code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' SCREAMING_SNAKE_CASE_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): # Make sure the supplied data is a bytes-like object if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : str = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = ''.join(bin(SCREAMING_SNAKE_CASE__ )[2:].zfill(8 ) for byte in data ) __a : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) % 6 != 0 if padding_needed: # The padding that will be added later __a : List[Any] = B'=' * ((6 - len(SCREAMING_SNAKE_CASE__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE__ ) % 6) else: __a : Optional[Any] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 6 ) ).encode() + padding ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: __a : int = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __a : str = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __a : str = encoded_data[:-padding] __a : int = ''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __a : Any = ''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE__ ) )[2:].zfill(6 ) for char in encoded_data ) __a : int = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
597
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> Optional[Any]: __a : Any = tempfile.mkdtemp() __a : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] __a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __a : Optional[Any] = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } __a : Any = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def __magic_name__ ( self , **_A ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self , **_A ) -> Dict: return BertTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self , **_A ) -> str: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Any: __a : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : Union[str, Any] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> List[str]: __a : str = self.get_tokenizer() __a : int = self.get_rust_tokenizer() __a : Any = self.get_image_processor() __a : int = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __a : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __a : Optional[Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __a : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def __magic_name__ ( self ) -> Union[str, Any]: __a : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : List[str] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __a : Optional[Any] = self.get_image_processor(do_normalize=_A ) __a : Dict = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __magic_name__ ( self ) -> Dict: __a : Dict = self.get_image_processor() __a : List[Any] = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Optional[int] = self.prepare_image_inputs() __a : Dict = image_processor(_A , return_tensors='np' ) __a : int = processor(images=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ) -> Tuple: __a : Union[str, Any] = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : Dict = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Dict = 'Alexandra,T-shirt的价格是15便士。' __a : int = processor(text=_A ) __a : List[Any] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ) -> Dict: __a : List[str] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : str = 'Alexandra,T-shirt的价格是15便士。' __a : Union[str, Any] = self.prepare_image_inputs() __a : Union[str, Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __magic_name__ ( self ) -> Tuple: __a : int = self.get_image_processor() __a : str = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Union[str, Any] = processor.batch_decode(_A ) __a : Optional[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def __magic_name__ ( self ) -> Any: __a : int = self.get_image_processor() __a : str = self.get_tokenizer() __a : List[str] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : str = 'Alexandra,T-shirt的价格是15便士。' __a : Any = self.prepare_image_inputs() __a : List[str] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
597
1
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } __lowerCamelCase = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } __lowerCamelCase = { 'jukebox': 5_12, } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_LYRIC_TOKENS_SIZES UpperCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Any , __snake_case : Any=["v3", "v2", "v2"] , __snake_case : Union[str, Any]=5_1_2 , __snake_case : List[Any]=5 , __snake_case : int="<|endoftext|>" , **__snake_case : Tuple , ) -> Tuple: __magic_name__: Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( unk_token=__snake_case , n_genres=__snake_case , version=__snake_case , max_n_lyric_tokens=__snake_case , **__snake_case , ) __magic_name__: Optional[int] = version __magic_name__: str = max_n_lyric_tokens __magic_name__: Tuple = n_genres with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: __magic_name__: List[str] = json.load(__snake_case ) with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: __magic_name__: List[str] = json.load(__snake_case ) with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: __magic_name__: Dict = json.load(__snake_case ) __magic_name__: Optional[Any] = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: __magic_name__: int = oov.replace(R"""\-'""" , R"""\-+'""" ) __magic_name__: str = regex.compile(__snake_case ) __magic_name__: Union[str, Any] = {v: k for k, v in self.artists_encoder.items()} __magic_name__: Union[str, Any] = {v: k for k, v in self.genres_encoder.items()} __magic_name__: Optional[int] = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCamelCase__ ( self : Dict ) -> str: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCamelCase__ ( self : Tuple ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCamelCase__ ( self : Dict , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]: __magic_name__: int = [self.artists_encoder.get(__snake_case , 0 ) for artist in list_artists] for genres in range(len(__snake_case ) ): __magic_name__: List[Any] = [self.genres_encoder.get(__snake_case , 0 ) for genre in list_genres[genres]] __magic_name__: Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __magic_name__: Optional[int] = [[self.lyrics_encoder.get(__snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Union[str, Any] ) -> str: return list(__snake_case ) def lowerCamelCase__ ( self : Tuple , __snake_case : Tuple , __snake_case : int , __snake_case : str , **__snake_case : str ) -> Dict: __magic_name__, __magic_name__, __magic_name__: int = self.prepare_for_tokenization(__snake_case , __snake_case , __snake_case ) __magic_name__: Optional[Any] = self._tokenize(__snake_case ) return artist, genre, lyrics def lowerCamelCase__ ( self : List[Any] , __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": __magic_name__: int = artists[idx].lower() __magic_name__: str = [genres[idx].lower()] else: __magic_name__: int = self._normalize(artists[idx] ) + """.v2""" __magic_name__: Optional[int] = [ self._normalize(__snake_case ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __magic_name__: int = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) __magic_name__: str = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" __magic_name__: List[Any] = {vocab[index]: index + 1 for index in range(len(__snake_case ) )} __magic_name__: List[Any] = 0 __magic_name__: List[str] = len(__snake_case ) + 1 __magic_name__: Tuple = self.vocab __magic_name__: List[str] = {v: k for k, v in self.vocab.items()} __magic_name__: Dict = """""" else: __magic_name__: int = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) __magic_name__: Dict = self._run_strip_accents(__snake_case ) __magic_name__: Tuple = lyrics.replace("""\\""" , """\n""" ) __magic_name__: Optional[int] = self.out_of_vocab.sub("""""" , __snake_case ), [], [] return artists, genres, lyrics def lowerCamelCase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: __magic_name__: Tuple = unicodedata.normalize("""NFD""" , __snake_case ) __magic_name__: Union[str, Any] = [] for char in text: __magic_name__: List[Any] = unicodedata.category(__snake_case ) if cat == "Mn": continue output.append(__snake_case ) return "".join(__snake_case ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : str ) -> str: __magic_name__: List[Any] = ( [chr(__snake_case ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__snake_case ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__snake_case ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) __magic_name__: List[Any] = frozenset(__snake_case ) __magic_name__: List[str] = re.compile(R"""_+""" ) __magic_name__: int = """""".join([c if c in accepted else """_""" for c in text.lower()] ) __magic_name__: Union[str, Any] = pattern.sub("""_""" , __snake_case ).strip("""_""" ) return text def lowerCamelCase__ ( self : List[str] , __snake_case : List[str] ) -> str: return " ".join(__snake_case ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : int , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : bool = False ) -> Tuple: # Convert to TensorType if not isinstance(__snake_case , __snake_case ): __magic_name__: int = TensorType(__snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf __magic_name__: int = tf.constant __magic_name__: Tuple = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch __magic_name__: List[str] = torch.tensor __magic_name__: List[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 __magic_name__: str = jnp.array __magic_name__: int = _is_jax else: __magic_name__: Optional[Any] = np.asarray __magic_name__: int = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __magic_name__: Any = [inputs] if not is_tensor(__snake_case ): __magic_name__: List[Any] = as_tensor(__snake_case ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self : Any , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int]="" , __snake_case : int="pt" ) -> BatchEncoding: __magic_name__: List[str] = [0, 0, 0] __magic_name__: Tuple = [artist] * len(self.version ) __magic_name__: int = [genres] * len(self.version ) __magic_name__, __magic_name__, __magic_name__: str = self.tokenize(__snake_case , __snake_case , __snake_case ) __magic_name__, __magic_name__, __magic_name__: Union[str, Any] = self._convert_token_to_id(__snake_case , __snake_case , __snake_case ) __magic_name__: str = [-INFINITY] * len(full_tokens[-1] ) __magic_name__: List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__: str = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__snake_case ) ) __magic_name__: Tuple = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__snake_case ) ) __magic_name__: Tuple = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__snake_case ) ) return (artists_file, genres_file, lyrics_file) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Any , __snake_case : Any , __snake_case : Any ) -> Tuple: __magic_name__: List[str] = self.artists_decoder.get(__snake_case ) __magic_name__: str = [self.genres_decoder.get(__snake_case ) for genre in genres_index] __magic_name__: List[Any] = [self.lyrics_decoder.get(__snake_case ) for character in lyric_index] return artist, genres, lyrics
213
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "dpr" def __init__( self : str , __snake_case : Any=3_0_5_2_2 , __snake_case : Any=7_6_8 , __snake_case : Any=1_2 , __snake_case : Any=1_2 , __snake_case : int=3_0_7_2 , __snake_case : List[Any]="gelu" , __snake_case : int=0.1 , __snake_case : Dict=0.1 , __snake_case : List[str]=5_1_2 , __snake_case : Optional[int]=2 , __snake_case : Any=0.02 , __snake_case : Tuple=1E-12 , __snake_case : int=0 , __snake_case : List[Any]="absolute" , __snake_case : int = 0 , **__snake_case : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__snake_case , **__snake_case ) __magic_name__: int = vocab_size __magic_name__: Tuple = hidden_size __magic_name__: Optional[Any] = num_hidden_layers __magic_name__: Dict = num_attention_heads __magic_name__: Any = hidden_act __magic_name__: Tuple = intermediate_size __magic_name__: int = hidden_dropout_prob __magic_name__: Any = attention_probs_dropout_prob __magic_name__: Any = max_position_embeddings __magic_name__: Optional[Any] = type_vocab_size __magic_name__: Optional[Any] = initializer_range __magic_name__: Optional[Any] = layer_norm_eps __magic_name__: int = projection_dim __magic_name__: Optional[int] = position_embedding_type
213
1
'''simple docstring''' UpperCamelCase__ : Dict = 65_521 def __UpperCamelCase( _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Tuple = 0 for plain_chr in plain_text: UpperCAmelCase__ : str = (a + ord(_A )) % MOD_ADLER UpperCAmelCase__ : Optional[Any] = (b + a) % MOD_ADLER return (b << 16) | a
614
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ : Dict = logging.getLogger(__name__) def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=_A , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=_A , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=_A , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=_A , default='''data/dump''' , help='''The dump file prefix.''' ) UpperCAmelCase__ : Optional[int] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": UpperCAmelCase__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` UpperCAmelCase__ : Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ : Union[str, Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` UpperCAmelCase__ : Dict = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` UpperCAmelCase__ : Optional[Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: UpperCAmelCase__ : List[Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(_A )} examples to process.''' ) UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = 1_00_00 UpperCAmelCase__ : Tuple = time.time() for text in data: UpperCAmelCase__ : Any = F'''{bos} {text.strip()} {sep}''' UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) rslt.append(_A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ : int = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) UpperCAmelCase__ : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(_A )} examples processed.''' ) UpperCAmelCase__ : Dict = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' UpperCAmelCase__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ : Any = [np.uintaa(_A ) for d in rslt] else: UpperCAmelCase__ : str = [np.intaa(_A ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(_A , '''wb''' ) as handle: pickle.dump(rslt_ , _A , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
614
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( UpperCamelCase): a_ = ["image_processor", "tokenizer"] a_ = "CLIPImageProcessor" a_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , _A : List[str]=None , _A : List[str]=None , **_A : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) UpperCAmelCase_ : Any = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_A , _A ) def __call__( self : str , _A : Tuple=None , _A : Union[str, Any]=None , _A : Dict=None , **_A : Optional[int] ) -> Any: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase_ : Dict = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: UpperCAmelCase_ : Optional[int] = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: UpperCAmelCase_ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def A ( self : Dict , *_A : Tuple , **_A : Optional[int] ) -> List[str]: return self.tokenizer.batch_decode(*_A , **_A ) def A ( self : int , *_A : int , **_A : List[str] ) -> Optional[int]: return self.tokenizer.decode(*_A , **_A ) @property def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer.model_input_names UpperCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ) -> Union[str, Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def A ( self : Any ) -> int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
713
'''simple docstring''' def __UpperCAmelCase ( A : List[str] , A : Tuple , A : Union[str, Any]=False ) -> Tuple: if isinstance(A , A ) and isinstance(A , A ): UpperCAmelCase_ : Any = len(set_a.intersection(A ) ) if alternative_union: UpperCAmelCase_ : Optional[Any] = len(A ) + len(A ) else: UpperCAmelCase_ : Dict = len(set_a.union(A ) ) return intersection / union if isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) ): UpperCAmelCase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Tuple = len(A ) + len(A ) return len(A ) / union else: UpperCAmelCase_ : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(A ) / len(A ) return len(A ) / len(A ) return None if __name__ == "__main__": _UpperCamelCase : Any = {'a', 'b', 'c', 'd', 'e'} _UpperCamelCase : Optional[int] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
216
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase (_UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = 'megatron-bert' def __init__( self : List[Any] , __UpperCAmelCase : Any=2_9_0_5_6 , __UpperCAmelCase : int=1_0_2_4 , __UpperCAmelCase : Optional[int]=2_4 , __UpperCAmelCase : Any=1_6 , __UpperCAmelCase : str=4_0_9_6 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[int]=5_1_2 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=1e-12 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Tuple="absolute" , __UpperCAmelCase : int=True , **__UpperCAmelCase : int , ) -> Optional[Any]: super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache
196
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase_ : Any = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase_ : str = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): lowercase = (images / 2 + 0.5).clamp(0 , 1 ) lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase = numpy_to_pil(lowercase_ ) return images def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): if images.ndim == 3: lowercase = images[None, ...] lowercase = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase = [Image.fromarray(lowercase_ ) for image in images] return pil_images
588
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _snake_case ( A , A , A=None , A=None , A=None , A=None , A=None , A=None , ) -> Optional[int]: if attention_mask is None: lowerCAmelCase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=99 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=0.02 , ) -> List[str]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = initializer_range def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase__ = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , ) lowerCAmelCase__ = prepare_blenderbot_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(lowerCamelCase_ ) lowerCAmelCase__ = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase_ , ) lowerCAmelCase__ = model.decode(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(lowerCamelCase_ ) lowerCAmelCase__ = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) lowerCAmelCase__ = model.decode(lowerCamelCase_ , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : str = 9_9 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase__ = input_ids.shape[0] lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_config_and_data() lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase_ ) lowerCAmelCase__ = lm_model(input_ids=lowerCamelCase_ ) lowerCAmelCase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase_ ) lowerCAmelCase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase__ = lm_model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ) lowerCAmelCase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase__ = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) lowerCAmelCase__ = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase__ = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a__ ( a__ , unittest.TestCase , a__ ): '''simple docstring''' lowercase__ : Union[str, Any] = True lowercase__ : Tuple = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ : str = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = FlaxBlenderbotModelTester(self ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(lowerCamelCase_ , lowerCamelCase_=None , **lowerCamelCase_ ): return model.encode(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return model.decode( decoder_input_ids=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , encoder_outputs=lowerCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: lowerCAmelCase__ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase__ = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase__ = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCAmelCase__ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowerCamelCase_ ) lowerCAmelCase__ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase__ = ['''Sam'''] lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''jax''' ) lowerCAmelCase__ = model.generate(**lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase__ = tokenizer.batch_decode(lowerCamelCase_ , **lowerCamelCase_ ) assert generated_txt[0].strip() == tgt_text
98
'''simple docstring''' def _snake_case ( A ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _snake_case ( A ) -> bool: lowerCAmelCase__ = 0 lowerCAmelCase__ = number while duplicate > 0: lowerCAmelCase__ , lowerCAmelCase__ = divmod(A , 10 ) fact_sum += factorial(A ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') __UpperCAmelCase = int(input('''Enter number: ''').strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
98
1
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: Union[str, Any] = input('''Enter message: ''' ) lowercase__: List[Any] = int(input(F"""Enter key [2-{len(__A ) - 1}]: """ ) ) lowercase__: int = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase__: Union[str, Any] = encrypt_message(__A , __A ) elif mode.lower().startswith('''d''' ): lowercase__: Dict = decrypt_message(__A , __A ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Union[str, Any] = [''''''] * key for col in range(__A ): lowercase__: Optional[Any] = col while pointer < len(__A ): cipher_text[col] += message[pointer] pointer += key return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Tuple = math.ceil(len(__A ) / key ) lowercase__: Union[str, Any] = key lowercase__: Optional[int] = (num_cols * num_rows) - len(__A ) lowercase__: List[Any] = [''''''] * num_cols lowercase__: Dict = 0 lowercase__: List[str] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowercase__: Optional[int] = 0 row += 1 return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
586
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase_ ( __A : List[Any] ) -> Union[str, Any]: """simple docstring""" return EnvironmentCommand() def lowercase_ ( __A : int ) -> Dict: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class UpperCAmelCase_ ( __A ): """simple docstring""" @staticmethod def A__ ( UpperCAmelCase : ArgumentParser ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =parser.add_parser('''env''' ) download_parser.set_defaults(func=UpperCAmelCase ) download_parser.add_argument( '''--accelerate-config_file''' , default=UpperCAmelCase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=UpperCAmelCase ) def __init__( self : Dict , UpperCAmelCase : Tuple , *UpperCAmelCase : Tuple ) -> None: '''simple docstring''' lowercase : List[str] =accelerate_config_file def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : Optional[Any] ='''not installed''' if is_safetensors_available(): import safetensors lowercase : List[Any] =safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors lowercase : List[str] =f'{safetensors.__version__} but is ignored because of PyTorch version too old.' lowercase : List[str] ='''not installed''' lowercase : str ='''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowercase : List[str] =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase ): lowercase : Dict =load_config_from_file(self._accelerate_config_file ).to_dict() lowercase : Optional[int] =( '''\n'''.join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else f'\t{accelerate_config}' ) lowercase : Optional[int] ='''not installed''' lowercase : Optional[Any] ='''NA''' if is_torch_available(): import torch lowercase : List[Any] =torch.__version__ lowercase : Dict =torch.cuda.is_available() lowercase : Optional[Any] ='''not installed''' lowercase : List[str] ='''NA''' if is_tf_available(): import tensorflow as tf lowercase : List[Any] =tf.__version__ try: # deprecated in v2.1 lowercase : Optional[Any] =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowercase : Optional[int] =bool(tf.config.list_physical_devices('''GPU''' ) ) lowercase : Optional[Any] ='''not installed''' lowercase : Optional[Any] ='''not installed''' lowercase : Optional[Any] ='''not installed''' lowercase : List[str] ='''NA''' if is_flax_available(): import flax import jax import jaxlib lowercase : Dict =flax.__version__ lowercase : List[Any] =jax.__version__ lowercase : Any =jaxlib.__version__ lowercase : Tuple =jax.lib.xla_bridge.get_backend().platform lowercase : str ={ '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'{safetensors_version}', '''Accelerate version''': f'{accelerate_version}', '''Accelerate config''': f'{accelerate_config_str}', '''PyTorch version (GPU?)''': f'{pt_version} ({pt_cuda_available})', '''Tensorflow version (GPU?)''': f'{tf_version} ({tf_cuda_available})', '''Flax version (CPU?/GPU?/TPU?)''': f'{flax_version} ({jax_backend})', '''Jax version''': f'{jax_version}', '''JaxLib version''': f'{jaxlib_version}', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(UpperCAmelCase ) ) return info @staticmethod def A__ ( UpperCAmelCase : Any ) -> Any: '''simple docstring''' return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
94
0
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int ) -> None: __lowerCAmelCase = size __lowerCAmelCase = [0] * size __lowerCAmelCase = [0] * size @staticmethod def lowercase ( lowerCAmelCase_ : int ) -> int: return index | (index + 1) @staticmethod def lowercase ( lowerCAmelCase_ : int ) -> int: return (index & (index + 1)) - 1 def lowercase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: __lowerCAmelCase = value while index < self.size: __lowerCAmelCase = self.get_prev(lowerCAmelCase_ ) + 1 if current_left_border == index: __lowerCAmelCase = value else: __lowerCAmelCase = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.get_next(lowerCAmelCase_ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int: right -= 1 # Because of right is exclusive __lowerCAmelCase = 0 while left <= right: __lowerCAmelCase = self.get_prev(lowerCAmelCase_ ) if left <= current_left: __lowerCAmelCase = max(lowerCAmelCase_ , self.tree[right] ) __lowerCAmelCase = current_left else: __lowerCAmelCase = max(lowerCAmelCase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = CTRLTokenizer __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : Any = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] SCREAMING_SNAKE_CASE__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : str = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """adapt react readapt apt""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """adapt react readapt apt""" return input_text, output_text def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : str = """adapt react readapt apt""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
545
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase_ ( _snake_case ,_snake_case=7 ): SCREAMING_SNAKE_CASE__ : Dict = None if token is not None: SCREAMING_SNAKE_CASE__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE__ : List[str] = """636036""" SCREAMING_SNAKE_CASE__ : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' SCREAMING_SNAKE_CASE__ : str = requests.get(_snake_case ,headers=_snake_case ).json() return result["workflow_runs"] def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = get_daily_ci_runs(_snake_case ) SCREAMING_SNAKE_CASE__ : int = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE__ : Union[str, Any] = workflow_run["""id"""] break return workflow_run_id def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = get_last_daily_ci_runs(_snake_case ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE__ : Tuple = get_artifacts_links(worflow_run_id=_snake_case ,token=_snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE__ : Tuple = artifacts_links[artifact_name] download_artifact( artifact_name=_snake_case ,artifact_url=_snake_case ,output_dir=_snake_case ,token=_snake_case ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): get_last_daily_ci_artifacts(_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(_snake_case ,f'''{artifact_name}.zip''' ) if os.path.isfile(_snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = {} with zipfile.ZipFile(_snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(_snake_case ): # read the file with z.open(_snake_case ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = f.read().decode("""UTF-8""" ) return results
545
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[Any]: """simple docstring""" A = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } A , A = input_paths_and_base_extractors[compression_format] if input_path is None: A = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) A = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A = file_path.read_text(encoding='utf-8' ) else: A = output_path.read_text(encoding='utf-8' ) A = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> List[str]: """simple docstring""" A = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } A = input_paths[compression_format] if input_path is None: A = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) A = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None A = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A = file_path.read_text(encoding='utf-8' ) else: A = output_path.read_text(encoding='utf-8' ) A = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" import tarfile A = tmp_path / 'data_dot_dot' directory.mkdir() A = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def __snake_case ( UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" import tarfile A = tmp_path / 'data_sym_link' directory.mkdir() A = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: """simple docstring""" A = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } A = insecure_tar_files[insecure_tar_file] A = tmp_path / 'extracted' TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __snake_case ( UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" A = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 A = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , split=snake_case__ , features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , streaming=snake_case__ , num_proc=snake_case__ , **snake_case__ , ) lowercase__ : Dict= path_or_paths if isinstance(snake_case__ , snake_case__ ) else {self.split: path_or_paths} lowercase__ : Optional[Any]= Text( cache_dir=snake_case__ , data_files=snake_case__ , features=snake_case__ , **snake_case__ , ) def UpperCAmelCase_ ( self ): '''simple docstring''' if self.streaming: lowercase__ : int= self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ : Dict= None lowercase__ : Optional[Any]= None lowercase__ : str= None lowercase__ : int= None self.builder.download_and_prepare( download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , num_proc=self.num_proc , ) lowercase__ : Dict= self.builder.as_dataset( split=self.split , verification_mode=snake_case__ , in_memory=self.keep_in_memory ) return dataset
703
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() a : Optional[Any] = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__(A , A , A , A , A=False , A=True ) ->Union[str, Any]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__, lowercase__, lowercase__, lowercase__ : List[Any]= MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase__ : List[str]= cached_file(A , A , force_download=not use_cached_models ) lowercase__ : List[Any]= config_class.from_json_file(A ) lowercase__ : Any= True lowercase__ : List[str]= True print(f'''Building TensorFlow model from configuration: {config}''' ) lowercase__ : Optional[int]= model_class(A ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase__ : List[str]= cached_file( A , A , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase__ : Union[str, Any]= load_pytorch_checkpoint_in_tfa_model(A , A ) if compare_with_pt_model: lowercase__ : Any= tf_model(tf_model.dummy_inputs , training=A ) # build the network lowercase__ : Optional[Any]= torch.load(A , map_location="cpu" ) lowercase__ : Union[str, Any]= pt_model_class.from_pretrained( pretrained_model_name_or_path=A , config=A , state_dict=A ) with torch.no_grad(): lowercase__ : str= pt_model(**pt_model.dummy_inputs ) lowercase__ : Tuple= pto[0].numpy() lowercase__ : List[Any]= tfo[0].numpy() lowercase__ : Any= np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(A , save_format="h5" ) def lowercase__(A , A , A=None , A=None , A=False , A=False , A=False , A=False , ) ->List[Any]: """simple docstring""" if args_model_type is None: lowercase__ : Tuple= list(MODEL_CLASSES.keys() ) else: lowercase__ : Optional[int]= [args_model_type] for j, model_type in enumerate(A , start=1 ): print("=" * 100 ) print(f''' Converting model type {j}/{len(A )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Optional[int]= MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase__ : int= list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase__ : Any= model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(A , A ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue lowercase__ : Any= model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(A )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: lowercase__ : List[str]= cached_file(A , A , force_download=not use_cached_models ) else: lowercase__ : Union[str, Any]= config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase__ : str= cached_file(A , A , force_download=not use_cached_models ) else: lowercase__ : Any= model_shortcut_name if os.path.isfile(A ): lowercase__ : Dict= "converted_model" convert_pt_checkpoint_to_tf( model_type=A , pytorch_checkpoint_path=A , config_file=A , tf_dump_path=os.path.join(A , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=A , ) if remove_cached_files: os.remove(A ) os.remove(A ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") a : List[str] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
85
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : Dict =nn.ModuleList(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : torch.Tensor , UpperCAmelCase : List[torch.tensor] , UpperCAmelCase : List[float] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[Dict[str, Any]] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase , UpperCAmelCase , self.nets ) ): lowercase , lowercase : List[Any] =controlnet( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) # merge samples if i == 0: lowercase , lowercase : Union[str, Any] =down_samples, mid_sample else: lowercase : Union[str, Any] =[ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase , UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A__ ( self : Dict , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = True , UpperCAmelCase : Callable = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[str] = None , ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =0 lowercase : Dict =save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase , is_main_process=UpperCAmelCase , save_function=UpperCAmelCase , safe_serialization=UpperCAmelCase , variant=UpperCAmelCase , ) idx += 1 lowercase : str =model_path_to_save + f'_{idx}' @classmethod def A__ ( cls : str , UpperCAmelCase : Optional[Union[str, os.PathLike]] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[int] =0 lowercase : str =[] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase : List[str] =pretrained_model_path while os.path.isdir(UpperCAmelCase ): lowercase : Optional[Any] =ControlNetModel.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) controlnets.append(UpperCAmelCase ) idx += 1 lowercase : Dict =pretrained_model_path + f'_{idx}' logger.info(f'{len(UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(UpperCAmelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(UpperCAmelCase )
94
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Dict = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase_ : Optional[int] = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) ,'Stack'.center(lowerCAmelCase__ ) ,'Postfix'.center(lowerCAmelCase__ ) ,sep=' | ' ,) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": lowerCamelCase_ : str = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase_ : Optional[Any] = '(' # change ")" to "(" return (infix_2_postfix(''.join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase : int =input("""\nEnter an Infix Equation = """) # Input an Infix equation _lowercase : Optional[Any] ="""""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
364
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _snake_case ( _a ): def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Optional[Any] = SMALL_MODEL_IDENTIFIER SCREAMING_SNAKE_CASE:Optional[Any] = "pt" SCREAMING_SNAKE_CASE:str = "tf" def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Optional[int] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = TFAutoModel.from_pretrained(self.test_model ,from_pt=SCREAMING_SNAKE_CASE__ ) model_tf.save_pretrained(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides SCREAMING_SNAKE_CASE:Union[str, Any] = FeaturesManager.determine_framework(self.test_model ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:List[Any] = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Tuple = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("transformers.onnx.features.is_tf_available" ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,self.framework_pt ) # PyTorch not in environment -> use TensorFlow SCREAMING_SNAKE_CASE:str = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("transformers.onnx.features.is_torch_available" ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,self.framework_tf ) # Both in environment -> use PyTorch SCREAMING_SNAKE_CASE:List[Any] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("transformers.onnx.features.is_tf_available" ,SCREAMING_SNAKE_CASE__ ), patch( "transformers.onnx.features.is_torch_available" ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,self.framework_pt ) # Both not in environment -> raise error SCREAMING_SNAKE_CASE:Tuple = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = MagicMock(return_value=SCREAMING_SNAKE_CASE__ ) with patch("transformers.onnx.features.is_tf_available" ,SCREAMING_SNAKE_CASE__ ), patch( "transformers.onnx.features.is_torch_available" ,SCREAMING_SNAKE_CASE__ ): with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:str = FeaturesManager.determine_framework(self.test_model )
465
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" A_ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" A_ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A_ ( snake_case , snake_case , snake_case=False , snake_case=False , snake_case=True , snake_case=False , snake_case="dummy_doc" ): SCREAMING_SNAKE_CASE:Union[str, Any] = {doc: key_lines} SCREAMING_SNAKE_CASE:Union[str, Any] = {doc: sys_lines} SCREAMING_SNAKE_CASE:Dict = {} SCREAMING_SNAKE_CASE:Optional[int] = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = reader.get_doc_mentions(snake_case , key_doc_lines[doc] , snake_case ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE:Dict = reader.set_annotated_parse_trees(snake_case , key_doc_lines[doc] , snake_case , snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = reader.get_doc_mentions(snake_case , sys_doc_lines[doc] , snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE:str = reader.set_annotated_parse_trees(snake_case , key_doc_lines[doc] , snake_case , snake_case ) if remove_nested: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = reader.remove_nested_coref_mentions(snake_case , snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = reader.remove_nested_coref_mentions(snake_case , snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE:Optional[Any] = reader.get_mention_assignments(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = reader.get_mention_assignments(snake_case , snake_case ) SCREAMING_SNAKE_CASE:List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = get_coref_infos(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = {} SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = evaluator.evaluate_documents(snake_case , snake_case , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE:Any = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE:Tuple = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE:List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def __UpperCamelCase ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) ,codebase_urls=["https://github.com/ns-moosavi/coval"] ,reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] ,) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : str=False ): SCREAMING_SNAKE_CASE:Optional[int] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE:Optional[int] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE:List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE__ ,sys_lines=SCREAMING_SNAKE_CASE__ ,metrics=SCREAMING_SNAKE_CASE__ ,NP_only=SCREAMING_SNAKE_CASE__ ,remove_nested=SCREAMING_SNAKE_CASE__ ,keep_singletons=SCREAMING_SNAKE_CASE__ ,min_span=SCREAMING_SNAKE_CASE__ ,) return score
465
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> int: """simple docstring""" if len(_UpperCAmelCase ) < k or k < 0: raise ValueError("Invalid Input" ) _UpperCAmelCase : int = sum(array[:k] ) for i in range(len(_UpperCAmelCase ) - k ): _UpperCAmelCase : Dict = current_sum - array[i] + array[i + k] _UpperCAmelCase : List[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __SCREAMING_SNAKE_CASE : Tuple = [randint(-1_000, 1_000) for i in range(100)] __SCREAMING_SNAKE_CASE : Optional[Any] = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
244
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = "linear" __UpperCamelCase: Tuple = "cosine" __UpperCamelCase: Optional[int] = "cosine_with_restarts" __UpperCamelCase: str = "polynomial" __UpperCamelCase: int = "constant" __UpperCamelCase: Any = "constant_with_warmup" __UpperCamelCase: Optional[Any] = "piecewise_constant" def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" return LambdaLR(_UpperCAmelCase , lambda _UpperCAmelCase : 1 , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int = -1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1.0 , _UpperCAmelCase ) ) return 1.0 return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : str , _UpperCAmelCase : int = -1 ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Union[str, Any] = step_rules.split("," ) for rule_str in rule_list[:-1]: _UpperCAmelCase , _UpperCAmelCase : Tuple = rule_str.split(":" ) _UpperCAmelCase : Dict = int(_UpperCAmelCase ) _UpperCAmelCase : int = float(_UpperCAmelCase ) _UpperCAmelCase : Dict = value _UpperCAmelCase : List[str] = float(rule_list[-1] ) def create_rules_function(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): def rule_func(_UpperCAmelCase : int ) -> float: _UpperCAmelCase : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _UpperCAmelCase : Optional[Any] = create_rules_function(_UpperCAmelCase , _UpperCAmelCase ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float = 0.5 , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" def lr_lambda(_UpperCAmelCase : List[Any] ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = -1 ) -> int: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=1e-7 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _UpperCAmelCase : int = lr_init - lr_end _UpperCAmelCase : Optional[Any] = num_training_steps - num_warmup_steps _UpperCAmelCase : int = 1 - (current_step - num_warmup_steps) / decay_steps _UpperCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( _UpperCAmelCase : Union[str, SchedulerType] , _UpperCAmelCase : Optimizer , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : int = -1 , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = SchedulerType(_UpperCAmelCase ) _UpperCAmelCase : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCAmelCase , last_epoch=_UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCAmelCase , step_rules=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , num_cycles=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , power=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase )
244
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str = "cpu" , _lowerCAmelCase : Union[str, None] = None ) -> None: UpperCAmelCase : Tuple = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCAmelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase : Optional[int] = v.half() if save_path is None: # overwrite src_path UpperCAmelCase : Union[str, Any] = src_path torch.save(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
528
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[str]: UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Any = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = tmp_path / '''cache''' UpperCAmelCase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : str = features.copy() if features else default_expected_features UpperCAmelCase : Optional[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Dict: with contextlib.closing(sqlitea.connect(_lowerCAmelCase ) ) as con: UpperCAmelCase : Any = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Optional[int]: UpperCAmelCase : Optional[int] = tmp_path / '''cache''' UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase ) UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase ) for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() UpperCAmelCase : List[str] = iter_sql_file(_lowerCAmelCase ) UpperCAmelCase : Any = iter_sql_file(_lowerCAmelCase ) for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = tmp_path / '''cache''' UpperCAmelCase : Tuple = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() with pytest.raises(_lowerCAmelCase ): SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
528
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A : List[str] = pytest.mark.integration @require_faiss class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() SCREAMING_SNAKE_CASE__ = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) SCREAMING_SNAKE_CASE__ = dset.add_faiss_index('''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(A_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def lowercase_ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} SCREAMING_SNAKE_CASE__ = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries SCREAMING_SNAKE_CASE__ = np.eye(5 , dtype=np.floataa )[::-1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = faiss.IndexFlat(5 ) SCREAMING_SNAKE_CASE__ = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __snake_case ( lowerCAmelCase_ ) -> List[str]: import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) SCREAMING_SNAKE_CASE__ = '''index.faiss''' SCREAMING_SNAKE_CASE__ = f'''mock://{index_name}''' index.save(lowerCAmelCase_ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(lowerCAmelCase_ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(lowerCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = Elasticsearch() SCREAMING_SNAKE_CASE__ = {'''acknowledged''': True} SCREAMING_SNAKE_CASE__ = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query SCREAMING_SNAKE_CASE__ = '''foo''' SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout SCREAMING_SNAKE_CASE__ = '''foo''' SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries SCREAMING_SNAKE_CASE__ = ['''foo''', '''bar''', '''foobar'''] SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout SCREAMING_SNAKE_CASE__ = ['''foo''', '''bar''', '''foobar'''] SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ , request_timeout=30 ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
100
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _A : List[str] = logging.get_logger(__name__) _A : List[str] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _A : Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def __snake_case ( lowerCAmelCase_ ) -> Tuple: SCREAMING_SNAKE_CASE__ = {} with open(lowerCAmelCase_ , '''r''' ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = line.strip() if line: SCREAMING_SNAKE_CASE__ = line.split() SCREAMING_SNAKE_CASE__ = line_number SCREAMING_SNAKE_CASE__ = words[0] SCREAMING_SNAKE_CASE__ = value return result def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE__ = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ = hf_pointer for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE__ = value[0] else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: SCREAMING_SNAKE_CASE__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE__ = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE__ = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE__ = '''.'''.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE__ = key SCREAMING_SNAKE_CASE__ = value if '''lm_head''' in full_key else value[0] _A : Union[str, Any] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Tuple: SCREAMING_SNAKE_CASE__ = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('''*''' , lowerCAmelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ = '''weight''' else: SCREAMING_SNAKE_CASE__ = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: SCREAMING_SNAKE_CASE__ = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE__ = name.split('''.''' ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False ) -> int: if config_path is not None: SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE__ = read_txt_into_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = WavaVecaForSequenceClassification(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.eos_index SCREAMING_SNAKE_CASE__ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ = os.path.join(lowerCAmelCase_ , '''vocab.json''' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = WavaVecaForCTC(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ = argparse.Namespace(task='''audio_pretraining''' ) SCREAMING_SNAKE_CASE__ = fairseq.tasks.setup_task(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _A : List[str] = parser.parse_args() _A : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
100
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __lowerCAmelCase = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: if args.student_type == "roberta": _UpperCAmelCase = False elif args.student_type == "gpt2": _UpperCAmelCase = False def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: if args.student_type == "roberta": _UpperCAmelCase = False def __lowerCamelCase ( ) -> Tuple: _UpperCAmelCase = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=_lowerCAmelCase , choices=["distilbert", "roberta", "gpt2"] , required=_lowerCAmelCase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=_lowerCAmelCase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=_lowerCAmelCase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=_lowerCAmelCase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=_lowerCAmelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=_lowerCAmelCase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=_lowerCAmelCase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=_lowerCAmelCase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=_lowerCAmelCase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=_lowerCAmelCase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=_lowerCAmelCase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=_lowerCAmelCase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=_lowerCAmelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=_lowerCAmelCase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=_lowerCAmelCase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=_lowerCAmelCase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCAmelCase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=_lowerCAmelCase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=_lowerCAmelCase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=_lowerCAmelCase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=_lowerCAmelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=_lowerCAmelCase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=_lowerCAmelCase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_lowerCAmelCase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=_lowerCAmelCase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=_lowerCAmelCase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=_lowerCAmelCase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=_lowerCAmelCase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=_lowerCAmelCase , default=4_000 , help="Checkpoint interval." ) _UpperCAmelCase = parser.parse_args() sanity_checks(_lowerCAmelCase ) # ARGS # init_gpu_params(_lowerCAmelCase ) set_seed(_lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(_lowerCAmelCase ) , _lowerCAmelCase , indent=4 ) git_log(args.dump_path ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.student_type] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _UpperCAmelCase = tokenizer.all_special_tokens.index(_lowerCAmelCase ) _UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _UpperCAmelCase = special_tok_ids _UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , "rb" ) as fp: _UpperCAmelCase = pickle.load(_lowerCAmelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , "rb" ) as fp: _UpperCAmelCase = pickle.load(_lowerCAmelCase ) _UpperCAmelCase = np.maximum(_lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _UpperCAmelCase = 0.0 # do not predict special tokens _UpperCAmelCase = torch.from_numpy(_lowerCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = LmSeqsDataset(params=_lowerCAmelCase , data=_lowerCAmelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) _UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCAmelCase ) else: _UpperCAmelCase = student_model_class(_lowerCAmelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # _UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowerCAmelCase , _lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowerCAmelCase , _lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _UpperCAmelCase = Distiller( params=_lowerCAmelCase , dataset=_lowerCAmelCase , token_probs=_lowerCAmelCase , student=_lowerCAmelCase , teacher=_lowerCAmelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
129
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "▁" __lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase = { "facebook/xglm-564M": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[str] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Any , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
129
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class a__ ( _A , _A ): snake_case__ = '''pixel_values''' snake_case__ = False snake_case__ = TimmBackboneConfig def __init__( self : str ,a__ : Any ,**a__ : Optional[Any]) -> Any: """simple docstring""" requires_backends(self ,'''timm''') super().__init__(a_) _lowerCAmelCase:List[str] = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''') if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.') if hasattr(a_ ,'''out_features''') and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''') _lowerCAmelCase:int = getattr(a_ ,'''use_pretrained_backbone''' ,a_) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''') # We just take the final layer by default. This matches the default for the transformers models. _lowerCAmelCase:Tuple = config.out_indices if getattr(a_ ,'''out_indices''' ,a_) is not None else (-1,) _lowerCAmelCase:Union[str, Any] = timm.create_model( config.backbone ,pretrained=a_ ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=a_ ,**a_ ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _lowerCAmelCase:Dict = self._backbone.return_layers _lowerCAmelCase:Optional[Any] = {layer["module"]: str(a_) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a_) @classmethod def __UpperCamelCase ( cls : Optional[Any] ,a__ : Dict ,*a__ : Union[str, Any] ,**a__ : int) -> List[Any]: """simple docstring""" requires_backends(cls ,['''vision''', '''timm''']) from ...models.timm_backbone import TimmBackboneConfig _lowerCAmelCase:Union[str, Any] = kwargs.pop('''config''' ,TimmBackboneConfig()) _lowerCAmelCase:str = kwargs.pop('''use_timm_backbone''' ,a_) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''') _lowerCAmelCase:str = kwargs.pop('''num_channels''' ,config.num_channels) _lowerCAmelCase:Optional[Any] = kwargs.pop('''features_only''' ,config.features_only) _lowerCAmelCase:Union[str, Any] = kwargs.pop('''use_pretrained_backbone''' ,config.use_pretrained_backbone) _lowerCAmelCase:Dict = kwargs.pop('''out_indices''' ,config.out_indices) _lowerCAmelCase:str = TimmBackboneConfig( backbone=a_ ,num_channels=a_ ,features_only=a_ ,use_pretrained_backbone=a_ ,out_indices=a_ ,) return super()._from_config(a_ ,**a_) def __UpperCamelCase ( self : Optional[int] ,a__ : List[str]) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : List[str] ,a__ : List[Any] ,a__ : Optional[int]=None ,a__ : str=None ,a__ : Optional[Any]=None ,**a__ : str) -> int: """simple docstring""" _lowerCAmelCase:Tuple = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase:Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase:str = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''') if output_hidden_states: # We modify the return layers to include all the stages of the backbone _lowerCAmelCase:int = self._all_layers _lowerCAmelCase:Optional[Any] = self._backbone(a_ ,**a_) _lowerCAmelCase:List[Any] = self._return_layers _lowerCAmelCase:List[Any] = tuple(hidden_states[i] for i in self.out_indices) else: _lowerCAmelCase:Tuple = self._backbone(a_ ,**a_) _lowerCAmelCase:Any = None _lowerCAmelCase:Optional[Any] = tuple(a_) _lowerCAmelCase:Tuple = tuple(a_) if hidden_states is not None else None if not return_dict: _lowerCAmelCase:List[str] = (feature_maps,) if output_hidden_states: _lowerCAmelCase:Dict = output + (hidden_states,) return output return BackboneOutput(feature_maps=a_ ,hidden_states=a_ ,attentions=a_)
227
'''simple docstring''' import random from typing import Any def __A ( a_ : list ): for _ in range(len(a_ ) ): lowerCAmelCase : List[Any] = random.randint(0 ,len(a_ ) - 1 ) lowerCAmelCase : Tuple = random.randint(0 ,len(a_ ) - 1 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
525
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): for attribute in key.split('''.''' ): _lowerCamelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: _lowerCamelCase : int = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: _lowerCamelCase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Optional[int] = value elif weight_type == "weight_g": _lowerCamelCase : Dict = value elif weight_type == "weight_v": _lowerCamelCase : Dict = value elif weight_type == "bias": _lowerCamelCase : List[Any] = value else: _lowerCamelCase : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ ): _lowerCamelCase : List[Any] = [] _lowerCamelCase : Dict = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : List[Any] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase : Dict = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_UpperCamelCase )[0].split('''.''' )[-2] _lowerCamelCase : str = mapped_key.replace('''*''' , _UpperCamelCase ) if "weight_g" in name: _lowerCamelCase : Union[str, Any] = '''weight_g''' elif "weight_v" in name: _lowerCamelCase : Union[str, Any] = '''weight_v''' elif "weight" in name: _lowerCamelCase : List[Any] = '''weight''' elif "bias" in name: _lowerCamelCase : Any = '''bias''' else: _lowerCamelCase : List[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): _lowerCamelCase : Optional[int] = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase : Tuple = name.split('''.''' ) _lowerCamelCase : Tuple = int(items[0] ) _lowerCamelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : int = SEWConfig() if is_finetuned: _lowerCamelCase : Optional[Any] = model.wav_encoder.wav_model.cfg else: _lowerCamelCase : Dict = model.cfg _lowerCamelCase : List[str] = fs_config.conv_bias _lowerCamelCase : List[str] = eval(fs_config.conv_feature_layers ) _lowerCamelCase : Dict = [x[0] for x in conv_layers] _lowerCamelCase : Union[str, Any] = [x[1] for x in conv_layers] _lowerCamelCase : Optional[Any] = [x[2] for x in conv_layers] _lowerCamelCase : List[str] = '''gelu''' _lowerCamelCase : str = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _lowerCamelCase : List[str] = 0.0 _lowerCamelCase : Tuple = fs_config.activation_fn.name _lowerCamelCase : List[Any] = fs_config.encoder_embed_dim _lowerCamelCase : Any = 0.0_2 _lowerCamelCase : List[Any] = fs_config.encoder_ffn_embed_dim _lowerCamelCase : Tuple = 1e-5 _lowerCamelCase : List[Any] = fs_config.encoder_layerdrop _lowerCamelCase : Union[str, Any] = fs_config.encoder_attention_heads _lowerCamelCase : Union[str, Any] = fs_config.conv_pos_groups _lowerCamelCase : Union[str, Any] = fs_config.conv_pos _lowerCamelCase : Optional[int] = len(_UpperCamelCase ) _lowerCamelCase : str = fs_config.encoder_layers _lowerCamelCase : Tuple = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _lowerCamelCase : Tuple = model.cfg _lowerCamelCase : int = fs_config.final_dropout _lowerCamelCase : Optional[int] = fs_config.layerdrop _lowerCamelCase : int = fs_config.activation_dropout _lowerCamelCase : Dict = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _lowerCamelCase : Optional[Any] = fs_config.attention_dropout _lowerCamelCase : Dict = fs_config.dropout_input _lowerCamelCase : Union[str, Any] = fs_config.dropout _lowerCamelCase : List[str] = fs_config.mask_channel_length _lowerCamelCase : int = fs_config.mask_channel_prob _lowerCamelCase : Any = fs_config.mask_length _lowerCamelCase : Any = fs_config.mask_prob _lowerCamelCase : str = '''Wav2Vec2FeatureExtractor''' _lowerCamelCase : List[str] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ): if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _lowerCamelCase : Any = SEWConfig.from_pretrained(_UpperCamelCase ) else: _lowerCamelCase : Union[str, Any] = convert_config(model[0] , _UpperCamelCase ) _lowerCamelCase : List[str] = model[0].eval() _lowerCamelCase : Optional[int] = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Dict = target_dict.pad_index _lowerCamelCase : Optional[Any] = target_dict.bos_index _lowerCamelCase : List[Any] = target_dict.pad_index _lowerCamelCase : Any = target_dict.bos_index _lowerCamelCase : Optional[int] = target_dict.eos_index _lowerCamelCase : Tuple = len(target_dict.symbols ) _lowerCamelCase : Union[str, Any] = os.path.join(_UpperCamelCase , '''vocab.json''' ) if not os.path.isdir(_UpperCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) _lowerCamelCase : Optional[Any] = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_UpperCamelCase , ) _lowerCamelCase : str = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) _lowerCamelCase : str = SEWForCTC(_UpperCamelCase ) else: _lowerCamelCase : Any = SEWModel(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
721
import pytest import datasets # Import fixture modules as plugins _lowerCamelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __UpperCAmelCase( lowercase_ , lowercase_ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __UpperCAmelCase( lowercase_ ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ , lowercase_ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _lowerCamelCase : Optional[Any] = tmp_path_factory.getbasetemp() / '''cache''' _lowerCamelCase : Optional[Any] = test_hf_cache_home / '''datasets''' _lowerCamelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' _lowerCamelCase : Dict = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) _lowerCamelCase : str = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) _lowerCamelCase : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __UpperCAmelCase( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __UpperCAmelCase( lowercase_ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
613
0
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE (a__ ): pass class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Any = data __A : Node | None = None def __iter__( self): '''simple docstring''' __A : Dict = self __A : List[Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(_UpperCAmelCase) yield node.data __A : Optional[int] = node.next_node @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase__ : Tuple = Node(1) lowercase__ : Optional[Any] = Node(2) lowercase__ : Union[str, Any] = Node(3) lowercase__ : Union[str, Any] = Node(4) print(root_node.has_loop) # False lowercase__ : int = root_node.next_node print(root_node.has_loop) # True lowercase__ : Optional[int] = Node(5) lowercase__ : List[str] = Node(6) lowercase__ : Tuple = Node(5) lowercase__ : Dict = Node(6) print(root_node.has_loop) # False lowercase__ : List[Any] = Node(1) print(root_node.has_loop) # False
8
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "xlm" _UpperCamelCase : str = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , a__=30145 , a__=2048 , a__=12 , a__=16 , a__=0.1 , a__=0.1 , a__=True , a__=False , a__=False , a__=False , a__=1 , a__=True , a__=512 , a__=2048**-0.5 , a__=1e-12 , a__=0.0_2 , a__=0 , a__=1 , a__=2 , a__=3 , a__=5 , a__=True , a__="first" , a__=True , a__=None , a__=True , a__=0.1 , a__=5 , a__=5 , a__=0 , a__=0 , a__=2 , a__=0 , **a__ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = emb_dim _lowerCAmelCase : Union[str, Any] = n_layers _lowerCAmelCase : str = n_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : Union[str, Any] = attention_dropout _lowerCAmelCase : Optional[Any] = gelu_activation _lowerCAmelCase : Tuple = sinusoidal_embeddings _lowerCAmelCase : Optional[int] = causal _lowerCAmelCase : List[str] = asm _lowerCAmelCase : Dict = n_langs _lowerCAmelCase : str = use_lang_emb _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = bos_index _lowerCAmelCase : int = eos_index _lowerCAmelCase : str = pad_index _lowerCAmelCase : List[str] = unk_index _lowerCAmelCase : Optional[int] = mask_index _lowerCAmelCase : str = is_encoder _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = embed_init_std _lowerCAmelCase : Optional[int] = init_std _lowerCAmelCase : Optional[Any] = summary_type _lowerCAmelCase : Union[str, Any] = summary_use_proj _lowerCAmelCase : List[Any] = summary_activation _lowerCAmelCase : Union[str, Any] = summary_proj_to_labels _lowerCAmelCase : Optional[Any] = summary_first_dropout _lowerCAmelCase : Optional[Any] = start_n_top _lowerCAmelCase : List[Any] = end_n_top _lowerCAmelCase : List[str] = mask_token_id _lowerCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _lowerCAmelCase : Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=a__ , bos_token_id=a__ , **a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
213
0
from math import factorial def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) lowerCAmelCase__ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase__ : Any = float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
69
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """google/rembert""": 256, } lowerCamelCase__ = """▁""" class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = RemBertTokenizer def __init__( self : Optional[Any] , a : str=None , a : Any=None , a : List[Any]=True , a : str=True , a : Dict=False , a : Dict="[CLS]" , a : int="[SEP]" , a : Tuple="<unk>" , a : Optional[Any]="[SEP]" , a : Tuple="<pad>" , a : Dict="[CLS]" , a : Optional[Any]="[MASK]" , **a : str , ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) lowerCAmelCase__ : int = do_lower_case lowerCAmelCase__ : int = remove_space lowerCAmelCase__ : List[Any] = keep_accents lowerCAmelCase__ : Optional[Any] = vocab_file lowerCAmelCase__ : Union[str, Any] = False if not self.vocab_file else True def _lowerCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Dict = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self : Tuple , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error('Vocabulary path ({}) should be a directory'.format(a ) ) return lowerCAmelCase__ : int = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
69
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCAmelCase = get_logger(__name__) class A_ ( enum.Enum ): '''simple docstring''' _UpperCamelCase : Tuple = """all_checks""" _UpperCamelCase : Optional[Any] = """basic_checks""" _UpperCamelCase : str = """no_checks""" class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) ) if len(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) ) lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowercase = ' for ' + verification_name if verification_name is not None else '' if len(__SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' class A_ ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) ) if len(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) ) ) lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(__SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True ): if record_checksum: lowercase = shaaaa() with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__SCREAMING_SNAKE_CASE ) lowercase = m.hexdigest() else: lowercase = None return {"num_bytes": os.path.getsize(__SCREAMING_SNAKE_CASE ), "checksum": checksum} def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
84
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Tuple = logging.get_logger(__name__) def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : Any ) -> Optional[Any]: a__ = b.T a__ = np.sum(np.square(__lowerCamelCase ) , axis=1 ) a__ = np.sum(np.square(__lowerCamelCase ) , axis=0 ) a__ = np.matmul(__lowerCamelCase , __lowerCamelCase ) a__ = aa[:, None] - 2 * ab + ba[None, :] return d def _lowerCamelCase (__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Tuple: a__ = x.reshape(-1 , 3 ) a__ = squared_euclidean_distance(__lowerCamelCase , __lowerCamelCase ) return np.argmin(__lowerCamelCase , axis=1 ) class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : str , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : bool = True , lowerCamelCase : bool = True , **lowerCamelCase : Any , ): '''simple docstring''' super().__init__(**lowerCamelCase ) a__ = size if size is not None else {"height": 2_5_6, "width": 2_5_6} a__ = get_size_dict(lowerCamelCase ) a__ = np.array(lowerCamelCase ) if clusters is not None else None a__ = do_resize a__ = size a__ = resample a__ = do_normalize a__ = do_color_quantize def __a ( self : List[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Any , ): '''simple docstring''' a__ = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowerCamelCase , size=(size["height"], size["width"]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self : str , lowerCamelCase : np.ndarray , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' a__ = rescale(image=lowerCamelCase , scale=1 / 127.5 , data_format=lowerCamelCase ) a__ = image - 1 return image def __a ( self : str , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' a__ = do_resize if do_resize is not None else self.do_resize a__ = size if size is not None else self.size a__ = get_size_dict(lowerCamelCase ) a__ = resample if resample is not None else self.resample a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a__ = clusters if clusters is not None else self.clusters a__ = np.array(lowerCamelCase ) a__ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. a__ = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: a__ = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: a__ = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: a__ = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a__ = np.array(lowerCamelCase ) a__ = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a__ = images.shape[0] a__ = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a__ = list(lowerCamelCase ) else: a__ = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] a__ = {"input_ids": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
489
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = "RegNetConfig" # Base docstring _snake_case = "facebook/regnet-y-040" _snake_case = [1, 1088, 7, 7] # Image classification docstring _snake_case = "facebook/regnet-y-040" _snake_case = "tabby, tabby cat" _snake_case = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( tf.keras.layers.Layer ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[str] = "relu" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCamelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCamelCase__ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , strides=SCREAMING_SNAKE_CASE__ , padding='VALID' , groups=SCREAMING_SNAKE_CASE__ , use_bias=SCREAMING_SNAKE_CASE__ , name='convolution' , ) lowerCamelCase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) lowerCamelCase__ = ACTaFN[activation] if activation is not None else tf.identity def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = self.convolution(self.padding(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = self.normalization(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : RegNetConfig , **SCREAMING_SNAKE_CASE__ : List[Any] ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = config.num_channels lowerCamelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCamelCase__ = shape_list(SCREAMING_SNAKE_CASE__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCamelCase__ = tf.transpose(SCREAMING_SNAKE_CASE__ , perm=(0, 2, 3, 1) ) lowerCamelCase__ = self.embedder(SCREAMING_SNAKE_CASE__ ) return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , **SCREAMING_SNAKE_CASE__ : str ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ , kernel_size=1 , strides=SCREAMING_SNAKE_CASE__ , use_bias=SCREAMING_SNAKE_CASE__ , name='convolution' ) lowerCamelCase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : bool = False ): return self.normalization(self.convolution(SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ ) class _a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ , name='pooler' ) lowerCamelCase__ = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowerCamelCase__ = self.pooler(SCREAMING_SNAKE_CASE__ ) for layer_module in self.attention: lowerCamelCase__ = layer_module(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_state * pooled return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Dict ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = in_channels != out_channels or stride != 1 lowerCamelCase__ = max(1 , out_channels // config.groups_width ) lowerCamelCase__ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCamelCase__ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , groups=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ , name='layer.2' ), ] lowerCamelCase__ = ACTaFN[config.hidden_act] def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = hidden_state for layer_module in self.layers: lowerCamelCase__ = layer_module(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual lowerCamelCase__ = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Any ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = in_channels != out_channels or stride != 1 lowerCamelCase__ = max(1 , out_channels // config.groups_width ) lowerCamelCase__ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) lowerCamelCase__ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , groups=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(SCREAMING_SNAKE_CASE__ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ , name='layer.3' ), ] lowerCamelCase__ = ACTaFN[config.hidden_act] def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = hidden_state for layer_module in self.layers: lowerCamelCase__ = layer_module(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual lowerCamelCase__ = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer lowerCamelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , name='layers.0' ), *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): for layer_module in self.layers: lowerCamelCase__ = layer_module(SCREAMING_SNAKE_CASE__ ) return hidden_state class _a ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : RegNetConfig , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) lowerCamelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ , name=F'stages.{i+1}' ) ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ): lowerCamelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__ = hidden_states + (hidden_state,) lowerCamelCase__ = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: lowerCamelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) @keras_serializable class _a ( tf.keras.layers.Layer ): a_ : Optional[int] = RegNetConfig def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Dict ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = config lowerCamelCase__ = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE__ , name='embedder' ) lowerCamelCase__ = TFRegNetEncoder(SCREAMING_SNAKE_CASE__ , name='encoder' ) lowerCamelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ , name='pooler' ) @unpack_inputs def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): lowerCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ = self.embedder(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = encoder_outputs[0] lowerCamelCase__ = self.pooler(SCREAMING_SNAKE_CASE__ ) # Change to NCHW output format have uniformity in the modules lowerCamelCase__ = tf.transpose(SCREAMING_SNAKE_CASE__ , perm=(0, 3, 1, 2) ) lowerCamelCase__ = tf.transpose(SCREAMING_SNAKE_CASE__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCamelCase__ = tuple([tf.transpose(SCREAMING_SNAKE_CASE__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = RegNetConfig a_ : Optional[int] = 'regnet' a_ : str = 'pixel_values' @property def _UpperCamelCase ( self : Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} _snake_case = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE_ , ) class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : RegNetConfig , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ): super().__init__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Any=False , ): lowerCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ = self.regnet( pixel_values=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE_ , ) class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : RegNetConfig , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : List[Any] ): super().__init__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = config.num_labels lowerCamelCase__ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ , name='regnet' ) # classification head lowerCamelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : tf.Tensor = None , SCREAMING_SNAKE_CASE__ : tf.Tensor = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : List[str]=False , ): lowerCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ = self.regnet( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__ = self.classifier[0](SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.classifier[1](SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ ) if not return_dict: lowerCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
229
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : str ,_a : Callable ,_a : Optional[Features] = None ,_a : str = None ,_a : bool = False ,_a : bool = False ,_a : Optional[dict] = None ,_a : Optional[int] = None ,**_a : str ,): '''simple docstring''' super().__init__( features=_a ,cache_dir=_a ,keep_in_memory=_a ,streaming=_a ,num_proc=_a ,**_a ,) _a : str = Generator( cache_dir=_a ,features=_a ,generator=_a ,gen_kwargs=_a ,**_a ,) def __lowercase ( self : Optional[int] ): '''simple docstring''' if self.streaming: _a : str = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: _a : List[Any] = None _a : Union[str, Any] = None _a : Union[str, Any] = None _a : Tuple = None self.builder.download_and_prepare( download_config=_a ,download_mode=_a ,verification_mode=_a ,base_path=_a ,num_proc=self.num_proc ,) _a : Optional[Any] = self.builder.as_dataset( split='train' ,verification_mode=_a ,in_memory=self.keep_in_memory ) return dataset
229
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _UpperCAmelCase ( __A : Optional[int] , __A : Dict , __A : Union[str, Any]=[] ): a_ : Tuple = size[0] - overlap_pixels * 2 a_ : Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels a_ : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 a_ : int = np.pad(__snake_case , mode='''linear_ramp''' , pad_width=__snake_case , end_values=0 ) if "l" in remove_borders: a_ : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: a_ : List[str] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: a_ : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: a_ : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _UpperCAmelCase ( __A : List[Any] , __A : List[Any] , __A : List[str] ): return max(__snake_case , min(__snake_case , __snake_case ) ) def _UpperCAmelCase ( __A : Any , __A : List[str] , __A : str ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _UpperCAmelCase ( __A : Any , __A : int , __A : Optional[int] ): a_ : List[Any] = list(__snake_case ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap a_ : List[str] = clamp_rect(__snake_case , [0, 0] , [image_size[0], image_size[1]] ) return rect def _UpperCAmelCase ( __A : Union[str, Any] , __A : Optional[Any] , __A : str , __A : Optional[int] ): a_ : Tuple = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__snake_case , (original_slice, 0) ) return result def _UpperCAmelCase ( __A : Union[str, Any] , __A : Tuple ): a_ : Tuple = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) a_ : int = tile.crop(__snake_case ) return tile def _UpperCAmelCase ( __A : Optional[int] , __A : Union[str, Any] ): a_ : Any = n % d return n - divisor class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] = 350 , ) -> int: super().__init__( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , low_res_scheduler=__lowerCAmelCase , scheduler=__lowerCAmelCase , max_noise_level=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: torch.manual_seed(0 ) a_ : Dict = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) a_ : int = add_overlap_rect(__lowerCAmelCase , __lowerCAmelCase , image.size ) a_ : str = image.crop(__lowerCAmelCase ) a_ : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] a_ : Optional[Any] = translated_slice_x - (original_image_slice / 2) a_ : Optional[Any] = max(0 , __lowerCAmelCase ) a_ : List[Any] = squeeze_tile(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a_ : str = to_input.size a_ : int = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) a_ : Union[str, Any] = super(__lowerCAmelCase , self ).__call__(image=__lowerCAmelCase , **__lowerCAmelCase ).images[0] a_ : Union[str, Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) a_ : Optional[Any] = unsqueeze_tile(__lowerCAmelCase , __lowerCAmelCase ) a_ : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) a_ : List[str] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) a_ : Optional[int] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowerCAmelCase ) , mode='''L''' , ) final_image.paste( __lowerCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowerCAmelCase ) @torch.no_grad() def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] = 75 , __SCREAMING_SNAKE_CASE : Dict = 9.0 , __SCREAMING_SNAKE_CASE : List[str] = 50 , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Any = 0.0 , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Optional[Any] = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Any = 1 , __SCREAMING_SNAKE_CASE : List[str] = 128 , __SCREAMING_SNAKE_CASE : str = 32 , __SCREAMING_SNAKE_CASE : Tuple = 32 , ) -> Optional[Any]: a_ : List[str] = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) a_ : Tuple = math.ceil(image.size[0] / tile_size ) a_ : Tuple = math.ceil(image.size[1] / tile_size ) a_ : str = tcx * tcy a_ : Union[str, Any] = 0 for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): self._process_tile( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prompt=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , noise_level=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def _UpperCAmelCase ( ): a_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' a_ : Any = StableDiffusionTiledUpscalePipeline.from_pretrained(__snake_case , revision='''fp16''' , torch_dtype=torch.floataa ) a_ : Tuple = pipe.to('''cuda''' ) a_ : Tuple = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__A : Optional[Any] ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) a_ : Any = pipe(image=__snake_case , prompt='''Black font, white background, vector''' , noise_level=40 , callback=__snake_case ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
707
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
0
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : str ) -> List[str]: '''simple docstring''' if not nums: return 0 lowerCAmelCase = nums[0] lowerCAmelCase = 0 for num in nums[1:]: lowerCAmelCase , lowerCAmelCase = ( max_excluding + num, max(__lowercase , __lowercase ), ) return max(__lowercase , __lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
169
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = CLIPTokenizer UpperCAmelCase__ = CLIPTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = {} UpperCAmelCase__ = False def A_ ( self : Union[str, Any] ) -> List[Any]: super().setUp() # fmt: off lowerCamelCase__ : str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCamelCase__ : Union[str, Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase__ : str = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowerCamelCase__ : int = {'unk_token': '<unk>'} lowerCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase ) ) def A_ ( self : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A_ ( self : str , **UpperCAmelCase : List[str] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'lower newer' lowerCamelCase__ : str = 'lower newer' return input_text, output_text def A_ ( self : int ) -> Dict: lowerCamelCase__ : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ : Optional[int] = 'lower newer' lowerCamelCase__ : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowerCamelCase__ : Tuple = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[Any] = tokens + [tokenizer.unk_token] lowerCamelCase__ : List[str] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) @require_ftfy def A_ ( self : str ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : List[Any] = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowerCamelCase__ : str = tokenizer_s.tokenize(UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCamelCase__ : Tuple = 'xa\u0303y' + ' ' + 'x\xe3y' lowerCamelCase__ : int = tokenizer_s.tokenize(UpperCAmelCase ) lowerCamelCase__ : int = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type lowerCamelCase__ : Any = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCamelCase__ : str = tokenizer_s.tokenize(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowerCamelCase__ : int = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCamelCase__ : Optional[Any] = tokenizer_s.tokenize(UpperCAmelCase ) lowerCamelCase__ : int = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[int] ) -> int: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ : str = F"""{text_of_1_token} {text_of_1_token}""" lowerCamelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , ) lowerCamelCase__ : int = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase__ : Optional[Any] = F""" {text}""" lowerCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , ) lowerCamelCase__ : Optional[Any] = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) def A_ ( self : Any ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def A_ ( self : Any ) -> Tuple: super().test_tokenization_python_rust_equals() def A_ ( self : Tuple ) -> str: # CLIP always lower cases letters pass
721
class lowerCAmelCase : def __init__( self : Union[str, Any] , UpperCAmelCase : list ) -> None: lowerCamelCase__ : int = set_counts lowerCamelCase__ : List[str] = max(UpperCAmelCase ) lowerCamelCase__ : Dict = len(UpperCAmelCase ) lowerCamelCase__ : List[str] = [1] * num_sets lowerCamelCase__ : List[str] = list(range(UpperCAmelCase ) ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool: lowerCamelCase__ : List[str] = self.get_parent(UpperCAmelCase ) lowerCamelCase__ : List[str] = self.get_parent(UpperCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCamelCase__ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Tuple = src_parent lowerCamelCase__ : List[str] = self.set_counts[src_parent] lowerCamelCase__ : Optional[int] = max(self.max_set , UpperCAmelCase ) return True def A_ ( self : str , UpperCAmelCase : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set lowerCamelCase__ : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
188
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Union[str, Any] ): lowercase__ : str = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ : List[Any] = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__UpperCamelCase ) , torch_builtin(__UpperCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCamelCase ) , gelu_new(__UpperCamelCase ) ) ) def snake_case ( self : Union[str, Any] ): lowercase__ : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ : str = get_activation("gelu" ) lowercase__ : str = get_activation("gelu_10" ) lowercase__ : Dict = torch_builtin(__UpperCamelCase ) lowercase__ : Union[str, Any] = geluaa(__UpperCamelCase ) lowercase__ : Union[str, Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCamelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case ( self : List[Any] ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__UpperCamelCase ): get_activation("bogus" ) with self.assertRaises(__UpperCamelCase ): get_activation(__UpperCamelCase ) def snake_case ( self : List[Any] ): lowercase__ : Dict = get_activation("gelu" ) lowercase__ : Any = 1 lowercase__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCamelCase ): lowercase__ : Dict = acta.a
496
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __snake_case ( _UpperCamelCase ) -> Optional[Any]: _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> List[str]: _a , _a = emb.weight.shape _a = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) _a = emb.weight.data return lin_layer def __snake_case ( _UpperCamelCase , _UpperCamelCase="facebook/mbart-large-en-ro" , _UpperCamelCase=False , _UpperCamelCase=False ) -> Union[str, Any]: _a = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_UpperCamelCase ) _a = state_dict['''encoder.embed_tokens.weight'''].shape[0] _a = MBartConfig.from_pretrained(_UpperCamelCase , vocab_size=_UpperCamelCase ) if mbart_aa and finetuned: _a = '''relu''' _a = state_dict['''decoder.embed_tokens.weight'''] _a = MBartForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase ) if finetuned: _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase :Optional[int] = parser.parse_args() lowerCamelCase :Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
487
0
"""simple docstring""" import qiskit def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> qiskit.result.counts.Counts: lowerCAmelCase__ : List[str] = qiskit.Aer.get_backend("""aer_simulator""" ) lowerCAmelCase__ : List[str] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase__ : Dict = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": _A = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
507
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase__ : List[str] = test_metrics @require_cpu def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase__ : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
507
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: A = None A = logging.get_logger(__name__) A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } A = { """camembert-base""": 512, } A = """▁""" class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = CamembertTokenizer def __init__( self : Optional[int] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : int="<s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : Any="<s>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : List[Any]="<pad>" , UpperCamelCase_ : Union[str, Any]="<mask>" , UpperCamelCase_ : Any=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_ : Tuple , ): """simple docstring""" __UpperCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : Union[str, Any] = False if not self.vocab_file else True def a_ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
77
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCAmelCase : Union[str, Any] = n - k # Calculate C(n,k) for i in range(UpperCamelCase ): result *= n - i result //= i + 1 return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase ) // (node_count + 1) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) __UpperCAmelCase : Optional[Any] = 1 for i in range(1 , n + 1 ): result *= i return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return catalan_number(UpperCamelCase ) * factorial(UpperCamelCase ) if __name__ == "__main__": A = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
77
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowerCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( _A , _A ) -> List[str]: # save results if os.path.exists(_A ): if os.path.exists(os.path.join(_A , """config.json""" ) ) and os.path.isfile( os.path.join(_A , """config.json""" ) ): os.remove(os.path.join(_A , """config.json""" ) ) if os.path.exists(os.path.join(_A , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_A , """pytorch_model.bin""" ) ): os.remove(os.path.join(_A , """pytorch_model.bin""" ) ) else: os.makedirs(_A ) model.save_pretrained(_A ) def UpperCamelCase ( _A , _A=False ) -> Union[str, Any]: lowercase : List[str] = 2 if unlogit: lowercase : List[str] = torch.pow(_A , _A ) lowercase : int = p * torch.log(_A ) lowercase : List[str] = 0 return -plogp.sum(dim=-1 ) def UpperCamelCase ( _A ) -> int: logger.info("""lv, h >\t""" + """\t""".join(F"""{x + 1}""" for x in range(len(_A ) ) ) ) for row in range(len(_A ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def UpperCamelCase ( _A , _A , _A , _A=True , _A=True , _A=None , _A=False ) -> List[str]: lowercase , lowercase : str = model.config.num_hidden_layers, model.config.num_attention_heads lowercase : List[Any] = torch.zeros(_A , _A ).to(args.device ) lowercase : List[Any] = torch.zeros(_A , _A ).to(args.device ) if head_mask is None: lowercase : List[str] = torch.ones(_A , _A ).to(args.device ) head_mask.requires_grad_(requires_grad=_A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : str = None lowercase : str = 0.0 lowercase : int = 0.0 for step, inputs in enumerate(tqdm(_A , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowercase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((lowercase) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : List[Any] = model(_A , labels=_A , head_mask=_A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase , lowercase , lowercase : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_A ): lowercase : str = entropy(attn.detach() , _A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : List[str] = 2 lowercase : str = torch.pow(torch.pow(_A , _A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowercase : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_A ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_A ) logger.info("""Head ranked by importance scores""" ) lowercase : Union[str, Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : int = torch.arange( head_importance.numel() , device=args.device ) lowercase : List[Any] = head_ranks.view_as(_A ) print_ad_tensor(_A ) return attn_entropy, head_importance, total_loss def UpperCamelCase ( _A , _A , _A ) -> Union[str, Any]: lowercase , lowercase , lowercase : Union[str, Any] = compute_heads_importance(_A , _A , _A , compute_entropy=_A ) lowercase : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _A , original_score * args.masking_threshold ) lowercase : Union[str, Any] = torch.ones_like(_A ) lowercase : str = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : Any = original_score while current_score >= original_score * args.masking_threshold: lowercase : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : int = float("""Inf""" ) lowercase : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(_A ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowercase : Tuple = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowercase : Any = new_head_mask.view(-1 ) lowercase : Any = 0.0 lowercase : Dict = new_head_mask.view_as(_A ) lowercase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(_A ) # Compute metric and head importance again lowercase , lowercase , lowercase : Tuple = compute_heads_importance( _A , _A , _A , compute_entropy=_A , head_mask=_A ) lowercase : Any = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(_A ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCamelCase ( _A , _A , _A , _A ) -> Optional[int]: lowercase : Union[str, Any] = datetime.now() lowercase , lowercase , lowercase : Tuple = compute_heads_importance( _A , _A , _A , compute_entropy=_A , compute_importance=_A , head_mask=_A ) lowercase : List[str] = 1 / loss lowercase : int = datetime.now() - before_time lowercase : Optional[int] = sum(p.numel() for p in model.parameters() ) lowercase : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_A ) ) } for k, v in heads_to_prune.items(): if isinstance(_A , _A ): lowercase : List[Any] = [ v, ] assert sum(len(_A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_A ) lowercase : Dict = sum(p.numel() for p in model.parameters() ) lowercase : str = datetime.now() lowercase , lowercase , lowercase : Tuple = compute_heads_importance( _A , _A , _A , compute_entropy=_A , compute_importance=_A , head_mask=_A , actually_pruned=_A , ) lowercase : Union[str, Any] = 1 / loss lowercase : Optional[int] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _A , _A , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _A , _A ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(_A , args.output_dir ) def UpperCamelCase ( ) -> Dict: lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_A , type=_A , required=_A , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_A , type=_A , required=_A , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_A , type=_A , required=_A , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_A , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_A , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_A , type=_A , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_A , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_A , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_A , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_A , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=_A , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_A , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_A , default=42 ) parser.add_argument("""--local_rank""" , type=_A , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_A , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_A , default="""""" , help="""Can be used for distant debugging.""" ) lowercase : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : int = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowercase : List[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Tuple = torch.device("""cuda""" , args.local_rank ) lowercase : List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : Any = nn.parallel.DistributedDataParallel( _A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_A ) elif args.n_gpu > 1: lowercase : Any = nn.DataParallel(_A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_A ) torch.save(_A , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _A ) # Prepare dataset lowercase : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : Union[str, Any] = (torch.from_numpy(_A ),) lowercase : Optional[Any] = TensorDataset(*_A ) lowercase : Union[str, Any] = RandomSampler(_A ) lowercase : Optional[Any] = DataLoader(_A , sampler=_A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_A , _A , _A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Any = mask_heads(_A , _A , _A ) prune_heads(_A , _A , _A , _A ) if __name__ == "__main__": main()
348
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase (__snake_case , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase (unittest.TestCase ): @property def __snake_case ( self :Union[str, Any] ) ->List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self :Union[str, Any] ) ->Optional[Any]: lowercase : Optional[Any] = ort.SessionOptions() lowercase : List[Any] = False return options def __snake_case ( self :int ) ->Union[str, Any]: lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : List[Any] = """A red cat sitting on a park bench""" lowercase : List[str] = np.random.RandomState(0 ) lowercase : str = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="""np""" , ) lowercase : Optional[Any] = output.images lowercase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case ( self :int ) ->Optional[int]: lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : Union[str, Any] = """A red cat sitting on a park bench""" lowercase : Tuple = np.random.RandomState(0 ) lowercase : Union[str, Any] = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type="""np""" , ) lowercase : List[Any] = output.images lowercase : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase : Dict = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
348
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase = 10 def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for i in range(__lowerCAmelCase ,__lowerCAmelCase ): if array[i] == target: return i return -1 def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : str = 0 A_ : Any = len(__lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) A_ : Dict = (left + right) // 3 + 1 A_ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A_ : Optional[int] = one_third - 1 elif array[two_third] < target: A_ : Optional[int] = two_third + 1 else: A_ : List[str] = one_third + 1 A_ : Union[str, Any] = two_third - 1 else: return -1 def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) A_ : Dict = (left + right) // 3 + 1 A_ : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCAmelCase ,one_third - 1 ,__lowerCAmelCase ,__lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,__lowerCAmelCase ,__lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) _lowerCAmelCase = ite_ternary_search(collection, target) _lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
569
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for attribute in key.split(""".""" ): lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "weight" in name: lowercase_ = """weight""" elif "bias" in name: lowercase_ = """bias""" else: lowercase_ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = """gelu""" lowercase_ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCAmelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = """Wav2Vec2FeatureExtractor""" lowercase_ = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCAmelCase ) else: lowercase_ = convert_config(model[0] , __lowerCAmelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == """layer""" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) lowercase_ = SEWForCTC(__lowerCAmelCase ) else: lowercase_ = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
567
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase : Dict = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) _SCREAMING_SNAKE_CASE = os.path.join(UpperCamelCase__ , '''words.txt''' ) _SCREAMING_SNAKE_CASE = '''''' with open(UpperCamelCase__ ) as f: _SCREAMING_SNAKE_CASE = f.readline() _SCREAMING_SNAKE_CASE = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(UpperCamelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
701
"""simple docstring""" def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: _SCREAMING_SNAKE_CASE = _modexpt(UpperCamelCase__ , exponent // 2 , UpperCamelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase__ , exponent - 1 , UpperCamelCase__ )) % modulo_value def A__ ( UpperCamelCase__ = 1_777 , UpperCamelCase__ = 1_855 , UpperCamelCase__ = 8 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = base for _ in range(1 , UpperCamelCase__ ): _SCREAMING_SNAKE_CASE = _modexpt(UpperCamelCase__ , UpperCamelCase__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
168
0
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 ) -> List[str]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 _snake_case = torch.tensor(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 _snake_case = model(lowerCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple _snake_case = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _snake_case = logits[0, masked_index, :] _snake_case = logits.softmax(dim=0 ) _snake_case , _snake_case = prob.topk(k=lowerCAmelCase_ , dim=0 ) _snake_case = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase_ ) )] ) _snake_case = tokenizer.mask_token _snake_case = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _snake_case = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(lowerCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(lowerCAmelCase_ ) , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase_ , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs snake_case = CamembertTokenizer.from_pretrained('''camembert-base''') snake_case = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() snake_case = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
103
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def A_ ( a=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE_ : List[Any] = subparsers.add_parser('test' ) else: SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=a , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=a ) return parser def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: SCREAMING_SNAKE_CASE_ : List[Any] = script_name else: SCREAMING_SNAKE_CASE_ : Any = f"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['accelerate-launch'] + test_args.split() SCREAMING_SNAKE_CASE_ : Any = execute_subprocess_async(a , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = test_command_parser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args() test_command(a ) if __name__ == "__main__": main()
511
0
from __future__ import annotations def lowercase_ (A : list , A : int | None = None , A : int | None = None ): if start is None: snake_case__ : str = 0 if end is None: snake_case__ : List[str] = len(A ) - 1 if start >= end: return snake_case__ : Union[str, Any] = (start + end) // 2 slowsort(A , A , A ) slowsort(A , mid + 1 , A ) if sequence[end] < sequence[mid]: snake_case__ , snake_case__ : Union[str, Any] = sequence[mid], sequence[end] slowsort(A , A , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
243
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ :int = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") a_ :str = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) a_ :int = "|".join(sys.argv[1:]) a_ :int = re.compile(RF"""^({joined_dirs}).*?\.py$""") a_ :str = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
243
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Any = tf.convert_to_tensor(lowerCamelCase_ ) _UpperCAmelCase : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(lowerCamelCase_ ) _UpperCAmelCase : Union[str, Any] = tf.cast(math.pi , x.dtype ) _UpperCAmelCase : str = tf.cast(0.04_4715 , x.dtype ) _UpperCAmelCase : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase_ , 3 )) )) return x * cdf def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase_ ) ) def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) _UpperCAmelCase : int = tf.cast(0.04_4715 , x.dtype ) _UpperCAmelCase : List[Any] = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = tf.convert_to_tensor(lowerCamelCase_ ) _UpperCAmelCase : int = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __A ( lowerCAmelCase_ ): return tf.clip_by_value(_gelu(lowerCamelCase_ ) , -10 , 10 ) def __A ( lowerCAmelCase_ , lowerCAmelCase_=-1 ): _UpperCAmelCase : Optional[Any] = tf.split(lowerCamelCase_ , 2 , axis=lowerCamelCase_ ) return a * tf.math.sigmoid(lowerCamelCase_ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __A ( lowerCAmelCase_ ): return tf.keras.activations.gelu(lowerCamelCase_ , approximate=lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = tf.keras.activations.gelu lowerCAmelCase_ : Union[str, Any] = approximate_gelu_wrap else: lowerCAmelCase_ : str = _gelu lowerCAmelCase_ : Dict = _gelu_new lowerCAmelCase_ : List[str] = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __A ( lowerCAmelCase_ ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
414
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : List[Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a : List[str] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __a : Optional[Any] = os.path.join(get_home_dir() , 'models' ) __a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) __a : Any = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) __a : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 __a : Optional[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } __a : str = BertConfig.from_dict(lowerCamelCase_ ) __a : Optional[int] = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __a : Optional[int] = hf_param.shape __a : int = to_torch(params[gluon_param] ) __a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __a : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __a : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __a : BertSelfAttention = layer.attention.self __a : Optional[int] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a : str = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a : Dict = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a : BertSelfOutput = layer.attention.output __a : Tuple = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a : Dict = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a : BertIntermediate = layer.intermediate __a : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a : BertOutput = layer.output __a : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a : List[Any] = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a : str = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output __a : Optional[int] = mx.nd.array([input_ids] ) __a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) __a : int = hf_bort_model(**lowerCamelCase_ )[0] __a : Dict = output_gluon[0].asnumpy() __a : str = output_hf[0].detach().numpy() __a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
47
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
"""simple docstring""" import math class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = n SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = w def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _SCREAMING_SNAKE_CASE ( __a ): a_ : str = ["""image_processor""", """tokenizer"""] a_ : Dict = """OwlViTImageProcessor""" a_ : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) __UpperCAmelCase =kwargs.pop('''feature_extractor''') __UpperCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(_A , _A) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="max_length" , UpperCAmelCase="np" , **UpperCAmelCase): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''') if text is not None: if isinstance(_A , _A) or (isinstance(_A , _A) and not isinstance(text[0] , _A)): __UpperCAmelCase =[self.tokenizer(_A , padding=_A , return_tensors=_A , **_A)] elif isinstance(_A , _A) and isinstance(text[0] , _A): __UpperCAmelCase =[] # Maximum number of queries across batch __UpperCAmelCase =max([len(_A) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(_A) != max_num_queries: __UpperCAmelCase =t + [""" """] * (max_num_queries - len(_A)) __UpperCAmelCase =self.tokenizer(_A , padding=_A , return_tensors=_A , **_A) encodings.append(_A) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''') if return_tensors == "np": __UpperCAmelCase =np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase =np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase =jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase =jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase =torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0) __UpperCAmelCase =torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase =tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase =tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0) else: raise ValueError('''Target return tensor type could not be returned''') __UpperCAmelCase =BatchEncoding() __UpperCAmelCase =input_ids __UpperCAmelCase =attention_mask if query_images is not None: __UpperCAmelCase =BatchEncoding() __UpperCAmelCase =self.image_processor( _A , return_tensors=_A , **_A).pixel_values __UpperCAmelCase =query_pixel_values if images is not None: __UpperCAmelCase =self.image_processor(_A , return_tensors=_A , **_A) if text is not None and images is not None: __UpperCAmelCase =image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase =image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_A) , tensor_type=_A) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.image_processor.post_process(*_A , **_A) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.image_processor.post_process_object_detection(*_A , **_A) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_A , **_A) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_A , **_A) @property def A__ (self): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def A__ (self): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
132
"""simple docstring""" from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( __a): __a : Optional[Any] = """SpeechT5FeatureExtractor""" __a : Dict = """SpeechT5Tokenizer""" def __init__( self , _A , _A ) -> Union[str, Any]: '''simple docstring''' super().__init__(_A , _A ) def __call__( self , *_A , **_A ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = kwargs.pop("""audio""" , _A ) _UpperCAmelCase : Tuple = kwargs.pop("""text""" , _A ) _UpperCAmelCase : Any = kwargs.pop("""text_target""" , _A ) _UpperCAmelCase : Optional[Any] = kwargs.pop("""audio_target""" , _A ) _UpperCAmelCase : Any = kwargs.pop("""sampling_rate""" , _A ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) elif text is not None: _UpperCAmelCase : List[str] = self.tokenizer(_A , **_A ) else: _UpperCAmelCase : Optional[int] = None if audio_target is not None: _UpperCAmelCase : List[Any] = self.feature_extractor(audio_target=_A , *_A , sampling_rate=_A , **_A ) _UpperCAmelCase : Union[str, Any] = targets["""input_values"""] elif text_target is not None: _UpperCAmelCase : Optional[int] = self.tokenizer(_A , **_A ) _UpperCAmelCase : Union[str, Any] = targets["""input_ids"""] else: _UpperCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: _UpperCAmelCase : List[str] = labels _UpperCAmelCase : List[str] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _UpperCAmelCase : Optional[int] = decoder_attention_mask return inputs def __snake_case ( self , *_A , **_A ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = kwargs.pop("""input_values""" , _A ) _UpperCAmelCase : List[Any] = kwargs.pop("""input_ids""" , _A ) _UpperCAmelCase : int = kwargs.pop("""labels""" , _A ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: _UpperCAmelCase : Optional[int] = self.feature_extractor.pad(_A , *_A , **_A ) elif input_ids is not None: _UpperCAmelCase : Tuple = self.tokenizer.pad(_A , **_A ) else: _UpperCAmelCase : Any = None if labels is not None: if "input_ids" in labels or (isinstance(_A , _A ) and "input_ids" in labels[0]): _UpperCAmelCase : Optional[Any] = self.tokenizer.pad(_A , **_A ) _UpperCAmelCase : Optional[Any] = targets["""input_ids"""] else: _UpperCAmelCase : List[Any] = self.feature_extractor.feature_size _UpperCAmelCase : Tuple = self.feature_extractor.num_mel_bins _UpperCAmelCase : List[str] = self.feature_extractor.pad(_A , *_A , **_A ) _UpperCAmelCase : List[Any] = feature_size_hack _UpperCAmelCase : Dict = targets["""input_values"""] else: _UpperCAmelCase : Optional[Any] = None if inputs is None: return targets if targets is not None: _UpperCAmelCase : Union[str, Any] = labels _UpperCAmelCase : Dict = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _UpperCAmelCase : Optional[Any] = decoder_attention_mask return inputs def __snake_case ( self , *_A , **_A ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def __snake_case ( self , *_A , **_A ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_A , **_A )
238
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase_ : str = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __a ( __lowerCamelCase : str ) -> List[Any]: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __a ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' if args.student_type == "roberta": lowercase_ = False elif args.student_type == "gpt2": lowercase_ = False def __a ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if args.student_type == "roberta": lowercase_ = False def __a ( ) -> str: '''simple docstring''' lowercase_ = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__lowerCamelCase , required=__lowerCamelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__lowerCamelCase , choices=["distilbert", "roberta", "gpt2"] , required=__lowerCamelCase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__lowerCamelCase , type=__lowerCamelCase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__lowerCamelCase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__lowerCamelCase , required=__lowerCamelCase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__lowerCamelCase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__lowerCamelCase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__lowerCamelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__lowerCamelCase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__lowerCamelCase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__lowerCamelCase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.1_5 , type=__lowerCamelCase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__lowerCamelCase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__lowerCamelCase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__lowerCamelCase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__lowerCamelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__lowerCamelCase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__lowerCamelCase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__lowerCamelCase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__lowerCamelCase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.0_5 , type=__lowerCamelCase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowerCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=__lowerCamelCase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=__lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__lowerCamelCase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.0_2 , type=__lowerCamelCase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCamelCase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__lowerCamelCase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__lowerCamelCase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__lowerCamelCase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__lowerCamelCase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__lowerCamelCase , default=4_000 , help="Checkpoint interval." ) lowercase_ = parser.parse_args() sanity_checks(__lowerCamelCase ) # ARGS # init_gpu_params(__lowerCamelCase ) set_seed(__lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__lowerCamelCase ) , __lowerCamelCase , indent=4 ) git_log(args.dump_path ) lowercase_ , lowercase_ , lowercase_ = MODEL_CLASSES[args.student_type] lowercase_ , lowercase_ , lowercase_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase_ = tokenizer.all_special_tokens.index(__lowerCamelCase ) lowercase_ = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) lowercase_ = special_tok_ids lowercase_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: lowercase_ = pickle.load(__lowerCamelCase ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: lowercase_ = pickle.load(__lowerCamelCase ) lowercase_ = np.maximum(__lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase_ = 0.0 # do not predict special tokens lowercase_ = torch.from_numpy(__lowerCamelCase ) else: lowercase_ = None lowercase_ = LmSeqsDataset(params=__lowerCamelCase , data=__lowerCamelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) lowercase_ = student_config_class.from_pretrained(args.student_config ) lowercase_ = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) lowercase_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCamelCase ) else: lowercase_ = student_model_class(__lowerCamelCase ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # lowercase_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCamelCase ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowerCamelCase , __lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowerCamelCase , __lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase_ = Distiller( params=__lowerCamelCase , dataset=__lowerCamelCase , token_probs=__lowerCamelCase , student=__lowerCamelCase , teacher=__lowerCamelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
461
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( __lowerCamelCase : List[Any] ) -> Tuple: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __a ( __lowerCamelCase : str , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' lowercase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase_ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowercase_ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowercase_ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowercase_ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowercase_ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowercase_ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowercase_ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowercase_ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowercase_ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowercase_ = key.replace("image_encoder.module" , "flava.image_model" ) lowercase_ = key.replace("text_encoder.module" , "flava.text_model" ) lowercase_ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowercase_ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowercase_ = key.replace("text_projection" , "flava.text_projection" ) lowercase_ = key.replace("image_projection" , "flava.image_projection" ) lowercase_ = value.float() for key, value in codebook_state_dict.items(): lowercase_ = value return upgrade @torch.no_grad() def __a ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: lowercase_ = FlavaConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = FlavaConfig() lowercase_ = FlavaForPreTraining(__lowerCamelCase ).eval() lowercase_ = convert_dalle_checkpoint(__lowerCamelCase , __lowerCamelCase , save_checkpoint=__lowerCamelCase ) if os.path.exists(__lowerCamelCase ): lowercase_ = torch.load(__lowerCamelCase , map_location="cpu" ) else: lowercase_ = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="cpu" ) lowercase_ = upgrade_state_dict(__lowerCamelCase , __lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) lowercase_ = hf_model.state_dict() lowercase_ = count_parameters(__lowerCamelCase ) lowercase_ = count_parameters(__lowerCamelCase ) + count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCAmelCase_ : List[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
461
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase : List[str] =logging.get_logger(__name__) __lowercase : Optional[int] =TypeVar("""DatasetType""", Dataset, IterableDataset) def a__ ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowercase__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ =( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) else: return _interleave_iterable_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) def a__ ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , ): '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowercase__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ =( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ ) else: return _concatenate_iterable_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ )
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase_ ( a__ ): __UpperCAmelCase = 'Speech2TextFeatureExtractor' __UpperCAmelCase = 'Speech2TextTokenizer' def __init__( self , a , a ): super().__init__(a , a ) UpperCamelCase__ = self.feature_extractor UpperCamelCase__ = False def __call__( self , *a , **a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCamelCase__ = kwargs.pop("raw_speech" ) else: UpperCamelCase__ = kwargs.pop("audio" , a ) UpperCamelCase__ = kwargs.pop("sampling_rate" , a ) UpperCamelCase__ = kwargs.pop("text" , a ) if len(a ) > 0: UpperCamelCase__ = args[0] UpperCamelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCamelCase__ = self.feature_extractor(a , *a , sampling_rate=a , **a ) if text is not None: UpperCamelCase__ = self.tokenizer(a , **a ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase__ = encodings["input_ids"] return inputs def __a ( self , *a , **a ): return self.tokenizer.batch_decode(*a , **a ) def __a ( self , *a , **a ): return self.tokenizer.decode(*a , **a ) @contextmanager def __a ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer yield UpperCamelCase__ = self.feature_extractor UpperCamelCase__ = False
223
'''simple docstring''' import os def _UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' with open(os.path.dirname(__A ) + "/p022_names.txt" ) as file: UpperCamelCase__ = str(file.readlines()[0] ) UpperCamelCase__ = names.replace("\"" , "" ).split("," ) names.sort() UpperCamelCase__ = 0 UpperCamelCase__ = 0 for i, name in enumerate(__A ): for letter in name: name_score += ord(__A ) - 64 total_score += (i + 1) * name_score UpperCamelCase__ = 0 return total_score if __name__ == "__main__": print(solution())
223
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A = logging.get_logger(__name__) class snake_case ( __snake_case ): def __init__( self : str , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[str])-> None: '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__)
346
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __A = object() # For specifying empty leaf dict `{}` __A = object() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase: Dict = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__SCREAMING_SNAKE_CASE ) - len(__SCREAMING_SNAKE_CASE ) + 1 ): __lowerCAmelCase: Tuple = [x.match(__SCREAMING_SNAKE_CASE ) for x, y in zip(__SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(__SCREAMING_SNAKE_CASE ): return True return False def a__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for rule, replacement in rules: if _match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ) -> str: return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , __SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , __SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , __SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , __SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Any = _get_partition_rules() __lowerCAmelCase: List[Any] = _replacement_rules(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = {k: _unmatched for k in flatten_dict(__SCREAMING_SNAKE_CASE )} __lowerCAmelCase: Any = {k: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__SCREAMING_SNAKE_CASE ) )
346
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ) -> None: print("Making key files..." ) make_key_files("rsa" , 1_024 ) print("Key files generation successful." ) def __lowerCamelCase ( __a : int ) -> tuple[tuple[int, int], tuple[int, int]]: print("Generating prime p..." ) _lowercase =rabinMiller.generate_large_prime(__a ) print("Generating prime q..." ) _lowercase =rabinMiller.generate_large_prime(__a ) _lowercase =p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowercase =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__a , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowercase =cryptoMath.find_mod_inverse(__a , (p - 1) * (q - 1) ) _lowercase =(n, e) _lowercase =(n, d) return (public_key, private_key) def __lowerCamelCase ( __a : str , __a : int ) -> None: if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() _lowercase , _lowercase =generate_key(__a ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , "w" ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , "w" ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
594
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = None def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) _lowercase =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
594
1
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowerCAmelCase ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCAmelCase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format lowerCAmelCase = PipelineDataFormat.from_str( format=_lowerCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowerCAmelCase , _lowerCAmelCase ) class a ( _a ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = nlp lowerCAmelCase = reader @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" lowerCAmelCase = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=snake_case_ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=snake_case_ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=snake_case_ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=snake_case_ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=snake_case_ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=snake_case_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=snake_case_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=snake_case_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=snake_case_ ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._nlp, [] for entry in self._reader: lowerCAmelCase = nlp(**snake_case_ ) if self._reader.is_multi_columns else nlp(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): outputs.append(snake_case_ ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCAmelCase = self._reader.save_binary(snake_case_ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(snake_case_ )
4
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , snake_case_ : List[str] ): if isinstance(snake_case_ , snake_case_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden snake_case__ : Optional[Any] = deepcopy(snake_case_ ) elif os.path.exists(snake_case_ ): with io.open(snake_case_ , """r""" , encoding="""utf-8""" ) as f: snake_case__ : Union[str, Any] = json.load(snake_case_ ) else: try: snake_case__ : List[Any] = baseaa.urlsafe_baadecode(snake_case_ ).decode("""utf-8""" ) snake_case__ : Optional[int] = json.loads(snake_case_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) snake_case__ : str = config self.set_stage_and_offload() def lowerCamelCase ( self : int ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. snake_case__ : Union[str, Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload snake_case__ : Optional[Any] = False if self.is_zeroa() or self.is_zeroa(): snake_case__ : int = set(["""cpu""", """nvme"""] ) snake_case__ : Any = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: snake_case__ : List[Any] = True def lowerCamelCase ( self : Any , snake_case_ : Optional[Any] ): snake_case__ : Optional[Any] = self.config # find the config node of interest if it exists snake_case__ : List[Any] = ds_key_long.split(""".""" ) snake_case__ : Tuple = nodes.pop() for node in nodes: snake_case__ : Optional[Any] = config.get(snake_case_ ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase ( self : List[Any] , snake_case_ : int , snake_case_ : List[str]=None ): snake_case__ , snake_case__ : Dict = self.find_config_node(snake_case_ ) if config is None: return default return config.get(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : Optional[int] , snake_case_ : int=False ): snake_case__ : Dict = self.config # find the config node of interest if it exists snake_case__ : str = ds_key_long.split(""".""" ) for node in nodes: snake_case__ : Union[str, Any] = config snake_case__ : List[Any] = config.get(snake_case_ ) if config is None: if must_exist: raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}" ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] ): snake_case__ : Dict = self.get_value(snake_case_ ) return False if value is None else bool(snake_case_ ) def lowerCamelCase ( self : List[str] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = self.get_value(snake_case_ ) return False if value is None else not bool(snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): return self._stage == 2 def lowerCamelCase ( self : Dict ): return self._stage == 3 def lowerCamelCase ( self : List[Any] ): return self._offload class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , snake_case_ : List[Any] ): snake_case__ : Tuple = engine def lowerCamelCase ( self : Dict , snake_case_ : Optional[Any] , **snake_case_ : int ): # runs backpropagation and handles mixed precision self.engine.backward(snake_case_ , **snake_case_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case_ : Any ): super().__init__(snake_case_ , device_placement=snake_case_ , scaler=snake_case_ ) snake_case__ : Optional[int] = hasattr(self.optimizer , """overflow""" ) def lowerCamelCase ( self : int , snake_case_ : Optional[Any]=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase ( self : List[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase ( self : List[str] ): if self.__has_overflow__: return self.optimizer.overflow return False class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple ): super().__init__(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : int=0.001 , snake_case_ : Optional[Any]=0 , **snake_case_ : List[Any] ): snake_case__ : int = params snake_case__ : Optional[Any] = lr snake_case__ : Any = weight_decay snake_case__ : Optional[Any] = kwargs class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , snake_case_ : str , snake_case_ : Optional[int]=None , snake_case_ : Any=0 , **snake_case_ : List[str] ): snake_case__ : List[Any] = optimizer snake_case__ : List[Any] = total_num_steps snake_case__ : List[Any] = warmup_num_steps snake_case__ : Optional[Any] = kwargs
374
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : int , lowercase__ : Union[str, Any] , lowercase__ : int=3 , lowercase__ : List[str]=32 , lowercase__ : Tuple=3 , lowercase__ : Any=10 , lowercase__ : Tuple=[10, 20, 30, 40] , lowercase__ : int=[1, 1, 2, 1] , lowercase__ : List[Any]=True , lowercase__ : Any=True , lowercase__ : Union[str, Any]="relu" , lowercase__ : List[Any]=3 , lowercase__ : Optional[Any]=None , ) ->Optional[int]: """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = embeddings_size _lowercase = hidden_sizes _lowercase = depths _lowercase = is_training _lowercase = use_labels _lowercase = hidden_act _lowercase = num_labels _lowercase = scope _lowercase = len(lowercase__) def _UpperCAmelCase ( self : int) ->Dict: """simple docstring""" _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] , self.num_labels) _lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Dict) ->Dict: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _UpperCAmelCase ( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : int) ->List[Any]: """simple docstring""" _lowercase = RegNetModel(config=lowercase__) model.to(lowercase__) model.eval() _lowercase = model(lowercase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCAmelCase ( self : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int]) ->Optional[Any]: """simple docstring""" _lowercase = self.num_labels _lowercase = RegNetForImageClassification(lowercase__) model.to(lowercase__) model.eval() _lowercase = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : Tuple) ->List[str]: """simple docstring""" _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( _snake_case ,_snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = False def _UpperCAmelCase ( self : str) ->Optional[Any]: """simple docstring""" _lowercase = RegNetModelTester(self) _lowercase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__) def _UpperCAmelCase ( self : Optional[int]) ->Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""") def _UpperCAmelCase ( self : int) ->Tuple: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""") def _UpperCAmelCase ( self : List[Any]) ->Tuple: """simple docstring""" pass def _UpperCAmelCase ( self : int) ->Dict: """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(lowercase__) _lowercase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__) def _UpperCAmelCase ( self : List[str]) ->str: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def _UpperCAmelCase ( self : Any) ->List[Any]: """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(config=lowercase__) for name, module in model.named_modules(): if isinstance(lowercase__ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _UpperCAmelCase ( self : Optional[int]) ->Dict: """simple docstring""" def check_hidden_states_output(lowercase__ : int , lowercase__ : str , lowercase__ : Any): _lowercase = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(lowercase__ , lowercase__)) _lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase = self.model_tester.num_stages self.assertEqual(len(lowercase__) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase = layer_type _lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) @slow def _UpperCAmelCase ( self : str) ->List[Any]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = RegNetModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def _SCREAMING_SNAKE_CASE ( ): _lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Dict) ->List[str]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase__) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=lowercase__ , return_tensors="""pt""").to(lowercase__) # forward pass with torch.no_grad(): _lowercase = model(**lowercase__) # verify the logits _lowercase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , lowercase__) _lowercase = torch.tensor([-0.4180, -1.5051, -3.4836]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
572
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ ): if n_term == "": return [] _lowercase = [] for temp in range(int(snake_case_ ) ): series.append(F"""1/{temp + 1}""" if series else """1""" ) return series if __name__ == "__main__": _lowerCamelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
572
1
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class lowercase__ : __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None def _snake_case ( __snake_case : TreeNode | None ): """simple docstring""" def is_valid_tree(__snake_case : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__snake_case , __snake_case ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__snake_case ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( __snake_case : TreeNode | None , __snake_case : float , __snake_case : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __snake_case , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __snake_case ) ) return is_binary_search_tree_recursive_check(__snake_case , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
88
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> str: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, 'models/bert/' ) ) SCREAMING_SNAKE_CASE_ = self.transformer_dir shutil.copy( os.path.join(_lowercase, 'src/transformers/models/bert/modeling_bert.py' ), os.path.join(self.transformer_dir, 'models/bert/modeling_bert.py' ), ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 'src/transformers' shutil.rmtree(self.transformer_dir ) def a__ ( self, _lowercase, _lowercase, _lowercase, _lowercase=None ) -> List[str]: SCREAMING_SNAKE_CASE_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result SCREAMING_SNAKE_CASE_ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) SCREAMING_SNAKE_CASE_ = black.format_str(_lowercase, mode=_lowercase ) SCREAMING_SNAKE_CASE_ = os.path.join(self.transformer_dir, 'new_code.py' ) with open(_lowercase, 'w', newline='\n' ) as f: f.write(_lowercase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowercase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=_lowercase ) with open(_lowercase, 'r' ) as f: self.assertTrue(f.read(), _lowercase ) def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(_lowercase, _lowercase ) def a__ ( self ) -> Union[str, Any]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', _lowercase, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', re.sub('Bert', 'TestModel', _lowercase ), ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_ = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""", f"""{long_class_name}LMPredictionHead""", re.sub('Bert', _lowercase, _lowercase ), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', _lowercase, overwrite_result=re.sub('Bert', 'TestModel', _lowercase ), ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = check_copies.LOCALIZED_READMES['README_zh-hans.md'] SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) self.assertFalse(_lowercase ) self.assertEqual(_lowercase, _lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowercase ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(_lowercase, _lowercase )
294
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 10 , _lowerCamelCase = 22 ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
386
"""simple docstring""" import argparse import json from tqdm import tqdm def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=_lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=_lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=_lowerCamelCase , help="where to store parsed gold_data_path file" , ) _lowerCamelCase : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _lowerCamelCase : Union[str, Any] = json.load(_lowerCamelCase ) for dpr_record in tqdm(_lowerCamelCase ): _lowerCamelCase : Tuple = dpr_record["question"] _lowerCamelCase : List[str] = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(_lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
386
1
'''simple docstring''' class __A : """simple docstring""" def __init__( self )-> int: lowercase__ = {} def snake_case_( self )-> None: print(self.vertex ) for i in self.vertex: print(_lowerCamelCase , ''' -> ''' , ''' -> '''.join([str(_lowerCamelCase ) for j in self.vertex[i]] ) ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCamelCase ) else: # else make a new vertex lowercase__ = [to_vertex] def snake_case_( self )-> None: # visited array for storing already visited nodes lowercase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> None: # mark start vertex as visited lowercase__ = True print(_lowerCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
161
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( a_ : str = "" ): __a = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __a = BeautifulSoup(requests.get(a_ ).text , 'html.parser' ) __a = soup.find_all('td' , attrs='titleColumn' ) __a = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a_ , a_ ) } def SCREAMING_SNAKE_CASE ( a_ : str = "IMDb_Top_250_Movies.csv" ): __a = get_imdb_top_aaa_movies() with open(a_ , 'w' , newline='' ) as out_file: __a = csv.writer(a_ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
539
0
from torch import nn def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
716
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' def __init__( self , _snake_case = True ): _lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase : List[Any] = directed def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) self.adj_list[destination_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) _lowerCAmelCase : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_snake_case ) _lowerCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase : List[str] = [destination_vertex] _lowerCAmelCase : Dict = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) _lowerCAmelCase : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase : Dict = [destination_vertex] _lowerCAmelCase : List[str] = [] return self def __repr__( self ): return pformat(self.adj_list )
587
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Dict: __snake_case = 0 def lowercase ( self : Tuple ) -> str: __snake_case = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Tuple ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : List[str] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case = AutoImageProcessor.from_pretrained(A_ ).to_dict() config_dict.pop('''image_processor_type''' ) __snake_case = CLIPImageProcessor(**A_ ) # save in new folder model_config.save_pretrained(A_ ) config.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : str ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: with self.assertRaisesRegex( A_ , '''clip-base is not a local folder and is not a valid model identifier''' ): __snake_case = AutoImageProcessor.from_pretrained('''clip-base''' ) def lowercase ( self : str ) -> Any: with self.assertRaisesRegex( A_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case = AutoImageProcessor.from_pretrained(A_ , revision='''aaaaaa''' ) def lowercase ( self : int ) -> Any: with self.assertRaisesRegex( A_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase ( self : Dict ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A_ ): __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def lowercase ( self : List[str] ) -> Union[str, Any]: try: AutoConfig.register('''custom''' , A_ ) AutoImageProcessor.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoImageProcessor.register(A_ , A_ ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = CustomImageProcessor.from_pretrained(A_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self : int ) -> List[Any]: class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : str = True try: AutoConfig.register('''custom''' , A_ ) AutoImageProcessor.register(A_ , A_ ) # If remote code is not set, the default is to use local __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
564
1
def A ( a_ ,a_ ) -> int: __UpperCamelCase : Optional[Any] =0 __UpperCamelCase : str =len(a_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __UpperCamelCase : Dict =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a_ ): return None __UpperCamelCase : int =sorted_collection[point] if current_item == item: return point else: if point < left: __UpperCamelCase : List[Any] =left __UpperCamelCase : Tuple =point elif point > right: __UpperCamelCase : Optional[int] =right __UpperCamelCase : List[Any] =point else: if item < current_item: __UpperCamelCase : Tuple =point - 1 else: __UpperCamelCase : List[Any] =point + 1 return None def A ( a_ ,a_ ,a_ ,a_ ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __UpperCamelCase : Union[str, Any] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(a_ ,a_ ,a_ ,a_ ) elif point > right: return interpolation_search_by_recursion(a_ ,a_ ,a_ ,a_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( a_ ,a_ ,a_ ,point - 1 ) else: return interpolation_search_by_recursion( a_ ,a_ ,point + 1 ,a_ ) def A ( a_ ) -> Optional[int]: if collection != sorted(a_ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys A_ :Dict = 0 if debug == 1: A_ :List[str] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') A_ :Union[str, Any] = 67 A_ :str = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print('''Not found''')
721
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def A ( a_ = "" ) -> dict[str, float]: __UpperCamelCase : Tuple =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase : Optional[int] =BeautifulSoup(requests.get(a_ ).text ,'html.parser' ) __UpperCamelCase : Union[str, Any] =soup.find_all('td' ,attrs='titleColumn' ) __UpperCamelCase : Any =soup.find_all('td' ,class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a_ ,a_ ) } def A ( a_ = "IMDb_Top_250_Movies.csv" ) -> None: __UpperCamelCase : Dict =get_imdb_top_aaa_movies() with open(a_ ,'w' ,newline='' ) as out_file: __UpperCamelCase : Any =csv.writer(a_ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
154
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A_ : Any = logging.get_logger(__name__) class lowerCamelCase (A__ ): lowerCamelCase__ : int = ['input_features', 'attention_mask'] def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=8_0 , __UpperCAmelCase : Dict=1_6_0_0_0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Tuple=1_0 , __UpperCAmelCase : Tuple=2_5 , __UpperCAmelCase : List[str]="hamming_window" , __UpperCAmelCase : List[str]=32_768.0 , __UpperCAmelCase : int=0.97 , __UpperCAmelCase : Dict=1.0 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[Any]=False , **__UpperCAmelCase : Dict , ) -> int: super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = frame_signal_scale SCREAMING_SNAKE_CASE__ = preemphasis_coeff SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = return_attention_mask SCREAMING_SNAKE_CASE__ = win_length * sampling_rate // 1_0_0_0 SCREAMING_SNAKE_CASE__ = hop_length * sampling_rate // 1_0_0_0 SCREAMING_SNAKE_CASE__ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : np.array ) -> np.ndarray: if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCAmelCase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Any: # make sure we normalize float32 arrays if self.normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(__UpperCAmelCase , __UpperCAmelCase ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(__UpperCAmelCase , __UpperCAmelCase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[np.ndarray] , __UpperCAmelCase : Optional[np.ndarray] = None ) -> List[np.ndarray]: SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCAmelCase , __UpperCAmelCase , self.padding_value ) for x, n in zip(__UpperCAmelCase , __UpperCAmelCase )] def __call__( self : Dict , __UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE__ = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_mfsc_features(__UpperCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE__ = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ = ( np.array(__UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=__UpperCAmelCase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs
196
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = BertJapaneseTokenizer lowerCamelCase__ : str = False lowerCamelCase__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_input_output_texts(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) SCREAMING_SNAKE_CASE__ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Dict = BertJapaneseTokenizer lowerCamelCase__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__UpperCAmelCase : List[Any] ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) SCREAMING_SNAKE_CASE__ = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
196
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' snake_case_ = """ctrl""" snake_case_ = ["""past_key_values"""] snake_case_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , UpperCamelCase_ : Any=246_534 , UpperCamelCase_ : int=256 , UpperCamelCase_ : List[Any]=1_280 , UpperCamelCase_ : List[str]=8_192 , UpperCamelCase_ : Union[str, Any]=48 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[Any]=1e-6 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=True , **UpperCamelCase_ : Dict , ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = vocab_size _lowercase : Dict = n_positions _lowercase : Optional[Any] = n_embd _lowercase : List[str] = n_layer _lowercase : List[str] = n_head _lowercase : Optional[Any] = dff _lowercase : Dict = resid_pdrop _lowercase : Union[str, Any] = embd_pdrop _lowercase : Union[str, Any] = layer_norm_epsilon _lowercase : str = initializer_range _lowercase : List[str] = use_cache super().__init__(**_a )
712
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : Optional[int] = model_type_to_module_name(snake_case_ ) _lowercase : Optional[Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : int = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : int , ) ->Union[str, Any]: '''simple docstring''' _lowercase : Dict = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : int ) -> Tuple: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __lowercase ( cls : str , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : int = kwargs.pop('''config''' , UpperCamelCase_ ) _lowercase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) _lowercase : str = True _lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = config_dict.get('''image_processor_type''' , UpperCamelCase_ ) _lowercase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase : str = config_dict.pop('''feature_extractor_type''' , UpperCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowercase : Any = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _lowercase : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.image_processor_type`` _lowercase : Optional[int] = getattr(UpperCamelCase_ , '''image_processor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowercase : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _lowercase : int = image_processor_class_from_name(UpperCamelCase_ ) _lowercase : str = image_processor_auto_map is not None _lowercase : List[str] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING _lowercase : Tuple = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : Dict = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: _lowercase : List[str] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )] return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowercase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
411
0
"""simple docstring""" from __future__ import annotations import requests def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> dict: '''simple docstring''' lowercase = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(lowerCAmelCase__ ).json() def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0 ) -> list[dict]: '''simple docstring''' lowercase = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" lowercase = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0 ) -> str: '''simple docstring''' lowercase = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join("""* [{title}]({url})""".format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
359
"""simple docstring""" from math import pow, sqrt def UpperCAmelCase__ ( *lowerCAmelCase__ :float ) -> bool: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase__ , lowerCAmelCase__ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
359
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __magic_name__( __UpperCAmelCase ) -> Any: '''simple docstring''' monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' class UpperCamelCase : '''simple docstring''' def __init__( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = metric_id class UpperCamelCase : '''simple docstring''' A_ = [MetricMock(__lowercase ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "tmp_path" in args: _lowerCamelCase = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__UpperCAmelCase , match='''https://huggingface.co/docs/evaluate''' ): func(*__UpperCAmelCase )
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=32 * 4 , _lowerCAmelCase=32 * 6 , _lowerCAmelCase=4 , _lowerCAmelCase=32 , ) -> Tuple: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = is_training _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = num_queries _lowerCAmelCase = num_channels _lowerCAmelCase = min_size _lowerCAmelCase = max_size _lowerCAmelCase = num_labels _lowerCAmelCase = mask_feature_size def _snake_case ( self ) -> int: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) _lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) _lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() _lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() _lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ) -> Optional[Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _snake_case ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = output.encoder_hidden_states _lowerCAmelCase = output.pixel_decoder_hidden_states _lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> List[str]: with torch.no_grad(): _lowerCAmelCase = MaskFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) _lowerCAmelCase = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : List[str] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowerCamelCase : List[str] = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowerCamelCase : Any = False __lowerCamelCase : List[str] = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : int = False def _snake_case ( self ) -> Any: _lowerCAmelCase = MaskFormerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def _snake_case ( self ) -> List[Any]: pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def _snake_case ( self ) -> Any: pass @unittest.skip(reason="MaskFormer is not a generative model" ) def _snake_case ( self ) -> Tuple: pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def _snake_case ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _snake_case ( self ) -> Union[str, Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def _snake_case ( self ) -> Dict: for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCAmelCase = MaskFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = (self.model_tester.min_size,) * 2 _lowerCAmelCase = { "pixel_values": torch.randn((2, 3, *size) , device=_lowerCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=_lowerCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } _lowerCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ) -> Optional[Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def _snake_case ( self ) -> Any: # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) _lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _SCREAMING_SNAKE_CASE = 1e-4 def __a(): '''simple docstring''' _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Tuple: return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) _lowerCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) _lowerCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) _lowerCAmelCase = inputs["pixel_values"].to(_lowerCAmelCase ) _lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs["mask_labels"]] _lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
18
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = 'PoolFormerConfig' # Base docstring _lowercase = 'sail/poolformer_s12' _lowercase = [1, 512, 7, 7] # Image classification docstring _lowercase = 'sail/poolformer_s12' _lowercase = 'tabby, tabby cat' _lowercase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = 0.0 , _UpperCamelCase = False ) -> Optional[Any]: '''simple docstring''' if drop_prob == 0.0 or not training: return input lowerCamelCase__: List[Any] = 1 - drop_prob lowerCamelCase__: Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCamelCase__: Union[str, Any] = keep_prob + torch.rand(_UpperCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCamelCase__: Dict = input.div(_UpperCamelCase ) * random_tensor return output class lowerCamelCase__ ( nn.Module ): def __init__( self : List[str] , __a : Optional[float] = None ): '''simple docstring''' super().__init__() lowerCamelCase__: int = drop_prob def lowerCamelCase_ ( self : Union[str, Any] , __a : torch.Tensor ): '''simple docstring''' return drop_path(__a , self.drop_prob , self.training ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return "p={}".format(self.drop_prob ) class lowerCamelCase__ ( nn.Module ): def __init__( self : List[Any] , __a : Optional[Any] , __a : str , __a : Optional[Any] , __a : Any , __a : Optional[int] , __a : Optional[Any]=None ): '''simple docstring''' super().__init__() lowerCamelCase__: Dict = patch_size if isinstance(__a , collections.abc.Iterable ) else (patch_size, patch_size) lowerCamelCase__: Optional[int] = stride if isinstance(__a , collections.abc.Iterable ) else (stride, stride) lowerCamelCase__: Any = padding if isinstance(__a , collections.abc.Iterable ) else (padding, padding) lowerCamelCase__: Optional[Any] = nn.Convad(__a , __a , kernel_size=__a , stride=__a , padding=__a ) lowerCamelCase__: Optional[Any] = norm_layer(__a ) if norm_layer else nn.Identity() def lowerCamelCase_ ( self : List[Any] , __a : Optional[int] ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = self.projection(__a ) lowerCamelCase__: str = self.norm(__a ) return embeddings class lowerCamelCase__ ( nn.GroupNorm ): def __init__( self : str , __a : Optional[int] , **__a : List[Any] ): '''simple docstring''' super().__init__(1 , __a , **__a ) class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , __a : Optional[Any] ): '''simple docstring''' super().__init__() lowerCamelCase__: Optional[int] = nn.AvgPoolad(__a , stride=1 , padding=pool_size // 2 , count_include_pad=__a ) def lowerCamelCase_ ( self : int , __a : Tuple ): '''simple docstring''' return self.pool(__a ) - hidden_states class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , __a : Optional[int] , __a : int , __a : Union[str, Any] , __a : Tuple ): '''simple docstring''' super().__init__() lowerCamelCase__: Optional[Any] = nn.Convad(__a , __a , 1 ) lowerCamelCase__: Optional[int] = nn.Convad(__a , __a , 1 ) lowerCamelCase__: Union[str, Any] = PoolFormerDropPath(__a ) if isinstance(config.hidden_act , __a ): lowerCamelCase__: int = ACTaFN[config.hidden_act] else: lowerCamelCase__: List[Any] = config.hidden_act def lowerCamelCase_ ( self : int , __a : Dict ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.conva(__a ) lowerCamelCase__: List[Any] = self.act_fn(__a ) lowerCamelCase__: Optional[Any] = self.drop(__a ) lowerCamelCase__: List[str] = self.conva(__a ) lowerCamelCase__: Dict = self.drop(__a ) return hidden_states class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , __a : int , __a : Dict , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : List[Any] ): '''simple docstring''' super().__init__() lowerCamelCase__: List[Any] = PoolFormerPooling(__a ) lowerCamelCase__: str = PoolFormerOutput(__a , __a , __a , __a ) lowerCamelCase__: str = PoolFormerGroupNorm(__a ) lowerCamelCase__: int = PoolFormerGroupNorm(__a ) # Useful for training neural nets lowerCamelCase__: Optional[int] = PoolFormerDropPath(__a ) if drop_path > 0.0 else nn.Identity() lowerCamelCase__: Dict = config.use_layer_scale if config.use_layer_scale: lowerCamelCase__: Dict = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) lowerCamelCase__: str = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) def lowerCamelCase_ ( self : str , __a : Any ): '''simple docstring''' if self.use_layer_scale: lowerCamelCase__: Optional[int] = self.pooling(self.before_norm(__a ) ) lowerCamelCase__: List[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCamelCase__: List[Any] = hidden_states + self.drop_path(__a ) lowerCamelCase__: Dict = () lowerCamelCase__: Optional[Any] = self.output(self.after_norm(__a ) ) lowerCamelCase__: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCamelCase__: List[Any] = hidden_states + self.drop_path(__a ) lowerCamelCase__: Union[str, Any] = (output,) + outputs return outputs else: lowerCamelCase__: Optional[Any] = self.drop_path(self.pooling(self.before_norm(__a ) ) ) # First residual connection lowerCamelCase__: List[str] = pooling_output + hidden_states lowerCamelCase__: Optional[int] = () # Second residual connection inside the PoolFormerOutput block lowerCamelCase__: str = self.drop_path(self.output(self.after_norm(__a ) ) ) lowerCamelCase__: Dict = hidden_states + layer_output lowerCamelCase__: Any = (output,) + outputs return outputs class lowerCamelCase__ ( nn.Module ): def __init__( self : int , __a : List[Any] ): '''simple docstring''' super().__init__() lowerCamelCase__: Dict = config # stochastic depth decay rule lowerCamelCase__: Optional[int] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCamelCase__: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCamelCase__: List[Any] = nn.ModuleList(__a ) # Transformer blocks lowerCamelCase__: Optional[Any] = [] lowerCamelCase__: Optional[int] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCamelCase__: Any = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__a ) ) lowerCamelCase__: List[Any] = nn.ModuleList(__a ) def lowerCamelCase_ ( self : Tuple , __a : Tuple , __a : Any=False , __a : str=True ): '''simple docstring''' lowerCamelCase__: List[str] = () if output_hidden_states else None lowerCamelCase__: Union[str, Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCamelCase__: Union[str, Any] = layers # Get patch embeddings from hidden_states lowerCamelCase__: List[str] = embedding_layer(__a ) # Send the embeddings through the blocks for _, blk in enumerate(__a ): lowerCamelCase__: Tuple = blk(__a ) lowerCamelCase__: Union[str, Any] = layer_outputs[0] if output_hidden_states: lowerCamelCase__: Optional[int] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class lowerCamelCase__ ( A__ ): __lowerCamelCase = PoolFormerConfig __lowerCamelCase = """poolformer""" __lowerCamelCase = """pixel_values""" __lowerCamelCase = True def lowerCamelCase_ ( self : Dict , __a : str ): '''simple docstring''' if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCamelCase_ ( self : Dict , __a : Optional[Any] , __a : Optional[Any]=False ): '''simple docstring''' if isinstance(__a , __a ): lowerCamelCase__: int = value _lowercase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowercase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , A__ , ) class lowerCamelCase__ ( A__ ): def __init__( self : List[str] , __a : Union[str, Any] ): '''simple docstring''' super().__init__(__a ) lowerCamelCase__: Union[str, Any] = config lowerCamelCase__: Tuple = PoolFormerEncoder(__a ) # Initialize weights and apply final processing self.post_init() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase_ ( self : Optional[int] , __a : Optional[torch.FloatTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowerCamelCase__: Dict = self.encoder( __a , output_hidden_states=__a , return_dict=__a , ) lowerCamelCase__: List[str] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=encoder_outputs.hidden_states , ) class lowerCamelCase__ ( nn.Module ): def __init__( self : Tuple , __a : Any ): '''simple docstring''' super().__init__() lowerCamelCase__: Optional[int] = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCamelCase_ ( self : Any , __a : Optional[Any] ): '''simple docstring''' lowerCamelCase__: int = self.dense(__a ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , A__ , ) class lowerCamelCase__ ( A__ ): def __init__( self : Optional[int] , __a : Any ): '''simple docstring''' super().__init__(__a ) lowerCamelCase__: str = config.num_labels lowerCamelCase__: int = PoolFormerModel(__a ) # Final norm lowerCamelCase__: Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCamelCase__: List[Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase_ ( self : Optional[Any] , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__: Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: List[str] = self.poolformer( __a , output_hidden_states=__a , return_dict=__a , ) lowerCamelCase__: Tuple = outputs[0] lowerCamelCase__: List[str] = self.classifier(self.norm(__a ).mean([-2, -1] ) ) lowerCamelCase__: List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__: Union[str, Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__: Union[str, Any] = """single_label_classification""" else: lowerCamelCase__: List[Any] = """multi_label_classification""" if self.config.problem_type == "regression": lowerCamelCase__: Optional[Any] = MSELoss() if self.num_labels == 1: lowerCamelCase__: str = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase__: Tuple = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": lowerCamelCase__: Union[str, Any] = CrossEntropyLoss() lowerCamelCase__: str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__: Optional[Any] = BCEWithLogitsLoss() lowerCamelCase__: Tuple = loss_fct(__a , __a ) if not return_dict: lowerCamelCase__: Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
713
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowercase = 'bert-base-cased' _lowercase = 'fp16' _lowercase = 'bf16' _lowercase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() lowerCamelCase__: List[str] = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = f"""{i + 1}""" lowerCamelCase__: Any = strategy with mockenv_context(**__a ): lowerCamelCase__: Optional[int] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): lowerCamelCase__: List[str] = self.dist_env.copy() lowerCamelCase__: List[str] = prefetch_policy with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Tuple = state_dict_type with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: str = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCamelCase__: Union[str, Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": lowerCamelCase__: Optional[Any] = """2000""" with mockenv_context(**__a ): lowerCamelCase__: Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCamelCase__: Optional[Any] = self.dist_env.copy() lowerCamelCase__: str = """TRANSFORMER_BASED_WRAP""" lowerCamelCase__: str = """T5Layer""" with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = """SIZE_BASED_WRAP""" lowerCamelCase__: str = """0""" with mockenv_context(**__a ): lowerCamelCase__: Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCamelCase__: Dict = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = mp_dtype with mockenv_context(**__a ): lowerCamelCase__: List[str] = Accelerator() if mp_dtype == "fp16": lowerCamelCase__: Any = torch.floataa elif mp_dtype == "bf16": lowerCamelCase__: Dict = torch.bfloataa lowerCamelCase__: str = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCamelCase__: List[Any] = self.dist_env.copy() lowerCamelCase__: int = str(__a ).lower() with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = 0.82 lowerCamelCase__: List[str] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] lowerCamelCase__: List[str] = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCamelCase__: List[str] = 160 lowerCamelCase__: Optional[int] = 160 lowerCamelCase__: Optional[int] = inspect.getfile(accelerate.test_utils ) lowerCamelCase__: Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[str] = os.path.join(self.test_scripts_folder , """test_performance.py""" ) lowerCamelCase__: Dict = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: lowerCamelCase__: Dict = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) lowerCamelCase__: Optional[Any] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__a ): lowerCamelCase__: Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue lowerCamelCase__: Union[str, Any] = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCamelCase__: Dict = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) lowerCamelCase__: Union[str, Any] = cmd_config[:-1] lowerCamelCase__: List[Any] = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) lowerCamelCase__: int = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCamelCase__: str = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
242
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> Tuple: A__ = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) A__ = torch.manual_seed(0 ) A__ = pipe.dual_guided( prompt="first prompt" , image=snake_case__ , text_to_image_strength=0.7_5 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) A__ = VersatileDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A__ = generator.manual_seed(0 ) A__ = pipe.dual_guided( prompt="first prompt" , image=snake_case__ , text_to_image_strength=0.7_5 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case__ ( self ) -> Dict: A__ = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A__ = "cyberpunk 2077" A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) A__ = torch.manual_seed(0 ) A__ = pipe.dual_guided( prompt=snake_case__ , image=snake_case__ , text_to_image_strength=0.7_5 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A__ = "A painting of a squirrel eating a burger " A__ = torch.manual_seed(0 ) A__ = pipe.text_to_image( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A__ = pipe.image_variation(snake_case__ , generator=snake_case__ , output_type="numpy" ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
104
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ (SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ =(KDPMaDiscreteScheduler,) lowerCAmelCase__ =10 def __a ( self : Dict , **snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { 'num_train_timesteps': 11_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**snake_case__ ) return config def __a ( self : str ): """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=snake_case__ ) def __a ( self : List[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def __a ( self : Optional[int] ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def __a ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = model(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def __a ( self : Union[str, Any] ): """simple docstring""" if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = model(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def __a ( self : Optional[int] ): """simple docstring""" if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = model(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
360
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase_( _A :List[str] , _A :int , _A :Any , _A :List[str] , _A :str )-> Optional[Any]: for attribute in key.split("." ): UpperCamelCase__ = getattr(_A , _A ) if weight_type is not None: UpperCamelCase__ = getattr(_A , _A ).shape else: UpperCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase_( _A :List[str] , _A :Optional[int] )-> Dict: UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.feature_extractor UpperCamelCase__ = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase__ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(_A , _A , _A , _A ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(_A )[0].split("." )[-2] UpperCamelCase__ = mapped_key.replace("*" , _A ) if "weight_g" in name: UpperCamelCase__ = "weight_g" elif "weight_v" in name: UpperCamelCase__ = "weight_v" elif "bias" in name: UpperCamelCase__ = "bias" elif "weight" in name: UpperCamelCase__ = "weight" else: UpperCamelCase__ = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase_( _A :Optional[int] , _A :List[str] , _A :Optional[Any] , _A :str , _A :List[Any] )-> Tuple: UpperCamelCase__ = full_name.split("conv_layers." )[-1] UpperCamelCase__ = name.split("." ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_A ) def UpperCamelCase_( _A :Tuple , _A :List[str] , _A :Dict , _A :List[Any] )-> int: UpperCamelCase__ = full_name.split("adaptor." )[-1] UpperCamelCase__ = name.split("." ) if items[1].isdigit(): UpperCamelCase__ = int(items[1] ) else: UpperCamelCase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' UpperCamelCase__ = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' UpperCamelCase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' UpperCamelCase__ = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' UpperCamelCase__ = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(_A , _A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' UpperCamelCase__ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' UpperCamelCase__ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(_A ) def UpperCamelCase_( _A :Tuple )-> Tuple: UpperCamelCase__, UpperCamelCase__ = emb.weight.shape UpperCamelCase__ = nn.Linear(_A , _A , bias=_A ) UpperCamelCase__ = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase_( _A :List[str] , _A :int , _A :str , _A :Any , _A :Union[str, Any] , _A :Optional[Any] , _A :Dict , _A :Tuple , _A :Optional[int] , _A :Optional[Any] , _A :List[Any] , )-> str: UpperCamelCase__ = WavaVecaConfig.from_pretrained( _A , add_adapter=_A , adapter_stride=_A , adapter_kernel_size=_A , use_auth_token=_A , output_hidden_size=_A , ) UpperCamelCase__ = MBartConfig.from_pretrained(_A ) # load model UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) UpperCamelCase__ = model[0].eval() # load feature extractor UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(_A , use_auth_token=_A ) # set weights for wav2vec2 encoder UpperCamelCase__ = WavaVecaModel(_A ) recursively_load_weights_wavaveca(model.encoder , _A ) # load decoder weights UpperCamelCase__ = MBartForCausalLM(_A ) UpperCamelCase__, UpperCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_A ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) UpperCamelCase__ = SpeechEncoderDecoderModel(encoder=_A , decoder=_A ) UpperCamelCase__ = False UpperCamelCase__ = MBartaaTokenizer(_A ) tokenizer.save_pretrained(_A ) UpperCamelCase__ = hf_wavavec.config.to_dict() UpperCamelCase__ = tokenizer.pad_token_id UpperCamelCase__ = tokenizer.bos_token_id UpperCamelCase__ = tokenizer.eos_token_id UpperCamelCase__ = "mbart50" UpperCamelCase__ = "wav2vec2" UpperCamelCase__ = tokenizer.eos_token_id UpperCamelCase__ = 25_00_04 UpperCamelCase__ = tokenizer.eos_token_id UpperCamelCase__ = SpeechEncoderDecoderConfig.from_dict(_A ) hf_wavavec.save_pretrained(_A ) feature_extractor.save_pretrained(_A ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') __UpperCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
185
def UpperCamelCase_( _A :str )-> int: UpperCamelCase__ = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) UpperCamelCase__ = hex_num[0] == "-" if is_negative: UpperCamelCase__ = hex_num[1:] try: UpperCamelCase__ = int(_A , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) UpperCamelCase__ = "" while int_num > 0: UpperCamelCase__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
185
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( A_ ): lowerCamelCase : int =["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase__ ) a : str = size if size is not None else {'''shortest_edge''': 224} a : Optional[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) a : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a : Optional[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="crop_size" ) a : str = do_resize a : List[Any] = size a : List[Any] = resample a : Dict = do_center_crop a : str = crop_size a : Any = do_rescale a : Optional[int] = rescale_factor a : Any = do_normalize a : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD a : Tuple = do_convert_rgb def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[int]: a : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: a : Dict = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[Any]: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> Optional[Any]: a : Union[str, Any] = do_resize if do_resize is not None else self.do_resize a : Any = size if size is not None else self.size a : str = get_size_dict(lowerCAmelCase__ , param_name="size" , default_to_square=lowerCAmelCase__ ) a : Any = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Any = crop_size if crop_size is not None else self.crop_size a : List[Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" , default_to_square=lowerCAmelCase__ ) a : Any = do_rescale if do_rescale is not None else self.do_rescale a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor a : int = do_normalize if do_normalize is not None else self.do_normalize a : Optional[int] = image_mean if image_mean is not None else self.image_mean a : List[str] = image_std if image_std is not None else self.image_std a : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a : List[Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: a : Optional[Any] = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. a : List[str] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: a : List[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: a : List[Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: a : int = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] a : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] a : str = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
633
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Tuple=7 , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : Dict=False , UpperCamelCase : str=True , UpperCamelCase : Any=2 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : str=4 , UpperCamelCase : str=4 , UpperCamelCase : Union[str, Any]=30 , UpperCamelCase : Any=0 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : int=2 , UpperCamelCase : int=None , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = decoder_seq_length # For common tests _lowercase : Union[str, Any] = self.decoder_seq_length _lowercase : str = is_training _lowercase : int = use_attention_mask _lowercase : Any = use_labels _lowercase : List[str] = vocab_size _lowercase : int = d_model _lowercase : Optional[int] = d_model _lowercase : Optional[int] = decoder_layers _lowercase : str = decoder_layers _lowercase : Dict = decoder_ffn_dim _lowercase : Union[str, Any] = decoder_attention_heads _lowercase : Optional[Any] = decoder_attention_heads _lowercase : int = eos_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : Any = pad_token_id _lowercase : List[str] = decoder_start_token_id _lowercase : str = use_cache _lowercase : str = max_position_embeddings _lowercase : Union[str, Any] = None _lowercase : int = decoder_seq_length _lowercase : List[Any] = 2 _lowercase : str = 1 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : Optional[Any] = None if self.use_attention_mask: _lowercase : str = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowercase : int = None if self.use_labels: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : int , ): """simple docstring""" _lowercase : List[str] = True _lowercase : int = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() _lowercase : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowercase : List[str] = model(UpperCamelCase , use_cache=UpperCamelCase ) _lowercase : Optional[Any] = model(UpperCamelCase ) _lowercase : Tuple = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) _lowercase : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _lowercase : Any = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowercase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase : str = model(UpperCamelCase )['''last_hidden_state'''] _lowercase : str = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice _lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowercase : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase_ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase_ = True UpperCAmelCase_ = False def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : int = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass
322
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Any = "isbn/0140328726" ): UpperCamelCase_ : Optional[int] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: UpperCamelCase_ : Optional[int] = f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCAmelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): UpperCamelCase_ : Any = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } UpperCamelCase_ : Optional[int] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCamelCase_ : Optional[Any] = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] UpperCamelCase_ : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = """, """.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE : Any = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE : Optional[Any] = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
712
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): a__ :List[str] = StableDiffusionLDMaDPipeline a__ :str = TEXT_TO_IMAGE_PARAMS a__ :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS def A_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase_ : Tuple = CLIPTextModel(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ (self , __UpperCamelCase , __UpperCamelCase=0 ) -> Optional[Any]: if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ : Any = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ (self ) -> str: UpperCamelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : List[str] = self.get_dummy_components() UpperCamelCase_ : List[Any] = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : List[str] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Optional[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : str = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) UpperCamelCase_ : Optional[Any] = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def A_ (self ) -> List[Any]: UpperCamelCase_ : Tuple = self.get_dummy_components() UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase_ : List[Any] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : int = output.rgb, output.depth UpperCamelCase_ : Dict = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Optional[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase_ : Any = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = 3 * [inputs.pop("""prompt""" )] UpperCamelCase_ : Optional[int] = ldmad_pipe.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) UpperCamelCase_ : List[Any] = text_inputs["""input_ids"""].to(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = ldmad_pipe.text_encoder(__UpperCamelCase )[0] UpperCamelCase_ : Optional[int] = prompt_embeds # forward UpperCamelCase_ : Any = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : int = self.get_dummy_components() UpperCamelCase_ : List[str] = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : str = """french fries""" UpperCamelCase_ : Dict = ldmad_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : List[str] = output.rgb, output.depth UpperCamelCase_ : Dict = rgb[0, -3:, -3:, -1] UpperCamelCase_ : List[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) UpperCamelCase_ : Tuple = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> List[str]: UpperCamelCase_ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Dict = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase_ : Dict = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : str = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Tuple = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase_ : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase_ : str = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) UpperCamelCase_ : List[str] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> Any: UpperCamelCase_ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Any = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Any = 0.495_586 UpperCamelCase_ : Dict = 0.33_795_515 UpperCamelCase_ : Optional[int] = 112.48_518 UpperCamelCase_ : Union[str, Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : int = 0.4_194_127 UpperCamelCase_ : Optional[Any] = 0.35_375_586 UpperCamelCase_ : Optional[Any] = 0.5_638_502 UpperCamelCase_ : List[Any] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
138
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | float: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(_SCREAMING_SNAKE_CASE ) or left < -len(_SCREAMING_SNAKE_CASE ) or right >= len(_SCREAMING_SNAKE_CASE ) or right < -len(_SCREAMING_SNAKE_CASE ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] lowercase__ = (left + right) >> 1 # the middle lowercase__ = find_max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # find max in range[left, mid] lowercase__ = find_max(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
235
import requests lowercase_ = """YOUR API KEY""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: lowercase__ = '+'.join(query.split() ) lowercase__ = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
235
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
157
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self, snake_case__, snake_case__ ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = None lowercase_ : Optional[int] = 20 lowercase_ : Union[str, Any] = self._get_uniform_logits(batch_size=2, length=snake_case__ ) # tweak scores to not be uniform anymore lowercase_ : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase_ : Any = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase_ : str = jax.nn.softmax(snake_case__, axis=-1 ) lowercase_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase_ : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(snake_case__, scores.copy(), cur_len=snake_case__ ), axis=-1 ) lowercase_ : Union[str, Any] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__, scores.copy(), cur_len=snake_case__ ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : Any = None lowercase_ : List[str] = 10 lowercase_ : int = 2 # create ramp distribution lowercase_ : Any = np.broadcast_to(np.arange(snake_case__ )[None, :], (batch_size, vocab_size) ).copy() lowercase_ : Any = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase_ : int = FlaxTopKLogitsWarper(3 ) lowercase_ : Union[str, Any] = top_k_warp(snake_case__, snake_case__, cur_len=snake_case__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase_ : Optional[int] = 5 lowercase_ : List[Any] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) lowercase_ : Union[str, Any] = np.broadcast_to(np.arange(snake_case__ )[None, :], (batch_size, length) ).copy() lowercase_ : Tuple = top_k_warp_safety_check(snake_case__, snake_case__, cur_len=snake_case__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = None lowercase_ : Dict = 10 lowercase_ : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase_ : Dict = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase_ : Any = FlaxTopPLogitsWarper(0.8 ) lowercase_ : int = np.exp(top_p_warp(snake_case__, snake_case__, cur_len=snake_case__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase_ : List[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case__, snake_case__, atol=1E-3 ) ) # check edge cases with negative and extreme logits lowercase_ : Union[str, Any] = np.broadcast_to(np.arange(snake_case__ )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase_ : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase_ : Optional[int] = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) lowercase_ : Optional[Any] = top_p_warp(snake_case__, snake_case__, cur_len=snake_case__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : List[str] = 20 lowercase_ : Any = 4 lowercase_ : List[Any] = 0 lowercase_ : int = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=snake_case__ ) # check that min length is applied at length 5 lowercase_ : Any = ids_tensor((batch_size, 20), vocab_size=20 ) lowercase_ : Any = 5 lowercase_ : Any = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : List[str] = min_dist_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowercase_ : Any = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : Optional[Any] = 15 lowercase_ : Union[str, Any] = min_dist_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : Any = 20 lowercase_ : Dict = 4 lowercase_ : List[str] = 0 lowercase_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) # check that all scores are -inf except the bos_token_id score lowercase_ : Dict = ids_tensor((batch_size, 1), vocab_size=20 ) lowercase_ : Any = 1 lowercase_ : Any = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : List[str] = logits_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase_ : int = 3 lowercase_ : Optional[Any] = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : Optional[Any] = logits_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : Union[str, Any] = 20 lowercase_ : Dict = 4 lowercase_ : str = 0 lowercase_ : Dict = 5 lowercase_ : int = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__, eos_token_id=snake_case__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase_ : Tuple = ids_tensor((batch_size, 4), vocab_size=20 ) lowercase_ : List[str] = 4 lowercase_ : List[Any] = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : Tuple = logits_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase_ : List[str] = 3 lowercase_ : Dict = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : Union[str, Any] = logits_processor(snake_case__, snake_case__, cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Optional[int] = 4 lowercase_ : Optional[int] = 10 lowercase_ : Optional[int] = 15 lowercase_ : List[Any] = 2 lowercase_ : Tuple = 1 lowercase_ : Tuple = 15 # dummy input_ids and scores lowercase_ : str = ids_tensor((batch_size, sequence_length), snake_case__ ) lowercase_ : Any = input_ids.copy() lowercase_ : List[Any] = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : List[Any] = scores.copy() # instantiate all dist processors lowercase_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ : Any = FlaxTopKLogitsWarper(3 ) lowercase_ : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=snake_case__ ) lowercase_ : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) lowercase_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__, eos_token_id=snake_case__ ) lowercase_ : Optional[Any] = 10 # no processor list lowercase_ : Tuple = temp_dist_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : int = top_k_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : List[str] = top_p_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : int = min_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Tuple = bos_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Optional[int] = eos_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) # with processor list lowercase_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ : List[str] = processor(snake_case__, snake_case__, cur_len=snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__, snake_case__, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = 4 lowercase_ : int = 10 lowercase_ : Dict = 15 lowercase_ : Optional[int] = 2 lowercase_ : List[Any] = 1 lowercase_ : Tuple = 15 # dummy input_ids and scores lowercase_ : Optional[int] = ids_tensor((batch_size, sequence_length), snake_case__ ) lowercase_ : int = input_ids.copy() lowercase_ : List[Any] = self._get_uniform_logits(snake_case__, snake_case__ ) lowercase_ : Any = scores.copy() # instantiate all dist processors lowercase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ : Union[str, Any] = FlaxTopKLogitsWarper(3 ) lowercase_ : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ : Any = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=snake_case__ ) lowercase_ : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) lowercase_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__, eos_token_id=snake_case__ ) lowercase_ : str = 10 # no processor list def run_no_processor_list(snake_case__, snake_case__, snake_case__ ): lowercase_ : str = temp_dist_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Optional[int] = top_k_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Dict = top_p_warp(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Optional[int] = min_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : Optional[Any] = bos_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) lowercase_ : str = eos_dist_proc(snake_case__, snake_case__, cur_len=snake_case__ ) return scores # with processor list def run_processor_list(snake_case__, snake_case__, snake_case__ ): lowercase_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ : Any = processor(snake_case__, snake_case__, cur_len=snake_case__ ) return scores lowercase_ : Dict = jax.jit(snake_case__ ) lowercase_ : Dict = jax.jit(snake_case__ ) lowercase_ : Optional[Any] = jitted_run_no_processor_list(snake_case__, snake_case__, snake_case__ ) lowercase_ : int = jitted_run_processor_list(snake_case__, snake_case__, snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__, snake_case__, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
458
from string import ascii_uppercase UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ = dict(enumerate(ascii_uppercase)) def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Dict = len(lowercase ) lowercase_ : Tuple = 0 while True: if x == i: lowercase_ : Dict = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Any = """""" lowercase_ : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase_ : Any = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Optional[Any] = """""" lowercase_ : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase_ : Optional[int] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __magic_name__ ( ) -> None: """simple docstring""" lowercase_ : Union[str, Any] = """THE GERMAN ATTACK""" lowercase_ : str = """SECRET""" lowercase_ : int = generate_key(lowercase , lowercase ) lowercase_ : List[str] = cipher_text(lowercase , lowercase ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(lowercase , lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
458
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( __lowerCAmelCase): def __init__( self : List[Any] , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : DDIMScheduler ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : str , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase__ , ) UpperCamelCase__ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : str = {} if accepts_eta: UpperCamelCase__ : Tuple = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ : Tuple = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Optional[Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Union[str, Any] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ : Optional[Any] = self.vqvae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
712
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Optional[int] = BarthezTokenizer A: Optional[int] = BarthezTokenizerFast A: str = True A: Optional[int] = True def UpperCAmelCase__ ( self : List[Any] ) -> str: '''simple docstring''' super().setUp() UpperCamelCase__ : Optional[Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) UpperCamelCase__ : int = tokenizer def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''<pad>''' UpperCamelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase__ : Any = [0, 57, 3018, 70307, 91, 2] UpperCamelCase__ : Optional[int] = self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCamelCase__ : Any = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ : Tuple = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : str = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = self.get_rust_tokenizer() UpperCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ : str = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[int] = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase__ : int = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCamelCase__ , )
106
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> List[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A_ = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = pipeline( 'document-question-answering' , model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , '' ) ) ) lowerCamelCase_ = 'What is the placebo?' lowerCamelCase_ = [ { 'image': load_image(SCREAMING_SNAKE_CASE_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' lowerCamelCase_ = dqa_pipeline(SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'answer': ANY(SCREAMING_SNAKE_CASE_ ), 'start': ANY(SCREAMING_SNAKE_CASE_ ), 'end': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'answer': ANY(SCREAMING_SNAKE_CASE_ ), 'start': ANY(SCREAMING_SNAKE_CASE_ ), 'end': ANY(SCREAMING_SNAKE_CASE_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'How many cats are there?' lowerCamelCase_ = [ {'score': 0.0_001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , SCREAMING_SNAKE_CASE_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , words=SCREAMING_SNAKE_CASE_ , boxes=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'What is the invoice number?' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.9_944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_009, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'What is the invoice number?' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.9_974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=SCREAMING_SNAKE_CASE_ , revision='3dc6de3' , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'What is the invoice number?' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase_ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.4_251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=SCREAMING_SNAKE_CASE_ , revision='3dc6de3' , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'What is the invoice number?' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.9_999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = 'What is the invoice number?' lowerCamelCase_ = dqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' ,['paws', 'csv'] ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' inspect_dataset(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' ,['accuracy'] ) def UpperCamelCase ( __lowercase : Any ,__lowercase : Union[str, Any] ): '''simple docstring''' inspect_metric(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Dict ,__lowercase : Dict ): '''simple docstring''' A_ : List[Any] = get_dataset_config_info(__lowercase ,config_name=__lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ,__lowercase : int ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_config_info(__lowercase ,config_name=__lowercase ) @pytest.mark.parametrize( 'path, expected' ,[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] ,) def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : Any = get_dataset_config_names(__lowercase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' ,[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : str ,__lowercase : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = get_dataset_infos(__lowercase ) assert list(infos.keys() ) == expected_configs A_ : Any = expected_configs[0] assert expected_config in infos A_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Any ,__lowercase : Optional[Any] ,__lowercase : Dict ): '''simple docstring''' A_ : Optional[Any] = get_dataset_infos(__lowercase ) assert expected_config in infos A_ : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Tuple ,__lowercase : str ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_split_names(__lowercase ,config_name=__lowercase )
558
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A_ : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , __UpperCAmelCase=["stage1", "stage2", "stage3"] , __UpperCAmelCase=[1, 2, 3] , ) -> List[str]: a : Union[str, Any] = parent a : Optional[Any] = batch_size a : Optional[int] = image_size a : int = patch_size a : Tuple = num_channels a : Optional[Any] = embed_dim a : Tuple = depths a : List[str] = num_heads a : Tuple = window_size a : Optional[Any] = mlp_ratio a : Union[str, Any] = qkv_bias a : int = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = drop_path_rate a : List[str] = hidden_act a : Dict = use_absolute_embeddings a : Dict = patch_norm a : int = layer_norm_eps a : str = initializer_range a : Optional[int] = is_training a : Union[str, Any] = scope a : Optional[int] = use_labels a : int = type_sequence_label_size a : Union[str, Any] = encoder_stride a : Optional[int] = out_features a : Union[str, Any] = out_indices def lowercase_ ( self ) -> str: a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Dict = None if self.use_labels: a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Dict: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: a : int = MaskFormerSwinModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : Optional[int] = model(__UpperCAmelCase ) a : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: a : Dict = MaskFormerSwinBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : Optional[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__UpperCAmelCase ): a : Any = ['stem'] a : List[str] = MaskFormerSwinBackbone(config=__UpperCAmelCase ) def lowercase_ ( self ) -> Optional[int]: a : List[str] = self.prepare_config_and_inputs() a , a , a : Optional[int] = config_and_inputs a : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase : Tuple = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowercase : List[str] = False lowercase : List[str] = False lowercase : str = False lowercase : Any = False lowercase : List[Any] = False def lowercase_ ( self ) -> List[Any]: a : str = MaskFormerSwinModelTester(self ) a : Dict = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Dict: return def lowercase_ ( self ) -> Optional[int]: a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ ( self ) -> Dict: a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> List[str]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self ) -> Dict: a , a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowercase_ ( self ) -> int: a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Optional[Any] = model_class(__UpperCAmelCase ) a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : int = [*signature.parameters.keys()] a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Tuple: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> str: pass def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: a : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a : str = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a : Any = outputs.hidden_states a : int = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swin has a different seq_length a : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> List[Any]: a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a : Optional[int] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> Any: a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = 3 a : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> str: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> List[str]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__UpperCAmelCase ): a : Tuple = 0 return t def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ): with torch.no_grad(): a : Optional[int] = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) a : Tuple = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__UpperCAmelCase ) , set_nan_tensor_to_zero(__UpperCAmelCase ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}. Dict has' f' `nan`: {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}.' ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: a : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : str = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a : str = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a : Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a : Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) a : Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a : Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class A_ ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowercase : List[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase : Optional[int] = MaskFormerSwinConfig def lowercase_ ( self ) -> List[Any]: a : Tuple = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Tuple: a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: a : Union[str, Any] = backbone_class(__UpperCAmelCase ) backbone.to(__UpperCAmelCase ) backbone.eval() a : Dict = backbone(**__UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True a : List[str] = backbone(**__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) a , a , a : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: a : Optional[Any] = backbone(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
509
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" lowercase : int = StableDiffusionLDMaDPipeline lowercase : Any = TEXT_TO_IMAGE_PARAMS lowercase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) a : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : Tuple = CLIPTextModel(__UpperCAmelCase ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str: if str(__UpperCAmelCase ).startswith('mps' ): a : List[str] = torch.manual_seed(__UpperCAmelCase ) else: a : int = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Dict: a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Tuple = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : Tuple = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[Any] = self.get_dummy_inputs(__UpperCAmelCase ) a : List[Any] = ldmad_pipe(**__UpperCAmelCase ) a , a : str = output.rgb, output.depth a : List[Any] = rgb[0, -3:, -3:, -1] a : str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a : Any = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) a : Any = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowercase_ ( self ) -> List[Any]: a : Optional[int] = self.get_dummy_components() a : Union[str, Any] = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : List[str] = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) a : Optional[Any] = 3 * [inputs['prompt']] # forward a : List[str] = ldmad_pipe(**__UpperCAmelCase ) a , a : int = output.rgb, output.depth a : int = rgb_slice_a[0, -3:, -3:, -1] a : List[Any] = depth_slice_a[0, -3:, -1] a : Tuple = self.get_dummy_inputs(__UpperCAmelCase ) a : List[str] = 3 * [inputs.pop('prompt' )] a : Optional[int] = ldmad_pipe.tokenizer( __UpperCAmelCase , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , ) a : Union[str, Any] = text_inputs['input_ids'].to(__UpperCAmelCase ) a : List[Any] = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] a : str = prompt_embeds # forward a : Any = ldmad_pipe(**__UpperCAmelCase ) a , a : Optional[Any] = output.rgb, output.depth a : Dict = rgb_slice_a[0, -3:, -3:, -1] a : Any = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowercase_ ( self ) -> Optional[int]: a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) a : Union[str, Any] = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : Any = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[str] = self.get_dummy_inputs(__UpperCAmelCase ) a : List[str] = 'french fries' a : List[str] = ldmad_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : List[Any] = rgb[0, -3:, -3:, -1] a : Optional[int] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a : Optional[int] = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) a : Union[str, Any] = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> Union[str, Any]: a : Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : str = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) a : Any = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) a : int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Dict: a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) a : Union[str, Any] = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[Any] = self.get_inputs(__UpperCAmelCase ) a : Dict = ldmad_pipe(**__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : Union[str, Any] = rgb[0, -3:, -3:, -1].flatten() a : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) a : List[str] = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) a : Optional[int] = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: a : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) a : Union[str, Any] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) a : str = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Optional[int]: a : Dict = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Tuple = self.get_inputs(__UpperCAmelCase ) a : Dict = ldmad_pipe(**__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : int = 0.49_5586 a : Dict = 0.3379_5515 a : Optional[Any] = 112.4_8518 a : List[Any] = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowercase_ ( self ) -> Any: a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Dict = self.get_inputs(__UpperCAmelCase ) a : Union[str, Any] = ldmad_pipe(**__UpperCAmelCase ) a , a : Optional[Any] = output.rgb, output.depth a : Dict = 0.419_4127 a : Union[str, Any] = 0.3537_5586 a : Tuple = 0.563_8502 a : str = 0.3468_6103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
509
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class snake_case__ ( unittest.TestCase): '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=4 , ) -> Optional[int]: '''simple docstring''' __snake_case :Dict = parent __snake_case :str = batch_size __snake_case :int = seq_length __snake_case :List[str] = is_training __snake_case :Optional[Any] = use_attention_mask __snake_case :Tuple = use_token_type_ids __snake_case :List[Any] = use_labels __snake_case :Dict = vocab_size __snake_case :Optional[Any] = hidden_size __snake_case :Any = num_hidden_layers __snake_case :Dict = num_attention_heads __snake_case :Tuple = intermediate_size __snake_case :Optional[int] = hidden_act __snake_case :Tuple = hidden_dropout_prob __snake_case :Union[str, Any] = attention_probs_dropout_prob __snake_case :Dict = max_position_embeddings __snake_case :Tuple = type_vocab_size __snake_case :List[Any] = type_sequence_label_size __snake_case :Optional[int] = initializer_range __snake_case :str = num_choices def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case :str = None if self.use_attention_mask: __snake_case :str = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case :int = None if self.use_token_type_ids: __snake_case :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case :Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :Union[str, Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case :Union[str, Any] = config_and_inputs __snake_case :int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class snake_case__ ( lowercase__ , unittest.TestCase): '''simple docstring''' lowerCamelCase : List[Any] = True lowerCamelCase : int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Any = FlaxRoFormerModelTester(self ) @slow def __lowercase ( self ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case :int = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=a__ ) __snake_case :Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class snake_case__ ( unittest.TestCase): '''simple docstring''' @slow def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :str = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case :Optional[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __snake_case :int = model(a__ )[0] __snake_case :str = 5_00_00 __snake_case :Optional[Any] = (1, 6, vocab_size) self.assertEqual(output.shape , a__ ) __snake_case :Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
455
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter SCREAMING_SNAKE_CASE = True except ImportError: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' @staticmethod def A__ ( lowerCAmelCase ): UpperCAmelCase_ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowerCAmelCase , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowerCAmelCase , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowerCAmelCase ) def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , *lowerCAmelCase ): UpperCAmelCase_ = testing UpperCAmelCase_ = testing_file UpperCAmelCase_ = path def A__ ( self ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowerCAmelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) UpperCAmelCase_ = ( Path(lowerCAmelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase_ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase ) ) else: with open(self._testing_file , "r" ) as configuration_file: UpperCAmelCase_ = json.load(lowerCAmelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCAmelCase , extra_context=lowerCAmelCase , ) UpperCAmelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: UpperCAmelCase_ = json.load(lowerCAmelCase ) UpperCAmelCase_ = configuration["lowercase_modelname"] UpperCAmelCase_ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'''{directory}/configuration.json''' ) UpperCAmelCase_ = "PyTorch" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = "TensorFlow" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = "Flax" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowerCAmelCase ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowerCAmelCase ): with open(lowerCAmelCase , "r" ) as f: UpperCAmelCase_ = f.readlines() with open(lowerCAmelCase , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Create temp file UpperCAmelCase_ , UpperCAmelCase_ = mkstemp() UpperCAmelCase_ = False with fdopen(lowerCAmelCase , "w" ) as new_file: with open(lowerCAmelCase ) as old_file: for line in old_file: new_file.write(lowerCAmelCase ) if line_to_copy_below in line: UpperCAmelCase_ = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase , lowerCAmelCase ) # Remove original file remove(lowerCAmelCase ) # Move new file move(lowerCAmelCase , lowerCAmelCase ) def skip_units(lowerCAmelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase ): with open(lowerCAmelCase ) as datafile: UpperCAmelCase_ = [] UpperCAmelCase_ = False UpperCAmelCase_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase_ = line.split("\"" )[1] UpperCAmelCase_ = skip_units(lowerCAmelCase ) elif "# Below: " in line and "##" not in line: UpperCAmelCase_ = line.split("\"" )[1] UpperCAmelCase_ = skip_units(lowerCAmelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase_ = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase ) remove(lowerCAmelCase ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowerCAmelCase )
579
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
384
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ = "src/transformers" A_ = "docs/source/en/tasks" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: with open(__UpperCamelCase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: lowerCamelCase_ = f.readlines() # Find the start prompt. lowerCamelCase_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 lowerCamelCase_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ = direct_transformers_import(TRANSFORMERS_PATH) A_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]: lowerCamelCase_ = TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase ,set() ) lowerCamelCase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=False ) -> int: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' ,end_prompt='<!--End of the generated tip-->' ,) lowerCamelCase_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
384
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Tuple = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : List[Any] = "sew-d" def __init__( self : Dict , A : int=32 , A : Optional[int]=7_68 , A : List[str]=12 , A : int=12 , A : int=30_72 , A : Optional[int]=2 , A : Union[str, Any]=5_12 , A : List[str]=2_56 , A : Union[str, Any]=True , A : Optional[Any]=True , A : Optional[Any]=("p2c", "c2p") , A : List[str]="layer_norm" , A : str="gelu_python" , A : List[str]=0.1 , A : Union[str, Any]=0.1 , A : List[Any]=0.1 , A : List[str]=0.0 , A : Dict=0.1 , A : Tuple=0.02 , A : Any=1e-7 , A : Any=1e-5 , A : Optional[Any]="group" , A : int="gelu" , A : Optional[int]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , A : List[str]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : Dict=False , A : Any=1_28 , A : Optional[int]=16 , A : int=True , A : Any=0.05 , A : List[str]=10 , A : Union[str, Any]=2 , A : Dict=0.0 , A : Union[str, Any]=10 , A : Union[str, Any]=0 , A : Tuple="mean" , A : Optional[Any]=False , A : Any=False , A : List[str]=2_56 , A : Optional[Any]=0 , A : List[str]=1 , A : int=2 , **A : Union[str, Any] , ) -> str: super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) lowercase_ : Tuple = hidden_size lowercase_ : Any = feat_extract_norm lowercase_ : Optional[int] = feat_extract_activation lowercase_ : Optional[int] = list(A ) lowercase_ : Optional[int] = list(A ) lowercase_ : int = list(A ) lowercase_ : Union[str, Any] = conv_bias lowercase_ : Union[str, Any] = num_conv_pos_embeddings lowercase_ : List[str] = num_conv_pos_embedding_groups lowercase_ : List[Any] = len(self.conv_dim ) lowercase_ : List[Any] = num_hidden_layers lowercase_ : Tuple = intermediate_size lowercase_ : str = squeeze_factor lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Dict = position_buckets lowercase_ : str = share_att_key lowercase_ : List[Any] = relative_attention lowercase_ : Tuple = norm_rel_ebd lowercase_ : Union[str, Any] = list(A ) lowercase_ : Optional[int] = hidden_act lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Dict = hidden_dropout lowercase_ : Union[str, Any] = attention_dropout lowercase_ : str = activation_dropout lowercase_ : Dict = feat_proj_dropout lowercase_ : int = final_dropout lowercase_ : List[Any] = layer_norm_eps lowercase_ : Dict = feature_layer_norm_eps lowercase_ : Any = initializer_range lowercase_ : List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ : Tuple = apply_spec_augment lowercase_ : Tuple = mask_time_prob lowercase_ : int = mask_time_length lowercase_ : List[Any] = mask_time_min_masks lowercase_ : str = mask_feature_prob lowercase_ : List[str] = mask_feature_length lowercase_ : Optional[Any] = mask_feature_min_masks # ctc loss lowercase_ : List[str] = ctc_loss_reduction lowercase_ : Optional[Any] = ctc_zero_infinity # sequence classification lowercase_ : List[str] = use_weighted_layer_sum lowercase_ : Union[str, Any] = classifier_proj_size @property def A ( self : List[str] ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
231
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "timesformer" def __init__( self : Optional[Any] , A : Tuple=2_24 , A : Optional[int]=16 , A : Any=3 , A : str=8 , A : Optional[Any]=7_68 , A : Dict=12 , A : Optional[int]=12 , A : Optional[Any]=30_72 , A : Optional[Any]="gelu" , A : Union[str, Any]=0.0 , A : Dict=0.0 , A : str=0.02 , A : Union[str, Any]=1e-6 , A : Union[str, Any]=True , A : Dict="divided_space_time" , A : Optional[Any]=0 , **A : List[str] , ) -> Tuple: super().__init__(**A ) lowercase_ : Tuple = image_size lowercase_ : str = patch_size lowercase_ : Tuple = num_channels lowercase_ : Optional[Any] = num_frames lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : List[str] = qkv_bias lowercase_ : Any = attention_type lowercase_ : Dict = drop_path_rate
231
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DPMSolverSDEScheduler,) UpperCAmelCase = 10 def UpperCamelCase_ ( self : Tuple , **_A : Union[str, Any] ): _UpperCamelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def UpperCamelCase_ ( self : List[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : List[Any] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
71
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DPMSolverSDEScheduler,) UpperCAmelCase = 10 def UpperCamelCase_ ( self : Tuple , **_A : Union[str, Any] ): _UpperCamelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def UpperCamelCase_ ( self : List[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : List[Any] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
71
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : List[str] = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
673
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase_ : List[str] = False class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self , snake_case__=32 ) -> Optional[Any]: """simple docstring""" set_seed(0 ) UpperCAmelCase = UNetaDModel(sample_size=snake_case__ , in_channels=3 , out_channels=3 ) UpperCAmelCase = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=snake_case__ , ) UpperCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=snake_case__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) UpperCAmelCase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(snake_case__ ) for _ in range(4 )] UpperCAmelCase = [torch.randn((4, 3, 32, 32) ).to(snake_case__ ) for _ in range(4 )] UpperCAmelCase = [torch.randint(0 , 10_00 , (4,) ).long().to(snake_case__ ) for _ in range(4 )] # train with a DDPM scheduler UpperCAmelCase , UpperCAmelCase = self.get_model_optimizer(resolution=32 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase = model(snake_case__ , timesteps[i] ).sample UpperCAmelCase = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCAmelCase , UpperCAmelCase = self.get_model_optimizer(resolution=32 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase = model(snake_case__ , timesteps[i] ).sample UpperCAmelCase = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) )
673
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]="attention" ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] SCREAMING_SNAKE_CASE__ :List[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] SCREAMING_SNAKE_CASE__ :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] SCREAMING_SNAKE_CASE__ :Union[str, Any] = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False ) -> Dict: '''simple docstring''' if split_mlp_wi: SCREAMING_SNAKE_CASE__ :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] SCREAMING_SNAKE_CASE__ :Dict = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] SCREAMING_SNAKE_CASE__ :Any = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE__ :Tuple = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] SCREAMING_SNAKE_CASE__ :List[Any] = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ) -> Tuple: '''simple docstring''' return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def lowerCamelCase ( UpperCAmelCase__ : dict , *, UpperCAmelCase__ : int , UpperCAmelCase__ : bool ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = traverse_util.flatten_dict(variables['target'] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = {'/'.join(UpperCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE__ :Any = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE__ :int = old['token_embedder/embedding'] # Encoder. for i in range(UpperCAmelCase__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ :Optional[int] = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'encoder' , 'pre_attention_layer_norm' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Dict = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'encoder' , 'attention' ) SCREAMING_SNAKE_CASE__ :str = layer_norm SCREAMING_SNAKE_CASE__ :Optional[int] = k.T SCREAMING_SNAKE_CASE__ :str = o.T SCREAMING_SNAKE_CASE__ :Optional[Any] = q.T SCREAMING_SNAKE_CASE__ :Dict = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE__ :Dict = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'encoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Tuple = tax_mlp_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'encoder' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Dict = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ :Dict = wi[0].T SCREAMING_SNAKE_CASE__ :Dict = wi[1].T else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = wi.T SCREAMING_SNAKE_CASE__ :int = wo.T SCREAMING_SNAKE_CASE__ :Dict = old[ 'encoder/relpos_bias/rel_embedding' ].T SCREAMING_SNAKE_CASE__ :List[Any] = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ :Dict = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , 'pre_self_attention_layer_norm' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , 'self_attention' ) SCREAMING_SNAKE_CASE__ :Dict = layer_norm SCREAMING_SNAKE_CASE__ :List[Any] = k.T SCREAMING_SNAKE_CASE__ :Tuple = o.T SCREAMING_SNAKE_CASE__ :Union[str, Any] = q.T SCREAMING_SNAKE_CASE__ :Optional[Any] = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE__ :Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , 'pre_cross_attention_layer_norm' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :str = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , 'encoder_decoder_attention' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = layer_norm SCREAMING_SNAKE_CASE__ :Union[str, Any] = k.T SCREAMING_SNAKE_CASE__ :Dict = o.T SCREAMING_SNAKE_CASE__ :Any = q.T SCREAMING_SNAKE_CASE__ :Union[str, Any] = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE__ :Union[str, Any] = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = tax_mlp_lookup(UpperCAmelCase__ , UpperCAmelCase__ , 'decoder' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[str] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ :Union[str, Any] = wi[0].T SCREAMING_SNAKE_CASE__ :Optional[int] = wi[1].T else: SCREAMING_SNAKE_CASE__ :List[Any] = wi.T SCREAMING_SNAKE_CASE__ :Any = wo.T SCREAMING_SNAKE_CASE__ :int = old['decoder/decoder_norm/scale'] SCREAMING_SNAKE_CASE__ :str = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE__ :str = old['decoder/logits_dense/kernel'].T return new def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : bool ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ :List[Any] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ :Optional[Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) SCREAMING_SNAKE_CASE__ :int = state_dict['shared.weight'] return state_dict def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[str] = convert_tax_to_pytorch(UpperCAmelCase__ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :str = make_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : bool = False ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = TaConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE__ :Optional[int] = TaEncoderModel(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :int = TaForConditionalGeneration(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase__ ) print('Done' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
320
'''simple docstring''' UpperCamelCase_ = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase_ = ['''a''', '''b''', '''c''', '''d''', '''e'''] def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = start # add current to visited visited.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ :Dict = topological_sort(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCAmelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ :Optional[int] = topological_sort(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # return sort return sort if __name__ == "__main__": UpperCamelCase_ = topological_sort('''a''', [], []) print(sort)
320
1
from itertools import count def a__ ( A_ = 50 ): '''simple docstring''' __magic_name__ = [1] * min_block_length for n in count(lowercase__ ): fill_count_functions.append(1 ) for block_length in range(lowercase__, n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
529
import os import sys import unittest lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A ( unittest.TestCase ): def _A (self ): __lowercase= get_test_to_tester_mapping(lowerCAmelCase ) __lowercase= get_test_to_tester_mapping(lowerCAmelCase ) __lowercase= {'BertModelTest': 'BertModelTester'} __lowercase= { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= get_model_to_test_mapping(lowerCAmelCase ) __lowercase= get_model_to_test_mapping(lowerCAmelCase ) __lowercase= { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __lowercase= { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= get_model_to_tester_mapping(lowerCAmelCase ) __lowercase= get_model_to_tester_mapping(lowerCAmelCase ) __lowercase= { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __lowercase= { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase )
230
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase : Union[str, Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase : int = BASE_URL + "/user" # https://github.com/settings/tokens __lowerCAmelCase : Tuple = os.environ.get("USER_TOKEN", "") def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """Authorization""": f"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowerCamelCase__ , headers=lowerCamelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __UpperCAmelCase =5_0_0_0_3 __UpperCAmelCase =5_0_0_0_2 @require_sentencepiece @require_tokenizers class a__ ( _UpperCamelCase , unittest.TestCase ): lowerCamelCase : Any =PLBartTokenizer lowerCamelCase : Optional[Any] =None lowerCamelCase : str =False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = PLBartTokenizer(_UpperCAmelCase , language_codes='''base''' , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = PLBartTokenizer(_UpperCAmelCase , language_codes='''base''' , keep_accents=_UpperCAmelCase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) __lowerCamelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __lowerCamelCase = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = PLBartTokenizer(_UpperCAmelCase , language_codes='''multi''' , keep_accents=_UpperCAmelCase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) __lowerCamelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __lowerCamelCase = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): lowerCamelCase : Optional[Any] ="uclanlp/plbart-python-en_XX" lowerCamelCase : Dict =[ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] lowerCamelCase : List[str] =[ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] lowerCamelCase : Tuple =[ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict ): """simple docstring""" __lowerCamelCase = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) __lowerCamelCase = 1 return cls def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_00_03 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowerCamelCase = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] __lowerCamelCase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) __lowerCamelCase = 10 __lowerCamelCase = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_00_04, 5_00_01] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) __lowerCamelCase = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors='''pt''' ) __lowerCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors='''pt''' ) __lowerCamelCase = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors='''pt''' ) __lowerCamelCase = targets['''input_ids'''] __lowerCamelCase = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[1_50, 2_42, 2, 5_00_03]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_00_01, } , )
546
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): _A : Union[str, Any] = GPTSwaTokenizer _A : Optional[int] = False _A : Optional[int] = True _A : List[Any] = False def __lowerCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = GPTSwaTokenizer(__A , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , __A ): __UpperCAmelCase = 'This is a test' __UpperCAmelCase = 'This is a test' return input_text, output_text def __lowerCamelCase ( self ): __UpperCAmelCase = '<s>' __UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def __lowerCamelCase ( self ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__A ) , 2_000 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def __lowerCamelCase ( self ): __UpperCAmelCase = GPTSwaTokenizer(__A ) __UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(__A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [465, 287, 265, 631, 842] ) __UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( __A , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__A ) # fmt: off self.assertListEqual( __A , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __lowerCamelCase ( self ): __UpperCAmelCase = GPTSwaTokenizer(__A ) __UpperCAmelCase = ['This is a test', 'I was born in 92000, and this is falsé.'] __UpperCAmelCase = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__A , __A ): self.assertListEqual(tokenizer.encode_fast(__A ) , __A ) # Test that decode_fast returns the input text for text, token_ids in zip(__A , __A ): self.assertEqual(tokenizer.decode_fast(__A ) , __A ) @slow def __lowerCamelCase ( self ): __UpperCAmelCase = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off __UpperCAmelCase = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__A , )
716
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _A: str = logging.get_logger(__name__) _A: Optional[Any] = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class UpperCAmelCase ( UpperCAmelCase_ ): _A : Tuple = """autoformer""" _A : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , __A = None , __A = None , __A = "student_t" , __A = "nll" , __A = 1 , __A = [1, 2, 3, 4, 5, 6, 7] , __A = True , __A = 0 , __A = 0 , __A = 0 , __A = 0 , __A = None , __A = None , __A = 64 , __A = 2 , __A = 2 , __A = 2 , __A = 2 , __A = 32 , __A = 32 , __A = "gelu" , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 100 , __A = 0.0_2 , __A = True , __A=True , __A = 10 , __A = 25 , __A = 3 , **__A , ): # time series specific configuration __UpperCAmelCase = prediction_length __UpperCAmelCase = context_length if context_length is not None else prediction_length __UpperCAmelCase = distribution_output __UpperCAmelCase = loss __UpperCAmelCase = input_size __UpperCAmelCase = num_time_features __UpperCAmelCase = lags_sequence __UpperCAmelCase = scaling __UpperCAmelCase = num_dynamic_real_features __UpperCAmelCase = num_static_real_features __UpperCAmelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __UpperCAmelCase = cardinality else: __UpperCAmelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __UpperCAmelCase = embedding_dimension else: __UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCAmelCase = num_parallel_samples # Transformer architecture configuration __UpperCAmelCase = input_size * len(self.lags_sequence ) + self._number_of_features __UpperCAmelCase = d_model __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = decoder_layers __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = use_cache # Autoformer __UpperCAmelCase = label_length __UpperCAmelCase = moving_average __UpperCAmelCase = autocorrelation_factor super().__init__(is_encoder_decoder=__A , **__A ) @property def __lowerCamelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
617
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, *A, **A ): '''simple docstring''' super().__init__(*A, **A ) requires_backends(self, 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCamelCase_ ( self, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = {} if top_k is not None: SCREAMING_SNAKE_CASE : Optional[Any] = top_k return {}, {}, postprocess_params def __call__( self, A, **A ): '''simple docstring''' return super().__call__(A, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = load_image(A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(images=A, return_tensors=self.framework ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE : int = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE : str = model_outputs.logits.softmax(-1 )[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = probs.topk(A ) elif self.framework == "tf": SCREAMING_SNAKE_CASE : Optional[Any] = stable_softmax(model_outputs.logits, axis=-1 )[0] SCREAMING_SNAKE_CASE : int = tf.math.top_k(A, k=A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) SCREAMING_SNAKE_CASE : Optional[int] = scores.tolist() SCREAMING_SNAKE_CASE : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A, A )]
28
import os import sys import unittest __a: Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a: Tuple = os.path.join(git_repo_path, '''src''', '''transformers''') __a: Optional[Any] = ''' {0} = None ''' __a: List[Any] = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' __a: int = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(lowerCamelCase ) _UpperCAmelCase = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(lowerCamelCase , """tokenizers""" ) _UpperCAmelCase = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(lowerCamelCase , """tensorflow_text""" ) _UpperCAmelCase = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(lowerCamelCase , """sentencepiece_and_tokenizers""" ) _UpperCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(lowerCamelCase , """sentencepiece_and_tensorflow_text""" ) _UpperCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(lowerCamelCase , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , lowerCamelCase ) self.assertIn("""tensorflow_text""" , lowerCamelCase ) self.assertIn("""sentencepiece_and_tokenizers""" , lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(lowerCamelCase , """\nCONSTANT = None\n""" ) _UpperCAmelCase = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( lowerCamelCase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _UpperCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ _UpperCAmelCase = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ _UpperCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , lowerCamelCase )
108
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self ): lowerCAmelCase = 1 lowerCAmelCase = 3 lowerCAmelCase = (32, 32) lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ ) return image @property def __snake_case ( self ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowercase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(lowercase_ ) def __snake_case ( self ): lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.dummy_cond_unet_upscale lowerCAmelCase = DDPMScheduler() lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) lowerCAmelCase = self.dummy_vae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase = StableDiffusionUpscalePipeline( unet=lowercase_ , low_res_scheduler=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , max_noise_level=3_50 , ) lowerCAmelCase = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase = '''A painting of a squirrel eating a burger''' lowerCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , image=lowercase_ , generator=lowercase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , image=lowercase_ , generator=lowercase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=lowercase_ , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCAmelCase = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self ): lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.dummy_cond_unet_upscale lowerCAmelCase = DDPMScheduler() lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) lowerCAmelCase = self.dummy_vae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase = StableDiffusionUpscalePipeline( unet=lowercase_ , low_res_scheduler=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , max_noise_level=3_50 , ) lowerCAmelCase = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase = '''A painting of a squirrel eating a burger''' lowerCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images assert image.shape[0] == 2 lowerCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , image=lowercase_ , generator=lowercase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __snake_case ( self ): lowerCAmelCase = self.dummy_cond_unet_upscale lowerCAmelCase = DDPMScheduler() lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) lowerCAmelCase = self.dummy_vae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCAmelCase = unet.half() lowerCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCAmelCase = StableDiffusionUpscalePipeline( unet=lowercase_ , low_res_scheduler=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , max_noise_level=3_50 , ) lowerCAmelCase = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase = '''A painting of a squirrel eating a burger''' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='''np''' , ).images lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase = '''a cat sitting on a park bench''' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowercase_ , image=lowercase_ , generator=lowercase_ , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __snake_case ( self ): lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase = '''a cat sitting on a park bench''' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowercase_ , image=lowercase_ , generator=lowercase_ , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase = '''a cat sitting on a park bench''' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowercase_ , image=lowercase_ , generator=lowercase_ , num_inference_steps=5 , output_type='''np''' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
715
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase_ ="""hf-internal-testing/tiny-random-bert""" UpperCAmelCase_ =os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") UpperCAmelCase_ ="""9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): lowerCAmelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) with open(os.path.join(UpperCAmelCase_ , '''refs''' , '''main''' ) ) as f: lowerCAmelCase = f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , '''snapshots''' , UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # File is cached at the same place the second time. lowerCAmelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Using a specific revision to test the full commit hash. lowerCAmelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision='''9b8c223''' ) self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , '''snapshots''' , UpperCAmelCase_ , UpperCAmelCase_ ) ) def __snake_case ( self ): with self.assertRaisesRegex(UpperCAmelCase_ , '''is not a valid model identifier''' ): lowerCAmelCase = cached_file('''tiny-random-bert''' , UpperCAmelCase_ ) with self.assertRaisesRegex(UpperCAmelCase_ , '''is not a valid git identifier''' ): lowerCAmelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCAmelCase_ , '''does not appear to have a file named''' ): lowerCAmelCase = cached_file(UpperCAmelCase_ , '''conf''' ) def __snake_case ( self ): with self.assertRaisesRegex(UpperCAmelCase_ , '''does not appear to have a file named''' ): lowerCAmelCase = cached_file(UpperCAmelCase_ , '''conf''' ) with open(os.path.join(UpperCAmelCase_ , '''refs''' , '''main''' ) ) as f: lowerCAmelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , '''.no_exist''' , UpperCAmelCase_ , '''conf''' ) ) ) lowerCAmelCase = cached_file(UpperCAmelCase_ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) lowerCAmelCase = cached_file(UpperCAmelCase_ , '''conf''' , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) lowerCAmelCase = mock.Mock() lowerCAmelCase = 5_00 lowerCAmelCase = {} lowerCAmelCase = HTTPError lowerCAmelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase_ ) as mock_head: lowerCAmelCase = cached_file(UpperCAmelCase_ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase_ ) ) def __snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCAmelCase_ , revision='''ahaha''' ) lowerCAmelCase = get_file_from_repo('''bert-base-cased''' , UpperCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCAmelCase = json.loads(open(UpperCAmelCase_ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_68 ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = Path(UpperCAmelCase_ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , '''a.txt''' ) , str(UpperCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , '''b.txt''' ) )
33
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A_ ( _a ): lowerCAmelCase__ = ['image_processor'] lowerCAmelCase__ = 'SamImageProcessor' def __init__( self: Tuple ,__lowerCAmelCase: List[Any] ): '''simple docstring''' super().__init__(__lowerCAmelCase ) _lowerCamelCase : int = self.image_processor _lowerCamelCase : str = -10 _lowerCamelCase : Optional[Any] = self.image_processor.size["longest_edge"] def __call__( self: Dict ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.image_processor( __lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ,) # pop arguments that are not used in the foward but used nevertheless _lowerCamelCase : Union[str, Any] = encoding_image_processor["original_sizes"] if hasattr(__lowerCAmelCase ,"numpy" ): # Checks if Torch or TF tensor _lowerCamelCase : Dict = original_sizes.numpy() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._check_and_preprocess_points( input_points=__lowerCAmelCase ,input_labels=__lowerCAmelCase ,input_boxes=__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = self._normalize_and_convert( __lowerCAmelCase ,__lowerCAmelCase ,input_points=__lowerCAmelCase ,input_labels=__lowerCAmelCase ,input_boxes=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,) return encoding_image_processor def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Union[str, Any]="pt" ,): '''simple docstring''' if input_points is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size ,__lowerCAmelCase ,original_sizes[0] ) for point in input_points ] else: _lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size ,__lowerCAmelCase ,__lowerCAmelCase ) for point, original_size in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCamelCase, _lowerCamelCase : int = self._pad_points_and_labels(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = np.array(__lowerCAmelCase ) if input_labels is not None: _lowerCamelCase : Union[str, Any] = np.array(__lowerCAmelCase ) if input_boxes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): _lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size ,__lowerCAmelCase ,original_sizes[0] ,is_bounding_box=__lowerCAmelCase ) for box in input_boxes ] else: _lowerCamelCase : str = [ self._normalize_coordinates(self.target_size ,__lowerCAmelCase ,__lowerCAmelCase ,is_bounding_box=__lowerCAmelCase ) for box, original_size in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] _lowerCamelCase : List[str] = np.array(__lowerCAmelCase ) if input_boxes is not None: if return_tensors == "pt": _lowerCamelCase : str = torch.from_numpy(__lowerCAmelCase ) # boxes batch size of 1 by default _lowerCamelCase : Dict = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCamelCase : Tuple = tf.convert_to_tensor(__lowerCAmelCase ) # boxes batch size of 1 by default _lowerCamelCase : str = tf.expand_dims(__lowerCAmelCase ,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCamelCase : Dict = torch.from_numpy(__lowerCAmelCase ) # point batch size of 1 by default _lowerCamelCase : Any = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCamelCase : Tuple = tf.convert_to_tensor(__lowerCAmelCase ) # point batch size of 1 by default _lowerCamelCase : Union[str, Any] = tf.expand_dims(__lowerCAmelCase ,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCamelCase : Tuple = torch.from_numpy(__lowerCAmelCase ) # point batch size of 1 by default _lowerCamelCase : List[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCamelCase : Optional[Any] = tf.convert_to_tensor(__lowerCAmelCase ) # point batch size of 1 by default _lowerCamelCase : List[str] = tf.expand_dims(__lowerCAmelCase ,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = max([point.shape[0] for point in input_points] ) _lowerCamelCase : int = [] for i, point in enumerate(__lowerCAmelCase ): if point.shape[0] != expected_nb_points: _lowerCamelCase : str = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] ,axis=0 ) _lowerCamelCase : Dict = np.append(input_labels[i] ,[self.point_pad_value] ) processed_input_points.append(__lowerCAmelCase ) _lowerCamelCase : str = processed_input_points return input_points, input_labels def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: np.ndarray ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[str]=False ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : int = original_size _lowerCamelCase, _lowerCamelCase : Dict = self.image_processor._get_preprocess_shape(__lowerCAmelCase ,longest_edge=__lowerCAmelCase ) _lowerCamelCase : Dict = deepcopy(__lowerCAmelCase ).astype(__lowerCAmelCase ) if is_bounding_box: _lowerCamelCase : int = coords.reshape(-1 ,2 ,2 ) _lowerCamelCase : str = coords[..., 0] * (new_w / old_w) _lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCamelCase : Any = coords.reshape(-1 ,4 ) return coords def _lowercase ( self: int ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: str=None ,): '''simple docstring''' if input_points is not None: if hasattr(__lowerCAmelCase ,"numpy" ): # Checks for TF or Torch tensor _lowerCamelCase : Any = input_points.numpy().tolist() if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or not isinstance(input_points[0] ,__lowerCAmelCase ): raise ValueError("Input points must be a list of list of floating points." ) _lowerCamelCase : Union[str, Any] = [np.array(__lowerCAmelCase ) for input_point in input_points] else: _lowerCamelCase : Dict = None if input_labels is not None: if hasattr(__lowerCAmelCase ,"numpy" ): _lowerCamelCase : Any = input_labels.numpy().tolist() if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or not isinstance(input_labels[0] ,__lowerCAmelCase ): raise ValueError("Input labels must be a list of list integers." ) _lowerCamelCase : Any = [np.array(__lowerCAmelCase ) for label in input_labels] else: _lowerCamelCase : Tuple = None if input_boxes is not None: if hasattr(__lowerCAmelCase ,"numpy" ): _lowerCamelCase : str = input_boxes.numpy().tolist() if ( not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or not isinstance(input_boxes[0] ,__lowerCAmelCase ) or not isinstance(input_boxes[0][0] ,__lowerCAmelCase ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _lowerCamelCase : Any = [np.array(__lowerCAmelCase ).astype(np.floataa ) for box in input_boxes] else: _lowerCamelCase : List[Any] = None return input_points, input_labels, input_boxes @property def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(__lowerCAmelCase ) ) def _lowercase ( self: List[str] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: Tuple ): '''simple docstring''' return self.image_processor.post_process_masks(*__lowerCAmelCase ,**__lowerCAmelCase )
46
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : Optional[Any] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } snake_case_ : Tuple = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } snake_case_ : Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = SqueezeBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A_ ) != do_lower_case or normalizer_state.get("strip_accents" , A_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A_ ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(A_ , normalizer_state.pop("type" ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**A_ ) _UpperCamelCase = do_lower_case def a ( self , A_ , A_=None ): _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , A_ , A_ = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , A_ , A_ = None ): _UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
138
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : int =GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" snake_case__ : List[Any] =None ops.enable_eager_execution_internal() snake_case__ : Any =tf.config.list_physical_devices('''CPU''' ) if len(__SCREAMING_SNAKE_CASE ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) snake_case__ : Tuple =tf.config.list_logical_devices(device_type='''CPU''' ) snake_case__ : List[str] =tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): snake_case__ : List[str] =GradientAccumulator() snake_case__ : Any =tf.Variable([4.0, 3.0] ) snake_case__, snake_case__ : str =create_optimizer(5e-5 , 10 , 5 ) snake_case__ : Optional[int] =tf.Variable([0.0, 0.0] , trainable=__SCREAMING_SNAKE_CASE ) def accumulate_on_replica(__SCREAMING_SNAKE_CASE ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): with strategy.scope(): snake_case__ : Tuple =strategy.experimental_local_results(__SCREAMING_SNAKE_CASE ) local_variables[0].assign(__SCREAMING_SNAKE_CASE ) local_variables[1].assign(__SCREAMING_SNAKE_CASE ) strategy.run(__SCREAMING_SNAKE_CASE , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__SCREAMING_SNAKE_CASE ) def _check_local_values(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple =strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
408
from torch import nn class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__() snake_case__ : Tuple =class_size snake_case__ : List[Any] =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case__ : Optional[Any] =nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" snake_case__ : str =self.mlp(__SCREAMING_SNAKE_CASE ) return logits
408
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowercase (__lowerCamelCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , 'num_encoder_blocks' ) ) class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=6_4 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase__=[1, 4, 8, 1_6] , lowerCAmelCase__=[1, 2, 4, 8] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = num_encoder_blocks SCREAMING_SNAKE_CASE_ : int = sr_ratios SCREAMING_SNAKE_CASE_ : int = depths SCREAMING_SNAKE_CASE_ : Any = hidden_sizes SCREAMING_SNAKE_CASE_ : Dict = downsampling_rates SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Dict = num_labels SCREAMING_SNAKE_CASE_ : Tuple = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SegformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.num_labels SCREAMING_SNAKE_CASE_ : str = SegformerForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = SegformerForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : str = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = SegformerModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = SegformerConfigTester(self , config_class=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_UpperCamelCase ) @unittest.skip('SegFormer does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.attentions SCREAMING_SNAKE_CASE_ : Optional[int] = sum(self.model_tester.depths ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first attentions (first block, first layer) SCREAMING_SNAKE_CASE_ : str = (self.model_tester.image_size // 4) ** 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) SCREAMING_SNAKE_CASE_ : Tuple = (self.model_tester.image_size // 3_2) ** 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) SCREAMING_SNAKE_CASE_ : Any = len(_UpperCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : Any = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first attentions (first block, first layer) SCREAMING_SNAKE_CASE_ : Any = (self.model_tester.image_size // 4) ** 2 SCREAMING_SNAKE_CASE_ : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Dict = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCamelCase ): continue SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = model(**_UpperCamelCase ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = SegformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(images=_UpperCamelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Dict = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(images=_UpperCamelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Dict = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : str = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCamelCase , atol=1E-1 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(images=_UpperCamelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : str = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase , target_sizes=[(5_0_0, 3_0_0)] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase )
101
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
151
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase : Dict =NewType('DataClass', Any) lowerCAmelCase : Any =NewType('DataClassType', Any) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(_lowercase ,_lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = {str(_lowercase ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE__ : str_to_choice.get(_lowercase ,_lowercase ) def _UpperCAmelCase ( *, SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = dataclasses.MISSING ,SCREAMING_SNAKE_CASE__ = dataclasses.MISSING ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase : List[Any] = {} if aliases is not None: lowerCAmelCase : Optional[int] = aliases if help is not None: lowerCAmelCase : List[str] = help return dataclasses.field(metadata=_lowercase ,default=_lowercase ,default_factory=_lowercase ,**_lowercase ) class _a ( snake_case_ ): _UpperCamelCase: List[str] = 42 def __init__( self , lowercase_ , **lowercase_ ) -> str: # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase : Optional[Any] = ArgumentDefaultsHelpFormatter super().__init__(**__A ) if dataclasses.is_dataclass(__A ): lowerCAmelCase : Optional[int] = [dataclass_types] lowerCAmelCase : int = list(__A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__A ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> str: lowerCAmelCase : Dict = f"""--{field.name}""" lowerCAmelCase : Dict = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __A ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) lowerCAmelCase : Dict = kwargs.pop("""aliases""" , [] ) if isinstance(__A , __A ): lowerCAmelCase : int = [aliases] lowerCAmelCase : int = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(__A , """UnionType""" ) and isinstance(__A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__A ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field '{field.name}'.""" ) if type(__A ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase : Optional[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase : Dict = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase : str = ( field.type.__args__[0] if isinstance(__A , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase : str = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase : int = {} if origin_type is Literal or (isinstance(field.type , __A ) and issubclass(field.type , __A )): if origin_type is Literal: lowerCAmelCase : Optional[int] = field.type.__args__ else: lowerCAmelCase : Dict = [x.value for x in field.type] lowerCAmelCase : Dict = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: lowerCAmelCase : str = field.default else: lowerCAmelCase : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase : int = copy(__A ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase : Any = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase : Dict = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase : Dict = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase : Optional[int] = """?""" # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase : str = True elif isclass(__A ) and issubclass(__A , __A ): lowerCAmelCase : Tuple = field.type.__args__[0] lowerCAmelCase : str = """+""" if field.default_factory is not dataclasses.MISSING: lowerCAmelCase : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase : Dict = True else: lowerCAmelCase : Tuple = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase : List[str] = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase : List[Any] = field.default_factory() else: lowerCAmelCase : int = True parser.add_argument(__A , *__A , **__A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase : List[Any] = False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **__A ) def _snake_case ( self , lowercase_ ) -> List[Any]: if hasattr(__A , """_argument_group_name""" ): lowerCAmelCase : Optional[Any] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase : Optional[Any] = self try: lowerCAmelCase : Optional[int] = get_type_hints(__A ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__A ): lowerCAmelCase : Tuple = """.""".join(map(__A , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(__A ): if not field.init: continue lowerCAmelCase : Dict = type_hints[field.name] self._parse_dataclass_field(__A , __A ) def _snake_case ( self , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=None , lowercase_=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase : Tuple = [] if args_filename: args_files.append(Path(__A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase : Any = ArgumentParser() args_file_parser.add_argument(__A , type=__A , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase , lowerCAmelCase : Optional[Any] = args_file_parser.parse_known_args(args=__A ) lowerCAmelCase : Dict = vars(__A ).get(args_file_flag.lstrip("""-""" ) , __A ) if cmd_args_file_paths: args_files.extend([Path(__A ) for p in cmd_args_file_paths] ) lowerCAmelCase : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase : Tuple = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase , lowerCAmelCase : Tuple = self.parse_known_args(args=__A ) lowerCAmelCase : List[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase : int = {f.name for f in dataclasses.fields(__A ) if f.init} lowerCAmelCase : str = {k: v for k, v in vars(__A ).items() if k in keys} for k in keys: delattr(__A , __A ) lowerCAmelCase : int = dtype(**__A ) outputs.append(__A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _snake_case ( self , lowercase_ , lowercase_ = False ) -> Tuple[DataClass, ...]: lowerCAmelCase : Optional[int] = set(args.keys() ) lowerCAmelCase : Optional[int] = [] for dtype in self.dataclass_types: lowerCAmelCase : Optional[Any] = {f.name for f in dataclasses.fields(__A ) if f.init} lowerCAmelCase : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase : Optional[int] = dtype(**__A ) outputs.append(__A ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__A )}""" ) return tuple(__A ) def _snake_case ( self , lowercase_ , lowercase_ = False ) -> Tuple[DataClass, ...]: with open(Path(__A ) , encoding="""utf-8""" ) as open_json_file: lowerCAmelCase : List[Any] = json.loads(open_json_file.read() ) lowerCAmelCase : Optional[Any] = self.parse_dict(__A , allow_extra_keys=__A ) return tuple(__A ) def _snake_case ( self , lowercase_ , lowercase_ = False ) -> Tuple[DataClass, ...]: lowerCAmelCase : Dict = self.parse_dict(yaml.safe_load(Path(__A ).read_text() ) , allow_extra_keys=__A ) return tuple(__A )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : str = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : str = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : Optional[int] = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): def remove_articles(snake_case_ : Optional[Any] ): snake_case__ : str = re.compile(R"\b(a|an|the)\b" , re.UNICODE ) return re.sub(__UpperCamelCase , " " , __UpperCamelCase ) def white_space_fix(snake_case_ : Optional[Any] ): return " ".join(text.split() ) def remove_punc(snake_case_ : Dict ): snake_case__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int ): return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int ): snake_case__ : List[Any] = [any(compute_exact(__UpperCamelCase , __UpperCamelCase ) for ref in refs ) for pred, refs in zip(__UpperCamelCase , __UpperCamelCase )] return (sum(__UpperCamelCase ) / len(__UpperCamelCase )) * 100 def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : int , snake_case_ : Dict , snake_case_ : Union[str, Any] ): snake_case__ : Any = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case__ : Union[str, Any] = Counter(__UpperCamelCase ) snake_case__ : Tuple = Counter(__UpperCamelCase ) snake_case__ : List[Any] = Counter() for sgram, scount in sgramcounter.items(): snake_case__ : Dict = scount * numref snake_case__ : str = Counter(__UpperCamelCase ) snake_case__ : Any = Counter() for cgram, ccount in cgramcounter.items(): snake_case__ : Union[str, Any] = ccount * numref # KEEP snake_case__ : List[str] = sgramcounter_rep & cgramcounter_rep snake_case__ : int = keepgramcounter_rep & rgramcounter snake_case__ : List[Any] = sgramcounter_rep & rgramcounter snake_case__ : Tuple = 0 snake_case__ : Optional[int] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = 1 if len(__UpperCamelCase ) > 0: snake_case__ : Any = keeptmpscorea / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case__ : str = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case__ : Union[str, Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case__ : Optional[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case__ : int = sgramcounter_rep - cgramcounter_rep snake_case__ : List[Any] = delgramcounter_rep - rgramcounter snake_case__ : Tuple = sgramcounter_rep - rgramcounter snake_case__ : int = 0 snake_case__ : Optional[int] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Any = 1 if len(__UpperCamelCase ) > 0: snake_case__ : Tuple = deltmpscorea / len(__UpperCamelCase ) # ADDITION snake_case__ : int = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case__ : List[str] = set(__UpperCamelCase ) & set(__UpperCamelCase ) snake_case__ : Tuple = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case__ : Tuple = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : str = 1 snake_case__ : Any = 1 if len(__UpperCamelCase ) > 0: snake_case__ : Optional[int] = addtmpscore / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: snake_case__ : Any = addtmpscore / len(__UpperCamelCase ) snake_case__ : Dict = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case__ : List[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Any ): snake_case__ : Optional[int] = len(__UpperCamelCase ) snake_case__ : str = ssent.split(" " ) snake_case__ : Tuple = csent.split(" " ) snake_case__ : List[Any] = [] snake_case__ : Dict = [] snake_case__ : int = [] snake_case__ : Union[str, Any] = [] snake_case__ : str = [] snake_case__ : Dict = [] snake_case__ : Any = [] snake_case__ : List[str] = [] snake_case__ : str = [] snake_case__ : Tuple = [] for rsent in rsents: snake_case__ : List[Any] = rsent.split(" " ) snake_case__ : str = [] snake_case__ : Dict = [] snake_case__ : str = [] ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case__ : Optional[Any] = ragrams[i] + " " + ragrams[i + 1] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case__ : List[str] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case__ : Tuple = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case__ : List[Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case__ : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case__ : int = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case__ : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case__ : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case__ : List[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(__UpperCamelCase ) (snake_case__) : Optional[int] = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case__) : Optional[int] = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case__) : Union[str, Any] = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case__) : Dict = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case__ : Any = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case__ : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case__ : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case__ : Any = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[int] = True , snake_case_ : Dict = "13a" , snake_case_ : Union[str, Any] = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case__ : Union[str, Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case__ : List[Any] = sacrebleu.metrics.bleu._get_tokenizer(__UpperCamelCase )()(__UpperCamelCase ) else: snake_case__ : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__UpperCamelCase ) elif tokenizer == "moses": snake_case__ : List[Any] = sacremoses.MosesTokenizer().tokenize(__UpperCamelCase , return_str=__UpperCamelCase , escape=__UpperCamelCase ) elif tokenizer == "penn": snake_case__ : Any = sacremoses.MosesTokenizer().penn_tokenize(__UpperCamelCase , return_str=__UpperCamelCase ) else: snake_case__ : str = sentence if not return_str: snake_case__ : Union[str, Any] = normalized_sent.split() return normalized_sent def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Dict ): if not (len(__UpperCamelCase ) == len(__UpperCamelCase ) == len(__UpperCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) snake_case__ : Tuple = 0 for src, pred, refs in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): sari_score += SARIsent(normalize(__UpperCamelCase ) , normalize(__UpperCamelCase ) , [normalize(__UpperCamelCase ) for sent in refs] ) snake_case__ : str = sari_score / len(__UpperCamelCase ) return 100 * sari_score def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]="exp" , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=False , snake_case_ : str=False , snake_case_ : Dict=False , ): snake_case__ : Union[str, Any] = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] snake_case__ : Optional[Any] = sacrebleu.corpus_bleu( __UpperCamelCase , __UpperCamelCase , smooth_method=__UpperCamelCase , smooth_value=__UpperCamelCase , force=__UpperCamelCase , lowercase=__UpperCamelCase , use_effective_order=__UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] , __A : Union[str, Any] , __A : Any ): snake_case__ : Optional[int] = {} result.update({"sari": compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({"exact": compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
297
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a__ : List[str] = flax_key_tuple[:-1] + ("weight",) a__ : Optional[int] = torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer a__ : Tuple = flax_key_tuple[:-1] + ("weight",) a__ : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ : str = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if "metadata" in layer: a__ : Union[str, Any] = layer.split("metadata" ) a__ : Any = "".join(split_layer[0] )[:-1] a__ : Optional[int] = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: a__ : Optional[int] = layer.split("kvstore" ) a__ : Union[str, Any] = "".join(split_layer[0] )[:-1] a__ : Optional[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: a__ : Any = layer.split("/" ) a__ : Union[str, Any] = "/".join(split_layer[:-1] ) a__ : Tuple = (split_layer[-1],) if "kvstore/path" in layer: a__ : Tuple = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: a__ : int = "file" else: a__ : List[str] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: a__ : List[Any] = rename_keys(__UpperCamelCase ) a__ : Tuple = {} for k, v in current_block.items(): a__ : str = v a__ : Optional[int] = new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> Any: a__ : Optional[Any] = convert_file_size_to_int(__UpperCamelCase ) a__ : Tuple = [] a__ : Dict = {} a__ : str = 0 a__ : Tuple = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: a__ : Any = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] a__ : Tuple = flatten_dict(__UpperCamelCase , sep="/" ) a__ : Any = {} for layer in checkpoint_info.keys(): a__ , a__ , a__ : Optional[Any] = get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: a__ : int = content else: a__ : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a__ : Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a__ : Tuple = torch.tensor(__UpperCamelCase ) a__ : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a__ , a__ : int = rename_base_flax_keys(tuple(key.split("/" ) ) , __UpperCamelCase ) a__ : Union[str, Any] = "/".join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a__ : int = os.path.join( __UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block a__ : int = {} a__ : Optional[int] = 0 a__ : List[str] = raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block a__ : Optional[int] = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a__ : int = {} a__ : Tuple = {} for idx, shard in enumerate(__UpperCamelCase ): a__ : Tuple = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} a__ : Optional[int] = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) a__ : List[str] = shard for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : int = {"total_size": total_size} a__ : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" ) as f: a__ : List[str] = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE( ) -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a__ : Any = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) a__ : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) a__ : str = TaTokenizer.from_pretrained("t5-small" ) a__ : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." a__ : Optional[int] = tokenizer(__UpperCamelCase , return_tensors="pt" ).input_ids a__ : Optional[Any] = model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
191
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a_ : UpperCamelCase_ : int UpperCamelCase_ : Node | None = None UpperCamelCase_ : Node | None = None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Node(1 ) lowerCAmelCase__ = Node(2 ) lowerCAmelCase__ = Node(3 ) lowerCAmelCase__ = Node(4 ) lowerCAmelCase__ = Node(5 ) return tree def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] if root is None: return output lowerCAmelCase__ = deque([root] ) while process_queue: lowerCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if root is None: return [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = height(lowerCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = 0 return output def _UpperCAmelCase ( ): # Main function for testing. """simple docstring""" lowerCAmelCase__ = make_tree() print(f"""In-order Traversal: {inorder(lowerCamelCase__ )}""" ) print(f"""Pre-order Traversal: {preorder(lowerCamelCase__ )}""" ) print(f"""Post-order Traversal: {postorder(lowerCamelCase__ )}""" , """\n""" ) print(f"""Height of Tree: {height(lowerCamelCase__ )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowerCamelCase__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowerCamelCase__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase__ , level=lowerCamelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a ( __snake_case : Any, __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ :List[str] = torch.load(__snake_case, map_location='''cpu''' ) UpperCAmelCase_ :Optional[Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ :str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ :int = v else: UpperCAmelCase_ :str = v UpperCAmelCase_ :Dict = chkpt['''params'''] UpperCAmelCase_ :Dict = {n: v for n, v in config.items() if not isinstance(__snake_case, (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ :Optional[Any] = chkpt['''dico_word2id'''] UpperCAmelCase_ :Optional[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''', '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ :int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ :int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ :Tuple = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(__snake_case, __snake_case ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case, indent=2 ) + '''\n''' ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case, indent=2 ) + '''\n''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
608
"""simple docstring""" import os import sys import unittest __lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCamelCase = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :Tuple = find_backend(''' if not is_torch_available():''' ) self.assertEqual(snake_case , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase_ :List[str] = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(snake_case , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase_ :str = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(snake_case , '''torch_and_transformers_and_onnx''' ) def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , snake_case ) self.assertIn('''torch_and_transformers''' , snake_case ) self.assertIn('''flax_and_transformers''' , snake_case ) self.assertIn('''torch_and_transformers_and_onnx''' , snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(snake_case , '''\nCONSTANT = None\n''' ) UpperCAmelCase_ :Tuple = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( snake_case , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) UpperCAmelCase_ :int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' UpperCAmelCase_ :int = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(snake_case , snake_case ) def snake_case_ ( self : Any ): UpperCAmelCase_ :int = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' UpperCAmelCase_ :Optional[int] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , snake_case )
608
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 def __init__( self : Any , a_ : UNetaDModel , a_ : KarrasVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Dict , a_ : int = 1 , a_ : int = 50 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : List[str] , ): """simple docstring""" __snake_case = self.unet.config.sample_size __snake_case = (batch_size, 3, img_size, img_size) __snake_case = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __snake_case = randn_tensor(a_ , generator=a_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __snake_case = self.scheduler.schedule[t] __snake_case = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __snake_case , __snake_case = self.scheduler.add_noise_to_input(a_ , a_ , generator=a_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __snake_case = self.scheduler.step(a_ , a_ , a_ , a_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __snake_case = self.scheduler.step_correct( a_ , a_ , a_ , a_ , step_output.prev_sample , step_output["derivative"] , ) __snake_case = step_output.prev_sample __snake_case = (sample / 2 + 0.5).clamp(0 , 1 ) __snake_case = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE (A_ ): """simple docstring""" __a ='''microsoft/speecht5_tts''' __a =( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) __a ='''text_reader''' __a =SpeechTaProcessor __a =SpeechTaForTextToSpeech __a =SpeechTaHifiGan __a =['''text'''] __a =['''audio'''] def UpperCamelCase__ ( self : str ): if self.post_processor is None: _a = """microsoft/speecht5_hifigan""" super().setup() def UpperCamelCase__ ( self : Tuple , __a : str , __a : List[str]=None ): _a = self.pre_processor(text=__a , return_tensors="pt" , truncation=__a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _a = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _a = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self : Optional[Any] , __a : Any ): with torch.no_grad(): return self.model.generate_speech(**__a ) def UpperCamelCase__ ( self : List[str] , __a : Any ): with torch.no_grad(): return self.post_processor(__a ).cpu().detach()
692
from copy import deepcopy class __A : def __init__(self , __magic_name__ = None , __magic_name__ = None ): if arr is None and size is not None: lowerCamelCase__ : int = size lowerCamelCase__ : Union[str, Any] = [0] * size elif arr is not None: self.init(__magic_name__ ) else: raise ValueError("""Either arr or size must be specified""" ) def _snake_case (self , __magic_name__ ): lowerCamelCase__ : str = len(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = deepcopy(__magic_name__ ) for i in range(1 , self.size ): lowerCamelCase__ : List[Any] = self.next_(__magic_name__ ) if j < self.size: self.tree[j] += self.tree[i] def _snake_case (self ): lowerCamelCase__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCamelCase__ : List[str] = self.next_(__magic_name__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _snake_case (__magic_name__ ): return index + (index & (-index)) @staticmethod def _snake_case (__magic_name__ ): return index - (index & (-index)) def _snake_case (self , __magic_name__ , __magic_name__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCamelCase__ : int = self.next_(__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): self.add(__magic_name__ , value - self.get(__magic_name__ ) ) def _snake_case (self , __magic_name__ ): if right == 0: return 0 lowerCamelCase__ : Optional[int] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCamelCase__ : Dict = self.prev(__magic_name__ ) return result def _snake_case (self , __magic_name__ , __magic_name__ ): return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ ) def _snake_case (self , __magic_name__ ): return self.query(__magic_name__ , index + 1 ) def _snake_case (self , __magic_name__ ): value -= self.tree[0] if value < 0: return -1 lowerCamelCase__ : Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCamelCase__ : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
157
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __A = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } __A = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = create_model( 'HTSAT-tiny' , 'roberta' , _SCREAMING_SNAKE_CASE , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=_SCREAMING_SNAKE_CASE , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :int = {} lowerCAmelCase__ :Optional[Any] = r'.*sequential.(\d+).*' lowerCAmelCase__ :str = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase__ :Any = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # replace sequential layers with list lowerCAmelCase__ :int = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) lowerCAmelCase__ :Tuple = key.replace(F"sequential.{sequential_layer}." , F"layers.{int(_SCREAMING_SNAKE_CASE )//3}.linear." ) elif re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCAmelCase__ :List[str] = 1 if projecton_layer == 0 else 2 lowerCAmelCase__ :List[Any] = key.replace(F"_projection.{projecton_layer}." , F"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCAmelCase__ :List[str] = value lowerCAmelCase__ :Union[str, Any] = mixed_qkv.size(0 ) // 3 lowerCAmelCase__ :List[str] = mixed_qkv[:qkv_dim] lowerCAmelCase__ :List[str] = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCAmelCase__ :Optional[Any] = mixed_qkv[qkv_dim * 2 :] lowerCAmelCase__ :int = query_layer lowerCAmelCase__ :Tuple = key_layer lowerCAmelCase__ :Optional[int] = value_layer else: lowerCAmelCase__ :Optional[Any] = value return model_state_dict def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = init_clap(_SCREAMING_SNAKE_CASE , enable_fusion=_SCREAMING_SNAKE_CASE ) clap_model.eval() lowerCAmelCase__ :str = clap_model.state_dict() lowerCAmelCase__ :Dict = rename_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = ClapConfig() lowerCAmelCase__ :str = enable_fusion lowerCAmelCase__ :int = ClapModel(_SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __A = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
560
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = UNetaDModel __magic_name__ :Tuple = """sample""" @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 4 lowerCAmelCase__ :Dict = 3 lowerCAmelCase__ :int = (3_2, 3_2) lowerCAmelCase__ :List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = torch.tensor([1_0] ).to(__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } lowerCAmelCase__ :int = self.dummy_input return init_dict, inputs_dict class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = UNetaDModel __magic_name__ :List[str] = """sample""" @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 4 lowerCAmelCase__ :List[Any] = 4 lowerCAmelCase__ :str = (3_2, 3_2) lowerCAmelCase__ :Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = torch.tensor([1_0] ).to(__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (4, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (4, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowerCAmelCase__ :Dict = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase ) model_accelerate.to(__UpperCAmelCase ) model_accelerate.eval() lowerCAmelCase__ :List[str] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase__ :List[str] = noise.to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = torch.tensor([1_0] * noise.shape[0] ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model_accelerate(__UpperCAmelCase , __UpperCAmelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCAmelCase , low_cpu_mem_usage=__UpperCAmelCase ) model_normal_load.to(__UpperCAmelCase ) model_normal_load.eval() lowerCAmelCase__ :Optional[int] = model_normal_load(__UpperCAmelCase , __UpperCAmelCase )['sample'] assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase__ :int = noise.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = torch.tensor([1_0] * noise.shape[0] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Tuple = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ :Tuple = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) ) class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = UNetaDModel __magic_name__ :Optional[int] = """sample""" @property def snake_case ( self , __UpperCAmelCase=(3_2, 3_2) ): '''simple docstring''' lowerCAmelCase__ :Dict = 4 lowerCAmelCase__ :int = 3 lowerCAmelCase__ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=__UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowerCAmelCase__ :Any = self.dummy_input return init_dict, inputs_dict @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.dummy_input lowerCAmelCase__ :Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = noise lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 4 lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :Dict = (2_5_6, 2_5_6) lowerCAmelCase__ :int = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = torch.tensor(batch_size * [1E-4] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :str = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ :int = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 4 lowerCAmelCase__ :List[Any] = 3 lowerCAmelCase__ :Dict = (3_2, 3_2) lowerCAmelCase__ :Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = torch.tensor(batch_size * [1E-4] ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , __UpperCAmelCase ).sample lowerCAmelCase__ :Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ :Any = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) ) def snake_case ( self ): '''simple docstring''' pass
560
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __A ( a_ : List[Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __A ( a_ : Dict ,a_ : List[Any] ): if args.student_type == "roberta": lowerCAmelCase : Tuple = False elif args.student_type == "gpt2": lowerCAmelCase : Tuple = False def __A ( a_ : Union[str, Any] ,a_ : Optional[Any] ): if args.student_type == "roberta": lowerCAmelCase : List[str] = False def __A ( ): lowerCAmelCase : Tuple = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" ,action="store_true" ,help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" ,type=a_ ,required=a_ ,help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" ,type=a_ ,required=a_ ,help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." ,) parser.add_argument( "--student_type" ,type=a_ ,choices=["distilbert", "roberta", "gpt2"] ,required=a_ ,help="The student type (DistilBERT, RoBERTa)." ,) parser.add_argument("--student_config" ,type=a_ ,required=a_ ,help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" ,default=a_ ,type=a_ ,help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" ,choices=["bert", "roberta", "gpt2"] ,required=a_ ,help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" ,type=a_ ,required=a_ ,help="The teacher model." ) parser.add_argument("--temperature" ,default=2.0 ,type=a_ ,help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" ,default=0.5 ,type=a_ ,help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" ,default=0.0 ,type=a_ ,help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." ,) parser.add_argument("--alpha_clm" ,default=0.5 ,type=a_ ,help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" ,default=0.0 ,type=a_ ,help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" ,default=0.0 ,type=a_ ,help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" ,action="store_true" ,help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" ,default=0.1_5 ,type=a_ ,help="Proportion of tokens for which we need to make a prediction." ,) parser.add_argument("--word_mask" ,default=0.8 ,type=a_ ,help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" ,default=0.1 ,type=a_ ,help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" ,default=0.1 ,type=a_ ,help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" ,default=0.7 ,type=a_ ,help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." ,) parser.add_argument("--token_counts" ,type=a_ ,help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" ,action="store_true" ,help="If true, compute the distillation loss only the [MLM] prediction distribution." ,) parser.add_argument( "--freeze_pos_embs" ,action="store_true" ,help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." ,) parser.add_argument( "--freeze_token_type_embds" ,action="store_true" ,help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." ,) parser.add_argument("--n_epoch" ,type=a_ ,default=3 ,help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" ,type=a_ ,default=5 ,help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" ,action="store_false" ,help="If true, group sequences that have similar length into the same batch. Default is true." ,) parser.add_argument( "--gradient_accumulation_steps" ,type=a_ ,default=5_0 ,help="Gradient accumulation for larger training batches." ,) parser.add_argument("--warmup_prop" ,default=0.0_5 ,type=a_ ,help="Linear warmup proportion." ) parser.add_argument("--weight_decay" ,default=0.0 ,type=a_ ,help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" ,default=5e-4 ,type=a_ ,help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" ,default=1e-6 ,type=a_ ,help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" ,default=5.0 ,type=a_ ,help="Max gradient norm." ) parser.add_argument("--initializer_range" ,default=0.0_2 ,type=a_ ,help="Random initialization range." ) parser.add_argument( "--fp16" ,action="store_true" ,help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ,) parser.add_argument( "--fp16_opt_level" ,type=a_ ,default="O1" ,help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) ,) parser.add_argument("--n_gpu" ,type=a_ ,default=1 ,help="Number of GPUs in the node." ) parser.add_argument("--local_rank" ,type=a_ ,default=-1 ,help="Distributed training - Local rank" ) parser.add_argument("--seed" ,type=a_ ,default=5_6 ,help="Random seed" ) parser.add_argument("--log_interval" ,type=a_ ,default=5_0_0 ,help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" ,type=a_ ,default=4_0_0_0 ,help="Checkpoint interval." ) lowerCAmelCase : Tuple = parser.parse_args() sanity_checks(a_ ) # ARGS # init_gpu_params(a_ ) set_seed(a_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path ,"parameters.json" ) ,"w" ) as f: json.dump(vars(a_ ) ,a_ ,indent=4 ) git_log(args.dump_path ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = MODEL_CLASSES[args.student_type] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase : Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase : List[str] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase : Tuple = tokenizer.all_special_tokens.index(a_ ) lowerCAmelCase : List[str] = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) lowerCAmelCase : List[Any] = special_tok_ids lowerCAmelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file ,"rb" ) as fp: lowerCAmelCase : Any = pickle.load(a_ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts ,"rb" ) as fp: lowerCAmelCase : List[Any] = pickle.load(a_ ) lowerCAmelCase : int = np.maximum(a_ ,1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase : List[Any] = 0.0 # do not predict special tokens lowerCAmelCase : Tuple = torch.from_numpy(a_ ) else: lowerCAmelCase : Dict = None lowerCAmelCase : int = LmSeqsDataset(params=a_ ,data=a_ ) logger.info("Data loader created." ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) lowerCAmelCase : Union[str, Any] = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase : List[str] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowerCAmelCase : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights ,config=a_ ) else: lowerCAmelCase : int = student_model_class(a_ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # lowerCAmelCase : Optional[Any] = teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=a_ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a_ ,a_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a_ ,a_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase : Tuple = Distiller( params=a_ ,dataset=a_ ,token_probs=a_ ,student=a_ ,teacher=a_ ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
525
'''simple docstring''' from __future__ import annotations lowerCAmelCase = [] def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ): for i in range(len(a_ ) ): if board[row][i] == 1: return False for i in range(len(a_ ) ): if board[i][column] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ): if board[i][j] == 1: return False return True def __A ( a_ : list[list[int]] ,a_ : int ): if row >= len(a_ ): solution.append(a_ ) printboard(a_ ) print() return True for i in range(len(a_ ) ): if is_safe(a_ ,a_ ,a_ ): lowerCAmelCase : Dict = 1 solve(a_ ,row + 1 ) lowerCAmelCase : Optional[int] = 0 return False def __A ( a_ : list[list[int]] ): for i in range(len(a_ ) ): for j in range(len(a_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCAmelCase = 8 lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
525
1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000000 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : List[Any] = FileLock(str(tmpdir / "foo.lock" ) ) __UpperCAmelCase : List[str] = FileLock(str(tmpdir / "foo.lock" ) ) __UpperCAmelCase : Union[str, Any] = 0.01 with locka.acquire(): with pytest.raises(snake_case__ ): __UpperCAmelCase : List[str] = time.time() locka.acquire(snake_case__ ) assert time.time() - _start > timeout def _UpperCamelCase ( snake_case__ ) -> List[Any]: __UpperCAmelCase : Any = "a" * 1000 + ".lock" __UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __UpperCAmelCase : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case__ ): locka.acquire(0 )
382
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = "detr" lowerCamelCase__: Tuple = ["past_key_values"] lowerCamelCase__: Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[Any] , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple=None , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: Dict=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[Any]=6 , __lowerCamelCase: Optional[int]=20_48 , __lowerCamelCase: Union[str, Any]=8 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Dict=True , __lowerCamelCase: int="relu" , __lowerCamelCase: Any=2_56 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Any="sine" , __lowerCamelCase: str="resnet50" , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Dict=1 , __lowerCamelCase: List[Any]=5 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Any=1 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Dict=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Optional[Any]=0.1 , **__lowerCamelCase: Tuple , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = backbone_config.get("model_type" ) __UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Optional[Any] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = None, None, None __UpperCAmelCase : Union[str, Any] = use_timm_backbone __UpperCAmelCase : Dict = backbone_config __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[str] = num_queries __UpperCAmelCase : Any = d_model __UpperCAmelCase : Union[str, Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : str = decoder_ffn_dim __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : Optional[Any] = decoder_attention_heads __UpperCAmelCase : int = dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Dict = init_std __UpperCAmelCase : List[str] = init_xavier_std __UpperCAmelCase : Union[str, Any] = encoder_layerdrop __UpperCAmelCase : List[Any] = decoder_layerdrop __UpperCAmelCase : List[str] = encoder_layers __UpperCAmelCase : List[Any] = auxiliary_loss __UpperCAmelCase : Optional[Any] = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : Dict = use_pretrained_backbone __UpperCAmelCase : str = dilation # Hungarian matcher __UpperCAmelCase : Tuple = class_cost __UpperCAmelCase : Union[str, Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Tuple = mask_loss_coefficient __UpperCAmelCase : List[Any] = dice_loss_coefficient __UpperCAmelCase : Optional[int] = bbox_loss_coefficient __UpperCAmelCase : List[Any] = giou_loss_coefficient __UpperCAmelCase : Dict = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: int ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: Union[str, Any] ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: Optional[Any] ) -> Dict: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Dict[str, any]: __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: int = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: int ) -> int: return 12
382
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase( __A , __A , __A ): def get_masked_lm_array(__A ): UpperCAmelCase = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_array(__A ): UpperCAmelCase = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_layer_array(__A , __A ): UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_attention_layer_array(__A , __A , __A ): UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) UpperCAmelCase = array.reshape(__A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) print(F"Loading model based on config from {config_path}..." ) UpperCAmelCase = BertConfig.from_json_file(__A ) UpperCAmelCase = BertForMaskedLM(__A ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase = layer.attention.self UpperCAmelCase = get_encoder_attention_layer_array( __A , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase = layer.attention.output UpperCAmelCase = get_encoder_attention_layer_array( __A , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/gamma" ) UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase = layer.intermediate UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/kernel" ) UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/bias" ) # Output UpperCAmelCase = layer.output UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/kernel" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/bias" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/gamma" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase = model.cls.predictions.transform UpperCAmelCase = get_masked_lm_array("dense/kernel" ) UpperCAmelCase = get_masked_lm_array("dense/bias" ) UpperCAmelCase = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase = BertPooler(config=__A ) UpperCAmelCase = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__A ) # Integration test - should load without any errors ;) UpperCAmelCase = BertForMaskedLM.from_pretrained(__A ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowerCAmelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
711
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
0
'''simple docstring''' from math import factorial def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) __a : Tuple = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __a : Dict = float(factorial(_SCREAMING_SNAKE_CASE ) ) coefficient /= factorial(_SCREAMING_SNAKE_CASE ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
476
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __a : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __a : Optional[int] = model(__a )['last_hidden_state'] __a : Optional[int] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __a : List[str] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
476
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def __magic_name__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , 2 ).float() a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) a_ = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) a_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE ) a_ = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE ) a_ = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) a_ = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE ) a_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = self.num_labels a_ = FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): a_ = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __magic_name__ ( self ): a_ = FlaubertModelTester(self ) a_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def __magic_name__ ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def __magic_name__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=_SCREAMING_SNAKE_CASE ) a_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) a_ = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self ): a_ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) a_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a_ = model(_SCREAMING_SNAKE_CASE )[0] a_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) a_ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
403
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase_ ( unittest.TestCase ): def __magic_name__ ( self ): a_ = 10 def __magic_name__ ( self ): a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def __magic_name__ ( self ): a_ = """""" a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def __magic_name__ ( self ): a_ = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) a_ = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = ["""It was the best of times."""] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 0 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 23 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 1 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) np.testing.assert_array_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
403
1
'''simple docstring''' from __future__ import annotations A : Dict = [] def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for i in range(len(snake_case__ ) ): if board[row][i] == 1: return False for i in range(len(snake_case__ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , len(snake_case__ ) ) ): if board[i][j] == 1: return False return True def _a ( lowerCamelCase_ , lowerCamelCase_ ): if row >= len(snake_case__ ): solution.append(snake_case__ ) printboard(snake_case__ ) print() return True for i in range(len(snake_case__ ) ): if is_safe(snake_case__ , snake_case__ , snake_case__ ): snake_case : Optional[Any] =1 solve(snake_case__ , row + 1 ) snake_case : int =0 return False def _a ( lowerCamelCase_ ): for i in range(len(snake_case__ ) ): for j in range(len(snake_case__ ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) A : Tuple = 8 A : int = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
349
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( lowerCamelCase__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _UpperCamelCase :int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCamelCase :Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCamelCase :Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCamelCase :List[str] = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCamelCase :Optional[Any] = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , use_clipped_model_output=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample _UpperCamelCase :str = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase :int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase :Union[str, Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
355
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (_snake_case , unittest.TestCase ): _lowercase : Union[str, Any] = DiTPipeline _lowercase : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowercase : Any = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowercase : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowercase : List[str] = False def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) _snake_case : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=lowerCAmelCase__ , ) _snake_case : Optional[Any] = AutoencoderKL() _snake_case : Union[str, Any] = DDIMScheduler() _snake_case : Dict = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def UpperCAmelCase_ ( self , lowercase__ , lowercase__=0 ) -> Tuple: """simple docstring""" if str(lowerCAmelCase__ ).startswith('''mps''' ): _snake_case : List[Any] = torch.manual_seed(lowerCAmelCase__ ) else: _snake_case : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _snake_case : Optional[Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = '''cpu''' _snake_case : str = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) _snake_case : Any = pipe(**lowerCAmelCase__ ).images _snake_case : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _snake_case : List[Any] = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _snake_case : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[int] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _snake_case : int = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _snake_case : int = pipe.get_label_ids(lowerCAmelCase__ ) _snake_case : List[str] = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : str = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _snake_case : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _snake_case : List[Any] = ['''vase''', '''umbrella'''] _snake_case : List[Any] = pipe.get_label_ids(lowerCAmelCase__ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : Dict = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , ) -> Tuple: __snake_case : Union[str, Any] = parent __snake_case : Dict = 13 __snake_case : Tuple = 7 __snake_case : Dict = 30 __snake_case : Any = self.seq_length + self.mem_len __snake_case : int = 15 __snake_case : Union[str, Any] = True __snake_case : List[Any] = True __snake_case : List[Any] = 99 __snake_case : Optional[int] = [10, 50, 80] __snake_case : List[str] = 32 __snake_case : List[Any] = 32 __snake_case : int = 4 __snake_case : Optional[Any] = 8 __snake_case : Union[str, Any] = 128 __snake_case : Optional[Any] = 2 __snake_case : Any = 2 __snake_case : str = None __snake_case : Optional[int] = 1 __snake_case : str = 0 __snake_case : Union[str, Any] = 3 __snake_case : Tuple = self.vocab_size - 1 __snake_case : List[str] = 0.01 def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __snake_case ( self : Any ) -> Union[str, Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Optional[Any]: __snake_case : List[str] = TFTransfoXLModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Optional[Any] = {"input_ids": input_ids_a, "mems": mems_a} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int ) -> Dict: __snake_case : int = TFTransfoXLLMHeadModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Tuple = {"input_ids": input_ids_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() __snake_case , __snake_case : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() __snake_case : List[str] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Optional[int] ) -> List[str]: __snake_case : str = TFTransfoXLForSequenceClassification(lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Tuple = config_and_inputs __snake_case : Dict = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : List[Any] = () if is_tf_available() else () __UpperCAmelCase : Dict = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : int = False def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __snake_case ( self : int ) -> int: __snake_case : List[Any] = TFTransfoXLModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=lowerCamelCase , d_embed=37 ) def __snake_case ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ) -> Dict: self.model_tester.set_seed() __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: self.model_tester.set_seed() __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Tuple: __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case : str = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __snake_case : int = model.get_output_embeddings() assert isinstance(lowerCamelCase , tf.keras.layers.Layer ) __snake_case : Optional[Any] = model.get_bias() assert name is None else: __snake_case : Optional[int] = model.get_output_embeddings() assert x is None __snake_case : Tuple = model.get_bias() assert name is None def __snake_case ( self : List[Any] ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __snake_case ( self : Optional[int] ) -> Dict: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = TFTransfoXLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def __snake_case ( self : str ) -> Optional[int]: pass @require_tf class a (unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def __snake_case ( self : List[Any] ) -> Tuple: __snake_case : Dict = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __snake_case : Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case : Optional[int] = model.generate(lowerCamelCase , max_length=200 , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase )
81
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __lowercase = getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE="val" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="summarization" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE="" , **_SCREAMING_SNAKE_CASE , ): lowerCAmelCase_ : List[Any] =str(_SCREAMING_SNAKE_CASE ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Union[str, Any] =Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict =save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : List[Any] =AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).cuda() if fpaa: lowerCAmelCase_ : List[str] =model.half() # determine if we need to increase num_beams use_task_specific_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # update config with task specific params lowerCAmelCase_ : Union[str, Any] =generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase_ : List[Any] =num_return_sequences lowerCAmelCase_ : List[Any] =AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase_ : List[str] =tokenizer.model_max_length if prefix is None: lowerCAmelCase_ : Optional[int] =prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' lowerCAmelCase_ : Dict =SeqaSeqDataset( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_target_length=1024 , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase_ : Optional[int] =ds.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=_SCREAMING_SNAKE_CASE , add_extra_examples=_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Any =DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) lowerCAmelCase_ : List[Any] =[] for batch in tqdm(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : str =model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_SCREAMING_SNAKE_CASE , num_beams=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase_ : Optional[Any] =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : List[Any] =batch['''ids'''] if num_return_sequences > 1: lowerCAmelCase_ : Optional[int] =chunks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_SCREAMING_SNAKE_CASE ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE__ ( ): lowerCAmelCase_ : str =argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_SCREAMING_SNAKE_CASE , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_SCREAMING_SNAKE_CASE , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_SCREAMING_SNAKE_CASE , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--type_path''' , type=_SCREAMING_SNAKE_CASE , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_SCREAMING_SNAKE_CASE , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_SCREAMING_SNAKE_CASE , default=8 , required=_SCREAMING_SNAKE_CASE , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_SCREAMING_SNAKE_CASE , default=600 , required=_SCREAMING_SNAKE_CASE , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--tgt_lang''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--prefix''' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) lowerCAmelCase_ : str =time.time() lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =parser.parse_known_args() lowerCAmelCase_ : Any =parse_numeric_n_bool_cl_kwargs(_SCREAMING_SNAKE_CASE ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) lowerCAmelCase_ : Optional[Any] =Path(args.save_dir + '''_tmp''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) # this handles locking. lowerCAmelCase_ : Any =list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase_ : Any ={} if args.src_lang is not None: lowerCAmelCase_ : Any =args.src_lang if args.tgt_lang is not None: lowerCAmelCase_ : Dict =args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ , lowerCAmelCase_ : Dict =eval_data_dir( args.data_dir , _SCREAMING_SNAKE_CASE , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if args.local_rank <= 0: lowerCAmelCase_ : Union[str, Any] =Path(args.save_dir ) save_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[Any] =gather_results_from_each_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.sync_timeout ) lowerCAmelCase_ : List[str] =combine_partial_results(_SCREAMING_SNAKE_CASE ) if args.num_return_sequences > 1: lowerCAmelCase_ : Any =save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return lowerCAmelCase_ : Optional[Any] =Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase_ : Tuple =[x.rstrip() for x in f.readlines()][: len(_SCREAMING_SNAKE_CASE )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase_ : int ='''translation''' in args.task lowerCAmelCase_ : Optional[Any] =calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase_ : List[str] ='''bleu''' if calc_bleu else '''rouge''' lowerCAmelCase_ : Dict =score_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Union[str, Any] =len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : List[Any] =time.time() - start_time lowerCAmelCase_ : List[Any] =round(runtime / metrics['''n_obs'''] , 4 ) lowerCAmelCase_ : Union[str, Any] =num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase_ : List[Any] =save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_SCREAMING_SNAKE_CASE , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Optional[Any] =[] for partial_result in partial_results: records.extend(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Any =sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x["id"] ) lowerCAmelCase_ : Dict =[x['''pred'''] for x in records] return preds def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # WAIT FOR lots of .json files lowerCAmelCase_ : Dict =time.time() logger.info('''waiting for all nodes to finish''' ) lowerCAmelCase_ : str =None while (time.time() - start_wait) < timeout: lowerCAmelCase_ : List[Any] =list(save_dir.glob('''rank_*.json''' ) ) if len(_SCREAMING_SNAKE_CASE ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase_ : Optional[int] =lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
305
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = '''owlvit_text_model''' def __init__( self : Union[str, Any] , UpperCamelCase_ : str=49408 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2048 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : List[str]=8 , UpperCamelCase_ : List[str]=16 , UpperCamelCase_ : List[str]="quick_gelu" , UpperCamelCase_ : Any=1E-5 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Optional[Any]=0.0_2 , UpperCamelCase_ : Tuple=1.0 , UpperCamelCase_ : int=0 , UpperCamelCase_ : Optional[int]=49406 , UpperCamelCase_ : str=49407 , **UpperCamelCase_ : Tuple , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase_ : Dict =vocab_size lowerCAmelCase_ : Any =hidden_size lowerCAmelCase_ : List[Any] =intermediate_size lowerCAmelCase_ : Union[str, Any] =num_hidden_layers lowerCAmelCase_ : List[str] =num_attention_heads lowerCAmelCase_ : Optional[Any] =max_position_embeddings lowerCAmelCase_ : str =hidden_act lowerCAmelCase_ : Dict =layer_norm_eps lowerCAmelCase_ : Dict =attention_dropout lowerCAmelCase_ : Tuple =initializer_range lowerCAmelCase_ : str =initializer_factor @classmethod def __A ( cls : str , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Any ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowerCAmelCase_ : Optional[Any] =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[int] = '''owlvit_vision_model''' def __init__( self : int , UpperCamelCase_ : Tuple=768 , UpperCamelCase_ : Union[str, Any]=3072 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : str=768 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : str="quick_gelu" , UpperCamelCase_ : int=1E-5 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : str=0.0_2 , UpperCamelCase_ : Optional[Any]=1.0 , **UpperCamelCase_ : Dict , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase_ : Dict =hidden_size lowerCAmelCase_ : List[str] =intermediate_size lowerCAmelCase_ : Union[str, Any] =num_hidden_layers lowerCAmelCase_ : str =num_attention_heads lowerCAmelCase_ : Any =num_channels lowerCAmelCase_ : Optional[Any] =image_size lowerCAmelCase_ : Union[str, Any] =patch_size lowerCAmelCase_ : int =hidden_act lowerCAmelCase_ : Optional[int] =layer_norm_eps lowerCAmelCase_ : Dict =attention_dropout lowerCAmelCase_ : Tuple =initializer_range lowerCAmelCase_ : Tuple =initializer_factor @classmethod def __A ( cls : Any , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[Any] ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowerCAmelCase_ : Tuple =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''owlvit''' _UpperCamelCase : int = True def __init__( self : List[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=512 , UpperCamelCase_ : Union[str, Any]=2.6_5_9_2 , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : int , ): super().__init__(**UpperCamelCase_ ) if text_config is None: lowerCAmelCase_ : Any ={} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: lowerCAmelCase_ : int ={} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) lowerCAmelCase_ : List[str] =OwlViTTextConfig(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] =OwlViTVisionConfig(**UpperCamelCase_ ) lowerCAmelCase_ : List[str] =projection_dim lowerCAmelCase_ : Optional[Any] =logit_scale_init_value lowerCAmelCase_ : str =return_dict lowerCAmelCase_ : Union[str, Any] =1.0 @classmethod def __A ( cls : str , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Optional[Any] ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __A ( cls : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase_ : List[str] ={} lowerCAmelCase_ : Optional[int] =text_config lowerCAmelCase_ : Optional[int] =vision_config return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) def __A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] =copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : str =self.text_config.to_dict() lowerCAmelCase_ : Any =self.vision_config.to_dict() lowerCAmelCase_ : str =self.__class__.model_type return output class _snake_case ( lowerCAmelCase_ ): """simple docstring""" @property def __A ( self : int ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __A ( self : int ): return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __A ( self : Any ): return 1E-4 def __A ( self : Tuple , UpperCamelCase_ : "ProcessorMixin" , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : Optional["TensorType"] = None , ): lowerCAmelCase_ : Optional[int] =super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , framework=UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] =super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCamelCase_ , framework=UpperCamelCase_ ) return {**text_input_dict, **image_input_dict} @property def __A ( self : List[Any] ): return 14
305
1