCase : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowerCAmelCase : int = np.asarray(snake_case__ ) return focus_list, data_featuremap def lowercase ( self , snake_case__ , snake_case__ , snake_case__="average_pool" ): # pooling process lowerCAmelCase : Optional[Any] = len(featuremaps[0] ) lowerCAmelCase : List[str] = int(size_map / size_pooling ) lowerCAmelCase : int = [] for i_map in range(len(snake_case__ ) ): lowerCAmelCase : List[Any] = featuremaps[i_map] lowerCAmelCase : Union[str, Any] = [] for i_focus in range(0 , snake_case__ , snake_case__ ): for j_focus in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = np.asmatrix(snake_case__ ).reshape(snake_case__ , snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def lowercase ( self , snake_case__ ): # expanding three dimension data to one dimension list lowerCAmelCase : Optional[Any] = [] for i in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = np.shape(data[i] ) lowerCAmelCase : Any = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCAmelCase : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowerCAmelCase : Optional[Any] = np.asarray(snake_case__ ) return data_expanded def lowercase ( self , snake_case__ ): # expanding matrix to one dimension list lowerCAmelCase : List[str] = np.asarray(snake_case__ ) lowerCAmelCase : int = np.shape(snake_case__ ) lowerCAmelCase : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Tuple = 0 for i_map in range(snake_case__ ): lowerCAmelCase : Dict = np.ones((size_map, size_map) ) for i in range(0 , snake_case__ , snake_case__ ): for j in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = pd_pool[ i_pool ] lowerCAmelCase : Union[str, Any] = i_pool + 1 lowerCAmelCase : Tuple = np.multiply( snake_case__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=bool ): # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(snake_case__ )) ) print((' - - Shape: Teach_Data ', np.shape(snake_case__ )) ) lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase : Tuple = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase : List[str] = np.asmatrix(datas_train[p] ) lowerCAmelCase : List[Any] = np.asarray(datas_teach[p] ) lowerCAmelCase : Union[str, Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Dict = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Dict = np.shape(snake_case__ ) lowerCAmelCase : Any = self._expand(snake_case__ ) lowerCAmelCase : Tuple = data_bp_input lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.vji.T ) - self.thre_bpa lowerCAmelCase : str = self.sig(snake_case__ ) lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.wkj.T ) - self.thre_bpa lowerCAmelCase : Union[str, Any] = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.multiply( np.dot(snake_case__ , self.wkj ) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : List[str] = np.dot(snake_case__ , self.vji ) lowerCAmelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase : Tuple = pd_conva_pooled.T.getA().tolist() lowerCAmelCase : List[Any] = self._calculate_gradient_from_pool( snake_case__ , snake_case__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase : int = self.rate_weight * np.dot(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase : int = rp + 1 lowerCAmelCase : int = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowerCAmelCase : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__ , '+-' ) plt.plot(snake_case__ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(snake_case__ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowercase ( self , snake_case__ ): # model predict lowerCAmelCase : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowerCAmelCase : Dict = np.asmatrix(datas_test[p] ) lowerCAmelCase : str = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Any = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Union[str, Any] = self._expand(snake_case__ ) lowerCAmelCase : Optional[Any] = data_bp_input lowerCAmelCase : Tuple = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase : Any = self.sig(snake_case__ ) lowerCAmelCase : Any = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase : List[str] = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase : Optional[int] = [list(map(self.do_round , snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def lowercase ( self , snake_case__ ): # return the data of image after convoluting process so we can check it out lowerCAmelCase : Optional[Any] = np.asmatrix(snake_case__ ) lowerCAmelCase : List[Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : int = self.pooling(snake_case__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (32, 32) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(A_ ) return image @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=32,) return model @property def snake_case_ ( self: int ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,) return model @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) return CLIPTextModel(A_ ) @property def snake_case_ ( self: Dict ): '''simple docstring''' def extract(*A_: Any,**A_: Dict ): class __lowerCamelCase : def __init__( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = torch.ones([0] ) def snake_case_ ( self: Optional[Any],A_: int ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe',safety_checker=A_ ) assert isinstance(A_,A_ ) assert isinstance(pipe.scheduler,A_ ) assert pipe.safety_checker is None __UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(A_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda','This test requires a GPU' ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = sd_pipe([prompt],num_inference_steps=2,output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __UpperCamelCase = 40_0366_0346 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = 'padme amidala taking a bath artwork, safe for work, no nudity' __UpperCamelCase = 27_3497_1755 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __UpperCamelCase = 10_4435_5234 __UpperCamelCase = 12 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = sd_pipe( [prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : int = '''bert''' def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" @property def snake_case_ ( self): if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
155
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowercase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[int]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowerCamelCase__: Dict = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowerCamelCase__: str = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) lowerCamelCase__: Tuple = PegasusConfig(**_UpperCamelCase ) lowerCamelCase__: List[str] = PegasusForConditionalGeneration(_UpperCamelCase ) lowerCamelCase__: List[Any] = torch_model.model.state_dict() lowerCamelCase__: List[str] = {} for k, v in tf_weights.items(): lowerCamelCase__: str = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: lowerCamelCase__: str = v.T lowerCamelCase__: Tuple = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected lowerCamelCase__: str = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowerCamelCase__: int = mapping["""shared.weight"""] lowerCamelCase__: List[Any] = mapping["""shared.weight"""] lowerCamelCase__: Any = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**_UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__: Dict = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) lowerCamelCase__: Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def __lowerCAmelCase ( _UpperCamelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowerCamelCase__: str = tf.train.list_variables(_UpperCamelCase ) lowerCamelCase__: List[Any] = {} lowerCamelCase__: List[str] = ["""Adafactor""", """global_step"""] for name, shape in tqdm(_UpperCamelCase , desc="""converting tf checkpoint to dict""" ): lowerCamelCase__: Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCamelCase__: Any = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Any = array return tf_weights def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] = Path(_UpperCamelCase ).parent.name lowerCamelCase__: Any = task_specific_params[f"""summarization_{dataset}"""]["""max_position_embeddings"""] lowerCamelCase__: Dict = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model lowerCamelCase__: str = get_tf_weights_as_numpy(_UpperCamelCase ) lowerCamelCase__: Tuple = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": lowerCamelCase__: List[str] = task_specific_params lowerCamelCase__: Dict = convert_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) lowerCamelCase__: str = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _lowercase = parser.parse_args() if args.save_dir is None: _lowercase = Path(args.tf_ckpt_path).parent.name _lowercase = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
242
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure)
242
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def UpperCAmelCase_ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Any: snake_case__ = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) snake_case__ = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: snake_case__ = AutoConfig.from_pretrained("""gpt2""" ) snake_case__ = GenerationConfig.from_model_config(lowerCAmelCase__ ) snake_case__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: snake_case__ = GenerationConfig() snake_case__ = { """max_new_tokens""": 1024, """foo""": """bar""", } snake_case__ = copy.deepcopy(lowerCAmelCase__ ) snake_case__ = generation_config.update(**lowerCAmelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCAmelCase__ , {"""foo""": """bar"""} ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: snake_case__ = GenerationConfig() snake_case__ = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowerCAmelCase__ ) snake_case__ = GenerationConfig.from_pretrained(lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) snake_case__ = GenerationConfig.from_model_config(lowerCAmelCase__ ) assert not hasattr(lowerCAmelCase__ , """foo""" ) # no new kwargs should be initialized if from config def UpperCAmelCase_ ( self : Dict ) -> str: snake_case__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCAmelCase__ ) self.assertEqual(default_config.num_beams , 1 ) snake_case__ = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCAmelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) snake_case__ = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls : Tuple ) -> Any: snake_case__ = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: snake_case__ = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) snake_case__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="""test-generation-config""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) snake_case__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: snake_case__ = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) snake_case__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) snake_case__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
214
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : Union[str, Any] = logging.getLogger() def _lowercase ( __UpperCamelCase : int ): snake_case__ = {} snake_case__ = os.path.join(__UpperCamelCase , """all_results.json""" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase , """r""" ) as f: snake_case__ = json.load(__UpperCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowerCAmelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: import xla_spawn snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): snake_case__ = time() xla_spawn.main() snake_case__ = time() snake_case__ = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: import xla_spawn snake_case__ = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): xla_spawn.main()
214
1
def snake_case_ ( snake_case ) -> str: lowercase__: Optional[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase__: Dict = '' lowercase__: Optional[int] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase__: Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase__: Optional[Any] = [1 for i in range(len(snake_case ) )] # for each character in new_string find corresponding palindromic string lowercase__: str = 0 for j in range(len(snake_case ) ): lowercase__: str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase__: List[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase__: Optional[int] = j - k + 1 # noqa: E741 lowercase__: List[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase__: Optional[Any] = length[j] lowercase__: Dict = j # create that string lowercase__: Dict = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
703
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def snake_case_ ( snake_case = "" ) -> dict[str, float]: lowercase__: Any = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowercase__: Optional[Any] = BeautifulSoup(requests.get(snake_case ).text , 'html.parser' ) lowercase__: Optional[int] = soup.find_all('td' , attrs='titleColumn' ) lowercase__: Optional[int] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(snake_case , snake_case ) } def snake_case_ ( snake_case = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__: Optional[Any] = get_imdb_top_aaa_movies() with open(snake_case , 'w' , newline='' ) as out_file: lowercase__: Optional[Any] = csv.writer(snake_case ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
335
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ : Dict = """src/transformers""" A_ : str = """docs/source/en/tasks""" def UpperCamelCase (lowercase_: Tuple , lowercase_: Tuple , lowercase_: List[Any] ) -> List[Any]: with open(_a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : List[str] = f.readlines() # Find the start prompt. A__ : Optional[Any] = 0 while not lines[start_index].startswith(_a ): start_index += 1 start_index += 1 A__ : Dict = start_index while not lines[end_index].startswith(_a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ : Any = direct_transformers_import(TRANSFORMERS_PATH) A_ : Any = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ : str = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def UpperCamelCase (lowercase_: Union[str, Any] ) -> Any: A__ : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] A__ : int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_a , set() ) A__ : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase (lowercase_: Tuple , lowercase_: Union[str, Any]=False ) -> Tuple: A__ : Optional[Any] = _find_text_in_file( filename=os.path.join(_a , _a ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) A__ : Tuple = get_model_list_for_task(_a ) if current_list != new_list: if overwrite: with open(os.path.join(_a , _a ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
456
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowercase : def __init__( self ): snake_case__ : List[str] ="""""" snake_case__ : List[Any] ="""""" snake_case__ : Optional[int] =[] snake_case__ : Tuple =0 snake_case__ : Optional[Any] =2_5_6 snake_case__ : Optional[Any] =0 snake_case__ : str =0 snake_case__ : Any =0 snake_case__ : Dict =0 def lowercase__ ( self , a ): snake_case__ : List[str] =cva.imread(a , 0 ) snake_case__ : Optional[Any] =copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : Any =plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) snake_case__ : Tuple =np.sum(a ) for i in range(len(a ) ): snake_case__ : Union[str, Any] =x[i] / self.k self.sk += prk snake_case__ : Tuple =(self.L - 1) * self.sk if self.rem != 0: snake_case__ : int =int(last % last ) snake_case__ : List[Any] =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(a ) snake_case__ : List[Any] =int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : Union[str, Any] =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Optional[int] =self.img[j][i] if num != self.last_list[num]: snake_case__ : Any =self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowercase__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def lowercase__ ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCamelCase : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
385
0
from __future__ import annotations class _a : """simple docstring""" def __init__( self , _snake_case ): _UpperCAmelCase =order # a_{0} ... a_{k} _UpperCAmelCase =[1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase =[0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase =[0.0] * self.order def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): if len(_snake_case ) < self.order: _UpperCAmelCase =[1.0, *a_coeffs] if len(_snake_case ) != self.order + 1: _UpperCAmelCase =( F"Expected a_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(_snake_case )}" ) raise ValueError(_snake_case ) if len(_snake_case ) != self.order + 1: _UpperCAmelCase =( F"Expected b_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(_snake_case )}" ) raise ValueError(_snake_case ) _UpperCAmelCase =a_coeffs _UpperCAmelCase =b_coeffs def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase =self.input_history[:-1] _UpperCAmelCase =self.output_history[:-1] _UpperCAmelCase =sample _UpperCAmelCase =result return result
592
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="ylacombe/bark-small" _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase ="en_speaker_1" _UpperCAmelCase ="This is a test string" _UpperCAmelCase ="speaker_embeddings_path.json" _UpperCAmelCase ="speaker_embeddings" def SCREAMING_SNAKE_CASE ( self , **_snake_case ): return AutoTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase =35 _UpperCAmelCase =2 _UpperCAmelCase =8 _UpperCAmelCase ={ "semantic_prompt": np.ones(_snake_case ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase =os.path.join(self.tmpdirname , "file.npz" ) np.savez(_snake_case , **_snake_case ) _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) _UpperCAmelCase =processor(text=self.input_string ) _UpperCAmelCase =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
592
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=99 , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Any=9 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Tuple=8 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : List[str]=0.002 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , ): A__ : Union[str, Any] =parent A__ : Optional[int] =batch_size A__ : Dict =encoder_seq_length A__ : str =decoder_seq_length # For common tests A__ : int =self.decoder_seq_length A__ : Tuple =is_training A__ : Optional[int] =use_attention_mask A__ : int =use_labels A__ : str =vocab_size A__ : str =hidden_size A__ : Dict =num_hidden_layers A__ : str =num_attention_heads A__ : Union[str, Any] =d_ff A__ : List[Any] =relative_attention_num_buckets A__ : Optional[int] =dropout_rate A__ : List[Any] =initializer_factor A__ : Optional[Any] =eos_token_id A__ : List[Any] =pad_token_id A__ : Optional[int] =decoder_start_token_id A__ : Any =None A__ : Tuple =decoder_layers def _UpperCAmelCase ( self : Any ): return TaConfig.from_pretrained("google/umt5-base" ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[int]=None , ): if attention_mask is None: A__ : Any =input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A__ : Optional[int] =decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A__ : int =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_snake_case ) if decoder_head_mask is None: A__ : Optional[Any] =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: A__ : Optional[int] =torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self : List[Any] ): A__ : List[str] =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A__ : List[Any] =input_ids.clamp(self.pad_token_id + 1 ) A__ : Dict =decoder_input_ids.clamp(self.pad_token_id + 1 ) A__ : Union[str, Any] =self.get_config() A__ : List[Any] =config.num_attention_heads A__ : Union[str, Any] =self.prepare_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, input_dict def _UpperCAmelCase ( self : Union[str, Any] ): A__ : int =self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Dict ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self : str ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , ): A__ : Dict =UMTaModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ : List[Any] =model( input_ids=_snake_case , decoder_input_ids=_snake_case , attention_mask=_snake_case , decoder_attention_mask=_snake_case , ) A__ : Optional[int] =model(input_ids=_snake_case , decoder_input_ids=_snake_case ) A__ : List[Any] =result.last_hidden_state A__ : Any =result.past_key_values A__ : Optional[Any] =result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , ): A__ : Union[str, Any] =UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() # first forward pass A__ : Optional[Any] =model(_snake_case , use_cache=_snake_case ) A__ : Optional[int] =model(_snake_case ) A__ : Any =model(_snake_case , use_cache=_snake_case ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 ) A__ : Any =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ : Optional[Any] =ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A__ : Union[str, Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : int =model(_snake_case )['''last_hidden_state'''] A__ : Optional[Any] =model(_snake_case , past_key_values=_snake_case )['''last_hidden_state'''] # select random slice A__ : Any =ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] =output_from_no_past[:, -1, random_slice_idx].detach() A__ : Tuple =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , ): A__ : Union[str, Any] =UMTaModel(config=_snake_case ).to(_snake_case ).half().eval() A__ : int =model(**_snake_case )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_snake_case ).any().item() ) @require_torch class __lowerCAmelCase ( a_ , a_ , a_ , unittest.TestCase): '''simple docstring''' __magic_name__ : Optional[int] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __magic_name__ : Dict = (UMTaForConditionalGeneration,) if is_torch_available() else () __magic_name__ : int = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = False __magic_name__ : List[str] = False __magic_name__ : str = True __magic_name__ : Tuple = True # The small UMT5 model needs higher percentages for CPU/MP tests __magic_name__ : Union[str, Any] = [0.8, 0.9] def _UpperCAmelCase ( self : Tuple ): A__ : Dict =UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def _UpperCAmelCase ( self : Tuple ): A__ : List[str] =self.model_tester.prepare_config_and_inputs() A__ : Tuple =UMTaModel(config_and_inputs[0] ).to(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_snake_case , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _UpperCAmelCase ( self : Optional[int] ): A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_snake_case ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ : List[str] =['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] A__ : List[str] =self.model_tester.prepare_config_and_inputs() A__ : Any =config_and_inputs[0] A__ : List[Any] =UMTaForConditionalGeneration(_snake_case ).eval() model.to(_snake_case ) A__ : Dict ={ '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_snake_case ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), } for attn_name, (name, mask) in zip(_snake_case , head_masking.items() ): A__ : Tuple ={name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A__ : Union[str, Any] =torch.ones( config.num_decoder_layers , config.num_heads , device=_snake_case ) A__ : str =model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_snake_case , return_dict_in_generate=_snake_case , **_snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step A__ : Union[str, Any] =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def _UpperCAmelCase ( self : Optional[Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def _UpperCAmelCase ( self : Any ): A__ : List[str] =UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_snake_case ).to(_snake_case ) A__ : Optional[Any] =AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_snake_case , legacy=_snake_case ) A__ : Any =[ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] A__ : Optional[int] =tokenizer(_snake_case , return_tensors="pt" , padding=_snake_case ).input_ids # fmt: off A__ : List[str] =torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_snake_case , _snake_case ) A__ : Tuple =model.generate(input_ids.to(_snake_case ) ) A__ : Optional[Any] =[ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] A__ : List[str] =tokenizer.batch_decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") A : int = {"""target_lang""": """fi""", """source_lang""": """en"""} A : Tuple = """>>zh<<""" A : Optional[int] = """Helsinki-NLP/""" if is_torch_available(): A : Dict = """pt""" elif is_tf_available(): A : Optional[int] = """tf""" else: A : List[str] = """jax""" @require_sentencepiece class lowerCAmelCase_ ( a_ , unittest.TestCase ): __UpperCAmelCase = MarianTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def __snake_case ( self : List[str] ): '''simple docstring''' super().setUp() snake_case : Dict =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : Optional[Any] =dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case : Dict =Path(self.tmpdirname ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) snake_case : Any =MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str], **_snake_case : Tuple ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def __snake_case ( self : Any, _snake_case : Dict ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Optional[int] ='''</s>''' snake_case : int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ), _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ), _snake_case ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''</s>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''<pad>''' ) self.assertEqual(len(_snake_case ), 9 ) def __snake_case ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 9 ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Tuple =MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) snake_case : List[str] =en_de_tokenizer(['''I am a small frog'''], return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) snake_case : Any =[38, 121, 14, 697, 38_848, 0] self.assertListEqual(_snake_case, batch.input_ids[0] ) snake_case : List[Any] =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) snake_case : List[Any] =[x.name for x in Path(_snake_case ).glob('''*''' )] self.assertIn('''source.spm''', _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Any =self.get_tokenizer() snake_case : int =tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''], padding=_snake_case, truncation=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch.input_ids.shape, (2, 512) ) def __snake_case ( self : int ): '''simple docstring''' snake_case : List[str] =self.get_tokenizer() snake_case : int =tok(['''I am a tiny frog''', '''I am a small frog'''], padding=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch_smaller.input_ids.shape, (2, 10) ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : List[Any] ={'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case, model_name='''Helsinki-NLP/opus-mt-en-de''', revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''', decode_kwargs={'''use_source_tokenizer''': True}, ) def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : Optional[Any] =MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) snake_case : List[str] ='''Tämä on testi''' snake_case : Optional[int] ='''This is a test''' snake_case : Optional[Any] =[76, 7, 2_047, 2] snake_case : int =[69, 12, 11, 940, 2] snake_case : Optional[int] =tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[Any] =tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[int] =tokenizer.decode(_snake_case, skip_special_tokens=_snake_case ) self.assertEqual(_snake_case, _snake_case )
349
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def _UpperCamelCase ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = 'bird' lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCamelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : str ): lowerCamelCase__ , lowerCamelCase__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = 'Chef in the kitchen' lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCamelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
716
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: '''simple docstring''' snake_case : Optional[int] = get_failure_array(lowerCamelCase__ ) # 2) Step through text searching for pattern snake_case : Optional[Any] = 0, 0 # index into text, pattern while i < len(lowerCamelCase__ ): if pattern[j] == text[i]: if j == (len(lowerCamelCase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case : str = failure[j - 1] continue i += 1 return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list[int]: '''simple docstring''' snake_case : Optional[int] = [0] snake_case : Optional[int] = 0 snake_case : int = 1 while j < len(lowerCamelCase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case : int = failure[i - 1] continue j += 1 failure.append(lowerCamelCase__ ) return failure if __name__ == "__main__": # Test 1) lowercase__ = 'abc1abc12' lowercase__ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase__ = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowercase__ = 'ABABX' lowercase__ = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) lowercase__ = 'AAAB' lowercase__ = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) lowercase__ = 'abcdabcy' lowercase__ = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) lowercase__ = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
638
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A__ : int = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) A__ : Tuple = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A__ : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Dict = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A__ : List[str] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Any = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) A__ : Optional[int] = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Any = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) A__ : List[str] = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' A__ : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Tuple = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' A__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' A__ : Tuple = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' A__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' A__ : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' A__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' A__ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' A__ : Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' A__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' A__ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' A__ : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' A__ : Optional[Any] = '' A__ : Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' A__ : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A__ : Dict = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : str ) -> Dict: assert ReadMe.from_string(lowerCamelCase__ , lowerCamelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ) -> str: with pytest.raises(lowerCamelCase__ , match=re.escape(expected_error.format(path="root" ) ) ): lowerCamelCase_ : Any =ReadMe.from_string(lowerCamelCase__ , lowerCamelCase__ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> int: with pytest.raises(lowerCamelCase__ , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _snake_case ( lowerCamelCase__ : Tuple ) -> Dict: ReadMe.from_string(lowerCamelCase__ , lowerCamelCase__ , suppress_parsing_errors=lowerCamelCase__ ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ : Optional[int] =Path(lowerCamelCase__ ) / "README.md" with open(lowerCamelCase__ , "w+" ) as readme_file: readme_file.write(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =ReadMe.from_readme(lowerCamelCase__ , lowerCamelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _snake_case ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ : int =Path(lowerCamelCase__ ) / "README.md" with open(lowerCamelCase__ , "w+" ) as readme_file: readme_file.write(lowerCamelCase__ ) lowerCamelCase_ : str =expected_error.format(path=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): lowerCamelCase_ : Optional[Any] =ReadMe.from_readme(lowerCamelCase__ , lowerCamelCase__ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ : Optional[Any] =Path(lowerCamelCase__ ) / "README.md" with open(lowerCamelCase__ , "w+" ) as readme_file: readme_file.write(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =expected_error.format(path=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): ReadMe.from_readme(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _snake_case ( lowerCamelCase__ : str ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ : Tuple =Path(lowerCamelCase__ ) / "README.md" with open(lowerCamelCase__ , "w+" ) as readme_file: readme_file.write(lowerCamelCase__ ) ReadMe.from_readme(lowerCamelCase__ , lowerCamelCase__ , suppress_parsing_errors=lowerCamelCase__ )
153
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = {} lowerCamelCase__ = tokenizer(example["content"] , truncation=lowercase__)["input_ids"] lowerCamelCase__ = len(example["content"]) / len(output["input_ids"]) return output __A : Optional[Any] = HfArgumentParser(PretokenizationArguments) __A : Any = parser.parse_args() if args.num_workers is None: __A : Optional[Any] = multiprocessing.cpu_count() __A : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __A : Optional[Any] = time.time() __A : Any = load_dataset(args.dataset_name, split="""train""") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __A : List[Any] = time.time() __A : Tuple = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __A : Dict = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
187
'''simple docstring''' from __future__ import annotations class lowercase : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : int ) -> None: '''simple docstring''' lowerCamelCase__ = order # a_{0} ... a_{k} lowerCamelCase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase__ = [0.0] * self.order def a__ ( self : Dict , __lowerCamelCase : list[float] , __lowerCamelCase : list[float] ) -> None: '''simple docstring''' if len(__lowerCamelCase ) < self.order: lowerCamelCase__ = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: lowerCamelCase__ = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__lowerCamelCase )}''' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: lowerCamelCase__ = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__lowerCamelCase )}''' ) raise ValueError(__lowerCamelCase ) lowerCamelCase__ = a_coeffs lowerCamelCase__ = b_coeffs def a__ ( self : Dict , __lowerCamelCase : float ) -> float: '''simple docstring''' lowerCamelCase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase__ = self.input_history[:-1] lowerCamelCase__ = self.output_history[:-1] lowerCamelCase__ = sample lowerCamelCase__ = result return result
187
1
# flake8: noqa # Lint as: python3 lowercase__ : Optional[int] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
312
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = ScoreSdeVeScheduler() lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )[ 0 ] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''google/ncsnpp-church-256''' lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
312
1
def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> bool: '''simple docstring''' _snake_case = [int(a__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(a__ ) == 4 and all(0 <= int(a__ ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase_ = input().strip() UpperCAmelCase_ = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F"{ip} is a {valid_or_invalid} IP v4 address.")
716
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=10 , lowerCAmelCase_=3 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_="divided_space_time" , lowerCAmelCase_=None , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = patch_size _snake_case = num_frames _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = attention_type _snake_case = initializer_range _snake_case = scope _snake_case = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _snake_case = (image_size // patch_size) ** 2 _snake_case = (num_frames) * self.num_patches_per_frame + 1 def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> str: _snake_case = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _snake_case = self.num_labels return config def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = TimesformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = TimesformerForVideoClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify the logits shape _snake_case = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = TimesformerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any: _snake_case = copy.deepcopy(lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TimesformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: if not self.has_attentions: pass else: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.num_frames _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _snake_case = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCAmelCase ( self ) -> Dict: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.hidden_states _snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = prepare_video() _snake_case = image_processor(video[:8] , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ ) # verify the logits _snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
541
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : @staticmethod def lowerCamelCase_ ( *__A : Optional[Any],**__A : int ): pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.array(_lowerCAmelCase ) _lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase_ ( self : int,__A : Any,__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Tuple = MaskGenerationPipeline(model=__A,image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Union[str, Any] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase_ ( self : str ): pass @slow @require_torch def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = pipeline("mask-generation",model="facebook/sam-vit-huge" ) _lowerCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg",points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ],) # fmt: on @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "facebook/sam-vit-huge" _lowerCamelCase : Tuple = pipeline("mask-generation",model=__A ) _lowerCamelCase : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg",pred_iou_thresh=1,points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ],)
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCamelCase__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" inspect_dataset(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = path + """.py""" assert script_name in os.listdir(lowerCAmelCase ) assert "__pycache__" not in os.listdir(lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: """simple docstring""" inspect_metric(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = path + """.py""" assert script_name in os.listdir(lowerCAmelCase ) assert "__pycache__" not in os.listdir(lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: """simple docstring""" _UpperCamelCase = get_dataset_config_info(lowerCAmelCase , config_name=lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> str: """simple docstring""" with pytest.raises(lowerCAmelCase ): get_dataset_config_info(lowerCAmelCase , config_name=lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = get_dataset_config_names(lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = get_dataset_infos(lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _UpperCamelCase = expected_configs[0] assert expected_config in infos _UpperCamelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = get_dataset_infos(lowerCAmelCase ) assert expected_config in infos _UpperCamelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" with pytest.raises(lowerCAmelCase ): get_dataset_split_names(lowerCAmelCase , config_name=lowerCAmelCase )
704
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): def __init__( self , *a , **a ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , a , ) super().__init__(*a , **a )
202
0
def UpperCamelCase_( _A :int )-> bool: if not isinstance(_A , _A ): UpperCamelCase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 0: return False UpperCamelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
551
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : int = (DDIMParallelScheduler,) _UpperCamelCase : List[Any] = (('eta', 0.0), ('num_inference_steps', 50)) def snake_case__ ( self , **snake_case ): '''simple docstring''' UpperCamelCase__ = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**snake_case ) return config def snake_case__ ( self , **snake_case ): '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**snake_case ) UpperCamelCase__ = scheduler_class(**snake_case ) UpperCamelCase__, UpperCamelCase__ = 10, 0.0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(snake_case ) for t in scheduler.timesteps: UpperCamelCase__ = model(snake_case , snake_case ) UpperCamelCase__ = scheduler.step(snake_case , snake_case , snake_case , snake_case ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def snake_case__ ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ = scheduler_class(**snake_case ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def snake_case__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def snake_case__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def snake_case__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def snake_case__ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def snake_case__ ( self ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=snake_case ) def snake_case__ ( self ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=snake_case ) def snake_case__ ( self ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def snake_case__ ( self ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=snake_case ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=snake_case , num_inference_steps=snake_case ) def snake_case__ ( self ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=snake_case , eta=snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case ) UpperCamelCase__, UpperCamelCase__ = 10, 0.0 scheduler.set_timesteps(snake_case ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = self.dummy_sample_deter + 0.1 UpperCamelCase__ = self.dummy_sample_deter - 0.1 UpperCamelCase__ = samplea.shape[0] UpperCamelCase__ = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__ = torch.arange(snake_case )[0:3, None].repeat(1 , snake_case ) UpperCamelCase__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__ = scheduler.batch_step_no_noise(snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , snake_case ) UpperCamelCase__ = torch.sum(torch.abs(snake_case ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.sum(torch.abs(snake_case ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__ = torch.sum(torch.abs(snake_case ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.full_loop(set_alpha_to_one=snake_case , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(snake_case ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.full_loop(set_alpha_to_one=snake_case , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(snake_case ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
551
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return [ord(_lowerCAmelCase ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _lowerCAmelCase ) print('''Decoded:''' , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[Any] = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : int = "falcon" __lowerCamelCase : int = ["past_key_values"] def __init__( self, lowerCamelCase__=6_5024, lowerCamelCase__=4544, lowerCamelCase__=32, lowerCamelCase__=71, lowerCamelCase__=1e-5, lowerCamelCase__=0.02, lowerCamelCase__=True, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=11, lowerCamelCase__=11, **lowerCamelCase__, ): A : List[str] = vocab_size # Backward compatibility with n_embed kwarg A : Optional[Any] = kwargs.pop("""n_embed""", lowerCamelCase_ ) A : Optional[Any] = hidden_size if n_embed is None else n_embed A : Optional[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : int = layer_norm_epsilon A : Dict = initializer_range A : Union[str, Any] = use_cache A : Any = hidden_dropout A : int = attention_dropout A : Optional[int] = bos_token_id A : Union[str, Any] = eos_token_id A : Optional[int] = num_attention_heads if num_kv_heads is None else num_kv_heads A : Any = alibi A : Dict = new_decoder_architecture A : Any = multi_query # Ignored when new_decoder_architecture is True A : Optional[int] = parallel_attn A : str = bias super().__init__(bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) @property def _lowerCAmelCase ( self ): return self.hidden_size // self.num_attention_heads @property def _lowerCAmelCase ( self ): return not self.alibi
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase :int = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :Dict = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase :List[Any] = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase :List[Any] = above_to_left_elt + above_to_right_elt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = [0] + result[-1] + [0] __UpperCamelCase :Any = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase :Optional[Any] = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) __UpperCamelCase :Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase :List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase :List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def lowerCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase :List[str] = f"""{func.__name__}({value})""" __UpperCamelCase :Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
452
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''') __UpperCamelCase :Dict = AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCamelCase :Optional[Any] = tokenizer('''Hello there''' , return_tensors='''np''').input_ids __UpperCamelCase :List[str] = tokenizer('''Hi I am''' , return_tensors='''np''').input_ids __UpperCamelCase :Optional[int] = shift_tokens_right(__lowercase , model.config.pad_token_id , model.config.decoder_start_token_id) __UpperCamelCase :Tuple = model(__lowercase , decoder_input_ids=__lowercase).logits __UpperCamelCase :Any = optax.softmax_cross_entropy(__lowercase , onehot(__lowercase , logits.shape[-1])).mean() __UpperCamelCase :str = -(labels.shape[-1] * loss.item()) __UpperCamelCase :Optional[Any] = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
452
1
"""simple docstring""" from collections import namedtuple lowerCAmelCase__ = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def snake_case_ ( A_ : float, A_ : str, A_ : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(A_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(A_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
83
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case=True, snake_case="pt"): __snake_case = {'''add_prefix_space''': True} if isinstance(snake_case, snake_case) and not line.startswith(''' ''') else {} __snake_case = padding_side return tokenizer( [line], max_length=snake_case, padding='''max_length''' if pad_to_max_length else None, truncation=snake_case, return_tensors=snake_case, add_special_tokens=snake_case, **snake_case, ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=None, ): __snake_case = input_ids.ne(snake_case).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str , A_ : Any , A_ : int , A_ : Dict , A_ : Union[str, Any] , A_ : List[Any]="train" , A_ : Dict=None , A_ : str=None , A_ : List[Any]=None , A_ : int="" , ) -> str: super().__init__() __snake_case = Path(A_ ).joinpath(type_path + '''.source''' ) __snake_case = Path(A_ ).joinpath(type_path + '''.target''' ) __snake_case = self.get_char_lens(self.src_file ) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self : Optional[int] ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self : Any , A_ : Any ) -> Dict[str, torch.Tensor]: __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip('''\n''' ) __snake_case = linecache.getline(str(self.tgt_file ) , A_ ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer __snake_case = encode_line(A_ , A_ , self.max_source_length , '''right''' ) __snake_case = encode_line(A_ , A_ , self.max_target_length , '''right''' ) __snake_case = source_inputs['''input_ids'''].squeeze() __snake_case = target_inputs['''input_ids'''].squeeze() __snake_case = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( A_ : Optional[Any] ) -> Any: return [len(A_ ) for x in Path(A_ ).open().readlines()] def lowercase ( self : List[str] , A_ : Any ) -> Dict[str, torch.Tensor]: __snake_case = torch.stack([x['''input_ids'''] for x in batch] ) __snake_case = torch.stack([x['''attention_mask'''] for x in batch] ) __snake_case = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(A_ , A_ ) __snake_case , __snake_case = trim_batch(A_ , A_ , attention_mask=A_ ) __snake_case = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __lowercase : Optional[int] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( snake_case): return list(itertools.chain.from_iterable(snake_case)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = get_git_info() save_json(snake_case, os.path.join(snake_case, '''git_log.json''')) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=4, **snake_case): with open(snake_case, '''w''') as f: json.dump(snake_case, snake_case, indent=snake_case, **snake_case) def SCREAMING_SNAKE_CASE ( snake_case): with open(snake_case) as f: return json.load(snake_case) def SCREAMING_SNAKE_CASE ( ): __snake_case = git.Repo(search_parent_directories=snake_case) __snake_case = { '''repo_id''': str(snake_case), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return list(map(snake_case, snake_case)) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): with open(snake_case, '''wb''') as f: return pickle.dump(snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): def remove_articles(snake_case): return re.sub(R'''\b(a|an|the)\b''', ''' ''', snake_case) def white_space_fix(snake_case): return " ".join(text.split()) def remove_punc(snake_case): __snake_case = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case)))) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = normalize_answer(snake_case).split() __snake_case = normalize_answer(snake_case).split() __snake_case = Counter(snake_case) & Counter(snake_case) __snake_case = sum(common.values()) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(snake_case) __snake_case = 1.0 * num_same / len(snake_case) __snake_case = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return normalize_answer(snake_case) == normalize_answer(snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): assert len(snake_case) == len(snake_case) __snake_case = 0 for hypo, pred in zip(snake_case, snake_case): em += exact_match_score(snake_case, snake_case) if len(snake_case) > 0: em /= len(snake_case) return {"em": em} def SCREAMING_SNAKE_CASE ( snake_case): return model_prefix.startswith('''rag''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = '''dropout_rate''' for p in extra_params: if getattr(snake_case, snake_case, snake_case): if not hasattr(snake_case, snake_case) and not hasattr(snake_case, equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(snake_case)) delattr(snake_case, snake_case) continue __snake_case = p if hasattr(snake_case, snake_case) else equivalent_param[p] setattr(snake_case, snake_case, getattr(snake_case, snake_case)) delattr(snake_case, snake_case) return hparams, config
564
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase_ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase_ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase_ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase_ = requests.get(image_url).content lowerCamelCase_ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
709
import math def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =2 SCREAMING_SNAKE_CASE__ =int(math.sqrt(__UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE__ =[True] * (end + 1) SCREAMING_SNAKE_CASE__ =[] while start <= end: if temp[start] is True: in_prime.append(__UpperCamelCase ) for i in range(start * start, end + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False start += 1 prime += in_prime SCREAMING_SNAKE_CASE__ =end + 1 SCREAMING_SNAKE_CASE__ =min(2 * end, __UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE__ =[True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE__ =math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCamelCase, high + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False for j in range(len(__UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE__ =high + 1 SCREAMING_SNAKE_CASE__ =min(high + end, __UpperCamelCase ) return prime print(sieve(10**6))
588
0
def UpperCamelCase_( snake_case__: int = 10_00 ) -> Dict: UpperCAmelCase__ = 3 UpperCAmelCase__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
146
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase ( __lowerCamelCase : int = 8 ): snake_case : int = ascii_letters + digits + punctuation return "".join(secrets.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__lowerCamelCase ) snake_case : Any = i // 3 snake_case : Optional[int] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case : Tuple = ( chars_incl + random(__lowerCamelCase , quotient + remainder ) + random(__lowerCamelCase , __lowerCamelCase ) + random(__lowerCamelCase , __lowerCamelCase ) ) snake_case : Optional[Any] = list(__lowerCamelCase ) shuffle(__lowerCamelCase ) return "".join(__lowerCamelCase ) # random is a generalised function for letters, characters and numbers def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): return "".join(secrets.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str ): pass # Put your code here... def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): pass # Put your code here... def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): pass # Put your code here... def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int = 8 ): if len(__lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case : Dict = any(char in ascii_uppercase for char in password ) snake_case : Optional[int] = any(char in ascii_lowercase for char in password ) snake_case : str = any(char in digits for char in password ) snake_case : str = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase ( ): snake_case : int = int(input("Please indicate the max length of your password: " ).strip() ) snake_case : Union[str, Any] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(__lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(__lowerCamelCase , __lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
204
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCAmelCase_ = logging.getLogger(__name__) class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ) -> int: '''simple docstring''' A = False def A( self : str ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Dict ) -> Dict: '''simple docstring''' if not self.initialized: A = RagRetriever( _SCREAMING_SNAKE_CASE ,question_encoder_tokenizer=_SCREAMING_SNAKE_CASE ,generator_tokenizer=_SCREAMING_SNAKE_CASE ,index=_SCREAMING_SNAKE_CASE ,init_retrieval=_SCREAMING_SNAKE_CASE ,) A = True def A( self : Any ) -> Optional[int]: '''simple docstring''' self.retriever.index.init_index() def A( self : List[Any] ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: '''simple docstring''' A , A = self.retriever._main_retrieve(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return doc_ids, retrieved_doc_embeds class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : int ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Dict ,_SCREAMING_SNAKE_CASE : List[str]=None ) -> Tuple: '''simple docstring''' if index is not None and index.is_initialized() and len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _SCREAMING_SNAKE_CASE ,question_encoder_tokenizer=_SCREAMING_SNAKE_CASE ,generator_tokenizer=_SCREAMING_SNAKE_CASE ,index=_SCREAMING_SNAKE_CASE ,init_retrieval=_SCREAMING_SNAKE_CASE ,) A = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for worker in self.retrieval_workers ] ) def A( self : Tuple ) -> int: '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A( self : Tuple ,_SCREAMING_SNAKE_CASE : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] A , A = ray.get(random_worker.retrieve.remote(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) else: A , A = self._main_retrieve(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_SCREAMING_SNAKE_CASE ) @classmethod def A( cls : Union[str, Any] ,_SCREAMING_SNAKE_CASE : Any ,_SCREAMING_SNAKE_CASE : Union[str, Any]=None ,**_SCREAMING_SNAKE_CASE : Any ) -> List[str]: '''simple docstring''' return super(_SCREAMING_SNAKE_CASE ,cls ).get_tokenizers(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @classmethod def A( cls : Union[str, Any] ,_SCREAMING_SNAKE_CASE : Any ,_SCREAMING_SNAKE_CASE : Dict ,_SCREAMING_SNAKE_CASE : Any=None ,**_SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' A = kwargs.pop('config' ,_SCREAMING_SNAKE_CASE ) or RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) A = RagTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) A = rag_tokenizer.question_encoder A = rag_tokenizer.generator if indexed_dataset is not None: A = 'custom' A = CustomHFIndex(config.retrieval_vector_size ,_SCREAMING_SNAKE_CASE ) else: A = cls._build_index(_SCREAMING_SNAKE_CASE ) return cls( _SCREAMING_SNAKE_CASE ,question_encoder_tokenizer=_SCREAMING_SNAKE_CASE ,generator_tokenizer=_SCREAMING_SNAKE_CASE ,retrieval_workers=_SCREAMING_SNAKE_CASE ,index=_SCREAMING_SNAKE_CASE ,)
110
from collections.abc import Callable class UpperCamelCase : """simple docstring""" def __init__( self : Tuple ,_SCREAMING_SNAKE_CASE : Callable | None = None ) -> None: '''simple docstring''' # Stores actual heap items. A = [] # Stores indexes of each item for supporting updates and deletion. A = {} # Stores current size of heap. A = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. A = key or (lambda _SCREAMING_SNAKE_CASE : x) def A( self : Tuple ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' A = int(2 * i + 1 ) return left if 0 < left < self.size else None def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' A = int(2 * i + 2 ) return right if 0 < right < self.size else None def A( self : List[str] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A , A = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. A , A = self.arr[j], self.arr[i] def A( self : List[str] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def A( self : int ,_SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' A = self._left(_SCREAMING_SNAKE_CASE ) A = self._right(_SCREAMING_SNAKE_CASE ) A = i if left is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = left if right is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = right return valid_parent def A( self : Any ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = self._parent(_SCREAMING_SNAKE_CASE ) while parent is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self._swap(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A , A = parent, self._parent(_SCREAMING_SNAKE_CASE ) def A( self : List[Any] ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = self._get_valid_parent(_SCREAMING_SNAKE_CASE ) while valid_parent != index: self._swap(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A , A = valid_parent, self._get_valid_parent(_SCREAMING_SNAKE_CASE ) def A( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' if item not in self.pos_map: return A = self.pos_map[item] A = [item, self.key(_SCREAMING_SNAKE_CASE )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_SCREAMING_SNAKE_CASE ) self._heapify_down(_SCREAMING_SNAKE_CASE ) def A( self : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' if item not in self.pos_map: return A = self.pos_map[item] del self.pos_map[item] A = self.arr[self.size - 1] A = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_SCREAMING_SNAKE_CASE ) self._heapify_down(_SCREAMING_SNAKE_CASE ) def A( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_SCREAMING_SNAKE_CASE )] ) else: A = [item, self.key(_SCREAMING_SNAKE_CASE )] A = self.size self.size += 1 self._heapify_up(self.size - 1 ) def A( self : str ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def A( self : Any ) -> tuple | None: '''simple docstring''' A = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
110
1
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ): """simple docstring""" A = x_start A = fnc(_a ) A = 0.0 for _ in range(_a ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(_a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _A ( _a : Union[str, Any] ): """simple docstring""" return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCAmelCase =10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
617
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _A ( *_a : int ): """simple docstring""" if not isinstance(_a , _a ): A = list(_a ) for i in range(len(_a ) ): A = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _A ( _a : Exception ): """simple docstring""" A = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(_a , _a ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _A ( _a : callable = None , _a : int = 1_2_8 ): """simple docstring""" if function is None: return functools.partial(_a , starting_batch_size=_a ) A = starting_batch_size def decorator(*_a : Union[str, Any] , **_a : List[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() A = list(inspect.signature(_a ).parameters.keys() ) # Guard against user error if len(_a ) < (len(_a ) + 1): A = """, """.join([f'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'Batch size was passed into `{function.__name__}` as the first argument when called.' f'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(_a , *_a , **_a ) except Exception as e: if should_reduce_batch_size(_a ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
617
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = Dict[str, Any] UpperCAmelCase = List[Prediction] @add_end_docstrings(__UpperCAmelCase ) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : List[Any] , *snake_case__ : str , **snake_case__ : str ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __snake_case ( self : Optional[int] , **snake_case__ : Tuple ): '''simple docstring''' lowercase :str = {} if "threshold" in kwargs: lowercase :Optional[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Optional[Any] , *snake_case__ : int , **snake_case__ : Optional[Any] ): '''simple docstring''' return super().__call__(*snake_case__ , **snake_case__ ) def __snake_case ( self : List[str] , snake_case__ : str ): '''simple docstring''' lowercase :Union[str, Any] = load_image(snake_case__ ) lowercase :Tuple = torch.IntTensor([[image.height, image.width]] ) lowercase :Any = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: lowercase :List[str] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) lowercase :List[Any] = target_size return inputs def __snake_case ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' lowercase :List[str] = model_inputs.pop('''target_size''' ) lowercase :Optional[Any] = self.model(**snake_case__ ) lowercase :Union[str, Any] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: lowercase :List[str] = model_inputs['''bbox'''] return model_outputs def __snake_case ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any]=0.9 ): '''simple docstring''' lowercase :Union[str, Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase , lowercase :List[str] = target_size[0].tolist() def unnormalize(snake_case__ : Union[str, Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) lowercase , lowercase :int = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase :Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase :List[str] = [unnormalize(snake_case__ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] lowercase :Optional[int] = ['''score''', '''label''', '''box'''] lowercase :Optional[Any] = [dict(zip(snake_case__ , snake_case__ ) ) for vals in zip(scores.tolist() , snake_case__ , snake_case__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase :Dict = self.image_processor.post_process_object_detection(snake_case__ , snake_case__ , snake_case__ ) lowercase :List[Any] = raw_annotations[0] lowercase :Dict = raw_annotation['''scores'''] lowercase :Optional[int] = raw_annotation['''labels'''] lowercase :int = raw_annotation['''boxes'''] lowercase :Dict = scores.tolist() lowercase :Any = [self.model.config.idalabel[label.item()] for label in labels] lowercase :Any = [self._get_bounding_box(snake_case__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase :Optional[Any] = ['''score''', '''label''', '''box'''] lowercase :str = [ dict(zip(snake_case__ , snake_case__ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def __snake_case ( self : str , snake_case__ : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) lowercase , lowercase , lowercase , lowercase :Dict = box.int().tolist() lowercase :Any = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
475
"""simple docstring""" import math def lowerCamelCase (a_ :int) -> bool: assert isinstance(a_ , a_) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase :Any = range(3 , int(math.sqrt(a_) + 1) , 2) return not any(not number % i for i in odd_numbers) def lowerCamelCase (a_ :Optional[int] , a_ :Optional[int]=1 , **a_ :List[str]) -> Any: lowercase :str = factor * value lowercase :int = value while not is_prime(a_): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **a_) return value
475
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): _UpperCAmelCase : int = StableDiffusionSAGPipeline _UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : str = False def __lowerCamelCase ( self : str ) ->Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) lowerCamelCase__ : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCamelCase__ : Optional[int] = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase__ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self : str , A : Any , A : Optional[int]=0 ) ->Any: if str(lowerCamelCase_ ).startswith('''mps''' ): lowerCamelCase__ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self : int ) ->List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : List[Any] ) ->List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Any ) ->Optional[int]: lowerCamelCase__ : List[str] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowerCamelCase__ : int = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = '''.''' lowerCamelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = sag_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='''np''' ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase__ : Tuple = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] = '''.''' lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = sag_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='''np''' ) lowerCamelCase__ : Optional[int] = output.images lowerCamelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Optional[Any] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase__ : Any = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = '''.''' lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : Any = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='''np''' , ) lowerCamelCase__ : str = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
315
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["PerceiverFeatureExtractor"] lowerCamelCase_ = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
from __future__ import annotations def UpperCAmelCase_ ( __UpperCamelCase ): if not nums: return 0 SCREAMING_SNAKE_CASE__ =nums[0] SCREAMING_SNAKE_CASE__ =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =( max_excluding + num, max(__UpperCamelCase, __UpperCamelCase ), ) return max(__UpperCamelCase, __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
588
0
'''simple docstring''' def snake_case ( a_ : Union[str, Any] , a_ : Any ) -> Any: """simple docstring""" if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(a_ ) * abs(a_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
208
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ : Tuple = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Tuple = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
102
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") __UpperCAmelCase = {"""target_lang""": """fi""", """source_lang""": """en"""} __UpperCAmelCase = """>>zh<<""" __UpperCAmelCase = """Helsinki-NLP/""" if is_torch_available(): __UpperCAmelCase = """pt""" elif is_tf_available(): __UpperCAmelCase = """tf""" else: __UpperCAmelCase = """jax""" @require_sentencepiece class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =MarianTokenizer lowerCamelCase : str =False lowerCamelCase : Any =True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" super().setUp() __lowerCAmelCase : List[str] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCAmelCase : Tuple = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowerCAmelCase : List[str] = Path(self.tmpdirname ) save_json(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase : Any ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: """simple docstring""" __lowerCAmelCase : int = """</s>""" __lowerCAmelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase ) , 9 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" __lowerCAmelCase : List[str] = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) __lowerCAmelCase : List[str] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowerCAmelCase , batch.input_ids[0] ) __lowerCAmelCase : Any = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Tuple = [x.name for x in Path(lowerCAmelCase ).glob("""*""" )] self.assertIn("""source.spm""" , lowerCAmelCase ) MarianTokenizer.from_pretrained(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = self.get_tokenizer() __lowerCAmelCase : List[Any] = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCAmelCase : Dict = """Tämä on testi""" __lowerCAmelCase : Optional[int] = """This is a test""" __lowerCAmelCase : Tuple = [76, 7, 20_47, 2] __lowerCAmelCase : Tuple = [69, 12, 11, 9_40, 2] __lowerCAmelCase : Optional[int] = tokenizer(lowerCAmelCase ).input_ids self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer(text_target=lowerCAmelCase ).input_ids self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
710
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ (__A : int ) -> str: __lowerCAmelCase : str = int(__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def snake_case_ (__A : Dict , __A : Any , __A : List[str] , __A : Optional[int] , __A : Dict=3_0_0 ) -> int: # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : List[Any] = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase : Any = f'''{elt:.6f}''' if isinstance(__A , __A ) else str(__A ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =5 lowerCamelCase : Tuple =0.2 def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase : int = 3_00 , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = total __lowerCAmelCase : Dict = """""" if prefix is None else prefix __lowerCAmelCase : str = leave __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Optional[Any] = width __lowerCAmelCase : List[str] = None __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : bool = False , lowerCAmelCase : str = None ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = value if comment is not None: __lowerCAmelCase : Optional[Any] = comment if self.last_value is None: __lowerCAmelCase : List[Any] = time.time() __lowerCAmelCase : Optional[int] = value __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Any = self.warmup __lowerCAmelCase : List[str] = 1 self.update_bar(lowerCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase : Optional[Any] = time.time() __lowerCAmelCase : Optional[int] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase : Optional[Any] = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase : str = None if value >= self.total: __lowerCAmelCase : Any = self.total __lowerCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase ) __lowerCAmelCase : str = value __lowerCAmelCase : Union[str, Any] = current_time if self.average_time_per_item is None: __lowerCAmelCase : Optional[Any] = 1 else: __lowerCAmelCase : List[str] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = """ """ * (len(str(self.total ) ) - len(str(lowerCAmelCase ) )) + str(lowerCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase : List[str] = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase : Dict = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase : Dict = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : str = None if column_names is None else [column_names] __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if self.inner_table is None: __lowerCAmelCase : Tuple = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase : Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase ) __lowerCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=3_00 ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = NotebookProgressBar(lowerCAmelCase , prefix=lowerCAmelCase , parent=self , width=lowerCAmelCase ) return self.child_bar def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = None self.display() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = None __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , **lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : List[Any] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) __lowerCAmelCase : int = NotebookTrainingTracker(state.max_steps , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , **lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" if not has_length(lowerCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase : List[str] = self.training_tracker.add_child(len(lowerCAmelCase ) ) else: __lowerCAmelCase : List[Any] = NotebookProgressBar(len(lowerCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=None , **lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase : List[str] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase : Tuple = state.global_step self.training_tracker.write_line(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int=None , **lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if self.training_tracker is not None: __lowerCAmelCase : Union[str, Any] = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase : int = log["""loss"""] break if self.first_column == "Epoch": __lowerCAmelCase : int = int(state.epoch ) else: __lowerCAmelCase : Optional[int] = state.global_step __lowerCAmelCase : Union[str, Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): __lowerCAmelCase : Dict = re.sub(r"""\_loss$""" , """""" , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop("""total_flos""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop("""epoch""" , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase ) __lowerCAmelCase : Dict = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': __lowerCAmelCase : Tuple = v else: __lowerCAmelCase : Any = k.split("""_""" ) __lowerCAmelCase : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase : List[str] = v self.training_tracker.write_line(lowerCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase : int = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase : str = True def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = None
218
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _SCREAMING_SNAKE_CASE: def __init__( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=99 , UpperCamelCase_ : List[str]=64 , UpperCamelCase_ : List[str]=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[Any]=5_12 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[int] = parent SCREAMING_SNAKE_CASE__ :Any = batch_size SCREAMING_SNAKE_CASE__ :Tuple = seq_length SCREAMING_SNAKE_CASE__ :Any = is_training SCREAMING_SNAKE_CASE__ :int = use_input_mask SCREAMING_SNAKE_CASE__ :Dict = use_token_type_ids SCREAMING_SNAKE_CASE__ :str = use_labels SCREAMING_SNAKE_CASE__ :str = vocab_size SCREAMING_SNAKE_CASE__ :Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ :List[Any] = embedding_size SCREAMING_SNAKE_CASE__ :int = num_hidden_layers SCREAMING_SNAKE_CASE__ :int = num_attention_heads SCREAMING_SNAKE_CASE__ :Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ :str = hidden_act SCREAMING_SNAKE_CASE__ :Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ :Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE__ :Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ :Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ :int = num_labels SCREAMING_SNAKE_CASE__ :Optional[Any] = num_choices SCREAMING_SNAKE_CASE__ :List[Any] = scope def __lowerCamelCase ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ :List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ :str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ :Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ :List[str] = None SCREAMING_SNAKE_CASE__ :int = None SCREAMING_SNAKE_CASE__ :Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ :str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : List[str] ) -> Any: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> int: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ :str = MegatronBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForNextSentencePrediction(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :List[str] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ :Tuple = MegatronBertForPreTraining(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , next_sentence_label=UpperCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :int = MegatronBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Tuple = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ) -> Dict: SCREAMING_SNAKE_CASE__ :List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = self.num_labels SCREAMING_SNAKE_CASE__ :Any = MegatronBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE__ :Tuple = MegatronBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ :Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) :Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ :Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : int = True # test_resize_embeddings = False A_ : Dict = False def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class in get_values(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def __lowerCamelCase ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : List[str] ) -> Optional[int]: self.config_tester.run_common_tests() def __lowerCamelCase ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCamelCase_ ) def __lowerCamelCase ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCamelCase_ ) def __lowerCamelCase ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCamelCase_ ) def __lowerCamelCase ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCamelCase_ ) def __lowerCamelCase ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCamelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCamelCase_ ) def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> Any: '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) UpperCamelCase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def __lowerCamelCase ( self : str ) -> int: SCREAMING_SNAKE_CASE__ :Tuple = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE__ :Dict = os.path.join(os.environ['MYDIR'] , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = MegatronBertModel.from_pretrained(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.half() SCREAMING_SNAKE_CASE__ :Optional[int] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :str = model(UpperCamelCase_ )[0] SCREAMING_SNAKE_CASE__ :Dict = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE__ :List[Any] = output[0, ii, jj] SCREAMING_SNAKE_CASE__ :List[str] = expected[3 * ii + jj] SCREAMING_SNAKE_CASE__ :List[Any] = 'ii={} jj={} a={} b={}'.format(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(math.isclose(UpperCamelCase_ , UpperCamelCase_ , rel_tol=UpperCamelCase_ , abs_tol=UpperCamelCase_ ) , msg=UpperCamelCase_ )
209
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase ( UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int | None = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ :Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ :Union[str, Any] = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ :List[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ :str = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ :int = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ :str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ :int = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ :List[Any] = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ :Any = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ :Optional[Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
209
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__(self : Optional[Any], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : str=13, __UpperCAmelCase : List[Any]=10, __UpperCAmelCase : Any=3, __UpperCAmelCase : Dict=2, __UpperCAmelCase : int=2, __UpperCAmelCase : List[Any]=2, __UpperCAmelCase : Optional[int]=True, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : int=32, __UpperCAmelCase : Union[str, Any]=5, __UpperCAmelCase : int=4, __UpperCAmelCase : Tuple=37, __UpperCAmelCase : Any="gelu", __UpperCAmelCase : Union[str, Any]=0.1, __UpperCAmelCase : int=0.1, __UpperCAmelCase : int=10, __UpperCAmelCase : Optional[Any]=0.02, __UpperCAmelCase : int=0.9, __UpperCAmelCase : Any=None, ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Tuple = tubelet_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = mask_ratio SCREAMING_SNAKE_CASE : Any = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : List[str] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE : Optional[int] = int(mask_ratio * self.seq_length ) def lowercase__ (self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ (self : str ) -> str: """simple docstring""" return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__UpperCAmelCase, initializer_range=self.initializer_range, ) def lowercase__ (self : Dict, __UpperCAmelCase : int, __UpperCAmelCase : Tuple, __UpperCAmelCase : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = VideoMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = VideoMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : Tuple = torch.ones((self.num_masks,) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : Tuple = mask.expand(self.batch_size, -1 ).bool() SCREAMING_SNAKE_CASE : Dict = model(__UpperCAmelCase, __UpperCAmelCase ) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE : Optional[Any] = mask.sum().item() SCREAMING_SNAKE_CASE : List[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ (self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( _lowercase, _lowercase, unittest.TestCase ): __magic_name__ : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __magic_name__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __magic_name__ : Optional[int] = False __magic_name__ : int = False __magic_name__ : List[Any] = False __magic_name__ : int = False def lowercase__ (self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = VideoMAEModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=__UpperCAmelCase, has_text_modality=__UpperCAmelCase, hidden_size=37 ) def lowercase__ (self : Tuple, __UpperCAmelCase : Any, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : int=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(__UpperCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) SCREAMING_SNAKE_CASE : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : Union[str, Any] = mask.expand(self.model_tester.batch_size, -1 ).bool() SCREAMING_SNAKE_CASE : int = bool_masked_pos.to(__UpperCAmelCase ) if return_labels: if model_class in [ *get_values(__UpperCAmelCase ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__UpperCAmelCase ) return inputs_dict def lowercase__ (self : str ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowercase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" pass def lowercase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase, nn.Linear ) ) def lowercase__ (self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __UpperCAmelCase ) def lowercase__ (self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase__ (self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) @slow def lowercase__ (self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = VideoMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase__ (self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.attentions self.assertEqual(len(__UpperCAmelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions self.assertEqual(len(__UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) SCREAMING_SNAKE_CASE : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) ) self.assertEqual(out_len + 1, len(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def lowercase__ (self : Dict ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Tuple, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Dict ): SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.hidden_states SCREAMING_SNAKE_CASE : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ), __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : Any = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def __lowercase (): SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE : Any = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowercase__ (self : Tuple ) -> str: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_video() SCREAMING_SNAKE_CASE : int = image_processor(__UpperCAmelCase, return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __UpperCAmelCase, atol=1e-4 ) ) @slow def lowercase__ (self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_video() SCREAMING_SNAKE_CASE : Tuple = image_processor(__UpperCAmelCase, return_tensors='''pt''' ).to(__UpperCAmelCase ) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE : int = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.load(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : List[Any] = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=__UpperCAmelCase ) self.assertEqual(outputs.logits.shape, __UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], __UpperCAmelCase, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.5142], device=__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss, __UpperCAmelCase, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE : Dict = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=__UpperCAmelCase ).to( __UpperCAmelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(torch.tensor([0.6469] ), device=__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss, __UpperCAmelCase, atol=1e-4 ) )
708
'''simple docstring''' from __future__ import annotations snake_case_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __lowercase (_SCREAMING_SNAKE_CASE :list[list[int]] , _SCREAMING_SNAKE_CASE :list[int] , _SCREAMING_SNAKE_CASE :list[int] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :list[list[int]] , ): SCREAMING_SNAKE_CASE : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid SCREAMING_SNAKE_CASE : Union[str, Any] = init[0] SCREAMING_SNAKE_CASE : Optional[Any] = init[1] SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE : Union[str, Any] = [[f, g, x, y]] SCREAMING_SNAKE_CASE : List[str] = False # flag that is set when search is complete SCREAMING_SNAKE_CASE : Any = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE : List[str] = cell.pop() SCREAMING_SNAKE_CASE : List[str] = next_cell[2] SCREAMING_SNAKE_CASE : Dict = next_cell[3] SCREAMING_SNAKE_CASE : str = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE : Dict = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions SCREAMING_SNAKE_CASE : Optional[Any] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE : Optional[Any] = g + cost SCREAMING_SNAKE_CASE : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = i SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = goal[0] SCREAMING_SNAKE_CASE : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE : str = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE : str = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE : Tuple = xa SCREAMING_SNAKE_CASE : Dict = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": snake_case_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] snake_case_ = [0, 0] # all coordinates are given in format [y,x] snake_case_ = [len(grid) - 1, len(grid[0]) - 1] snake_case_ = 1 # the cost map which pushes the path closer to the goal snake_case_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): snake_case_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map snake_case_ = 99 snake_case_ , snake_case_ = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
355
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( _lowercase ): """simple docstring""" lowerCAmelCase = ["image_processor", "tokenizer"] lowerCAmelCase = "AutoImageProcessor" lowerCAmelCase = "AutoTokenizer" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , **SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop("feature_extractor" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.image_processor lowerCAmelCase = False def __call__( self : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase = kwargs.pop("images" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = kwargs.pop("text" , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase = self.image_processor(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None: lowerCAmelCase = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase = encodings['''input_ids'''] return inputs def __A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Dict , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @contextmanager def __A ( self : str ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) lowerCAmelCase = True lowerCAmelCase = self.tokenizer yield lowerCAmelCase = self.image_processor lowerCAmelCase = False def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : int=None ) -> str: """simple docstring""" if added_vocab is None: lowerCAmelCase = self.tokenizer.get_added_vocab() lowerCAmelCase = {} while tokens: lowerCAmelCase = re.search(R"<s_(.*?)>" , SCREAMING_SNAKE_CASE , re.IGNORECASE ) if start_token is None: break lowerCAmelCase = start_token.group(1 ) lowerCAmelCase = re.search(Rf"</s_{key}>" , SCREAMING_SNAKE_CASE , re.IGNORECASE ) lowerCAmelCase = start_token.group() if end_token is None: lowerCAmelCase = tokens.replace(SCREAMING_SNAKE_CASE , "" ) else: lowerCAmelCase = end_token.group() lowerCAmelCase = re.escape(SCREAMING_SNAKE_CASE ) lowerCAmelCase = re.escape(SCREAMING_SNAKE_CASE ) lowerCAmelCase = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , SCREAMING_SNAKE_CASE , re.IGNORECASE ) if content is not None: lowerCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase = self.tokenajson(SCREAMING_SNAKE_CASE , is_inner_value=SCREAMING_SNAKE_CASE , added_vocab=SCREAMING_SNAKE_CASE ) if value: if len(SCREAMING_SNAKE_CASE ) == 1: lowerCAmelCase = value[0] lowerCAmelCase = value else: # leaf nodes lowerCAmelCase = [] for leaf in content.split(R"<sep/>" ): lowerCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE ) if len(output[key] ) == 1: lowerCAmelCase = output[key][0] lowerCAmelCase = tokens[tokens.find(SCREAMING_SNAKE_CASE ) + len(SCREAMING_SNAKE_CASE ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=SCREAMING_SNAKE_CASE , added_vocab=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __A ( self : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __A ( self : Optional[int] ) -> str: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor
649
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __lowercase ( unittest.TestCase ): def __init__(self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 2_5_5 , A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ : int = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCamelCase_ : Any = parent lowerCamelCase_ : Tuple = batch_size lowerCamelCase_ : Union[str, Any] = num_channels lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : List[Any] = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : Optional[int] = do_normalize lowerCamelCase_ : Union[str, Any] = image_mean lowerCamelCase_ : str = image_std lowerCamelCase_ : List[Any] = do_rescale lowerCamelCase_ : str = rescale_factor lowerCamelCase_ : Optional[int] = do_pad def UpperCAmelCase__ (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ (self , A , A=False ): if not batched: lowerCamelCase_ : Any = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase_, lowerCamelCase_ : int = image.size else: lowerCamelCase_, lowerCamelCase_ : Any = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : str = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ : Union[str, Any] = self.size['''shortest_edge'''] lowerCamelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ : Any = self.size['''shortest_edge'''] lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] else: lowerCamelCase_ : Optional[Any] = [] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Dict = max(A , key=lambda A : item[0] )[0] lowerCamelCase_ : int = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def UpperCAmelCase__ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Tuple = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : List[str] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Optional[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ (self ): # prepare image and target lowerCamelCase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Any = json.loads(f.read() ) lowerCamelCase_ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCamelCase_ : Optional[Any] = DetaImageProcessor() lowerCamelCase_ : Optional[int] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : List[str] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowerCamelCase_ : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def UpperCAmelCase__ (self ): # prepare image, target and masks_path lowerCamelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Tuple = json.loads(f.read() ) lowerCamelCase_ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCamelCase_ : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase_ : Any = DetaImageProcessor(format='''coco_panoptic''' ) lowerCamelCase_ : Dict = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : Dict = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowerCamelCase_ : Tuple = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowerCamelCase_ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
422
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } class lowercase_ (_UpperCAmelCase ): A__ : int = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Dict = ['''input_ids''', '''attention_mask'''] A__ : Any = TaTokenizer A__ : List[int] = [] def __init__( self , a_=None , a_=None , a_="</s>" , a_="<unk>" , a_="<pad>" , a_=1_0_0 , a_=None , **a_ , ) ->Any: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _a = [f'''<extra_id_{i}>''' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _a = len(set(filter(lambda a_ : bool("extra_id_" in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( a_ , tokenizer_file=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) _a = vocab_file _a = False if not self.vocab_file else True _a = extra_ids @staticmethod def lowerCamelCase__ ( a_ , a_ , a_ ) ->List[Any]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _a = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a_ , ) return max_model_length def lowerCamelCase__ ( self , a_ , a_ = None ) ->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def lowerCamelCase__ ( self , a_ , a_ = None ) ->List[int]: '''simple docstring''' _a = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _a = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCamelCase__ ( self , a_ , a_ = None ) ->List[int]: '''simple docstring''' _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self ) ->str: '''simple docstring''' return list( set(filter(lambda a_ : bool(re.search(R"<extra_id_\d+>" , a_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
612
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (_UpperCAmelCase ): def __init__( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) ->Optional[Any]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=a_ , speech_processor=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , feature_extractor=a_ , ) def lowerCamelCase__ ( self , a_ = "auto" ) ->Optional[int]: '''simple docstring''' if slice_size == "auto": _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' self.enable_attention_slicing(a_ ) @torch.no_grad() def __call__( self , a_ , a_=1_6_0_0_0 , a_ = 5_1_2 , a_ = 5_1_2 , a_ = 5_0 , a_ = 7.5 , a_ = None , a_ = 1 , a_ = 0.0 , a_ = None , a_ = None , a_ = "pil" , a_ = True , a_ = None , a_ = 1 , **a_ , ) ->str: '''simple docstring''' _a = self.speech_processor.feature_extractor( a_ , return_tensors="pt" , sampling_rate=a_ ).input_features.to(self.device ) _a = self.speech_model.generate(a_ , max_length=4_8_0_0_0_0 ) _a = self.speech_processor.tokenizer.batch_decode(a_ , skip_special_tokens=a_ , normalize=a_ )[ 0 ] if isinstance(a_ , a_ ): _a = 1 elif isinstance(a_ , a_ ): _a = len(a_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(a_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a_ , a_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(a_ )}.''' ) # get prompt text embeddings _a = self.tokenizer( a_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _a = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _a = text_input_ids[:, : self.tokenizer.model_max_length] _a = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _a , _a , _a = text_embeddings.shape _a = text_embeddings.repeat(1 , a_ , 1 ) _a = text_embeddings.view(bs_embed * num_images_per_prompt , a_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = 42 if negative_prompt is None: _a = [""] * batch_size elif type(a_ ) is not type(a_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(a_ )} !=''' f''' {type(a_ )}.''' ) elif isinstance(a_ , a_ ): _a = [negative_prompt] elif batch_size != len(a_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(a_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: _a = negative_prompt _a = text_input_ids.shape[-1] _a = self.tokenizer( a_ , padding="max_length" , max_length=a_ , truncation=a_ , return_tensors="pt" , ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _a = uncond_embeddings.shape[1] _a = uncond_embeddings.repeat(1 , a_ , 1 ) _a = uncond_embeddings.view(batch_size * num_images_per_prompt , a_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _a = torch.randn(a_ , generator=a_ , device="cpu" , dtype=a_ ).to( self.device ) else: _a = torch.randn(a_ , generator=a_ , device=self.device , dtype=a_ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _a = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for i, t in enumerate(self.progress_bar(a_ ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(a_ , a_ ) # predict the noise residual _a = self.unet(a_ , a_ , encoder_hidden_states=a_ ).sample # perform guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a_ , a_ , a_ ) _a = 1 / 0.18_215 * latents _a = self.vae.decode(a_ ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _a = self.numpy_to_pil(a_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=a_ , nsfw_content_detected=a_ )
612
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType snake_case_ , snake_case_ , snake_case_ = False, False, False @dataclass class a__ : __magic_name__ : Optional[int] = None __magic_name__ : bool = True __magic_name__ : bool = True __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __magic_name__ : str = field(default="Audio", init=_lowercase, repr=_lowercase ) def __call__(self : Optional[int] ) -> List[str]: """simple docstring""" return self.pa_type def lowercase__ (self : int, __UpperCAmelCase : Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__UpperCAmelCase, __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase, __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE : Optional[int] = BytesIO() sf.write(__UpperCAmelCase, value['''array'''], value['''sampling_rate'''], format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE : int = np.frombuffer(value['''bytes'''], dtype=np.intaa ).astype(np.floataa ) / 32767 else: SCREAMING_SNAKE_CASE : List[Any] = np.memmap(value['''path'''], dtype='''h''', mode='''r''' ).astype(np.floataa ) / 32767 SCREAMING_SNAKE_CASE : int = BytesIO(bytes() ) sf.write(__UpperCAmelCase, __UpperCAmelCase, value['''sampling_rate'''], format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase__ (self : Optional[int], __UpperCAmelCase : dict, __UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err SCREAMING_SNAKE_CASE : Optional[int] = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: SCREAMING_SNAKE_CASE : List[str] = token_per_repo_id or {} SCREAMING_SNAKE_CASE : Any = path.split('''::''' )[-1] try: SCREAMING_SNAKE_CASE : Any = string_to_dict(__UpperCAmelCase, config.HUB_DATASETS_URL )['''repo_id'''] SCREAMING_SNAKE_CASE : List[str] = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE : Optional[int] = None with xopen(__UpperCAmelCase, '''rb''', use_auth_token=__UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sf.read(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = sf.read(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = array.T if self.mono: SCREAMING_SNAKE_CASE : str = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE : Optional[Any] = librosa.resample(__UpperCAmelCase, orig_sr=__UpperCAmelCase, target_sr=self.sampling_rate ) SCREAMING_SNAKE_CASE : int = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase__ (self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def lowercase__ (self : Any, __UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE : Tuple = pa.array([None] * len(__UpperCAmelCase ), type=pa.binary() ) SCREAMING_SNAKE_CASE : List[str] = pa.StructArray.from_arrays([bytes_array, storage], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE : Optional[Any] = pa.array([None] * len(__UpperCAmelCase ), type=pa.string() ) SCREAMING_SNAKE_CASE : Tuple = pa.StructArray.from_arrays([storage, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): SCREAMING_SNAKE_CASE : Tuple = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: SCREAMING_SNAKE_CASE : Tuple = storage.field('''bytes''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = pa.array([None] * len(__UpperCAmelCase ), type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: SCREAMING_SNAKE_CASE : Tuple = storage.field('''path''' ) else: SCREAMING_SNAKE_CASE : Optional[Any] = pa.array([None] * len(__UpperCAmelCase ), type=pa.string() ) SCREAMING_SNAKE_CASE : Dict = pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) return array_cast(__UpperCAmelCase, self.pa_type ) def lowercase__ (self : List[str], __UpperCAmelCase : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase : Tuple ): with xopen(__UpperCAmelCase, '''rb''' ) as f: SCREAMING_SNAKE_CASE : int = f.read() return bytes_ SCREAMING_SNAKE_CASE : List[str] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) SCREAMING_SNAKE_CASE : Any = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()], type=pa.string(), ) SCREAMING_SNAKE_CASE : List[str] = pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase, self.pa_type )
507
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :List[str] ): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :int ): class a__ : def __init__(self : Optional[int], __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = metric_id class a__ : __magic_name__ : List[Any] = [MetricMock(_lowercase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ (self : List[str] ) -> Optional[int]: """simple docstring""" return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :int ): if "tmp_path" in args: SCREAMING_SNAKE_CASE : List[Any] = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(_SCREAMING_SNAKE_CASE , match='''https://huggingface.co/docs/evaluate''' ): func(*_SCREAMING_SNAKE_CASE )
507
1
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowerCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) if config is None: assert isinstance(self.model , lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) snake_case = self.model.config else: snake_case = config snake_case = data_args snake_case = self.config.tgt_vocab_size if isinstance(self.config , lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: snake_case = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case = label_smoothed_nll_loss def snake_case ( self , lowerCAmelCase ): """simple docstring""" if self.optimizer is None: snake_case = ["bias", "LayerNorm.weight"] snake_case = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] snake_case = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case = Adafactor snake_case = {"scale_parameter": False, "relative_step": False} else: snake_case = AdamW snake_case = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } snake_case = self.args.learning_rate if self.sharded_ddp: snake_case = OSS( params=lowerCAmelCase , optim=lowerCAmelCase , **lowerCAmelCase , ) else: snake_case = optimizer_cls(lowerCAmelCase , **lowerCAmelCase ) if self.lr_scheduler is None: snake_case = self._get_lr_scheduler(lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCAmelCase ) return scheduler def snake_case ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case = model(**lowerCAmelCase , use_cache=lowerCAmelCase )[0] snake_case = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case = model(**lowerCAmelCase , labels=lowerCAmelCase , use_cache=lowerCAmelCase )[:2] else: # compute label smoothed loss snake_case = model(**lowerCAmelCase , use_cache=lowerCAmelCase )[0] snake_case = torch.nn.functional.log_softmax(lowerCAmelCase , dim=-1 ) snake_case = self.loss_fn(lowerCAmelCase , lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = inputs.pop('labels' ) snake_case = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return loss def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , ): """simple docstring""" snake_case = self._prepare_inputs(lowerCAmelCase ) snake_case = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length'] ) snake_case = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data snake_case = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) snake_case = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length'] ) return (loss, logits, labels) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) snake_case = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case = tensor return padded_tensor
706
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
104
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Dict = '▁' _a : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase_ ( __UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = BertGenerationTokenizer A = False A = True def lowerCamelCase_ ( self ): super().setUp() __lowerCamelCase = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self ): __lowerCamelCase = """<s>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCAmelCase ) , 1_0_0_2 ) def lowerCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowerCamelCase_ ( self ): __lowerCamelCase = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCamelCase_ ( self ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = """Hello World!""" __lowerCamelCase = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowerCamelCase = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def lowerCamelCase_ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowerCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __lowerCamelCase = """ """.join(UpperCAmelCase ) __lowerCamelCase = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase ) __lowerCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase ) __lowerCamelCase = BertGenerationConfig() __lowerCamelCase = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): # fmt: off __lowerCamelCase = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
479
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _a : int = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _a : Tuple = concatenate_datasets _a : Optional[int] = DownloadConfig _a : Any = DownloadManager _a : Dict = DownloadMode _a : str = DownloadConfig _a : int = DownloadMode _a : Tuple = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
479
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # Initialise PyTorch model __magic_name__ : int =FunnelConfig.from_json_file(lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) __magic_name__ : str =FunnelBaseModel(lowerCamelCase ) if base_model else FunnelModel(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) UpperCAmelCase_ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
717
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __A ( unittest.TestCase ): def __init__( self :List[str] , __snake_case :str , __snake_case :List[Any]=7 , __snake_case :List[str]=3 , __snake_case :int=30 , __snake_case :int=4_00 , __snake_case :List[str]=True , __snake_case :List[str]=None , __snake_case :Tuple=True , __snake_case :Any=[0.5, 0.5, 0.5] , __snake_case :Any=[0.5, 0.5, 0.5] , __snake_case :Union[str, Any]=True , __snake_case :str=1 / 2_55 , __snake_case :int=True , ): '''simple docstring''' __magic_name__ : Optional[int] =size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __magic_name__ : str =parent __magic_name__ : Tuple =batch_size __magic_name__ : Optional[Any] =num_channels __magic_name__ : Optional[int] =min_resolution __magic_name__ : Optional[Any] =max_resolution __magic_name__ : Optional[Any] =do_resize __magic_name__ : Any =size __magic_name__ : str =do_normalize __magic_name__ : str =image_mean __magic_name__ : List[Any] =image_std __magic_name__ : Optional[int] =do_rescale __magic_name__ : List[str] =rescale_factor __magic_name__ : Optional[int] =do_pad def A__ ( self :Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self :List[str] , __snake_case :Any , __snake_case :List[Any]=False ): '''simple docstring''' if not batched: __magic_name__ : Any =image_inputs[0] if isinstance(__snake_case , Image.Image ): __magic_name__ , __magic_name__ : Dict =image.size else: __magic_name__ , __magic_name__ : Dict =image.shape[1], image.shape[2] if w < h: __magic_name__ : Any =int(self.size["""shortest_edge"""] * h / w ) __magic_name__ : Dict =self.size["""shortest_edge"""] elif w > h: __magic_name__ : Union[str, Any] =self.size["""shortest_edge"""] __magic_name__ : Optional[int] =int(self.size["""shortest_edge"""] * w / h ) else: __magic_name__ : Any =self.size["""shortest_edge"""] __magic_name__ : List[str] =self.size["""shortest_edge"""] else: __magic_name__ : List[str] =[] for image in image_inputs: __magic_name__ , __magic_name__ : Tuple =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[int] =max(__snake_case , key=lambda __snake_case : item[0] )[0] __magic_name__ : Tuple =max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = DetaImageProcessor if is_vision_available() else None def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : int =DetaImageProcessingTester(self ) @property def A__ ( self :List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """image_mean""" ) ) self.assertTrue(hasattr(__snake_case , """image_std""" ) ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """do_rescale""" ) ) self.assertTrue(hasattr(__snake_case , """do_pad""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) def A__ ( self :Any ): '''simple docstring''' pass def A__ ( self :str ): '''simple docstring''' __magic_name__ : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Tuple =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : str =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __magic_name__ : str =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : List[str] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : Any =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Tuple =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : Tuple =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[int] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __magic_name__ : Optional[int] =json.loads(f.read() ) __magic_name__ : str ={"""image_id""": 3_97_69, """annotations""": target} # encode them __magic_name__ : Optional[Any] =DetaImageProcessor() __magic_name__ : Any =image_processing(images=__snake_case , annotations=__snake_case , return_tensors="""pt""" ) # verify pixel values __magic_name__ : Tuple =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , __snake_case ) __magic_name__ : Optional[int] =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __magic_name__ : Dict =torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) ) # verify boxes __magic_name__ : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case ) __magic_name__ : int =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) ) # verify image_id __magic_name__ : Any =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) ) # verify is_crowd __magic_name__ : Optional[Any] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) ) # verify class_labels __magic_name__ : List[str] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) ) # verify orig_size __magic_name__ : Optional[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) ) # verify size __magic_name__ : Tuple =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __magic_name__ : str =json.loads(f.read() ) __magic_name__ : Optional[Any] ={"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __magic_name__ : List[str] =pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __magic_name__ : int =DetaImageProcessor(format="""coco_panoptic""" ) __magic_name__ : Tuple =image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors="""pt""" ) # verify pixel values __magic_name__ : Union[str, Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , __snake_case ) __magic_name__ : str =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __magic_name__ : str =torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) ) # verify boxes __magic_name__ : Dict =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case ) __magic_name__ : Optional[Any] =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) ) # verify image_id __magic_name__ : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) ) # verify is_crowd __magic_name__ : int =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) ) # verify class_labels __magic_name__ : List[Any] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) ) # verify masks __magic_name__ : List[Any] =82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __snake_case ) # verify orig_size __magic_name__ : Union[str, Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) ) # verify size __magic_name__ : List[Any] =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) )
367
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Any: if is_torch_version("<", "2.0.0" ) or not hasattr(SCREAMING_SNAKE_CASE__, "_dynamo" ): return False return isinstance(SCREAMING_SNAKE_CASE__, torch._dynamo.eval_frame.OptimizedModule ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = True ) -> List[str]: a_ : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a_ : Tuple = is_compiled_module(SCREAMING_SNAKE_CASE__ ) if is_compiled: a_ : Dict = model a_ : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = model.module if not keep_fpaa_wrapper: a_ : str = getattr(SCREAMING_SNAKE_CASE__, "forward" ) a_ : List[str] = model.__dict__.pop("_original_forward", SCREAMING_SNAKE_CASE__ ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE__, "__wrapped__" ): a_ : Any = forward.__wrapped__ if forward == original_forward: break a_ : Tuple = forward if getattr(SCREAMING_SNAKE_CASE__, "_converted_to_transformer_engine", SCREAMING_SNAKE_CASE__ ): convert_model(SCREAMING_SNAKE_CASE__, to_transformer_engine=SCREAMING_SNAKE_CASE__ ) if is_compiled: a_ : Optional[int] = model a_ : Optional[Any] = compiled_model return model def lowerCAmelCase_ ( ) -> List[str]: PartialState().wait_for_everyone() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) @contextmanager def lowerCAmelCase_ ( **SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key, value in kwargs.items(): a_ : str = str(SCREAMING_SNAKE_CASE__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: if not hasattr(SCREAMING_SNAKE_CASE__, "__qualname__" ) and not hasattr(SCREAMING_SNAKE_CASE__, "__name__" ): a_ : List[str] = getattr(SCREAMING_SNAKE_CASE__, "__class__", SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__, "__qualname__" ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE__, "__name__" ): return obj.__name__ return str(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = destination.setdefault(SCREAMING_SNAKE_CASE__, {} ) merge_dicts(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: a_ : Union[str, Any] = value return destination def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ = None ) -> Union[str, Any]: if port is None: a_ : Dict = 29_500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
237
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase : __lowerCamelCase = 42 # setable values __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = None @classmethod def UpperCAmelCase ( cls :Union[str, Any] , _lowercase :CommonSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray ): '''simple docstring''' return cls(common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase ) @dataclass class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ , lowercase_ ): __lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase = 42 @property def UpperCAmelCase ( self :List[str] ): '''simple docstring''' return True @register_to_config def __init__( self :str , _lowercase :int = 10_00 , _lowercase :float = 0.0001 , _lowercase :float = 0.02 , _lowercase :str = "linear" , _lowercase :Optional[jnp.ndarray] = None , _lowercase :str = "fixed_small" , _lowercase :bool = True , _lowercase :str = "epsilon" , _lowercase :jnp.dtype = jnp.floataa , ): '''simple docstring''' lowercase__ = dtype def UpperCAmelCase ( self :str , _lowercase :Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: lowercase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ = jnp.array(1.0 , dtype=self.dtype ) lowercase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase , ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :Optional[int] = None ): '''simple docstring''' return sample def UpperCAmelCase ( self :List[str] , _lowercase :DDPMSchedulerState , _lowercase :int , _lowercase :Tuple = () ): '''simple docstring''' lowercase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ = (jnp.arange(0 , _lowercase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_lowercase , timesteps=_lowercase , ) def UpperCAmelCase ( self :Tuple , _lowercase :DDPMSchedulerState , _lowercase :int , _lowercase :List[str]=None , _lowercase :Tuple=None ): '''simple docstring''' lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ = jnp.clip(_lowercase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ = jnp.log(jnp.clip(_lowercase , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowercase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ = variance lowercase__ = state.common.betas[t] lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase ( self :Optional[int] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :int , _lowercase :jnp.ndarray , _lowercase :Optional[jax.random.KeyArray] = None , _lowercase :bool = True , ): '''simple docstring''' lowercase__ = timestep if key is None: lowercase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = jnp.split(_lowercase , sample.shape[1] , axis=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output elif self.config.prediction_type == "v_prediction": lowercase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = jnp.clip(_lowercase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ = jax.random.split(_lowercase , num=1 ) lowercase__ = jax.random.normal(_lowercase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_lowercase , _lowercase , predicted_variance=_lowercase ) ** 0.5) * noise lowercase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_lowercase , state=_lowercase ) def UpperCAmelCase ( self :int , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , _lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :Dict , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , _lowercase , _lowercase , _lowercase ) def __len__( self :List[str] ): '''simple docstring''' return self.config.num_train_timesteps
655
0
import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase ): """simple docstring""" A_ : List[str] = str(id_ ) A_ : Union[str, Any] = None A_ : List[Any] = None A_ : str = [] A_ : str = {} # {vertex:distance} def __lt__( self , lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" self.neighbors.append(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : Optional[Any] = weight def UpperCamelCase ( __lowercase : Dict ,__lowercase : int ,__lowercase : int ,__lowercase : List[str] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,__lowercase ) graph[b - 1].add_edge(graph[a - 1] ,__lowercase ) def UpperCamelCase ( __lowercase : list ,__lowercase : Vertex ): '''simple docstring''' A_ : str = [] for u in graph: A_ : Optional[Any] = math.inf A_ : List[str] = None A_ : Any = 0 A_ : Any = graph[:] while q: A_ : Tuple = min(__lowercase ) q.remove(__lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ : int = u A_ : Any = u.edges[v.id] for i in range(1 ,len(__lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase ( __lowercase : list ,__lowercase : Vertex ): '''simple docstring''' for u in graph: A_ : Dict = math.inf A_ : Optional[Any] = None A_ : List[str] = 0 A_ : List[Any] = list(__lowercase ) hq.heapify(__lowercase ) while h: A_ : str = hq.heappop(__lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ : Any = u A_ : Tuple = u.edges[v.id] hq.heapify(__lowercase ) for i in range(1 ,len(__lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
711
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _UpperCAmelCase = logging.getLogger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''summarization''' lowerCamelCase_ = ['''loss'''] lowerCamelCase_ = ROUGE_KEYS lowerCamelCase_ = '''rouge2''' def __init__( self , lowercase , **lowercase ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: A_ : str = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) A_ : List[str] = Path(self.output_dir ) / 'metrics.json' A_ : List[str] = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) A_ : str = 0 A_ : Any = defaultdict(lowercase ) A_ : Union[str, Any] = self.config.model_type A_ : int = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size A_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } A_ : Optional[Any] = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } A_ : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A_ : Tuple = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A_ : int = get_git_info()['repo_sha'] A_ : int = hparams.num_workers A_ : Union[str, Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ): A_ : Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] A_ : Any = self.decoder_start_token_id A_ : str = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) A_ : Union[str, Any] = False A_ : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A_ : int = self.hparams.eval_max_gen_length else: A_ : List[Any] = self.model.config.max_length A_ : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(lowercase , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) A_ : int = True return readable_batch def lowerCAmelCase_ ( self , lowercase , **lowercase ): """simple docstring""" return self.model(lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[Any] = self.tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) return lmap(str.strip , lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = self.tokenizer.pad_token_id A_ , A_ : List[str] = batch['input_ids'], batch['attention_mask'] A_ : str = batch['labels'] if isinstance(self.model , lowercase ): A_ : Optional[int] = self.model._shift_right(lowercase ) else: A_ : Any = shift_tokens_right(lowercase , lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A_ : Optional[Any] = decoder_input_ids self.save_readable_batch(lowercase ) A_ : List[str] = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase ) A_ : Dict = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A_ : Union[str, Any] = nn.CrossEntropyLoss(ignore_index=lowercase ) assert lm_logits.shape[-1] == self.vocab_size A_ : Any = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A_ : List[Any] = nn.functional.log_softmax(lowercase , dim=-1 ) A_ , A_ : Any = label_smoothed_nll_loss( lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase ) return (loss,) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.tokenizer.pad_token_id def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : str = self._step(lowercase ) A_ : Optional[int] = dict(zip(self.loss_names , lowercase ) ) # tokens per batch A_ : int = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() A_ : str = batch['input_ids'].shape[0] A_ : Any = batch['input_ids'].eq(self.pad ).sum() A_ : Optional[int] = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return self._generative_step(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase="val" ): """simple docstring""" self.step_count += 1 A_ : Union[str, Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A_ : Dict = losses['loss'] A_ : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } A_ : Any = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A_ : torch.FloatTensor = torch.tensor(lowercase ).type_as(lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase ) A_ : Tuple = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} A_ : Tuple = self.step_count self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path A_ : Dict = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return calculate_rouge(lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A_ : Optional[int] = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A_ : int = (time.time() - ta) / batch['input_ids'].shape[0] A_ : List[str] = self.ids_to_clean_text(lowercase ) A_ : List[str] = self.ids_to_clean_text(batch['labels'] ) A_ : List[Any] = self._step(lowercase ) A_ : int = dict(zip(self.loss_names , lowercase ) ) A_ : Dict = self.calc_generative_metrics(lowercase , lowercase ) A_ : List[Any] = np.mean(lmap(lowercase , lowercase ) ) base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase ) return base_metrics def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return self._generative_step(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.validation_epoch_end(lowercase , prefix='test' ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = self.n_obs[type_path] A_ : List[Any] = self.target_lens[type_path] A_ : str = self.dataset_class( self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , ) return dataset def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase = False ): """simple docstring""" A_ : Optional[int] = self.get_dataset(lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A_ : str = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A_ : str = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=lowercase ) return dataloader def lowerCAmelCase_ ( self ): """simple docstring""" return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" BaseTransformer.add_model_specific_args(lowercase , lowercase ) add_generic_args(lowercase , lowercase ) parser.add_argument( '--max_source_length' , default=1_0_2_4 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=5_6 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=1_4_2 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=1_4_2 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=lowercase ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=lowercase ) parser.add_argument('--max_tokens_per_batch' , type=lowercase , default=lowercase ) parser.add_argument('--logger_name' , type=lowercase , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=lowercase , default=-1 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=lowercase , default=5_0_0 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=lowercase , default=-1 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=lowercase , default='summarization' , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=lowercase , default=0.0 , required=lowercase ) parser.add_argument('--src_lang' , type=lowercase , default='' , required=lowercase ) parser.add_argument('--tgt_lang' , type=lowercase , default='' , required=lowercase ) parser.add_argument('--eval_beams' , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( '--val_metric' , type=lowercase , default=lowercase , required=lowercase , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=lowercase , default=lowercase , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=lowercase , default=1 , required=lowercase , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=lowercase , default=-1 , required=lowercase , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''translation''' lowerCamelCase_ = ['''loss'''] lowerCamelCase_ = ['''bleu'''] lowerCamelCase_ = '''bleu''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , **lowercase ) A_ : List[Any] = hparams.src_lang A_ : str = hparams.tgt_lang def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return calculate_bleu(lowercase , lowercase ) def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : Tuple=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=__lowercase ) check_output_dir(__lowercase ,expected_items=3 ) if model is None: if "summarization" in args.task: A_ : SummarizationModule = SummarizationModule(__lowercase ) else: A_ : SummarizationModule = TranslationModule(__lowercase ) A_ : Optional[int] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): A_ : List[str] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A_ : List[str] = os.environ.get('WANDB_PROJECT' ,__lowercase ) A_ : List[Any] = WandbLogger(name=model.output_dir.name ,project=__lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A_ : str = WandbLogger(name=model.output_dir.name ,project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: A_ : Dict = get_early_stopping_callback(model.val_metric ,args.early_stopping_patience ) else: A_ : str = False A_ : Dict = args.val_metric == 'loss' A_ : pl.Trainer = generic_train( __lowercase ,__lowercase ,logging_callback=SeqaSeqLoggingCallback() ,checkpoint_callback=get_checkpoint_callback( args.output_dir ,model.val_metric ,args.save_top_k ,__lowercase ) ,early_stopping_callback=__lowercase ,logger=__lowercase ,) pickle_save(model.hparams ,model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model A_ : Optional[Any] = '' A_ : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir ,'*.ckpt' ) ,recursive=__lowercase ) ) if checkpoints: A_ : List[Any] = checkpoints[-1] A_ : Any = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() _UpperCAmelCase = pl.Trainer.add_argparse_args(parser) _UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _UpperCAmelCase = parser.parse_args() main(args)
70
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a = logging.get_logger(__name__) a = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'bloom' __UpperCamelCase : Optional[Any] = ['past_key_values'] __UpperCamelCase : Optional[int] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] ,lowerCamelCase : str=25_0880 ,lowerCamelCase : List[Any]=64 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : Tuple=8 ,lowerCamelCase : Union[str, Any]=1E-5 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : str=True ,lowerCamelCase : List[Any]=1 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Optional[int]=0.0 ,lowerCamelCase : List[Any]=0.0 ,lowerCamelCase : Optional[Any]=1 ,lowerCamelCase : Tuple=False ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg __SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = pretraining_tp __SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = slow_but_exact super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) class __a ( _snake_case ): __UpperCamelCase : int = version.parse('1.12' ) def __init__( self : Optional[int] ,lowerCamelCase : PretrainedConfig ,lowerCamelCase : str = "default" ,lowerCamelCase : List[PatchingSpec] = None ,lowerCamelCase : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase ,task=lowerCamelCase ,patching_specs=lowerCamelCase ,use_past=lowerCamelCase ) if not getattr(self._config ,"""pad_token_id""" ,lowerCamelCase ): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase ,direction="""inputs""" ,inverted_values_shape=lowerCamelCase ) __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self._config.n_head @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 1E-3 def UpperCAmelCase__ ( self : str ,lowerCamelCase : "PreTrainedTokenizer" ,lowerCamelCase : int = -1 ,lowerCamelCase : int = -1 ,lowerCamelCase : bool = False ,lowerCamelCase : Optional["TensorType"] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = super(lowerCamelCase ,self ).generate_dummy_inputs( lowerCamelCase ,batch_size=lowerCamelCase ,seq_length=lowerCamelCase ,is_pair=lowerCamelCase ,framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase ,lowerCamelCase ,dtype=lowerCamelCase )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 13
109
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = KandinskyInpaintPipeline __A = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __A = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __A = False @property def _a ( self ) -> str: '''simple docstring''' return 32 @property def _a ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def _a ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def _a ( self ) -> Any: '''simple docstring''' lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _a ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(_lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def _a ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def _a ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Any: '''simple docstring''' lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(_lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(_lowerCAmelCase ) else: lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _a ( self ) -> str: '''simple docstring''' lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _a ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( _lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
588
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = SwinvaConfig() __snake_case = swinva_name.split('''_''') __snake_case = name_split[1] if "to" in name_split[3]: __snake_case = int(name_split[3][-3:]) else: __snake_case = int(name_split[3]) if "to" in name_split[2]: __snake_case = int(name_split[2][-2:]) else: __snake_case = int(name_split[2][6:]) if model_size == "tiny": __snake_case = 96 __snake_case = (2, 2, 6, 2) __snake_case = (3, 6, 12, 24) elif model_size == "small": __snake_case = 96 __snake_case = (2, 2, 18, 2) __snake_case = (3, 6, 12, 24) elif model_size == "base": __snake_case = 1_28 __snake_case = (2, 2, 18, 2) __snake_case = (4, 8, 16, 32) else: __snake_case = 1_92 __snake_case = (2, 2, 18, 2) __snake_case = (6, 12, 24, 48) if "to" in swinva_name: __snake_case = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __snake_case = 2_18_41 __snake_case = '''huggingface/label-files''' __snake_case = '''imagenet-22k-id2label.json''' __snake_case = json.load(open(hf_hub_download(snake_case, snake_case, repo_type='''dataset'''), '''r''')) __snake_case = {int(snake_case): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} else: __snake_case = 10_00 __snake_case = '''huggingface/label-files''' __snake_case = '''imagenet-1k-id2label.json''' __snake_case = json.load(open(hf_hub_download(snake_case, snake_case, repo_type='''dataset'''), '''r''')) __snake_case = {int(snake_case): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = img_size __snake_case = num_classes __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size return config def SCREAMING_SNAKE_CASE ( snake_case): if "patch_embed.proj" in name: __snake_case = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __snake_case = name.replace('''patch_embed.norm''', '''embeddings.norm''') if "layers" in name: __snake_case = '''encoder.''' + name if "attn.proj" in name: __snake_case = name.replace('''attn.proj''', '''attention.output.dense''') if "attn" in name: __snake_case = name.replace('''attn''', '''attention.self''') if "norm1" in name: __snake_case = name.replace('''norm1''', '''layernorm_before''') if "norm2" in name: __snake_case = name.replace('''norm2''', '''layernorm_after''') if "mlp.fc1" in name: __snake_case = name.replace('''mlp.fc1''', '''intermediate.dense''') if "mlp.fc2" in name: __snake_case = name.replace('''mlp.fc2''', '''output.dense''') if "q_bias" in name: __snake_case = name.replace('''q_bias''', '''query.bias''') if "k_bias" in name: __snake_case = name.replace('''k_bias''', '''key.bias''') if "v_bias" in name: __snake_case = name.replace('''v_bias''', '''value.bias''') if "cpb_mlp" in name: __snake_case = name.replace('''cpb_mlp''', '''continuous_position_bias_mlp''') if name == "norm.weight": __snake_case = '''layernorm.weight''' if name == "norm.bias": __snake_case = '''layernorm.bias''' if "head" in name: __snake_case = name.replace('''head''', '''classifier''') else: __snake_case = '''swinv2.''' + name return name def SCREAMING_SNAKE_CASE ( snake_case, snake_case): for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case) if "mask" in key: continue elif "qkv" in key: __snake_case = key.split('''.''') __snake_case = int(key_split[1]) __snake_case = int(key_split[3]) __snake_case = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[ dim : dim * 2 ] __snake_case = val[-dim:] else: __snake_case = val return orig_state_dict def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = timm.create_model(snake_case, pretrained=snake_case) timm_model.eval() __snake_case = get_swinva_config(snake_case) __snake_case = SwinvaForImageClassification(snake_case) model.eval() __snake_case = convert_state_dict(timm_model.state_dict(), snake_case) model.load_state_dict(snake_case) __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''', '''-'''))) __snake_case = Image.open(requests.get(snake_case, stream=snake_case).raw) __snake_case = image_processor(images=snake_case, return_tensors='''pt''') __snake_case = timm_model(inputs['''pixel_values''']) __snake_case = model(**snake_case).logits assert torch.allclose(snake_case, snake_case, atol=1E-3) print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}") model.save_pretrained(snake_case) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(snake_case) model.push_to_hub( repo_path_or_name=Path(snake_case, snake_case), organization='''nandwalritik''', commit_message='''Add model''', ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowercase : List[Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
705
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self : Optional[Any] ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase ( self : List[str] ) -> Optional[Any]: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=A_ , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
0