code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a : str = get_tests_dir("fixtures/test_sentencepiece.model") a : int = {"target_lang": "fi", "source_lang": "en"} a : Any = ">>zh<<" a : List[Any] = "Helsinki-NLP/" if is_torch_available(): a : Dict = "pt" elif is_tf_available(): a : Optional[int] = "tf" else: a : List[Any] = "jax" @require_sentencepiece class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : List[str] = MarianTokenizer a : List[Any] = False a : Union[str, Any] = True def UpperCAmelCase ( self : str ) -> Optional[Any]: super().setUp() __UpperCAmelCase : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __UpperCAmelCase : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __UpperCAmelCase : Dict = Path(self.tmpdirname ) save_json(__lowercase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(__lowercase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__lowercase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(__lowercase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __UpperCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : Optional[Any] , **__lowercase : Any ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : int ) -> Optional[int]: return ( "This is a test", "This is a test", ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase : Dict = """</s>""" __UpperCAmelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def UpperCAmelCase ( self : List[str] ) -> Any: __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__lowercase ) , 9 ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: __UpperCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) __UpperCAmelCase : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = [38, 121, 14, 697, 38848, 0] self.assertListEqual(__lowercase , batch.input_ids[0] ) __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__lowercase ) __UpperCAmelCase : Tuple = [x.name for x in Path(__lowercase ).glob("""*""" )] self.assertIn("""source.spm""" , __lowercase ) MarianTokenizer.from_pretrained(__lowercase ) def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Dict = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=__lowercase , truncation=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : str = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def UpperCAmelCase ( self : Any ) -> List[Any]: # fmt: off __UpperCAmelCase : Optional[int] = {"""input_ids""": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase : int = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __UpperCAmelCase : Optional[int] = """Tämä on testi""" __UpperCAmelCase : Any = """This is a test""" __UpperCAmelCase : int = [76, 7, 2047, 2] __UpperCAmelCase : Tuple = [69, 12, 11, 940, 2] __UpperCAmelCase : List[Any] = tokenizer(__lowercase ).input_ids self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = tokenizer(text_target=__lowercase ).input_ids self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : str = tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase )
63
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
class __magic_name__ : '''simple docstring''' def __init__( self:Any ): snake_case__ = 0 snake_case__ = 0 snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Tuple ): if vertex not in self.adjacency: snake_case__ = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:Union[str, Any] , _a:Dict ): self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return snake_case__ = weight snake_case__ = weight def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): snake_case__ = list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case__ = edges[i][2] + 1 for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge snake_case__ = weight snake_case__ = weight def __str__( self:int ): snake_case__ = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: snake_case__ = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:List[str]=None , _a:Optional[int]=None ): snake_case__ = Graph() if vertices is None: snake_case__ = [] if edges is None: snake_case__ = [] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class __magic_name__ : '''simple docstring''' def __init__( self:List[Any] ): snake_case__ = {} snake_case__ = {} def __len__( self:Union[str, Any] ): return len(self.parent ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[Any] ): if item in self.parent: return self.find(_a ) snake_case__ = item snake_case__ = 0 return item def SCREAMING_SNAKE_CASE__ ( self:str , _a:Union[str, Any] ): if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: snake_case__ = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Union[str, Any] , _a:str ): snake_case__ = self.find(_a ) snake_case__ = self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] < self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case__ = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Tuple ): snake_case__ = graph.num_vertices snake_case__ = Graph.UnionFind() snake_case__ = [] while num_components > 1: snake_case__ = {} for vertex in graph.get_vertices(): snake_case__ = -1 snake_case__ = graph.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge snake_case__ = union_find.find(_a ) snake_case__ = union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case__ , snake_case__ , snake_case__ = cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) snake_case__ = num_components - 1 snake_case__ = Graph.build(edges=_a ) return mst
701
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) snake_case__ = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: snake_case__ = F"""{func.__name__}({value})""" snake_case__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
208
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _snake_case : Dict = logging.get_logger(__name__) _snake_case : Dict = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _snake_case : Optional[int] = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case : str = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case : List[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _snake_case : Dict = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _snake_case : Optional[Any] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _snake_case : List[str] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _snake_case : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _snake_case : Any = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _snake_case : Optional[int] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _snake_case : str = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _snake_case : Union[str, Any] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _snake_case : List[Any] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _snake_case : List[Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _snake_case : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _snake_case : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _snake_case : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _snake_case : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _snake_case : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _snake_case : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _snake_case : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _snake_case : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _snake_case : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _snake_case : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _snake_case : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _snake_case : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _snake_case : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _snake_case : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Optional[Any] = FLAX_MODEL_MAPPING _snake_case : Tuple = auto_class_update(FlaxAutoModel) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING _snake_case : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _snake_case : int = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _snake_case : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _snake_case : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _snake_case : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[str] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _snake_case : List[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _snake_case : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _snake_case : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _snake_case : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _snake_case : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _snake_case : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCamelCase_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase : int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _snake_case : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
441
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : List[Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ A__ : Optional[Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ A__ : List[Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _a ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): return float((preds == labels).mean() ) def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple="binary" ): lowerCAmelCase__ : Dict = simple_accuracy(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : List[Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any ): lowerCAmelCase__ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = f'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCAmelCase__ : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Union[str, Any] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average='''macro''' ) fas.append(__UpperCamelCase ) lowerCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) lowerCAmelCase__ : Dict = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = sum(__UpperCamelCase ) / len(__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase_ ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase_ ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ : Union[str, Any] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ : Optional[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
233
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCamelCase__ ( _A ): return EnvironmentCommand() class a__( lowerCamelCase__ ): @staticmethod def lowercase_ ( __snake_case : ArgumentParser ): a : Tuple = parser.add_parser('env' ) download_parser.set_defaults(func=__snake_case ) def lowercase_ ( self : List[str] ): a : str = huggingface_hub.__version__ a : List[str] = 'not installed' a : List[str] = 'NA' if is_torch_available(): import torch a : Optional[Any] = torch.__version__ a : int = torch.cuda.is_available() a : Optional[int] = 'not installed' if is_transformers_available(): import transformers a : Tuple = transformers.__version__ a : Dict = 'not installed' if is_accelerate_available(): import accelerate a : int = accelerate.__version__ a : Any = 'not installed' if is_xformers_available(): import xformers a : Optional[int] = xformers.__version__ a : List[str] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__snake_case ) ) return info @staticmethod def lowercase_ ( __snake_case : Union[str, Any] ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
195
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase: Any = False @skip_mps class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableDiffusionAttendAndExcitePipeline lowercase__ = False lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Optional[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : List[Any] ): torch.manual_seed(0 ) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) a : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) a : Any = CLIPTextModel(__snake_case ) a : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : str , __snake_case : Tuple , __snake_case : Optional[int]=0 ): if str(__snake_case ).startswith('mps' ): a : Any = torch.manual_seed(__snake_case ) else: a : Any = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : int = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowercase_ ( self : List[Any] ): a : Union[str, Any] = 'cpu' a : Any = self.get_dummy_components() a : List[str] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Any = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ).images a : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) a : str = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def lowercase_ ( self : Dict ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def lowercase_ ( self : Tuple ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : Union[str, Any] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def lowercase_ ( self : Tuple ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def lowercase_ ( self : Any ): super().test_save_load_local(expected_max_difference=5e-4 ) def lowercase_ ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a__( unittest.TestCase ): @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Union[str, Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : List[Any] = torch.manual_seed(51 ) a : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) a : Optional[Any] = 'a painting of an elephant with glasses' a : Any = [5, 7] a : Tuple = pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
195
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase_: Any = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase_: Union[str, Any] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_: Dict = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase_: Union[str, Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCAmelCase__ )-1}''' ) if "norm" in key: UpperCamelCase_: int = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_: Tuple = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase_: List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCAmelCase__ )-1}''' ) if "layer_norm1" in key: UpperCamelCase_: Tuple = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase_: List[str] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_: int = key[key.find('block' ) + len('block' )] UpperCamelCase_: Union[str, Any] = key.replace(F'''block{idx}''' , F'''block.{int(UpperCAmelCase__ )-1}''' ) if "attn.q" in key: UpperCamelCase_: Optional[Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase_: Dict = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase_: List[Any] = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase_: List[str] = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase_: Dict = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase_: Optional[Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase_: int = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase_: Dict = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_: Union[str, Any] = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase_: Tuple = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCAmelCase__ )-1}''' ) if "bot_conv" in key: UpperCamelCase_: Optional[Any] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase_: Optional[int] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase_: Dict = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase_: Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase_: Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase_: Any = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase_: Union[str, Any] = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase_: Optional[Any] = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase_: Optional[int] = value return new_state_dict def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_: Tuple = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCamelCase_: int = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCamelCase_: str = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_: Union[str, Any] = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_: Any = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_: Any = kv_bias[config.hidden_sizes[i] :] def snake_case () -> Union[str, Any]: UpperCamelCase_: Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_: int = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=None ) -> Optional[Any]: UpperCamelCase_: Dict = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCamelCase_: Union[str, Any] = GLPNImageProcessor() # prepare image UpperCamelCase_: str = prepare_img() UpperCamelCase_: int = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase_: Dict = torch.load(UpperCAmelCase__ , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase_: str = rename_keys(UpperCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # create HuggingFace model and load state dict UpperCamelCase_: Dict = GLPNForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # forward pass UpperCamelCase_: Dict = model(UpperCAmelCase__ ) UpperCamelCase_: Dict = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase_: str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase_: Any = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) UpperCamelCase_: Optional[int] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__ , UpperCAmelCase__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__ , UpperCAmelCase__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase__ , ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) A_ : List[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
57
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( __lowercase , __lowercase ): @register_to_config def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None ) -> List[str]: super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : VQModel a__ : CLIPTextModel a__ : CLIPTokenizer a__ : TransformeraDModel a__ : LearnedClassifierFreeSamplingEmbeddings a__ : VQDiffusionScheduler def __init__( self : int , SCREAMING_SNAKE_CASE__ : VQModel , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : TransformeraDModel , SCREAMING_SNAKE_CASE__ : VQDiffusionScheduler , SCREAMING_SNAKE_CASE__ : LearnedClassifierFreeSamplingEmbeddings , ) -> Any: super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE__ , 1 , 1 ) else: __lowerCamelCase = [''''''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE__ )}.''' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ ).sample if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE__ , dim=1 , keepdim=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : float ) -> torch.FloatTensor: __lowerCamelCase , __lowerCamelCase = torch.sort(SCREAMING_SNAKE_CASE__ , 1 , descending=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.exp(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
298
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : List[str] = logging.getLogger() def A__ ( ) -> List[Any]: UpperCamelCase_: str = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCamelCase_: List[str] = parser.parse_args() return args.f def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = {} UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , """all_results.json""" ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , """r""" ) as f: UpperCamelCase_: int = json.load(lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results def A__ ( ) -> Any: UpperCamelCase_: Tuple = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase_ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( _A ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCamelCase_: Dict = tempfile.mkdtemp() UpperCamelCase_: Union[str, Any] = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_: Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Optional[Any] ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: List[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Dict ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase_: List[str] = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: str = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Union[str, Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Dict = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[Any] = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: str = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[int] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: List[str] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Union[str, Any] = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: Optional[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """translation_no_trainer""" ) ) ) @slow def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) UpperCamelCase_: List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) UpperCamelCase_: int = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: int = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase_: str = get_results(snake_case_ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """image_classification_no_trainer""" ) ) )
720
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _lowerCAmelCase = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase (unittest.TestCase ): @classmethod def __snake_case ( cls :Optional[int] ) ->Optional[int]: lowercase : str = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __snake_case ( cls :Tuple ) ->str: try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def __snake_case ( self :List[str] ) ->Tuple: lowercase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase : List[str] = FlaxBertModel(__magic_name__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowercase : int = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) lowercase : Dict = flatten_dict(unfreeze(model.params ) ) lowercase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="""test-model-flax""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowercase : List[Any] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) lowercase : str = flatten_dict(unfreeze(model.params ) ) lowercase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=f"""{key} not identical""" ) def __snake_case ( self :Optional[int] ) ->List[Any]: lowercase : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase : Optional[Any] = FlaxBertModel(__magic_name__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowercase : str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase : Dict = flatten_dict(unfreeze(model.params ) ) lowercase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowercase : Any = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase : List[str] = flatten_dict(unfreeze(model.params ) ) lowercase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCamelCase ( _A , _A ) -> Tuple: lowercase : Optional[Any] = True lowercase : Union[str, Any] = flatten_dict(modela.params ) lowercase : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowercase : Optional[int] = False return models_are_equal @require_flax class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :Dict ) ->Union[str, Any]: lowercase : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase : Dict = FlaxBertModel(__magic_name__ ) lowercase : List[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): lowercase : Optional[Any] = FlaxBertModel.from_pretrained(__magic_name__ ) lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :List[Any] ) ->List[str]: lowercase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase : Optional[int] = FlaxBertModel(__magic_name__ ) lowercase : Union[str, Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="""10KB""" ) with self.assertRaises(__magic_name__ ): lowercase : List[Any] = FlaxBertModel.from_pretrained(__magic_name__ ) lowercase : Optional[int] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :Tuple ) ->Optional[Any]: lowercase : int = """bert""" lowercase : List[Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(__magic_name__ ): lowercase : Optional[Any] = FlaxBertModel.from_pretrained(__magic_name__ ) lowercase : List[Any] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __snake_case ( self :List[Any] ) ->int: lowercase : str = """bert""" lowercase : List[str] = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(__magic_name__ ): lowercase : int = FlaxBertModel.from_pretrained(__magic_name__ ) lowercase : int = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
264
"""simple docstring""" def UpperCamelCase ( _A , _A ) -> int: lowercase : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase : List[Any] = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _A ) -> int: return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def UpperCamelCase ( _A ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) lowercase : Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase ( _A ) -> int: return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
264
1
import argparse import struct import unittest class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: bytes ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data # Initialize hash values _SCREAMING_SNAKE_CASE = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants _SCREAMING_SNAKE_CASE = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] _SCREAMING_SNAKE_CASE = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase ( UpperCAmelCase_: bytes ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + (B"""\x00""" * (63 - (len(UpperCAmelCase_ ) + 8) % 64)) _SCREAMING_SNAKE_CASE = struct.pack(""">Q""" , (len(UpperCAmelCase_ ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) # add 48 0-ed integers words += [0] * 48 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _SCREAMING_SNAKE_CASE = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _SCREAMING_SNAKE_CASE = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _SCREAMING_SNAKE_CASE = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression _SCREAMING_SNAKE_CASE = self.ror(UpperCAmelCase_ , 6 ) ^ self.ror(UpperCAmelCase_ , 11 ) ^ self.ror(UpperCAmelCase_ , 25 ) _SCREAMING_SNAKE_CASE = (e & f) ^ ((~e & 0xff_fff_fff) & g) _SCREAMING_SNAKE_CASE = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 _SCREAMING_SNAKE_CASE = self.ror(UpperCAmelCase_ , 2 ) ^ self.ror(UpperCAmelCase_ , 13 ) ^ self.ror(UpperCAmelCase_ , 22 ) _SCREAMING_SNAKE_CASE = (a & b) ^ (a & c) ^ (b & c) _SCREAMING_SNAKE_CASE = (sa + maj) % 0x100_000_000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) _SCREAMING_SNAKE_CASE = [a, b, c, d, e, f, g, h] # Modify final values _SCREAMING_SNAKE_CASE = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] _SCREAMING_SNAKE_CASE = """""".join([hex(UpperCAmelCase_ )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' import hashlib _SCREAMING_SNAKE_CASE = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(UpperCAmelCase_ ).hash , hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() ) def __lowerCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """-s""" ,"""--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument( """-f""" ,"""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
569
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __UpperCAmelCase : def __init__( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str=99 , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: Union[str, Any]=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: int=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: List[Any]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: int=32 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: List[Any]=4 , UpperCAmelCase_: Optional[int]=30 , UpperCAmelCase_: Dict=0 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Union[str, Any]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests _SCREAMING_SNAKE_CASE = self.decoder_seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = decoder_start_token_id _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = decoder_seq_length _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 1 def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TrOCRDecoder(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).eval() _SCREAMING_SNAKE_CASE = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) + 1 ) _SCREAMING_SNAKE_CASE = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )["""last_hidden_state"""] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )["""last_hidden_state"""] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __snake_case : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () __snake_case : Tuple = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __snake_case : str = True __snake_case : List[str] = False def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: str ): '''simple docstring''' pass def UpperCamelCase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCamelCase ( self: Any ): '''simple docstring''' pass
569
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = seq_length __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : Any = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : int = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : Any = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : str = scope def a_ ( self ): __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , use_stable_embedding=a__ , ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = OpenLlamaModel(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : str = model(a__ , attention_mask=a__ ) __SCREAMING_SNAKE_CASE : Tuple = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Any = OpenLlamaModel(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) __SCREAMING_SNAKE_CASE : int = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) __SCREAMING_SNAKE_CASE : Tuple = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): __SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : Dict = OpenLlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE : Any = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) __SCREAMING_SNAKE_CASE : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : str = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Any = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )["hidden_states"][0] __SCREAMING_SNAKE_CASE : Tuple = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["hidden_states"][0] # select random slice __SCREAMING_SNAKE_CASE : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : str = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs __SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ : int = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[int] = False snake_case__ : Optional[int] = False def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaModelTester(self ) __SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Optional[Any] = type self.model_tester.create_and_check_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[str] = 3 __SCREAMING_SNAKE_CASE : Dict = input_dict["input_ids"] __SCREAMING_SNAKE_CASE : int = input_ids.ne(1 ).to(a__ ) __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Dict = 3 __SCREAMING_SNAKE_CASE : Tuple = "single_label_classification" __SCREAMING_SNAKE_CASE : Union[str, Any] = input_dict["input_ids"] __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(a__ ) __SCREAMING_SNAKE_CASE : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[Any] = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : int = 3 __SCREAMING_SNAKE_CASE : Any = "multi_label_classification" __SCREAMING_SNAKE_CASE : List[Any] = input_dict["input_ids"] __SCREAMING_SNAKE_CASE : List[Any] = input_ids.ne(1 ).to(a__ ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE : Union[str, Any] = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def a_ ( self ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([1, 10] , config.vocab_size ) __SCREAMING_SNAKE_CASE : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : List[Any] = OpenLlamaModel(a__ ) original_model.to(a__ ) original_model.eval() __SCREAMING_SNAKE_CASE : int = original_model(a__ ).last_hidden_state __SCREAMING_SNAKE_CASE : Optional[Any] = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : str = {"type": scaling_type, "factor": 10.0} __SCREAMING_SNAKE_CASE : Dict = OpenLlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() __SCREAMING_SNAKE_CASE : int = scaled_model(a__ ).last_hidden_state __SCREAMING_SNAKE_CASE : Dict = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) )
211
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" return "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(_SCREAMING_SNAKE_CASE )] ) def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if (len(_SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_SCREAMING_SNAKE_CASE ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
211
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __lowercase ( _a , _a , _a , _a , _a , _a ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case_ : List[str] = ksize + 1 snake_case_ : Optional[int] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_a ): for x in range(_a ): # distance from center snake_case_ : Any = x - ksize // 2 snake_case_ : List[Any] = y - ksize // 2 # degree to radiant snake_case_ : List[Any] = theta / 180 * np.pi snake_case_ : Dict = np.cos(_theta ) snake_case_ : Optional[int] = np.sin(_theta ) # get kernel x snake_case_ : Tuple = cos_theta * px + sin_theta * py # get kernel y snake_case_ : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel snake_case_ : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase__ : List[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowercase__ : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase__ : Optional[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: lowercase__ : Dict = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase__ : Any = out / out.max() * 2_55 lowercase__ : Tuple = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
485
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _UpperCAmelCase : _lowerCAmelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """The column name of the images in the files."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the training data."""}) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase__ , metadata={"""help""": """A folder containing the validation data."""}) _lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : Union[str, Any] ): snake_case_ : List[Any] = {} if self.train_dir is not None: snake_case_ : str = self.train_dir if self.validation_dir is not None: snake_case_ : Union[str, Any] = self.validation_dir snake_case_ : Tuple = data_files if data_files else None @dataclass class _UpperCAmelCase : _lowerCAmelCase : str = field( default=lowerCAmelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""}) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""}) _lowerCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCAmelCase : str = field(default=lowerCAmelCase__ , metadata={"""help""": """Name or path of preprocessor config."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _lowerCAmelCase : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""}) _lowerCAmelCase : bool = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""}) @dataclass class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""}) def __lowercase ( _a ): snake_case_ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[str] = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. snake_case_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. snake_case_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : List[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) snake_case_ : Tuple = split['''train'''] snake_case_ : str = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Dict = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Optional[int] = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: snake_case_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: snake_case_ : Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case_ : Tuple = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case_ : Tuple = ViTMAEForPreTraining(_a ) if training_args.do_train: snake_case_ : List[str] = ds['''train'''].column_names else: snake_case_ : Optional[Any] = ds['''validation'''].column_names if data_args.image_column_name is not None: snake_case_ : Tuple = data_args.image_column_name elif "image" in column_names: snake_case_ : Tuple = '''image''' elif "img" in column_names: snake_case_ : str = '''img''' else: snake_case_ : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case_ : str = image_processor.size['''shortest_edge'''] else: snake_case_ : Dict = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case_ : str = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): snake_case_ : Tuple = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: snake_case_ : List[str] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: snake_case_ : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate snake_case_ : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case_ : str = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Any = None if training_args.resume_from_checkpoint is not None: snake_case_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : List[str] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub snake_case_ : Optional[int] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def __lowercase ( _a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
485
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["""input_values""", """padding_mask"""] def __init__( self :str , __magic_name__ :int = 1 , __magic_name__ :int = 24_000 , __magic_name__ :float = 0.0 , __magic_name__ :float = None , __magic_name__ :float = None , **__magic_name__ :List[Any] , ) ->Dict: super().__init__(feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , **__magic_name__ ) lowercase : Dict = chunk_length_s lowercase : List[str] = overlap @property def __snake_case ( self :str ) ->Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __snake_case ( self :Dict ) ->Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :int , __magic_name__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __magic_name__ :Optional[Union[bool, str, PaddingStrategy]] = None , __magic_name__ :Optional[bool] = False , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[Union[str, TensorType]] = None , __magic_name__ :Optional[int] = None , ) ->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs lowercase : int = True lowercase : int = bool( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : int = [np.asarray(__magic_name__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): lowercase : Union[str, Any] = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase : Union[str, Any] = [np.asarray(__magic_name__ ).T] # verify inputs are valid for idx, example in enumerate(__magic_name__ ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) lowercase : Union[str, Any] = None lowercase : Optional[int] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase : Optional[int] = min(array.shape[0] for array in raw_audio ) lowercase : str = int(np.floor(max_length / self.chunk_stride ) ) lowercase : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase : Tuple = max(array.shape[0] for array in raw_audio ) lowercase : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) lowercase : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase : Dict = """max_length""" else: lowercase : str = input_values # normal padding on batch if padded_inputs is None: lowercase : Optional[int] = self.pad( __magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , padding=__magic_name__ , return_attention_mask=__magic_name__ , ) if padding: lowercase : List[Any] = padded_inputs.pop("""attention_mask""" ) lowercase : Tuple = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: lowercase : List[str] = example[..., None] input_values.append(example.T ) lowercase : Dict = input_values if return_tensors is not None: lowercase : int = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs
264
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class UpperCamelCase : def __init__( self :Any , __magic_name__ :list[tuple[float, float]] ) ->str: lowercase : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase : Optional[int] = len(__magic_name__ ) - 1 def __snake_case ( self :List[str] , __magic_name__ :float ) ->list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __magic_name__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__magic_name__ ) , 5 ) == 1 return output_values def __snake_case ( self :List[str] , __magic_name__ :float ) ->tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase : str = self.basis_function(__magic_name__ ) lowercase : Optional[int] = 0.0 lowercase : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __snake_case ( self :Tuple , __magic_name__ :float = 0.01 ) ->List[str]: from matplotlib import pyplot as plt # type: ignore lowercase : list[float] = [] # x coordinates of points to plot lowercase : list[float] = [] # y coordinates of points to plot lowercase : int = 0.0 while t <= 1: lowercase : List[Any] = self.bezier_curve_function(__magic_name__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase : Union[str, Any] = [i[0] for i in self.list_of_points] lowercase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( __magic_name__ , __magic_name__ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__magic_name__ , __magic_name__ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
264
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase : Tuple = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } lowerCAmelCase : str = { '''gpt2''': 1_0_2_4, '''gpt2-medium''': 1_0_2_4, '''gpt2-large''': 1_0_2_4, '''gpt2-xl''': 1_0_2_4, '''distilgpt2''': 1_0_2_4, } class UpperCAmelCase__ ( UpperCamelCase__ ): a : Dict = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] = ["""input_ids""", """attention_mask"""] a : Union[str, Any] = GPTaTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase=False , **UpperCamelCase , ) -> int: super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) __lowerCAmelCase = kwargs.pop("add_bos_token" , UpperCamelCase ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: __lowerCAmelCase = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**UpperCamelCase ) __lowerCAmelCase = add_prefix_space def UpperCAmelCase_ ( self , *UpperCamelCase , **UpperCamelCase ) -> BatchEncoding: __lowerCAmelCase = kwargs.get("is_split_into_words" , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def UpperCAmelCase_ ( self , *UpperCamelCase , **UpperCamelCase ) -> BatchEncoding: __lowerCAmelCase = kwargs.get("is_split_into_words" , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase ) -> List[int]: __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids
717
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase__ ( UpperCamelCase__ ): a : torch.FloatTensor class UpperCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self , UpperCamelCase = 16 , UpperCamelCase = 88 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 1 , UpperCamelCase = 0.0 , UpperCamelCase = 32 , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = "geglu" , UpperCamelCase = True , UpperCamelCase = True , ) -> List[str]: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=UpperCamelCase , num_channels=UpperCamelCase , eps=1E-6 , affine=UpperCamelCase ) __lowerCAmelCase = nn.Linear(UpperCamelCase , UpperCamelCase ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , cross_attention_dim=UpperCamelCase , activation_fn=UpperCamelCase , attention_bias=UpperCamelCase , double_self_attention=UpperCamelCase , norm_elementwise_affine=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) __lowerCAmelCase = nn.Linear(UpperCamelCase , UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=1 , UpperCamelCase=None , UpperCamelCase = True , ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(UpperCamelCase ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = self.proj_in(UpperCamelCase ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( UpperCamelCase , encoder_hidden_states=UpperCamelCase , timestep=UpperCamelCase , cross_attention_kwargs=UpperCamelCase , class_labels=UpperCamelCase , ) # 3. Output __lowerCAmelCase = self.proj_out(UpperCamelCase ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCamelCase )
39
0
from __future__ import annotations from collections.abc import Generator def _a ( ): """simple docstring""" lowercase__ = {} lowercase__ = 2 while True: lowercase__ = factor_map.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if factor: lowercase__ = factor + prime while x in factor_map: x += factor lowercase__ = factor else: lowercase__ = prime yield prime prime += 1 def _a ( SCREAMING_SNAKE_CASE = 1E10 ): """simple docstring""" lowercase__ = sieve() lowercase__ = 1 while True: lowercase__ = next(SCREAMING_SNAKE_CASE ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE ) n += 2 if __name__ == "__main__": print(solution())
43
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): if num <= 0: lowerCamelCase_ : Optional[int] = F"{num}: Invalid input, please enter a positive integer." raise ValueError(lowerCAmelCase__ ) lowerCamelCase_ : str = [True] * (num + 1) lowerCamelCase_ : List[str] = [] lowerCamelCase_ : Optional[int] = 2 lowerCamelCase_ : List[str] = int(math.sqrt(lowerCAmelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase__ ) # Set multiples of start be False for i in range(start * start ,num + 1 ,lowerCAmelCase__ ): if sieve[i] is True: lowerCamelCase_ : Tuple = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
364
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline UpperCAmelCase : Any = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Optional[Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' if len(UpperCamelCase ) == 0 or len(UpperCamelCase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(UpperCamelCase ) ) if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Optional[Any] = [sequences] __UpperCAmelCase : Dict = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *UpperCamelCase : List[Any] , **UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = args_parser super().__init__(*UpperCamelCase , **UpperCamelCase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def lowerCamelCase__ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : str=True , UpperCamelCase : Any=True , UpperCamelCase : Any=TruncationStrategy.ONLY_FIRST , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) __UpperCAmelCase : Optional[int] = self.tokenizer.eos_token try: __UpperCAmelCase : Optional[int] = self.tokenizer( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , ) except Exception as e: if "too short" in str(UpperCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __UpperCAmelCase : Tuple = self.tokenizer( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , padding=UpperCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCamelCase__ ( self : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' if kwargs.get("""multi_class""" , UpperCamelCase ) is not None: __UpperCAmelCase : List[str] = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) __UpperCAmelCase : str = {} if "candidate_labels" in kwargs: __UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: __UpperCAmelCase : Union[str, Any] = kwargs["""hypothesis_template"""] __UpperCAmelCase : Dict = {} if "multi_label" in kwargs: __UpperCAmelCase : Any = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self : Any , UpperCamelCase : Union[str, List[str]] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : str , ): '''simple docstring''' if len(UpperCamelCase ) == 0: pass elif len(UpperCamelCase ) == 1 and "candidate_labels" not in kwargs: __UpperCAmelCase : Tuple = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : int=None , UpperCamelCase : Dict="This example is {}." ): '''simple docstring''' __UpperCAmelCase : int = self._args_parser(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCamelCase , UpperCamelCase ) ): __UpperCAmelCase : Tuple = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(UpperCamelCase ) - 1, **model_input, } def lowerCamelCase__ ( self : int , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = inputs["""candidate_label"""] __UpperCAmelCase : int = inputs["""sequence"""] __UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} __UpperCAmelCase : Dict = self.model(**UpperCamelCase ) __UpperCAmelCase : Any = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def lowerCamelCase__ ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [outputs["""candidate_label"""] for outputs in model_outputs] __UpperCAmelCase : Optional[int] = [outputs["""sequence"""] for outputs in model_outputs] __UpperCAmelCase : int = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) __UpperCAmelCase : Dict = logits.shape[0] __UpperCAmelCase : Optional[Any] = len(UpperCamelCase ) __UpperCAmelCase : int = N // n __UpperCAmelCase : List[str] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(UpperCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __UpperCAmelCase : Optional[Any] = self.entailment_id __UpperCAmelCase : Optional[Any] = -1 if entailment_id == 0 else 0 __UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] __UpperCAmelCase : Any = np.exp(UpperCamelCase ) / np.exp(UpperCamelCase ).sum(-1 , keepdims=UpperCamelCase ) __UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __UpperCAmelCase : Optional[int] = reshaped_outputs[..., self.entailment_id] __UpperCAmelCase : Optional[Any] = np.exp(UpperCamelCase ) / np.exp(UpperCamelCase ).sum(-1 , keepdims=UpperCamelCase ) __UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
700
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCAmelCase : Tuple = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } UpperCAmelCase : Dict = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' UpperCAmelCase : List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase ( _UpperCamelCase : str ) -> dict[str, int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase ( _UpperCamelCase : tuple ) -> str: '''simple docstring''' return x[0] def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' __UpperCAmelCase : int = get_letter_count(_UpperCamelCase ) __UpperCAmelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_UpperCamelCase ) __UpperCAmelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_UpperCamelCase ) __UpperCAmelCase : Any = """""".join(freq_to_letter[freq] ) __UpperCAmelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_UpperCamelCase , reverse=_UpperCamelCase ) __UpperCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = get_frequency_order(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" import numpy as np def __snake_case ( _lowercase ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def __snake_case ( _lowercase ): """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCamelCase__ ( __lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : Tuple = BartphoTokenizer lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True def __a ( self : Dict ): '''simple docstring''' super().setUp() a__ = ["▁This", "▁is", "▁a", "▁t", "est"] a__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) a__ = {"unk_token": "<unk>"} a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a__ = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Tuple , **lowerCamelCase : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __a ( self : Tuple , lowerCamelCase : Any ): '''simple docstring''' a__ = "This is a là test" a__ = "This is a<unk><unk> test" return input_text, output_text def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a__ = "This is a là test" a__ = "▁This ▁is ▁a ▁l à ▁t est".split() a__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) a__ = tokens + [tokenizer.unk_token] a__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase )
289
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : list[list[float]] ) -> list[list[float]]: a__ = [] for data in source_data: for i, el in enumerate(__lowerCamelCase ): if len(__lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCamelCase ) ) return data_lists def _lowerCamelCase (__lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> list[list[float]]: a__ = [] for dlist, weight in zip(__lowerCamelCase , __lowerCamelCase ): a__ = min(__lowerCamelCase ) a__ = max(__lowerCamelCase ) a__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: a__ = f'''Invalid weight of {weight:f} provided''' raise ValueError(__lowerCamelCase ) score_lists.append(__lowerCamelCase ) return score_lists def _lowerCamelCase (__lowerCamelCase : list[list[float]] ) -> list[float]: a__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCamelCase ): a__ = final_scores[j] + ele return final_scores def _lowerCamelCase (__lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> list[list[float]]: a__ = get_data(__lowerCamelCase ) a__ = calculate_each_score(__lowerCamelCase , __lowerCamelCase ) a__ = generate_final_scores(__lowerCamelCase ) # append scores to source data for i, ele in enumerate(__lowerCamelCase ): source_data[i].append(__lowerCamelCase ) return source_data
289
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """decision_transformer""" SCREAMING_SNAKE_CASE_ = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :Tuple , lowerCamelCase_ :str=17 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :Tuple=128 , lowerCamelCase_ :str=4_096 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[Any]=1_024 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :Optional[int]=1 , lowerCamelCase_ :str=None , lowerCamelCase_ :str="relu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :Optional[int]=1e-5 , lowerCamelCase_ :List[Any]=0.02 , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=50_256 , lowerCamelCase_ :Dict=50_256 , lowerCamelCase_ :str=False , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :Any , ): """simple docstring""" lowerCamelCase__ : Tuple =state_dim lowerCamelCase__ : Any =act_dim lowerCamelCase__ : Optional[Any] =hidden_size lowerCamelCase__ : Any =max_ep_len lowerCamelCase__ : List[Any] =action_tanh lowerCamelCase__ : List[Any] =vocab_size lowerCamelCase__ : int =n_positions lowerCamelCase__ : Any =n_layer lowerCamelCase__ : Union[str, Any] =n_head lowerCamelCase__ : Dict =n_inner lowerCamelCase__ : str =activation_function lowerCamelCase__ : List[str] =resid_pdrop lowerCamelCase__ : str =embd_pdrop lowerCamelCase__ : Any =attn_pdrop lowerCamelCase__ : Tuple =layer_norm_epsilon lowerCamelCase__ : List[str] =initializer_range lowerCamelCase__ : int =scale_attn_weights lowerCamelCase__ : Any =use_cache lowerCamelCase__ : List[Any] =scale_attn_by_inverse_layer_idx lowerCamelCase__ : List[str] =reorder_and_upcast_attn lowerCamelCase__ : List[str] =bos_token_id lowerCamelCase__ : List[Any] =eos_token_id super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
174
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """timm_backbone""" def __init__( self :Any , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :int=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Union[str, Any]=None , **lowerCamelCase_ :Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =backbone lowerCamelCase__ : List[Any] =num_channels lowerCamelCase__ : Tuple =features_only lowerCamelCase__ : Dict =use_pretrained_backbone lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =out_indices if out_indices is not None else (-1,)
174
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __magic_name__ : List[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __magic_name__ : Optional[Any] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __magic_name__ : Union[str, Any] = spec.loader.load_module() __magic_name__ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __magic_name__ : List[Any] = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __magic_name__ : str = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = [] for config_class in list(CONFIG_MAPPING.values()): UpperCamelCase = False # source code of `config_class` UpperCamelCase = inspect.getsource(_UpperCamelCase) UpperCamelCase = _re_checkpoint.findall(_UpperCamelCase) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase , UpperCamelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: UpperCamelCase = True break UpperCamelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase) if len(_UpperCamelCase) > 0: UpperCamelCase = '\n'.join(sorted(_UpperCamelCase)) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}') if __name__ == "__main__": check_config_docstrings_have_checkpoints()
410
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="[UNK]" , _SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" , _SCREAMING_SNAKE_CASE : Dict="[PAD]" , _SCREAMING_SNAKE_CASE : Any="[CLS]" , _SCREAMING_SNAKE_CASE : int="[MASK]" , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('return_tensors' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
410
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar snake_case = TypeVar("""KT""") snake_case = TypeVar("""VT""") class lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : str , a__ : Optional[int] = "root" , a__ : Union[str, Any] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = key lowerCAmelCase__ : Dict = value lowerCAmelCase__ : list[Node[KT, VT]] = [] def __repr__( self : List[Any] ): '''simple docstring''' return F'''Node({self.key}: {self.value})''' @property def _A ( self : Optional[Any] ): '''simple docstring''' return len(self.forward ) class lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : Optional[Any] , a__ : str = 0.5 , a__ : Optional[Any] = 16 ): '''simple docstring''' lowerCAmelCase__ : Node[KT, VT] = Node[KT, VT]() lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Union[str, Any] = p lowerCAmelCase__ : Dict = max_level def __str__( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = list(self ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return F'''SkipList(level={self.level})''' lowerCAmelCase__ : str = max((len(str(SCREAMING_SNAKE_CASE__ ) ) for item in items) , default=4 ) lowerCAmelCase__ : Optional[Any] = max(SCREAMING_SNAKE_CASE__ , 4 ) + 4 lowerCAmelCase__ : Union[str, Any] = self.head lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : str = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(SCREAMING_SNAKE_CASE__ , "-" ) + "* " * len(SCREAMING_SNAKE_CASE__ ) ) lines.append(" " * label_size + "| " * len(SCREAMING_SNAKE_CASE__ ) ) while len(node.forward ) != 0: lowerCAmelCase__ : List[Any] = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(SCREAMING_SNAKE_CASE__ , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : Dict = node.forward lines.append("None".ljust(SCREAMING_SNAKE_CASE__ ) + "* " * len(SCREAMING_SNAKE_CASE__ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(SCREAMING_SNAKE_CASE__ ) def __iter__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ : str = node.forward[0] def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = 1 while random() < self.p and level < self.max_level: level += 1 return level def _A ( self : List[str] , a__ : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : int = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ : Optional[int] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _A ( self : Tuple , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ : Optional[int] = node.forward[i] else: lowerCAmelCase__ : List[str] = update_node.forward[:i] def _A ( self : str , a__ : int , a__ : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: lowerCAmelCase__ : Union[str, Any] = value else: lowerCAmelCase__ : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE__ ): update_vector.append(self.head ) lowerCAmelCase__ : Tuple = level lowerCAmelCase__ : int = Node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ : str = new_node def _A ( self : Union[str, Any] , a__ : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: return node.value return None def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 1_2 ) skip_list.insert("Key3" , 4_1 ) skip_list.insert("Key4" , -1_9 ) lowerCAmelCase__ : List[Any] = skip_list.head lowerCAmelCase__ : Any = {} while node.level != 0: lowerCAmelCase__ : int = node.forward[0] lowerCAmelCase__ : Tuple = node.value assert len(a_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = SkipList() skip_list.insert("Key1" , 1_0 ) skip_list.insert("Key1" , 1_2 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 1_0 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 1_0 ) lowerCAmelCase__ : Tuple = skip_list.head lowerCAmelCase__ : Optional[Any] = {} while node.level != 0: lowerCAmelCase__ : Union[str, Any] = node.forward[0] lowerCAmelCase__ : List[str] = node.value if len(a_ ) != 4: print() assert len(a_ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = SkipList() assert skip_list.find("Some key" ) is None def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = SkipList() skip_list.insert("Key2" , 2_0 ) assert skip_list.find("Key2" ) == 2_0 skip_list.insert("Some Key" , 1_0 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 1_3 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 1_0 assert skip_list.find("V" ) == 1_3 def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : int = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : int = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 1_4 assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : int = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4_2 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("X" ) def traverse_keys(lowerCamelCase_ ): yield node.key for forward_node in node.forward: yield from traverse_keys(a_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCAmelCase_ ( ): """simple docstring""" def is_sorted(lowerCamelCase_ ): return all(next_item >= item for item, next_item in zip(a_ , lst[1:] ) ) lowerCAmelCase__ : List[str] = SkipList() for i in range(1_0 ): skip_list.insert(a_ , a_ ) assert is_sorted(list(a_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(a_ ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(a_ ) ) def UpperCAmelCase_ ( ): """simple docstring""" for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(a_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
378
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCamelCase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCamelCase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print("\n".join(upper_files) + "\n") lowerCamelCase_ = [file for file in filepaths if " " in file] if space_files: print(f'{len(space_files)} files contain space characters:') print("\n".join(space_files) + "\n") lowerCamelCase_ = [file for file in filepaths if "-" in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print("\n".join(hyphen_files) + "\n") lowerCamelCase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print("\n".join(nodir_files) + "\n") lowerCamelCase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
498
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _a : def __init__( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Any=99 , UpperCamelCase_: Any=13 , UpperCamelCase_: str=7 , UpperCamelCase_: int=9 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Dict=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: Optional[int]=4 , UpperCamelCase_: Optional[Any]=37 , UpperCamelCase_: Union[str, Any]=8 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Dict=0.002 , UpperCamelCase_: List[str]=1 , UpperCamelCase_: Union[str, Any]=0 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Tuple=None , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = encoder_seq_length lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = d_ff lowercase__ = relative_attention_num_buckets lowercase__ = dropout_rate lowercase__ = initializer_factor lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = None lowercase__ = decoder_layers def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" return TaConfig.from_pretrained('''google/umt5-base''' ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: str=None , UpperCamelCase_: int=None , UpperCamelCase_: int=None , UpperCamelCase_: str=None , UpperCamelCase_: int=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: lowercase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowercase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowercase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase_ ) if decoder_head_mask is None: lowercase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase_ ) if cross_attn_head_mask is None: lowercase__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase__ = input_ids.clamp(self.pad_token_id + 1 ) lowercase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowercase__ = self.get_config() lowercase__ = config.num_attention_heads lowercase__ = self.prepare_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, input_dict def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , ) -> int: """simple docstring""" lowercase__ = UMTaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model( input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , ) lowercase__ = model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowercase__ = result.last_hidden_state lowercase__ = result.past_key_values lowercase__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = UMTaModel(config=UpperCamelCase_ ).get_decoder().to(UpperCamelCase_ ).eval() # first forward pass lowercase__ = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 ) lowercase__ , lowercase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, -1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: int , ) -> List[str]: """simple docstring""" lowercase__ = UMTaModel(config=UpperCamelCase_ ).to(UpperCamelCase_ ).half().eval() lowercase__ = model(**UpperCamelCase_ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCamelCase_ ).any().item() ) @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowercase : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowercase : Union[str, Any] = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowercase : int = True _lowercase : str = False _lowercase : List[str] = False _lowercase : List[str] = True _lowercase : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowercase : Any = [0.8, 0.9] def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=UpperCamelCase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = config_and_inputs[0] lowercase__ = UMTaForConditionalGeneration(UpperCamelCase_ ).eval() model.to(UpperCamelCase_ ) lowercase__ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase_ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ ), } for attn_name, (name, mask) in zip(UpperCamelCase_ , head_masking.items() ): lowercase__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowercase__ = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ ) lowercase__ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , **UpperCamelCase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowercase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=UpperCamelCase_ ).to(UpperCamelCase_ ) lowercase__ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=UpperCamelCase_ , legacy=UpperCamelCase_ ) lowercase__ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''pt''' , padding=UpperCamelCase_ ).input_ids # fmt: off lowercase__ = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model.generate(input_ids.to(UpperCamelCase_ ) ) lowercase__ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] lowercase__ = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
429
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = DownBlockaD # noqa F405 _lowercase : str = '''down''' def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = ResnetDownsampleBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = AttnDownBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 _lowercase : Dict = '''down''' @property def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnDownEncoderBlockaD # noqa F405 _lowercase : Union[str, Any] = '''down''' @property def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : Dict = '''mid''' def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : int = '''mid''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = UpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = AttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SkipUpBlockaD # noqa F405 _lowercase : int = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnSkipUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpDecoderBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
429
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = CTRLTokenizer __a = False __a = False def UpperCamelCase_ ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__: List[str]= ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] SCREAMING_SNAKE_CASE__: str= dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__: List[Any]= ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] SCREAMING_SNAKE_CASE__: Union[str, Any]= {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE__: int= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__: Any= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[Any]= '''adapt react readapt apt''' SCREAMING_SNAKE_CASE__: str= '''adapt react readapt apt''' return input_text, output_text def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: List[Any]= CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__: int= '''adapt react readapt apt''' SCREAMING_SNAKE_CASE__: int= '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() SCREAMING_SNAKE_CASE__: int= tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__: List[Any]= [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase )
64
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ) -> Union[str, Any]: lowercase__ : Tuple = '''backbone.''' if is_semantic else '''''' lowercase__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (f"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (f"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (f"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): lowercase__ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowercase__ : int = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowercase__ : Dict = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowercase__ : str = in_proj_weight[ : config.hidden_size, : ] lowercase__ : str = q_bias lowercase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : Tuple = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase__ : Any = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowercase__ : Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowercase__ : int = gamma_a lowercase__ : List[str] = gamma_a def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : str = dct.pop(__lowerCamelCase ) lowercase__ : Optional[Any] = val def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Dict = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]: lowercase__ : List[Any] = False if '''rvlcdip''' in checkpoint_url else True lowercase__ : Optional[int] = BeitConfig(use_absolute_position_embeddings=__lowerCamelCase , use_mask_token=__lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase__ : Dict = 10_24 lowercase__ : Any = 40_96 lowercase__ : Optional[Any] = 24 lowercase__ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase__ : str = 16 lowercase__ : Optional[int] = '''huggingface/label-files''' lowercase__ : int = '''rvlcdip-id2label.json''' lowercase__ : Optional[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Optional[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : List[Any] = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase__ : Optional[Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] lowercase__ : int = create_rename_keys(__lowerCamelCase , has_lm_head=__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , has_lm_head=__lowerCamelCase ) # load HuggingFace model lowercase__ : str = BeitForMaskedImageModeling(__lowerCamelCase ) if has_lm_head else BeitForImageClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image lowercase__ : int = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase ) lowercase__ : List[Any] = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : int = encoding['''pixel_values'''] lowercase__ : str = model(__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits # verify logits lowercase__ : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__lowerCamelCase ), "Shape of logits not as expected" Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: if has_lm_head: lowercase__ : List[str] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowercase__ : Tuple = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__lowerCamelCase , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) lowerCAmelCase_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
560
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """PoolFormerConfig""" # Base docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = [1, 5_1_2, 7, 7] # Image classification docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input _lowerCAmelCase : List[str] = 1 - drop_prob _lowerCAmelCase : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _lowerCAmelCase : str = keep_prob + torch.rand(_lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _lowerCAmelCase : Any = input.div(_lowerCamelCase ) * random_tensor return output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A = None ): '''simple docstring''' super().__init__() _lowerCAmelCase : int = drop_prob def __lowerCamelCase ( self ,_A ): '''simple docstring''' return drop_path(_A ,self.drop_prob ,self.training ) def __lowerCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=None ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = patch_size if isinstance(_A ,collections.abc.Iterable ) else (patch_size, patch_size) _lowerCAmelCase : Union[str, Any] = stride if isinstance(_A ,collections.abc.Iterable ) else (stride, stride) _lowerCAmelCase : Optional[Any] = padding if isinstance(_A ,collections.abc.Iterable ) else (padding, padding) _lowerCAmelCase : List[Any] = nn.Convad(_A ,_A ,kernel_size=_A ,stride=_A ,padding=_A ) _lowerCAmelCase : Any = norm_layer(_A ) if norm_layer else nn.Identity() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.projection(_A ) _lowerCAmelCase : Union[str, Any] = self.norm(_A ) return embeddings class __UpperCamelCase ( nn.GroupNorm ): def __init__( self ,_A ,**_A ): '''simple docstring''' super().__init__(1 ,_A ,**_A ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.AvgPoolad(_A ,stride=1 ,padding=pool_size // 2 ,count_include_pad=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.pool(_A ) - hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Convad(_A ,_A ,1 ) _lowerCAmelCase : Optional[Any] = nn.Convad(_A ,_A ,1 ) _lowerCAmelCase : Union[str, Any] = PoolFormerDropPath(_A ) if isinstance(config.hidden_act ,_A ): _lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: _lowerCAmelCase : str = config.hidden_act def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.conva(_A ) _lowerCAmelCase : Optional[Any] = self.act_fn(_A ) _lowerCAmelCase : List[str] = self.drop(_A ) _lowerCAmelCase : Union[str, Any] = self.conva(_A ) _lowerCAmelCase : Any = self.drop(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : int = PoolFormerPooling(_A ) _lowerCAmelCase : int = PoolFormerOutput(_A ,_A ,_A ,_A ) _lowerCAmelCase : List[Any] = PoolFormerGroupNorm(_A ) _lowerCAmelCase : Dict = PoolFormerGroupNorm(_A ) # Useful for training neural nets _lowerCAmelCase : Optional[Any] = PoolFormerDropPath(_A ) if drop_path > 0.0 else nn.Identity() _lowerCAmelCase : Any = config.use_layer_scale if config.use_layer_scale: _lowerCAmelCase : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A ) _lowerCAmelCase : Optional[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.use_layer_scale: _lowerCAmelCase : Optional[int] = self.pooling(self.before_norm(_A ) ) _lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _lowerCAmelCase : Union[str, Any] = hidden_states + self.drop_path(_A ) _lowerCAmelCase : Union[str, Any] = () _lowerCAmelCase : Optional[int] = self.output(self.after_norm(_A ) ) _lowerCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _lowerCAmelCase : int = hidden_states + self.drop_path(_A ) _lowerCAmelCase : int = (output,) + outputs return outputs else: _lowerCAmelCase : List[Any] = self.drop_path(self.pooling(self.before_norm(_A ) ) ) # First residual connection _lowerCAmelCase : int = pooling_output + hidden_states _lowerCAmelCase : List[str] = () # Second residual connection inside the PoolFormerOutput block _lowerCAmelCase : Tuple = self.drop_path(self.output(self.after_norm(_A ) ) ) _lowerCAmelCase : str = hidden_states + layer_output _lowerCAmelCase : Union[str, Any] = (output,) + outputs return outputs class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = config # stochastic depth decay rule _lowerCAmelCase : str = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )] # patch embeddings _lowerCAmelCase : Optional[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) ) _lowerCAmelCase : Dict = nn.ModuleList(_A ) # Transformer blocks _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _lowerCAmelCase : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _A ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) ) blocks.append(nn.ModuleList(_A ) ) _lowerCAmelCase : Tuple = nn.ModuleList(_A ) def __lowerCamelCase ( self ,_A ,_A=False ,_A=True ): '''simple docstring''' _lowerCAmelCase : Dict = () if output_hidden_states else None _lowerCAmelCase : str = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ): _lowerCAmelCase : Optional[int] = layers # Get patch embeddings from hidden_states _lowerCAmelCase : Dict = embedding_layer(_A ) # Send the embeddings through the blocks for _, blk in enumerate(_A ): _lowerCAmelCase : Optional[int] = blk(_A ) _lowerCAmelCase : int = layer_outputs[0] if output_hidden_states: _lowerCAmelCase : List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A ,hidden_states=_A ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = PoolFormerConfig _UpperCAmelCase = "poolformer" _UpperCAmelCase = "pixel_values" _UpperCAmelCase = True def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A ,nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __lowerCamelCase ( self ,_A ,_A=False ): '''simple docstring''' if isinstance(_A ,_A ): _lowerCAmelCase : Any = value _lowerCAmelCase = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : List[Any] = config _lowerCAmelCase : int = PoolFormerEncoder(_A ) # Initialize weights and apply final processing self.post_init() def __lowerCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCAmelCase : List[Any] = self.encoder( _A ,output_hidden_states=_A ,return_dict=_A ,) _lowerCAmelCase : Optional[int] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_A ,hidden_states=encoder_outputs.hidden_states ,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = nn.Linear(config.hidden_size ,config.hidden_size ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.dense(_A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = PoolFormerModel(_A ) # Final norm _lowerCAmelCase : Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _lowerCAmelCase : Tuple = ( nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = self.poolformer( _A ,output_hidden_states=_A ,return_dict=_A ,) _lowerCAmelCase : Tuple = outputs[0] _lowerCAmelCase : Any = self.classifier(self.norm(_A ).mean([-2, -1] ) ) _lowerCAmelCase : List[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : int = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : str = 'single_label_classification' else: _lowerCAmelCase : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase : Tuple = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Union[str, Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: _lowerCAmelCase : List[str] = loss_fct(_A ,_A ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : List[str] = BCEWithLogitsLoss() _lowerCAmelCase : Any = loss_fct(_A ,_A ) if not return_dict: _lowerCAmelCase : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A ,logits=_A ,hidden_states=outputs.hidden_states )
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( A ) -> Optional[Any]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class a__ ( a__ ): '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCamelCase_ , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: lowerCAmelCase__ = model lowerCAmelCase__ = cache lowerCAmelCase__ = force lowerCAmelCase__ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
90
def _lowercase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowercase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def _lowercase ( ): snake_case__ = int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
214
0
from __future__ import annotations from collections.abc import Generator def _a ( ) -> Generator[int, None, None]: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = 2 while True: lowerCAmelCase__ = factor_map.pop(UpperCamelCase_ , UpperCamelCase_ ) if factor: lowerCAmelCase__ = factor + prime while x in factor_map: x += factor lowerCAmelCase__ = factor else: lowerCAmelCase__ = prime yield prime prime += 1 def _a ( UpperCamelCase_ : float = 1e1_0 ) -> int: """simple docstring""" lowerCAmelCase__ = sieve() lowerCAmelCase__ = 1 while True: lowerCAmelCase__ = next(UpperCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
715
from collections import defaultdict from math import ceil, sqrt def _a ( UpperCamelCase_ : int = 1_000_000 , UpperCamelCase_ : int = 10 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
115
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : str = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: for attribute in key.split(""".""" ): lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase = value elif weight_type == "weight_g": lowerCamelCase = value elif weight_type == "weight_v": lowerCamelCase = value elif weight_type == "bias": lowerCamelCase = value elif weight_type == "running_mean": lowerCamelCase = value elif weight_type == "running_var": lowerCamelCase = value elif weight_type == "num_batches_tracked": lowerCamelCase = value elif weight_type == "inv_freq": lowerCamelCase = value else: lowerCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = [] lowerCamelCase = fairseq_model.state_dict() lowerCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCamelCase = True if "*" in mapped_key: lowerCamelCase = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCamelCase = mapped_key.replace("""*""" , lowerCamelCase__ ) if "pos_bias_u" in name: lowerCamelCase = None elif "pos_bias_v" in name: lowerCamelCase = None elif "weight_g" in name: lowerCamelCase = """weight_g""" elif "weight_v" in name: lowerCamelCase = """weight_v""" elif "bias" in name: lowerCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase = """weight""" elif "running_mean" in name: lowerCamelCase = """running_mean""" elif "inv_freq" in name: lowerCamelCase = """inv_freq""" elif "running_var" in name: lowerCamelCase = """running_var""" elif "num_batches_tracked" in name: lowerCamelCase = """num_batches_tracked""" else: lowerCamelCase = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'Unused weights: {unused_weights}' ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: lowerCamelCase = full_name.split("""conv_layers.""" )[-1] lowerCamelCase = name.split(""".""" ) lowerCamelCase = int(items[0] ) lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ) -> int: if config_path is not None: lowerCamelCase = WavaVecaConformerConfig.from_pretrained(lowerCamelCase__ , hidden_act="""swish""" ) else: lowerCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase = """rotary""" if is_finetuned: if dict_path: lowerCamelCase = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase = target_dict.pad_index lowerCamelCase = target_dict.bos_index lowerCamelCase = target_dict.eos_index lowerCamelCase = len(target_dict.symbols ) lowerCamelCase = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase = 0 lowerCamelCase = 1 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = WavaVecaCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowerCamelCase = True if config.feat_extract_norm == """layer""" else False lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCamelCase = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCamelCase = WavaVecaConformerForCTC(lowerCamelCase__ ) else: lowerCamelCase = WavaVecaConformerForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCamelCase , lowerCamelCase , lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCamelCase = argparse.Namespace(task="""audio_pretraining""" ) lowerCamelCase = fairseq.tasks.setup_task(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase__ ) lowerCamelCase = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
543
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE_( self ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> torch.Tensor: lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(lowercase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(lowercase ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(lowercase ) lowerCamelCase_ = rays.view(lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(lowercase , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(lowercase , -1 , 2 ) lowerCamelCase_ = ( self.z.view(lowercase , 1 , 3 ) + self.x.view(lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=lowercase ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowercase , *lowercase , 2 , 3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowercase , height=lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): lowerCamelCase_ = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) lowerCamelCase_ = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
463
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'Hello, World!' _lowercase = 'en_XX' def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ): A = Path('data_bin' ) A = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCAmelCase ).parent ) , checkpoint_file=Path(_lowerCAmelCase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(_lowerCAmelCase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(_lowerCAmelCase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(_lowerCAmelCase ) A = xmod.model.encoder.sentence_encoder A = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print('Our X-MOD config:' , _lowerCAmelCase ) A = XmodForSequenceClassification(_lowerCAmelCase ) if classification_head else XmodForMaskedLM(_lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings A = xmod_sent_encoder.embed_tokens.weight A = xmod_sent_encoder.embed_positions.weight A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A = xmod_sent_encoder.layernorm_embedding.weight A = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A = model.roberta.encoder.layer[i] A = xmod_sent_encoder.layers[i] # self attention A = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) A = xmod_layer.self_attn.q_proj.weight A = xmod_layer.self_attn.q_proj.bias A = xmod_layer.self_attn.k_proj.weight A = xmod_layer.self_attn.k_proj.bias A = xmod_layer.self_attn.v_proj.weight A = xmod_layer.self_attn.v_proj.bias # self-attention output A = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) A = xmod_layer.self_attn.out_proj.weight A = xmod_layer.self_attn.out_proj.bias A = xmod_layer.self_attn_layer_norm.weight A = xmod_layer.self_attn_layer_norm.bias # intermediate A = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias # output A = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias A = xmod_layer.final_layer_norm.weight A = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A = xmod_layer.adapter_layer_norm.weight A = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A = bert_output.adapter_modules[lang_code] A = xmod_layer.adapter_modules[lang_code] A = from_adapter.fca.weight A = from_adapter.fca.bias A = from_adapter.fca.weight A = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A = xmod_sent_encoder.layer_norm.weight A = xmod_sent_encoder.layer_norm.bias if classification_head: A = xmod.model.classification_heads["mnli"].dense.weight A = xmod.model.classification_heads["mnli"].dense.bias A = xmod.model.classification_heads["mnli"].out_proj.weight A = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head A = xmod.model.encoder.lm_head.dense.weight A = xmod.model.encoder.lm_head.dense.bias A = xmod.model.encoder.lm_head.layer_norm.weight A = xmod.model.encoder.lm_head.layer_norm.bias A = xmod.model.encoder.lm_head.weight A = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A = xmod.encode(_lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowerCAmelCase ) A = model(_lowerCAmelCase )[0] if classification_head: A = xmod.model.classification_heads["mnli"](xmod.extract_features(_lowerCAmelCase ) ) else: A = xmod.model(_lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 A = torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(_lowerCAmelCase ).mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowercase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
import cmath import math def __magic_name__ ( __a : float , __a : float , __a : float , __a : float ): '''simple docstring''' UpperCamelCase__ = math.radians(__a ) UpperCamelCase__ = math.radians(__a ) # Convert voltage and current to rectangular form UpperCamelCase__ = cmath.rect(__a , __a ) UpperCamelCase__ = cmath.rect(__a , __a ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
513
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """van""" def __init__(self , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[64, 1_28, 3_20, 5_12] , SCREAMING_SNAKE_CASE_=[3, 3, 12, 3] , SCREAMING_SNAKE_CASE_=[8, 8, 4, 4] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=1E-2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = mlp_ratios UpperCamelCase__ = hidden_act UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = layer_scale_init_value UpperCamelCase__ = drop_path_rate UpperCamelCase__ = dropout_rate
513
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") UpperCAmelCase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) UpperCAmelCase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) UpperCAmelCase = BeautifulSoup(res.text, """html.parser""") UpperCAmelCase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
342
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } UpperCAmelCase = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : Dict , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : str=True , __UpperCamelCase : Tuple="[UNK]" , __UpperCamelCase : List[str]="[SEP]" , __UpperCamelCase : Tuple="[PAD]" , __UpperCamelCase : Union[str, Any]="[CLS]" , __UpperCamelCase : Optional[int]="[MASK]" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : List[Any] , ) -> Any: super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCamelCase ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(__UpperCamelCase , normalizer_state.pop('''type''' ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**__UpperCamelCase ) _UpperCamelCase = do_lower_case def _UpperCamelCase ( self : int , __UpperCamelCase : Any , **__UpperCamelCase : Optional[Any] ) -> str: _UpperCamelCase = PaddingStrategy.MAX_LENGTH _UpperCamelCase = text _UpperCamelCase = kwargs.pop('''text_pair''' , __UpperCamelCase ) _UpperCamelCase = kwargs.pop('''return_tensors''' , __UpperCamelCase ) _UpperCamelCase = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__UpperCamelCase ): if batch_text_pair is not None: _UpperCamelCase = batch_text_pair[idx] else: _UpperCamelCase = None _UpperCamelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = encoded_candidates.get('''input_ids''' ) _UpperCamelCase = encoded_candidates.get('''attention_mask''' ) _UpperCamelCase = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(__UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__UpperCamelCase ) _UpperCamelCase = {key: item for key, item in output_data.items() if len(__UpperCamelCase ) != 0} return BatchEncoding(__UpperCamelCase , tensor_type=__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=None ) -> int: _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
342
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case__ ( ): '''simple docstring''' lowercase__ : Dict = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowercase__ : Optional[int] = Dataset.from_dict(SCREAMING_SNAKE_CASE_ ) return dataset class SCREAMING_SNAKE_CASE__ (__snake_case ): def snake_case_ ( self): lowercase__ : Optional[Any] = get_dataset() lowercase__ : Union[str, Any] = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def snake_case_ ( self): lowercase__ : Optional[int] = get_dataset() lowercase__ , lowercase__ : List[Any] = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a)
164
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , __snake_case ): __lowerCamelCase : Optional[int] = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , a , a , a = None , a = 5_0257 , a = 1024 , a = 768 , a = 12 , a = 12 , a = None , a = "gelu_new" , a = 0.1 , a = 0.1 , a = 0.1 , a = 1e-5 , a = 0.02 , a = True , a = True , a = False , a = False , ): super().__init__() lowercase__ : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""") lowercase__ : Any = prefix_inner_dim lowercase__ : List[str] = prefix_hidden_dim lowercase__ : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Dict = ( nn.Linear(self.prefix_hidden_dim , a) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Tuple = GPTaConfig( vocab_size=a , n_positions=a , n_embd=a , n_layer=a , n_head=a , n_inner=a , activation_function=a , resid_pdrop=a , embd_pdrop=a , attn_pdrop=a , layer_norm_epsilon=a , initializer_range=a , scale_attn_weights=a , use_cache=a , scale_attn_by_inverse_layer_idx=a , reorder_and_upcast_attn=a , ) lowercase__ : Tuple = GPTaLMHeadModel(a) def snake_case_ ( self , a , a , a = None , a = None , ): lowercase__ : Optional[Any] = self.transformer.transformer.wte(a) lowercase__ : Optional[Any] = self.encode_prefix(a) lowercase__ : Union[str, Any] = self.decode_prefix(a) lowercase__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowercase__ : Optional[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowercase__ : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1) lowercase__ : Optional[Any] = self.transformer(inputs_embeds=a , labels=a , attention_mask=a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case_ ( self , a , a): return torch.zeros(a , self.prefix_length , dtype=torch.intaa , device=a) def snake_case_ ( self , a): return self.encode_prefix(a) @torch.no_grad() def snake_case_ ( self , a , a , a): lowercase__ : List[str] = torch.split(a , 1 , dim=0) lowercase__ : Optional[Any] = [] lowercase__ : str = [] for feature in features: lowercase__ : Dict = self.decode_prefix(feature.to(a)) # back to the clip feature # Only support beam search for now lowercase__ , lowercase__ : str = self.generate_beam( input_embeds=a , device=a , eos_token_id=a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase__ : str = torch.stack(a) lowercase__ : List[str] = torch.stack(a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case_ ( self , a=None , a=None , a=None , a = 5 , a = 67 , a = 1.0 , a = None , ): lowercase__ : Optional[int] = eos_token_id lowercase__ : List[Any] = None lowercase__ : int = None lowercase__ : str = torch.ones(a , device=a , dtype=torch.int) lowercase__ : List[Any] = torch.zeros(a , device=a , dtype=torch.bool) if input_embeds is not None: lowercase__ : int = input_embeds else: lowercase__ : int = self.transformer.transformer.wte(a) for i in range(a): lowercase__ : Union[str, Any] = self.transformer(inputs_embeds=a) lowercase__ : Optional[int] = outputs.logits lowercase__ : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase__ : Union[str, Any] = logits.softmax(-1).log() if scores is None: lowercase__ , lowercase__ : Tuple = logits.topk(a , -1) lowercase__ : Dict = generated.expand(a , *generated.shape[1:]) lowercase__ , lowercase__ : Dict = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowercase__ : Union[str, Any] = next_tokens else: lowercase__ : Dict = tokens.expand(a , *tokens.shape[1:]) lowercase__ : Dict = torch.cat((tokens, next_tokens) , dim=1) else: lowercase__ : str = -float(np.inf) lowercase__ : Optional[Any] = 0 lowercase__ : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase__ : str = scores_sum / seq_lengths[:, None] lowercase__ , lowercase__ : List[str] = scores_sum_average.view(-1).topk(a , -1) lowercase__ : List[str] = next_tokens // scores_sum.shape[1] lowercase__ : List[Any] = seq_lengths[next_tokens_source] lowercase__ : Dict = next_tokens % scores_sum.shape[1] lowercase__ : Tuple = next_tokens.unsqueeze(1) lowercase__ : Union[str, Any] = tokens[next_tokens_source] lowercase__ : Any = torch.cat((tokens, next_tokens) , dim=1) lowercase__ : List[str] = generated[next_tokens_source] lowercase__ : Union[str, Any] = scores_sum_average * seq_lengths lowercase__ : str = is_stopped[next_tokens_source] lowercase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowercase__ : Optional[Any] = torch.cat((generated, next_token_embed) , dim=1) lowercase__ : Optional[Any] = is_stopped + next_tokens.eq(a).squeeze() if is_stopped.all(): break lowercase__ : Dict = scores / seq_lengths lowercase__ : Optional[Any] = scores.argsort(descending=a) # tokens tensors are already padded to max_seq_length lowercase__ : int = [tokens[i] for i in order] lowercase__ : Optional[int] = torch.stack(a , dim=0) lowercase__ : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
164
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''PoolFormerFeatureExtractor'''] lowerCAmelCase__ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
81
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): lowercase__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : str = -1 lowercase__ : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : str = TextStreamer(SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : int = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = -1 lowercase__ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : int = tokenizer.decode(greedy_ids[0] ) lowercase__ : Union[str, Any] = TextIteratorStreamer(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ : Optional[int] = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE ) thread.start() lowercase__ : List[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] ): lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = -1 lowercase__ : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : Any = greedy_ids[:, input_ids.shape[1] :] lowercase__ : Any = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : str = TextStreamer(SCREAMING_SNAKE_CASE , skip_prompt=SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : Optional[Any] = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowercase__ : List[str] = AutoTokenizer.from_pretrained("distilgpt2" ) lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = -1 lowercase__ : List[Any] = torch.ones((1, 5) , device=SCREAMING_SNAKE_CASE ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ : Dict = TextStreamer(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=1 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ : List[Any] = cs.out[:-1] # Remove the final "\n" lowercase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : Optional[int] ): lowercase__ : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : int = -1 lowercase__ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = TextIteratorStreamer(SCREAMING_SNAKE_CASE , timeout=0.001 ) lowercase__ : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ : Any = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = "" for new_text in streamer: streamer_text += new_text
81
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] )
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = 0 if start < end: UpperCamelCase__ :Union[str, Any] = randint(__a , __a ) UpperCamelCase__ :Dict = a[end] UpperCamelCase__ :Union[str, Any] = a[pivot] UpperCamelCase__ :List[str] = temp UpperCamelCase__ :str = _in_place_partition(__a , __a , __a ) count += _in_place_quick_sort(__a , __a , p - 1 ) count += _in_place_quick_sort(__a , p + 1 , __a ) return count def a ( __a , __a , __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Any = 0 UpperCamelCase__ :int = randint(__a , __a ) UpperCamelCase__ :Optional[Any] = a[end] UpperCamelCase__ :Any = a[pivot] UpperCamelCase__ :Optional[int] = temp UpperCamelCase__ :int = start - 1 for index in range(__a , __a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase__ :str = new_pivot_index + 1 UpperCamelCase__ :Any = a[new_pivot_index] UpperCamelCase__ :Dict = a[index] UpperCamelCase__ :Any = temp UpperCamelCase__ :Optional[int] = a[new_pivot_index + 1] UpperCamelCase__ :Union[str, Any] = a[end] UpperCamelCase__ :Optional[Any] = temp return new_pivot_index + 1, count __snake_case = TemporaryFile() __snake_case = 100 # 1000 elements are to be sorted __snake_case , __snake_case = 0, 1 # mean and standard deviation __snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __snake_case = np.load(outfile) __snake_case = len(M) - 1 __snake_case = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
718
'''simple docstring''' import json import sys def a ( __a , __a ) -> str: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :List[str] = json.load(__a ) UpperCamelCase__ :int = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__a ): UpperCamelCase__ :Optional[Any] = results[benchmark_name] UpperCamelCase__ :int = benchmark_name.split('''/''' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) UpperCamelCase__ :List[str] = '''| metric |''' UpperCamelCase__ :str = '''|--------|''' UpperCamelCase__ :Union[str, Any] = '''| new / old (diff) |''' for metric_name in sorted(__a ): UpperCamelCase__ :List[Any] = benchmark_res[metric_name] UpperCamelCase__ :Optional[int] = metric_vals['''new'''] UpperCamelCase__ :Any = metric_vals.get('''old''' , __a ) UpperCamelCase__ :Optional[int] = metric_vals.get('''diff''' , __a ) UpperCamelCase__ :List[str] = f''' {new_val:f}''' if isinstance(__a , (int, float) ) else '''None''' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(__a , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(__a , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__a ) ) if __name__ == "__main__": __snake_case = sys.argv[1] __snake_case = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
280
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case : str = logging.get_logger(__name__) def _A ( __snake_case :Optional[Any] , __snake_case :int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _A ( __snake_case :List[Any] , __snake_case :str ) -> Optional[Any]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __SCREAMING_SNAKE_CASE = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def _A ( __snake_case :List[Any] , __snake_case :Tuple , __snake_case :List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = dct.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val def _A ( __snake_case :Dict ) -> Optional[int]: """simple docstring""" if "handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __SCREAMING_SNAKE_CASE = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("RGB" ) return im @torch.no_grad() def _A ( __snake_case :Optional[Any] , __snake_case :Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __SCREAMING_SNAKE_CASE = 768 elif "large" in checkpoint_url: # use ViT-large encoder __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 1024 else: raise ValueError("Should either find \'base\' or \'large\' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = '''relu''' __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False # load HuggingFace model __SCREAMING_SNAKE_CASE = ViTModel(UpperCamelCase_ , add_pooling_layer=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = TrOCRForCausalLM(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) model.eval() # load state_dict of original model, rename some keys __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" , check_hash=UpperCamelCase_ )['''model'''] __SCREAMING_SNAKE_CASE = create_rename_keys(UpperCamelCase_ , UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) if key.startswith("decoder" ) and "output_projection" not in key: __SCREAMING_SNAKE_CASE = val else: __SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(UpperCamelCase_ ) # Check outputs on an image __SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) __SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("roberta-large" ) __SCREAMING_SNAKE_CASE = TrOCRProcessor(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = processor(images=prepare_img(UpperCamelCase_ ) , return_tensors="pt" ).pixel_values # verify logits __SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __SCREAMING_SNAKE_CASE = model(pixel_values=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase_ , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _snake_case : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
693
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False, False, False @dataclass class UpperCAmelCase : UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = None # Automatically constructed UpperCAmelCase = "dict" UpperCAmelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase = field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self : Any ): return self.pa_type def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase__ :int = BytesIO() sf.write(__lowerCamelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase__ :List[Any] = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: UpperCAmelCase__ :Optional[Any] = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 UpperCAmelCase__ :Optional[Any] = BytesIO(bytes() ) sf.write(__lowerCamelCase , __lowerCamelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) UpperCAmelCase__ , UpperCAmelCase__ :str = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err UpperCAmelCase__ :List[str] = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: UpperCAmelCase__ :Optional[Any] = token_per_repo_id or {} UpperCAmelCase__ :str = path.split('''::''' )[-1] try: UpperCAmelCase__ :Tuple = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase__ :str = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase__ :Tuple = None with xopen(__lowerCamelCase , '''rb''' , use_auth_token=__lowerCamelCase ) as f: UpperCAmelCase__ , UpperCAmelCase__ :Union[str, Any] = sf.read(__lowerCamelCase ) else: UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = sf.read(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = array.T if self.mono: UpperCAmelCase__ :Any = librosa.to_mono(__lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase__ :Union[str, Any] = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate ) UpperCAmelCase__ :List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): UpperCAmelCase__ :List[str] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) UpperCAmelCase__ :Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase__ :str = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) UpperCAmelCase__ :int = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): UpperCAmelCase__ :Any = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase__ :str = storage.field('''bytes''' ) else: UpperCAmelCase__ :List[str] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase__ :Optional[int] = storage.field('''path''' ) else: UpperCAmelCase__ :Optional[int] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) UpperCAmelCase__ :List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Dict ): with xopen(__lowerCamelCase , '''rb''' ) as f: UpperCAmelCase__ :Any = f.read() return bytes_ UpperCAmelCase__ :Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase__ :Optional[int] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) UpperCAmelCase__ :Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type )
467
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCamelCase ( __A ) -> Union[str, Any]: '''simple docstring''' random.seed(__A ) np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # ^^ safe to call this function even if cuda is not available class lowercase_ : def __init__( self , a , a = 0.9999 , a = 0.0 , a = 0 , a = False , a = 1.0 , a = 2 / 3 , a = None , a = None , **a , ): if isinstance(a , torch.nn.Module ): UpperCamelCase__ = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , a , standard_warn=a , ) UpperCamelCase__ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase__ = True if kwargs.get("max_value" , a ) is not None: UpperCamelCase__ = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , a , standard_warn=a ) UpperCamelCase__ = kwargs["max_value"] if kwargs.get("min_value" , a ) is not None: UpperCamelCase__ = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , a , standard_warn=a ) UpperCamelCase__ = kwargs["min_value"] UpperCamelCase__ = list(a ) UpperCamelCase__ = [p.clone().detach() for p in parameters] if kwargs.get("device" , a ) is not None: UpperCamelCase__ = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , a , standard_warn=a ) self.to(device=kwargs["device"] ) UpperCamelCase__ = None UpperCamelCase__ = decay UpperCamelCase__ = min_decay UpperCamelCase__ = update_after_step UpperCamelCase__ = use_ema_warmup UpperCamelCase__ = inv_gamma UpperCamelCase__ = power UpperCamelCase__ = 0 UpperCamelCase__ = None # set in `step()` UpperCamelCase__ = model_cls UpperCamelCase__ = model_config @classmethod def __a ( cls , a , a ): UpperCamelCase__ , UpperCamelCase__ = model_cls.load_config(a , return_unused_kwargs=a ) UpperCamelCase__ = model_cls.from_pretrained(a ) UpperCamelCase__ = cls(model.parameters() , model_cls=a , model_config=model.config ) ema_model.load_state_dict(a ) return ema_model def __a ( self , a ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) UpperCamelCase__ = self.model_cls.from_config(self.model_config ) UpperCamelCase__ = self.state_dict() state_dict.pop("shadow_params" , a ) model.register_to_config(**a ) self.copy_to(model.parameters() ) model.save_pretrained(a ) def __a ( self , a ): UpperCamelCase__ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase__ = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase__ = (1 + step) / (10 + step) UpperCamelCase__ = min(a , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase__ = max(a , self.min_decay ) return cur_decay_value @torch.no_grad() def __a ( self , a ): if isinstance(a , torch.nn.Module ): UpperCamelCase__ = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , a , standard_warn=a , ) UpperCamelCase__ = parameters.parameters() UpperCamelCase__ = list(a ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase__ = self.get_decay(self.optimization_step ) UpperCamelCase__ = decay UpperCamelCase__ = 1 - decay UpperCamelCase__ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , a ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase__ = deepspeed.zero.GatheredParameters(a , modifier_rank=a ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(a ) def __a ( self , a ): UpperCamelCase__ = list(a ) for s_param, param in zip(self.shadow_params , a ): param.data.copy_(s_param.to(param.device ).data ) def __a ( self , a=None , a=None ): UpperCamelCase__ = [ p.to(device=a , dtype=a ) if p.is_floating_point() else p.to(device=a ) for p in self.shadow_params ] def __a ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __a ( self , a ): UpperCamelCase__ = [param.detach().cpu().clone() for param in parameters] def __a ( self , a ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , a ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase__ = None def __a ( self , a ): UpperCamelCase__ = copy.deepcopy(a ) UpperCamelCase__ = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) UpperCamelCase__ = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , a ): raise ValueError("Invalid min_decay" ) UpperCamelCase__ = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , a ): raise ValueError("Invalid optimization_step" ) UpperCamelCase__ = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , a ): raise ValueError("Invalid update_after_step" ) UpperCamelCase__ = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , a ): raise ValueError("Invalid use_ema_warmup" ) UpperCamelCase__ = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) UpperCamelCase__ = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) UpperCamelCase__ = state_dict.get("shadow_params" , a ) if shadow_params is not None: UpperCamelCase__ = shadow_params if not isinstance(self.shadow_params , a ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(a , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
223
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__A , __A , __A=0 , __A=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(__A , __A ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(__A ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__A ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__A ) return (new_height, new_width) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = False , a = 1 , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"height": 3_84, "width": 3_84} UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , a , a , a = False , a = 1 , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size( a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
223
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _snake_case : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=1_000 , ): __magic_name__ : Any = parent __magic_name__ : int = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : Optional[int] = is_training __magic_name__ : Dict = use_input_mask __magic_name__ : Union[str, Any] = use_token_type_ids __magic_name__ : List[Any] = use_labels __magic_name__ : List[str] = vocab_size __magic_name__ : Dict = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : List[str] = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : str = max_position_embeddings __magic_name__ : Union[str, Any] = type_vocab_size __magic_name__ : str = type_sequence_label_size __magic_name__ : Tuple = initializer_range __magic_name__ : Union[str, Any] = num_labels __magic_name__ : List[Any] = num_choices __magic_name__ : Optional[int] = scope __magic_name__ : List[str] = range_bbox def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __magic_name__ : Optional[Any] = bbox[i, j, 3] __magic_name__ : Tuple = bbox[i, j, 1] __magic_name__ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: __magic_name__ : Union[str, Any] = bbox[i, j, 2] __magic_name__ : int = bbox[i, j, 0] __magic_name__ : Union[str, Any] = t __magic_name__ : List[str] = tf.convert_to_tensor(_a ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Optional[int] = None __magic_name__ : Tuple = None __magic_name__ : List[Any] = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : List[str] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : Union[str, Any] = TFLayoutLMModel(config=_a ) __magic_name__ : Dict = model(_a , _a , attention_mask=_a , token_type_ids=_a ) __magic_name__ : List[Any] = model(_a , _a , token_type_ids=_a ) __magic_name__ : Optional[Any] = model(_a , _a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : str = TFLayoutLMForMaskedLM(config=_a ) __magic_name__ : str = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : int = self.num_labels __magic_name__ : List[str] = TFLayoutLMForSequenceClassification(config=_a ) __magic_name__ : Optional[int] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : Any = self.num_labels __magic_name__ : Any = TFLayoutLMForTokenClassification(config=_a ) __magic_name__ : str = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : Any = TFLayoutLMForQuestionAnswering(config=_a ) __magic_name__ : Dict = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : List[Any] = config_and_inputs __magic_name__ : Union[str, Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCamelCase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = 10 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = TFLayoutLMModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[Any] = TFLayoutLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self ): pass def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : Any = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 __magic_name__ : str = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __magic_name__ : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __magic_name__ : Optional[int] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __magic_name__ : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = prepare_layoutlm_batch_inputs() # forward pass __magic_name__ : Optional[Any] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the sequence output on [0, :3, :3] __magic_name__ : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-3 ) ) # test the pooled output on [1, :3] __magic_name__ : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _a , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): # initialize model with randomly initialized sequence classification head __magic_name__ : List[str] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass __magic_name__ : Union[str, Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __magic_name__ : str = outputs.loss __magic_name__ : List[str] = (2,) self.assertEqual(loss.shape , _a ) # test the shape of the logits __magic_name__ : int = outputs.logits __magic_name__ : Union[str, Any] = (2, 2) self.assertEqual(logits.shape , _a ) @slow def SCREAMING_SNAKE_CASE ( self ): # initialize model with randomly initialized token classification head __magic_name__ : Union[str, Any] = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = prepare_layoutlm_batch_inputs() # forward pass __magic_name__ : Optional[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) # test the shape of the logits __magic_name__ : Optional[Any] = outputs.logits __magic_name__ : int = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _a ) @slow def SCREAMING_SNAKE_CASE ( self ): # initialize model with randomly initialized token classification head __magic_name__ : Optional[int] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass __magic_name__ : int = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the shape of the logits __magic_name__ : Tuple = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _a ) self.assertEqual(outputs.end_logits.shape , _a )
124
from __future__ import annotations from typing import Any class _snake_case ( snake_case ): pass class _snake_case : def __init__( self , _a ): __magic_name__ : Any = data __magic_name__ : Node | None = None def __iter__( self ): __magic_name__ : Any = self __magic_name__ : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(_a ) yield node.data __magic_name__ : Any = node.next_node @property def SCREAMING_SNAKE_CASE ( self ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case : str = Node(1) snake_case : Dict = Node(2) snake_case : List[str] = Node(3) snake_case : Union[str, Any] = Node(4) print(root_node.has_loop) # False snake_case : List[Any] = root_node.next_node print(root_node.has_loop) # True snake_case : Union[str, Any] = Node(5) snake_case : Any = Node(6) snake_case : Any = Node(5) snake_case : Optional[int] = Node(6) print(root_node.has_loop) # False snake_case : str = Node(1) print(root_node.has_loop) # False
124
1
from copy import deepcopy class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ): if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(SCREAMING_SNAKE_CASE_ ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = deepcopy(SCREAMING_SNAKE_CASE_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ): return index + (index & (-index)) @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ): return index - (index & (-index)) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.add(SCREAMING_SNAKE_CASE_ , value - self.get(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(SCREAMING_SNAKE_CASE_ ) return result def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self.prefix(SCREAMING_SNAKE_CASE_ ) - self.prefix(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.query(SCREAMING_SNAKE_CASE_ , index + 1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
86
from ..utils import DummyObject, requires_backends class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """torchsde"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """torchsde"""] )
86
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} A_ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } A_ = { "abeja/gpt-neox-japanese-2.7b": 2048, } def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Dict = collections.OrderedDict() snake_case__ : int = collections.OrderedDict() snake_case__ : Union[str, Any] = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: snake_case__ : Any = f.readlines() snake_case__ : Optional[int] = [[t.rstrip('\n' )] if (t == "," or "," not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = b snake_case__ : Union[str, Any] = idx for wd in b: snake_case__ : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase_ ( __snake_case ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]="<|endoftext|>" , __lowerCamelCase : str="<|endoftext|>" , __lowerCamelCase : Optional[int]="<|startoftext|>" , __lowerCamelCase : Tuple="<|endoftext|>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Optional[Any] , ): super().__init__( unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , do_clean_text=UpperCamelCase__ , **UpperCamelCase__ , ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) snake_case__ : Any = do_clean_text snake_case__ : int = load_vocab_and_emoji(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Any = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowerCAmelCase ( self : Tuple ): return len(self.raw_vocab ) def _lowerCAmelCase ( self : int ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] ): return self.subword_tokenizer.tokenize(UpperCamelCase__ , clean=self.do_clean_text ) def _lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def _lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): return self.subword_tokenizer.convert_id_to_token(UpperCamelCase__ ) def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : int ): snake_case__ : str = "".join(UpperCamelCase__ ).strip() return out_string def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : "Conversation" ): snake_case__ : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: snake_case__ : int = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): snake_case__ : Any = 0 if os.path.isdir(UpperCamelCase__ ): snake_case__ : Any = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : str = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: snake_case__ : Union[str, Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) snake_case__ : Optional[Any] = token_index writer.write(','.join(UpperCamelCase__ ) + '\n' ) index += 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , UpperCamelCase__ ) return vocab_file, emoji_file class lowercase_ ( __snake_case ): def __init__( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): snake_case__ : str = vocab # same as swe snake_case__ : Any = ids_to_tokens # same as bpe snake_case__ : Dict = emoji snake_case__ : Any = np.max([len(UpperCamelCase__ ) for w in self.vocab.keys()] ) snake_case__ : Any = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) snake_case__ : List[Any] = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) snake_case__ : Optional[Any] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) snake_case__ : Tuple = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) snake_case__ : int = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) snake_case__ : Optional[Any] = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) snake_case__ : int = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" snake_case__ : str = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" snake_case__ : Any = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Tuple ): return len(self.ids_to_tokens ) def _lowerCAmelCase ( self : int , __lowerCamelCase : Optional[Any] ): snake_case__ : Optional[Any] = self.content_repattera.sub('<URL>' , UpperCamelCase__ ) snake_case__ : Optional[Any] = self.content_repattera.sub('<EMAIL>' , UpperCamelCase__ ) snake_case__ : Tuple = self.content_repattera.sub('<TEL>' , UpperCamelCase__ ) snake_case__ : Union[str, Any] = self.content_repattera.sub('<DATE>' , UpperCamelCase__ ) snake_case__ : Optional[Any] = self.content_repattera.sub('<DATE>' , UpperCamelCase__ ) snake_case__ : Optional[int] = self.content_repattera.sub('<PRICE>' , UpperCamelCase__ ) snake_case__ : List[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case__ : List[Any] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=False ): snake_case__ : List[str] = text.replace(' ' , '<SP>' ) snake_case__ : List[str] = text.replace(' ' , '<SP>' ) snake_case__ : Optional[int] = text.replace('\r\n' , '<BR>' ) snake_case__ : Any = text.replace('\n' , '<BR>' ) snake_case__ : int = text.replace('\r' , '<BR>' ) snake_case__ : List[str] = text.replace('\t' , '<TAB>' ) snake_case__ : Dict = text.replace('—' , 'ー' ) snake_case__ : Any = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case__ : str = text.replace(UpperCamelCase__ , UpperCamelCase__ ) if clean: snake_case__ : Any = self.clean_text(UpperCamelCase__ ) def check_simbol(__lowerCamelCase : int ): snake_case__ : str = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 2: snake_case__ : Optional[int] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(__lowerCamelCase : Union[str, Any] ): snake_case__ : str = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 3: snake_case__ : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False snake_case__ : str = 0 snake_case__ : Dict = [] while pos < len(UpperCamelCase__ ): snake_case__ : int = min(len(UpperCamelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 snake_case__ : List[str] = [] # (token_id, token, pos) for e in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): snake_case__ : Tuple = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase__ ) > 2: snake_case__ : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase__ ) > 0: # the smallest token_id is adopted snake_case__ : Dict = sorted(UpperCamelCase__ , key=lambda __lowerCamelCase : x[0] )[0] result.append(UpperCamelCase__ ) snake_case__ : int = e else: snake_case__ : Optional[Any] = pos + 1 snake_case__ : Optional[Any] = text[pos:end] if check_simbol(UpperCamelCase__ ): result.append('<KIGOU>' ) elif checkuae(UpperCamelCase__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) snake_case__ : str = end return result def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Tuple="\n" ): snake_case__ : Optional[int] = [] snake_case__ : List[str] = [] snake_case__ : Optional[int] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode('utf-8' , errors='replace' ) ) snake_case__ : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(UpperCamelCase__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode('utf-8' , errors='replace' ) ) snake_case__ : Tuple = "".join(UpperCamelCase__ ) return text
270
"""simple docstring""" from __future__ import annotations __A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> tuple[list[list[int]], list[list[int]]]: __lowerCAmelCase: Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__SCREAMING_SNAKE_CASE ) ) ] # the reference grid __lowerCAmelCase: Tuple = 1 __lowerCAmelCase: Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__SCREAMING_SNAKE_CASE ) ) ] # the action grid __lowerCAmelCase: Tuple = init[0] __lowerCAmelCase: Any = init[1] __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: int = g + heuristic[x][y] # cost from starting cell to destination cell __lowerCAmelCase: Optional[Any] = [[f, g, x, y]] __lowerCAmelCase: Union[str, Any] = False # flag that is set when search is complete __lowerCAmelCase: List[Any] = False # flag set if we can't find expand while not found and not resign: if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowerCAmelCase: Union[str, Any] = cell.pop() __lowerCAmelCase: Optional[int] = next_cell[2] __lowerCAmelCase: int = next_cell[3] __lowerCAmelCase: Optional[int] = next_cell[1] if x == goal[0] and y == goal[1]: __lowerCAmelCase: int = True else: for i in range(len(__SCREAMING_SNAKE_CASE ) ): # to try out different valid actions __lowerCAmelCase: Dict = x + DIRECTIONS[i][0] __lowerCAmelCase: str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowerCAmelCase: Tuple = g + cost __lowerCAmelCase: Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowerCAmelCase: int = 1 __lowerCAmelCase: List[Any] = i __lowerCAmelCase: int = [] __lowerCAmelCase: Dict = goal[0] __lowerCAmelCase: Any = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowerCAmelCase: Tuple = x - DIRECTIONS[action[x][y]][0] __lowerCAmelCase: Tuple = y - DIRECTIONS[action[x][y]][1] __lowerCAmelCase: List[Any] = xa __lowerCAmelCase: Dict = ya invpath.append([x, y] ) __lowerCAmelCase: Tuple = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(__SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": __A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __A = [0, 0] # all coordinates are given in format [y,x] __A = [len(grid) - 1, len(grid[0]) - 1] __A = 1 # the cost map which pushes the path closer to the goal __A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __A = 99 __A , __A = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
346
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class __a : def __init__( self : str ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = start __SCREAMING_SNAKE_CASE = end __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = (start + end) // 2 __SCREAMING_SNAKE_CASE = left __SCREAMING_SNAKE_CASE = right def __repr__( self : List[str] ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __a : def __init__( self : int ,lowerCamelCase : Sequence ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = collection __SCREAMING_SNAKE_CASE = function if self.collection: __SCREAMING_SNAKE_CASE = self._build_tree(0 ,len(lowerCamelCase ) - 1 ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : int ): '''simple docstring''' self._update_tree(self.root ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self._query_range(self.root ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any] ): '''simple docstring''' if start == end: return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.collection[start] ) __SCREAMING_SNAKE_CASE = (start + end) // 2 __SCREAMING_SNAKE_CASE = self._build_tree(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._build_tree(mid + 1 ,lowerCamelCase ) return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.fn(left.val ,right.val ) ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : str ): '''simple docstring''' if node.start == i and node.end == i: __SCREAMING_SNAKE_CASE = val return if i <= node.mid: self._update_tree(node.left ,lowerCamelCase ,lowerCamelCase ) else: self._update_tree(node.right ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.fn(node.left.val ,node.right.val ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : str ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,lowerCamelCase ,lowerCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,lowerCamelCase ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,lowerCamelCase ) ,) else: # range in right child tree return self._query_range(node.right ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.root is not None: __SCREAMING_SNAKE_CASE = Queue() queue.put(self.root ) while not queue.empty(): __SCREAMING_SNAKE_CASE = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) a = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowerCamelCase : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : lowerCAmelCase__ = field( default=_a , metadata={"help": "Model type selected in the list: " + ", ".join(_a )} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase__ = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase__ = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase__ = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase__ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __snake_case (_a ): lowerCAmelCase__ = "train" lowerCAmelCase__ = "dev" class __snake_case (_a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Dict , _UpperCAmelCase : SquadDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "pt" , ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[str] = args _lowerCAmelCase : Optional[Any] = is_language_sensitive _lowerCAmelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: _lowerCAmelCase : Dict = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase : Optional[Any] = mode # Load data features from cache or dataset file _lowerCAmelCase : int = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : List[str] = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Optional[Any] = torch.load(_UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase : str = self.old_features["""features"""] _lowerCAmelCase : Dict = self.old_features.get("""dataset""" , _UpperCAmelCase ) _lowerCAmelCase : Tuple = self.old_features.get("""examples""" , _UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase : Union[str, Any] = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_UpperCAmelCase , ) _lowerCAmelCase : int = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ) -> int: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , _UpperCAmelCase : List[str] ) -> Dict[str, torch.Tensor]: '''simple docstring''' _lowerCAmelCase : List[str] = self.features[i] _lowerCAmelCase : int = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase : Optional[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase : Optional[int] = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase : Tuple = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase : Tuple = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase : List[str] = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase : List[Any] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase : Optional[int] = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase : int = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
429
from collections import deque from .hash_table import HashTable class __snake_case (_a ): def __init__( self : int , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' _lowerCAmelCase : Dict = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.values[key] def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_UpperCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=None ) -> Tuple: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCAmelCase ) == 0 ): return key return super()._collision_resolution(_UpperCAmelCase , _UpperCAmelCase )
429
1
from __future__ import annotations import math class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :Dict = size # approximate the overall size of segment tree with given value lowercase_ :Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase_ :Optional[Any] = [0 for i in range(0 , 4 * size )] lowercase_ :Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCamelCase ( self , UpperCamelCase_ ): return idx * 2 def UpperCamelCase ( self , UpperCamelCase_ ): return idx * 2 + 1 def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if left_element == right_element: lowercase_ :Tuple = a[left_element - 1] else: lowercase_ :Any = (left_element + right_element) // 2 self.build(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.build(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Union[str, Any] = max( self.segment_tree[self.left(UpperCamelCase_ )] , self.segment_tree[self.right(UpperCamelCase_ )] ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if self.flag[idx] is True: lowercase_ :Optional[int] = self.lazy[idx] lowercase_ :Optional[int] = False if left_element != right_element: lowercase_ :str = self.lazy[idx] lowercase_ :str = self.lazy[idx] lowercase_ :Union[str, Any] = True lowercase_ :Optional[int] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase_ :List[str] = val if left_element != right_element: lowercase_ :Tuple = val lowercase_ :Optional[Any] = val lowercase_ :Union[str, Any] = True lowercase_ :Optional[Any] = True return True lowercase_ :str = (left_element + right_element) // 2 self.update(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.update(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = max( self.segment_tree[self.left(UpperCamelCase_ )] , self.segment_tree[self.right(UpperCamelCase_ )] ) return True def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if self.flag[idx] is True: lowercase_ :Optional[int] = self.lazy[idx] lowercase_ :Tuple = False if left_element != right_element: lowercase_ :Tuple = self.lazy[idx] lowercase_ :List[Any] = self.lazy[idx] lowercase_ :str = True lowercase_ :int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase_ :str = (left_element + right_element) // 2 lowercase_ :Dict = self.query(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Union[str, Any] = self.query(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return max(UpperCamelCase_ , UpperCamelCase_ ) def __str__( self ): return str([self.query(1 , 1 , self.size , UpperCamelCase_ , UpperCamelCase_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] SCREAMING_SNAKE_CASE : Dict = 15 SCREAMING_SNAKE_CASE : Any = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
716
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase ( _a , _a , _a ) -> List[str]: '''simple docstring''' if openai_config_file == "": lowercase_ :str = OpenAIGPTConfig() else: lowercase_ :int = OpenAIGPTConfig.from_json_file(_a ) lowercase_ :int = OpenAIGPTModel(_a ) # Load weights from numpy load_tf_weights_in_openai_gpt(_a , _a , _a ) # Save pytorch-model lowercase_ :Optional[int] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase_ :List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
441
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if rng is None: _lowerCAmelCase : Dict = random.Random() _lowerCAmelCase : Optional[Any] = 1 for dim in shape: total_dims *= dim _lowerCAmelCase : Optional[int] = [] for _ in range(A__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCAmelCase : List[Any] = np.array(A__ , dtype=jnp.intaa ).reshape(A__ ) return output def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor(A__ , vocab_size=2 , rng=A__ ) # make sure that at least one token is attended to for each batch _lowerCAmelCase : Optional[Any] = 1 return attn_mask @require_flax class __UpperCamelCase : _UpperCAmelCase = None _UpperCAmelCase = () def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : List[str] = inputs['input_ids'].shape[-1] // 2 _lowerCAmelCase : Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] _lowerCAmelCase : Optional[Any] = jnp.ones_like(__lowerCamelCase ) _lowerCAmelCase : int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCAmelCase : Optional[int] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCAmelCase : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = self._get_input_ids_and_config() _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = max_length _lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: _lowerCAmelCase : str = model_class(__lowerCamelCase ) _lowerCAmelCase : int = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase : List[str] = getattr(__lowerCamelCase ,__lowerCamelCase ) _lowerCAmelCase : Tuple = pt_model_class(__lowerCamelCase ).eval() _lowerCAmelCase : Tuple = load_flax_weights_in_pytorch_model(__lowerCamelCase ,flax_model.params ) _lowerCAmelCase : List[Any] = flax_model.generate(__lowerCamelCase ).sequences _lowerCAmelCase : int = pt_model.generate(torch.tensor(__lowerCamelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCAmelCase : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() _lowerCAmelCase : Dict = False _lowerCAmelCase : str = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Optional[Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : int = jit(model.generate ) _lowerCAmelCase : List[str] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = self._get_input_ids_and_config() _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[Any] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : str = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[int] = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self._get_input_ids_and_config() _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Any = model_class(__lowerCamelCase ) _lowerCAmelCase : List[Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = max_length _lowerCAmelCase : List[str] = 0.8 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : Any = 0.3 _lowerCAmelCase : int = 1 _lowerCAmelCase : Union[str, Any] = 8 _lowerCAmelCase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : str = jit(model.generate ) _lowerCAmelCase : Tuple = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : Dict = 1 _lowerCAmelCase : int = 8 _lowerCAmelCase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Tuple = model_class(__lowerCamelCase ) _lowerCAmelCase : Dict = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[int] = jit(model.generate ) _lowerCAmelCase : List[str] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = self._get_input_ids_and_config() _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = 8 _lowerCAmelCase : Tuple = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Dict = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : Optional[int] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : int = False _lowerCAmelCase : List[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : Optional[int] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Any = model_class(__lowerCamelCase ) _lowerCAmelCase : str = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : int = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : List[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : List[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Optional[int] = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _lowerCAmelCase : List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCAmelCase : Any = 'Hello world' _lowerCAmelCase : Optional[Any] = tokenizer(__lowerCamelCase ,return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase ,'do_samples' ): model.generate(__lowerCamelCase ,do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase ,'foo' ): _lowerCAmelCase : Union[str, Any] = {'foo': 'bar'} model.generate(__lowerCamelCase ,**__lowerCamelCase )
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase = 16 __lowerCamelCase = 32 def a ( __UpperCAmelCase : Union[str, Any] ) -> str: return int(x / 2**2_0 ) class __A : def __enter__( self : Dict ) -> Tuple: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __magic_name__: int = torch.cuda.memory_allocated() return self def __exit__( self : Optional[int] , *__snake_case : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() __magic_name__: Tuple = torch.cuda.memory_allocated() __magic_name__: Any = torch.cuda.max_memory_allocated() __magic_name__: List[str] = bamb(self.end - self.begin ) __magic_name__: Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a ( __UpperCAmelCase : Accelerator , __UpperCAmelCase : int = 1_6 , __UpperCAmelCase : str = "bert-base-cased" , __UpperCAmelCase : int = 3_2_0 , __UpperCAmelCase : int = 1_6_0 , ) -> Any: __magic_name__: Union[str, Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) __magic_name__: List[str] = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(__UpperCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) __magic_name__: List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__: Tuple = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=SCREAMING_SNAKE_CASE_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__: Dict = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __magic_name__: List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __magic_name__: str = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader def a ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> Union[str, Any]: __magic_name__: List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__: str = config["lr"] __magic_name__: Optional[int] = int(config["""num_epochs"""] ) __magic_name__: Dict = int(config["""seed"""] ) __magic_name__: Tuple = int(config["""batch_size"""] ) __magic_name__: int = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE_ ) __magic_name__: Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__: Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) # Instantiate optimizer __magic_name__: Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__: Dict = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__: int = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __magic_name__: Optional[Any] = 1 __magic_name__: Union[str, Any] = (len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__: str = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE_ , ) else: __magic_name__: List[str] = DummyScheduler(SCREAMING_SNAKE_CASE_ , total_num_steps=SCREAMING_SNAKE_CASE_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__: int = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over __magic_name__: List[str] = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__: Optional[Any] = 0 # Now we train the model __magic_name__: List[str] = {} for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): __magic_name__: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) __magic_name__: List[str] = outputs.loss __magic_name__: Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __magic_name__: Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( ) -> Optional[int]: __magic_name__: Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=SCREAMING_SNAKE_CASE_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( """--output_dir""" , type=SCREAMING_SNAKE_CASE_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=SCREAMING_SNAKE_CASE_ , default=3_2_0 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=SCREAMING_SNAKE_CASE_ , default=1_6_0 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="""Number of train epochs.""" , ) __magic_name__: List[Any] = parser.parse_args() __magic_name__: int = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
702
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any=0 ) -> Dict: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : int ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: self._test_save_load_local() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
213
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MvpTokenizer UpperCamelCase_ = MvpTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = filter_roberta_detectors def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() lowercase : Dict =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase : Tuple =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[Any] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase : List[Any] ={'''unk_token''': '''<unk>'''} lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , **UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[str] , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def A__ ( self : Any ) -> int: '''simple docstring''' return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase : List[str] =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : Union[str, Any] =batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that special tokens are reset @require_torch def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : Any =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Dict =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''labels''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) @require_torch def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : int =[ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Optional[Any] =tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =['''A long paragraph for summarization.'''] lowercase : List[Any] =[ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] =tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' ) lowercase : Optional[int] =inputs['''input_ids'''] lowercase : Optional[Any] =inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Tuple =self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Optional[Any] ='''A, <mask> AllenNLP sentence.''' lowercase : int =tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) lowercase : List[Any] =tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase : Any =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase : str =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
94
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __UpperCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __UpperCAmelCase ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = field(default=lowerCamelCase__ , metadata={"help": "Whether to use SortishSampler or not."} ) __lowerCamelCase : Union[str, Any] = field( default=lowerCamelCase__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCamelCase : str = field( default=lowerCamelCase__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) __lowerCamelCase : Union[str, Any] = field( default=lowerCamelCase__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) __lowerCamelCase : Optional[int] = field( default=lowerCamelCase__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): a__ : str = v.to_dict() return d
702
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase__ ( lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' a__ : Any = create_tensor(lowerCAmelCase__ ) a__ : Optional[Any] = gather(lowerCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : str = [state.process_index] a__ : Optional[int] = gather_object(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == state.num_processes, F"{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' a__ : str = create_tensor(lowerCAmelCase__ ) a__ : Any = broadcast(lowerCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: a__ : Any = torch.arange(state.num_processes + 1 ).to(state.device ) else: a__ : Union[str, Any] = torch.arange(state.num_processes ).to(state.device ) a__ : List[Any] = pad_across_processes(lowerCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase__ ( lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return a__ : List[str] = create_tensor(lowerCAmelCase__ ) a__ : Union[str, Any] = reduce(lowerCAmelCase__ , "sum" ) a__ : List[str] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"{reduced_tensor} != {truth_tensor}" def lowercase__ ( lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return a__ : Tuple = create_tensor(lowerCAmelCase__ ) a__ : Dict = reduce(lowerCAmelCase__ , "mean" ) a__ : Tuple = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"{reduced_tensor} != {truth_tensor}" def lowercase__ ( lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() def lowercase__ ( ) -> Optional[int]: '''simple docstring''' a__ : List[str] = PartialState() state.print(F"State: {state}" ) state.print("testing gather" ) test_gather(lowerCAmelCase__ ) state.print("testing gather_object" ) test_gather_object(lowerCAmelCase__ ) state.print("testing broadcast" ) test_broadcast(lowerCAmelCase__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(lowerCAmelCase__ ) state.print("testing reduce_sum" ) test_reduce_sum(lowerCAmelCase__ ) state.print("testing reduce_mean" ) test_reduce_mean(lowerCAmelCase__ ) if __name__ == "__main__": main()
251
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "vision-encoder-decoder" UpperCAmelCase = True def __init__( self : Optional[Any] , **_A : Optional[int] ): super().__init__(**_A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _UpperCamelCase = kwargs.pop('''encoder''' ) _UpperCamelCase = encoder_config.pop('''model_type''' ) _UpperCamelCase = kwargs.pop('''decoder''' ) _UpperCamelCase = decoder_config.pop('''model_type''' ) _UpperCamelCase = AutoConfig.for_model(_A , **_A ) _UpperCamelCase = AutoConfig.for_model(_A , **_A ) _UpperCamelCase = True @classmethod def UpperCamelCase_ ( cls : Tuple , _A : PretrainedConfig , _A : PretrainedConfig , **_A : Union[str, Any] ): logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _UpperCamelCase = True _UpperCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.encoder.to_dict() _UpperCamelCase = self.decoder.to_dict() _UpperCamelCase = self.__class__.model_type return output class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self : Tuple ): return 1e-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = OrderedDict() _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def UpperCamelCase_ ( self : List[str] , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ): import torch _UpperCamelCase = OrderedDict() _UpperCamelCase = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) _UpperCamelCase , _UpperCamelCase = dummy_input['''input_ids'''].shape _UpperCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCamelCase = dummy_input.pop('''input_ids''' ) _UpperCamelCase = dummy_input.pop('''attention_mask''' ) _UpperCamelCase = torch.zeros(_A ) return common_inputs class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : Optional[int] , _A : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(_A ) def UpperCamelCase_ ( self : str , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default" ): _UpperCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A )
10
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _a = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) _a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits _a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean() _a = -(labels.shape[-1] * loss.item()) _a = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
22
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , __lowercase : nn.Module , __lowercase : int ): '''simple docstring''' super().__init__() __a = module __a = nn.Sequential( nn.Linear(module.in_features , __lowercase , bias=__lowercase ) , nn.Linear(__lowercase , module.out_features , bias=__lowercase ) , ) __a = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__lowercase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCamelCase_ ( self : str , __lowercase : int , *__lowercase : Tuple , **__lowercase : str ): '''simple docstring''' return self.module(__lowercase , *__lowercase , **__lowercase ) + self.adapter(__lowercase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __lowerCamelCase : Tuple ='bigscience/bloom-1b7' # Constant values __lowerCamelCase : Tuple =2.109_6595_5269_2574 __lowerCamelCase : int ='Hello my name is' __lowerCamelCase : Optional[Any] =set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowerCamelCase : int =10 def UpperCamelCase_ ( self : Any ): '''simple docstring''' # Models and tokenizer __a = AutoTokenizer.from_pretrained(self.model_name ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().setUp() # Models and tokenizer __a = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_abit.config self.assertTrue(hasattr(__lowercase , """quantization_config""" ) ) __a = config.to_dict() __a = config.to_diff_dict() __a = config.to_json_string() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __a = self.model_fpaa.get_memory_footprint() __a = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __a = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__lowercase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.tokenizer(self.input_text , return_tensors="""pt""" ) __a = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = BitsAndBytesConfig() __a = True __a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowercase , device_map="""auto""" ) __a = self.tokenizer(self.input_text , return_tensors="""pt""" ) __a = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase_ ( self : int ): '''simple docstring''' with self.assertRaises(__lowercase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = BitsAndBytesConfig() with self.assertRaises(__lowercase ): __a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowercase , load_in_abit=__lowercase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(__lowercase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(__lowercase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __a = self.tokenizer(self.input_text , return_tensors="""pt""" ) __a = self.model_fpaa.to(torch.floataa ) __a = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __a = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error __a = self.model_fpaa.half() # Check this does not throw an error __a = self.model_fpaa.float() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=__lowercase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' __a = """t5-small""" __a = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense __a = AutoTokenizer.from_pretrained(cls.model_name ) __a = """Translate in German: Hello, my dog is cute""" def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' from transformers import TaForConditionalGeneration __a = TaForConditionalGeneration._keep_in_fpaa_modules __a = None # test with `t5-small` __a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) __a = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __a = model.generate(**__lowercase ) # test with `flan-t5-small` __a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowercase , device_map="""auto""" ) __a = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __a = model.generate(**__lowercase ) __a = modules def UpperCamelCase_ ( self : str ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __a = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __a = model.generate(**__lowercase ) # test with `flan-t5-small` __a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowercase , device_map="""auto""" ) __a = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __a = model.generate(**__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() # model_name __a = """bigscience/bloom-560m""" __a = """t5-small""" # Different types of model __a = AutoModel.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) # Sequence classification model __a = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) # CausalLM model __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map="""auto""" ) # Seq2seq model __a = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__lowercase , device_map="""auto""" ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __a = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__lowercase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __a = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch __a = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = """facebook/opt-350m""" super().setUp() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __a = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __a = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__lowercase ) ): __a = LoRALayer(module.q_proj , rank=16 ) __a = LoRALayer(module.k_proj , rank=16 ) __a = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __a = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __a = model.forward(**__lowercase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__lowercase , __lowercase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__lowercase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='gpt2-xl' __lowerCamelCase : Dict =3.3191_8548_5415_2187
547
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : int , __lowercase : str=13 , __lowercase : Tuple=7 , __lowercase : int=True , __lowercase : Optional[int]=True , __lowercase : List[str]=True , __lowercase : List[str]=True , __lowercase : Any=99 , __lowercase : int=32 , __lowercase : Optional[int]=2 , __lowercase : List[str]=4 , __lowercase : int=37 , __lowercase : Optional[int]="gelu" , __lowercase : Any=0.1 , __lowercase : List[Any]=0.1 , __lowercase : int=512 , __lowercase : str=16 , __lowercase : str=2 , __lowercase : Optional[Any]=0.02 , __lowercase : str=3 , __lowercase : str=4 , __lowercase : str=None , ): '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = True __a = 99 __a = 32 __a = 2 __a = 4 __a = 37 __a = """gelu""" __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Any , __lowercase : Tuple , __lowercase : int , __lowercase : List[Any] , __lowercase : List[Any] ): '''simple docstring''' __a = TFRoFormerModel(config=__lowercase ) __a = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __a = [input_ids, input_mask] __a = model(__lowercase ) __a = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Any , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Any , __lowercase : int , __lowercase : Any , __lowercase : str , __lowercase : Optional[int] ): '''simple docstring''' __a = True __a = TFRoFormerForCausalLM(config=__lowercase ) __a = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __a = model(__lowercase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : int , __lowercase : List[str] , __lowercase : str ): '''simple docstring''' __a = TFRoFormerForMaskedLM(config=__lowercase ) __a = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __a = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[int] ): '''simple docstring''' __a = self.num_labels __a = TFRoFormerForSequenceClassification(config=__lowercase ) __a = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __a = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Any , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : int , __lowercase : Tuple , __lowercase : int , __lowercase : Any ): '''simple docstring''' __a = self.num_choices __a = TFRoFormerForMultipleChoice(config=__lowercase ) __a = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) __a = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __a = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : str , __lowercase : int , __lowercase : Dict , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = TFRoFormerForTokenClassification(config=__lowercase ) __a = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __a = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : List[Any] , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Any , __lowercase : str , __lowercase : Dict ): '''simple docstring''' __a = TFRoFormerForQuestionAnswering(config=__lowercase ) __a = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __a = model(__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __lowerCamelCase : Optional[int] =( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase : Optional[int] =False __lowerCamelCase : Tuple =False def UpperCamelCase_ ( self : Any , __lowercase : int , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Tuple ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = TFRoFormerModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(__lowercase ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(__lowercase )[0] # TODO Replace vocab size __a = 50000 __a = [1, 6, vocab_size] self.assertEqual(output.shape , __lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __a = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1E-4 ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): __lowerCamelCase : Dict =1e-4 def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = tf.constant([[4, 10]] ) __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __a = emba(input_ids.shape ) __a = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowercase , __lowercase , atol=self.tolerance ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __a = emba.weight[:3, :5] tf.debugging.assert_near(__lowercase , __lowercase , atol=self.tolerance ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): __lowerCamelCase : int =1e-4 def UpperCamelCase_ ( self : str ): '''simple docstring''' # 2,12,16,64 __a = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __a = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __a = embed_positions([2, 16, 768] )[None, None, :, :] __a , __a = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowercase , __lowercase , __lowercase ) __a = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __a = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowercase , atol=self.tolerance )
547
1
class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] ): """simple docstring""" lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = [] def A__ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCAmelCase__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowerCAmelCase__ = self.__min_dist_top_down_dp(__lowerCamelCase , n - 1 ) lowerCAmelCase__ = self.__min_dist_top_down_dp(m - 1 , __lowerCamelCase ) lowerCAmelCase__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowerCAmelCase__ = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] def A__ ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = worda lowerCAmelCase__ = worda lowerCAmelCase__ = [[-1 for _ in range(len(__lowerCamelCase ) )] for _ in range(len(__lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(__lowerCamelCase ) - 1 , len(__lowerCamelCase ) - 1 ) def A__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int ): """simple docstring""" lowerCAmelCase__ = worda lowerCAmelCase__ = worda lowerCAmelCase__ = len(__lowerCamelCase ) lowerCAmelCase__ = len(__lowerCamelCase ) lowerCAmelCase__ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCAmelCase__ = j elif j == 0: # second string is empty lowerCAmelCase__ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCAmelCase__ = self.dp[i - 1][j - 1] else: lowerCAmelCase__ = self.dp[i][j - 1] lowerCAmelCase__ = self.dp[i - 1][j] lowerCAmelCase__ = self.dp[i - 1][j - 1] lowerCAmelCase__ = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": __magic_name__ : List[Any] = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() __magic_name__ : Dict = input("""Enter the first string: """).strip() __magic_name__ : Union[str, Any] = input("""Enter the second string: """).strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
615
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
514
0
'''simple docstring''' def lowerCAmelCase_ ( ) -> int: '''simple docstring''' return 1 def lowerCAmelCase_ ( lowercase: Tuple ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCAmelCase_ ( lowercase: Optional[Any] ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: str ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: Tuple ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: Any ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: str ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: Dict ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCAmelCase_ ( lowercase: Any = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
703
import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class __magic_name__ ( __a ): """simple docstring""" def __init__( self : List[Any] , _lowercase : int=None , **_lowercase : Optional[Any] ): """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
264
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCamelCase =logging.getLogger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''sequence-classification''' def __init__( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if type(__SCREAMING_SNAKE_CASE ) == dict: UpperCamelCase__ : List[str] = Namespace(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = glue_output_modes[hparams.task] UpperCamelCase__ : str = glue_tasks_num_labels[hparams.task] super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.mode ) def __SCREAMING_SNAKE_CASE ( self , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.model(**__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : str = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCamelCase__ : int = self(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = outputs[0] UpperCamelCase__ : Dict = self.trainer.lr_schedulers[0]['''scheduler'''] UpperCamelCase__ : Union[str, Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = self.hparams UpperCamelCase__ : int = processors[args.task]() UpperCamelCase__ : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase__ : str = self._feature_file(__SCREAMING_SNAKE_CASE ) if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __SCREAMING_SNAKE_CASE ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCamelCase__ : Union[str, Any] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) UpperCamelCase__ : Any = convert_examples_to_features( __SCREAMING_SNAKE_CASE , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __SCREAMING_SNAKE_CASE ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> DataLoader: """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''dev''' if mode == '''test''' else mode UpperCamelCase__ : Optional[int] = self._feature_file(__SCREAMING_SNAKE_CASE ) logger.info('''Loading features from cached file %s''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCamelCase__ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : Any = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , batch_size=__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Union[str, Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCamelCase__ : List[str] = self(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ ,UpperCamelCase__ : List[str] = outputs[:2] UpperCamelCase__ : Optional[int] = logits.detach().cpu().numpy() UpperCamelCase__ : int = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> tuple: """simple docstring""" UpperCamelCase__ : List[str] = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() UpperCamelCase__ : int = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : Tuple = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : Dict = np.squeeze(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCamelCase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ : Any = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ : List[Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} UpperCamelCase__ : Optional[int] = dict(results.items() ) UpperCamelCase__ : Dict = results return ret, preds_list, out_label_list def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> dict: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = self._eval_end(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> dict: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = self._eval_end(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=__SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__SCREAMING_SNAKE_CASE , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = argparse.ArgumentParser() add_generic_args(UpperCamelCase__ , os.getcwd() ) UpperCamelCase__ : int = GLUETransformer.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) UpperCamelCase__ : Any = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase__ : Union[str, Any] = os.path.join( '''./results''' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) UpperCamelCase__ : Tuple = GLUETransformer(UpperCamelCase__ ) UpperCamelCase__ : Dict = generic_train(UpperCamelCase__ , UpperCamelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase__ : int = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=UpperCamelCase__ ) ) UpperCamelCase__ : Optional[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCamelCase__ ) if __name__ == "__main__": main()
285
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = DanceDiffusionPipeline SCREAMING_SNAKE_CASE_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } SCREAMING_SNAKE_CASE_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : List[str] = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__SCREAMING_SNAKE_CASE , use_timestep_embedding=__SCREAMING_SNAKE_CASE , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) UpperCamelCase__ : Union[str, Any] = IPNDMScheduler() UpperCamelCase__ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Any: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): UpperCamelCase__ : Optional[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : str = DanceDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = pipe(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = output.audios UpperCamelCase__ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase__ : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" return super().test_save_load_local() @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" return super().test_attention_slicing_forward_pass() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = torch_device UpperCamelCase__ : Any = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) UpperCamelCase__ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase__ : str = output.audios UpperCamelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase__ : Tuple = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = torch_device UpperCamelCase__ : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) UpperCamelCase__ : Tuple = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = pipe(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase__ : List[Any] = output.audios UpperCamelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase__ : Optional[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
285
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a = logging.get_logger(__name__) a = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _snake_case ( _snake_case : str ) -> Tuple: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _A = model_type_to_module_name(_snake_case ) _A = importlib.import_module(F'''.{module_name}''' , 'transformers.models' ) try: return getattr(_snake_case , _snake_case ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_snake_case , '__name__' , _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A = importlib.import_module('transformers' ) if hasattr(_snake_case , _snake_case ): return getattr(_snake_case , _snake_case ) return None def _snake_case ( _snake_case : Union[str, os.PathLike] , _snake_case : Optional[Union[str, os.PathLike]] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[Dict[str, str]] = None , _snake_case : Optional[Union[bool, str]] = None , _snake_case : Optional[str] = None , _snake_case : bool = False , **_snake_case : Optional[Any] , ) -> List[str]: '''simple docstring''' _A = get_file_from_repo( _snake_case , _snake_case , cache_dir=_snake_case , force_download=_snake_case , resume_download=_snake_case , proxies=_snake_case , use_auth_token=_snake_case , revision=_snake_case , local_files_only=_snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_snake_case , encoding='utf-8' ) as reader: return json.load(_snake_case ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def lowerCAmelCase_ ( cls : Dict , _UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ): _A = kwargs.pop('config' , _UpperCAmelCase ) _A = kwargs.pop('trust_remote_code' , _UpperCAmelCase ) _A = True _A , _A = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase , **_UpperCAmelCase ) _A = config_dict.get('image_processor_type' , _UpperCAmelCase ) _A = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _A = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _A = config_dict.pop('feature_extractor_type' , _UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _A = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _A = config_dict['auto_map']['AutoFeatureExtractor'] _A = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # It could be in `config.image_processor_type`` _A = getattr(_UpperCAmelCase , 'image_processor_type' , _UpperCAmelCase ) if hasattr(_UpperCAmelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _A = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _A = image_processor_class_from_name(_UpperCAmelCase ) _A = image_processor_auto_map is not None _A = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING _A = resolve_trust_remote_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if has_remote_code and trust_remote_code: _A = get_class_from_dynamic_module( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) _A = kwargs.pop('code_revision' , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: _A = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ): IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase , _UpperCAmelCase )
505
"""simple docstring""" a = 256 # Modulus to hash a string a = 1_000_003 def _snake_case ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case ( ) -> None: '''simple docstring''' _A = 'abc1abc12' _A = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _A = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = 'ABABX' _A = 'ABABZABABYABABX' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = 'AAAB' _A = 'ABAAAAAB' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = 'abcdabcy' _A = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = 'Lü' _A = 'Lüsai' assert rabin_karp(_snake_case , _snake_case ) _A = 'Lue' assert not rabin_karp(_snake_case , _snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
505
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = SpeechTaTokenizer a_ = False a_ = True def _a ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A_ : int = SpeechTaTokenizer(_a ) A_ : Dict = AddedToken("""<mask>""" ,lstrip=_a ,rstrip=_a ) A_ : Tuple = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Tuple ,_a : Any ): '''simple docstring''' A_ : Any = """this is a test""" A_ : Dict = """this is a test""" return input_text, output_text def _a ( self : Optional[int] ,_a : List[Any] ,_a : Union[str, Any]=False ,_a : List[str]=20 ,_a : str=5 ): '''simple docstring''' A_ , A_ : Optional[int] = self.get_input_output_texts(_a ) A_ : str = tokenizer.encode(_a ,add_special_tokens=_a ) A_ : Dict = tokenizer.decode(_a ,clean_up_tokenization_spaces=_a ) return text, ids def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = """<pad>""" A_ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def _a ( self : List[str] ): '''simple docstring''' A_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-4] ,"""œ""" ) self.assertEqual(vocab_keys[-2] ,"""<mask>""" ) self.assertEqual(vocab_keys[-1] ,"""<ctc_blank>""" ) self.assertEqual(len(_a ) ,81 ) def _a ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _a ( self : Dict ): '''simple docstring''' A_ : List[str] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A_ : int = tokenizer.vocab_size A_ : Tuple = len(_a ) self.assertNotEqual(_a ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A_ : str = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] A_ : Optional[int] = tokenizer.add_tokens(_a ) A_ : Dict = tokenizer.vocab_size A_ : List[str] = len(_a ) self.assertNotEqual(_a ,0 ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,len(_a ) ) self.assertEqual(_a ,all_size + len(_a ) ) A_ : Union[str, Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" ,add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) A_ : Dict = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} A_ : List[Any] = tokenizer.add_special_tokens(_a ) A_ : int = tokenizer.vocab_size A_ : Tuple = len(_a ) self.assertNotEqual(_a ,0 ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,len(_a ) ) self.assertEqual(_a ,all_size_a + len(_a ) ) A_ : List[str] = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" ,add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _a ( self : str ): '''simple docstring''' pass def _a ( self : Dict ): '''simple docstring''' pass def _a ( self : Any ): '''simple docstring''' A_ : List[str] = self.get_tokenizer() A_ : List[str] = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(_a ,[SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) A_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a ,[SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) A_ : Optional[Any] = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A_ : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a ,[SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : List[str] = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off A_ : Optional[Any] = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a ,model_name="""microsoft/speecht5_asr""" ,revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" ,sequences=_a ,)
665
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str): A_ : Any = len(lowerCamelCase) A_ : Optional[Any] = len(lowerCamelCase) A_ : Optional[int] = [[False for _ in range(m + 1)] for _ in range(n + 1)] A_ : Union[str, Any] = True for i in range(lowerCamelCase): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: A_ : Optional[int] = True if a[i].islower(): A_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
665
1
from math import sqrt def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCamelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' def constraint_to_multiple_of(a__ , a__ , a__=0 , a__=None ): lowerCAmelCase :Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase :int = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase :Dict = math.ceil(val / multiple ) * multiple return x lowerCAmelCase :Optional[int] = (output_size, output_size) if isinstance(a__ , a__ ) else output_size lowerCAmelCase , lowerCAmelCase :Optional[Any] = get_image_size(a__ ) lowerCAmelCase , lowerCAmelCase :List[str] = output_size # determine new height and width lowerCAmelCase :Any = output_height / input_height lowerCAmelCase :List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase :Union[str, Any] = scale_width else: # fit height lowerCAmelCase :Union[str, Any] = scale_height lowerCAmelCase :Optional[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=a__ ) lowerCAmelCase :List[str] = constraint_to_multiple_of(scale_width * input_width , multiple=a__ ) return (new_height, new_width) class __UpperCamelCase ( UpperCamelCase ): lowercase_ : Any = ["""pixel_values"""] def __init__( self : Dict , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Optional[Any] , ) -> None: super().__init__(**UpperCAmelCase ) lowerCAmelCase :Any = size if size is not None else {'height': 384, 'width': 384} lowerCAmelCase :Tuple = get_size_dict(UpperCAmelCase ) lowerCAmelCase :List[str] = do_resize lowerCAmelCase :str = size lowerCAmelCase :str = keep_aspect_ratio lowerCAmelCase :Union[str, Any] = ensure_multiple_of lowerCAmelCase :Union[str, Any] = resample lowerCAmelCase :Tuple = do_rescale lowerCAmelCase :List[str] = rescale_factor lowerCAmelCase :Optional[int] = do_normalize lowerCAmelCase :Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase :List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ) -> np.ndarray: lowerCAmelCase :List[str] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase :Any = get_resize_output_image_size( UpperCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ) -> int: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self : str , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ) -> PIL.Image.Image: lowerCAmelCase :Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase :List[str] = size if size is not None else self.size lowerCAmelCase :Optional[int] = get_size_dict(UpperCAmelCase ) lowerCAmelCase :Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase :str = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase :Optional[int] = resample if resample is not None else self.resample lowerCAmelCase :int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase :Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase :Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase :Optional[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase :Union[str, Any] = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase :Tuple = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowerCAmelCase :Dict = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase :str = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase :List[Any] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowerCAmelCase :int = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCAmelCase :str = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) def UpperCAmelCase__ ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Tuple] = None ) -> Tuple: lowerCAmelCase :Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCAmelCase ): lowerCAmelCase :str = target_sizes.numpy() lowerCAmelCase :str = [] for idx in range(len(UpperCAmelCase ) ): lowerCAmelCase :str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCAmelCase :int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase ) else: lowerCAmelCase :Tuple = logits.argmax(dim=1 ) lowerCAmelCase :Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
553
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> Tuple: if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) lowerCAmelCase :List[Any] = img lowerCAmelCase :Optional[int] = img.shape[1] lowerCAmelCase :Union[str, Any] = img.shape[0] lowerCAmelCase :Optional[int] = dst_width lowerCAmelCase :Optional[int] = dst_height lowerCAmelCase :Any = self.src_w / self.dst_w lowerCAmelCase :Dict = self.src_h / self.dst_h lowerCAmelCase :int = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: for i in range(self.dst_h ): for j in range(self.dst_w ): lowerCAmelCase :Optional[Any] = self.img[self.get_y(UpperCAmelCase )][self.get_x(UpperCAmelCase )] def UpperCAmelCase__ ( self : Optional[int] , UpperCAmelCase : int ) -> int: return int(self.ratio_x * x ) def UpperCAmelCase__ ( self : List[str] , UpperCAmelCase : int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = 8_00, 6_00 __SCREAMING_SNAKE_CASE = imread('image_data/lena.jpg', 1) __SCREAMING_SNAKE_CASE = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
553
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : str = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCamelCase : str = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCamelCase : str = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _lowerCamelCase : Optional[int] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCamelCase : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _lowerCamelCase : Tuple = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _lowerCamelCase : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : List[str] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : Tuple = flax_model.params["encoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : int = tax_attention_key _lowerCamelCase : Union[str, Any] = tax_attention_out _lowerCamelCase : str = tax_attention_query _lowerCamelCase : Dict = tax_attention_value _lowerCamelCase : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: _lowerCamelCase : Optional[Any] = tax_mlp_wi_a _lowerCamelCase : int = tax_mlp_wi_a else: _lowerCamelCase : str = tax_mlp_wi _lowerCamelCase : Optional[int] = tax_mlp_wo _lowerCamelCase : List[str] = tax_mlp_layer_norm _lowerCamelCase : Tuple = flax_model_encoder_layer_block # Only for layer 0: _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : int = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[str] = tax_encoder_global_rel_embedding # Assigning _lowerCamelCase : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _lowerCamelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCamelCase : str = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _lowerCamelCase : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _lowerCamelCase : Any = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _lowerCamelCase : List[str] = tax_enc_dec_attention_module["key"]["kernel"] _lowerCamelCase : Tuple = tax_enc_dec_attention_module["out"]["kernel"] _lowerCamelCase : Union[str, Any] = tax_enc_dec_attention_module["query"]["kernel"] _lowerCamelCase : Any = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _lowerCamelCase : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : List[str] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : str = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : str = flax_model.params["decoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : Tuple = tax_attention_key _lowerCamelCase : List[str] = tax_attention_out _lowerCamelCase : Union[str, Any] = tax_attention_query _lowerCamelCase : Optional[int] = tax_attention_value _lowerCamelCase : Optional[Any] = tax_pre_attention_layer_norm _lowerCamelCase : Tuple = tax_enc_dec_attention_key _lowerCamelCase : List[str] = tax_enc_dec_attention_out _lowerCamelCase : Tuple = tax_enc_dec_attention_query _lowerCamelCase : Tuple = tax_enc_dec_attention_value _lowerCamelCase : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _lowerCamelCase : List[Any] = tax_mlp_wi_a _lowerCamelCase : List[Any] = tax_mlp_wi_a else: _lowerCamelCase : Dict = tax_mlp_wi _lowerCamelCase : Union[str, Any] = tax_mlp_wo _lowerCamelCase : Dict = txa_mlp_layer_norm _lowerCamelCase : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _lowerCamelCase : Union[str, Any] = txa_decoder_norm # Only for layer 0: _lowerCamelCase : int = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCamelCase : Union[str, Any] = tax_model["target"]["token_embedder"]["embedding"] _lowerCamelCase : Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) _lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
386
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCamelCase__ = logging.getLogger(__name__) @dataclass class a__ : snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 @dataclass class a__ : snake_case__ = 42 snake_case__ = 42 snake_case__ = None snake_case__ = None class a__ ( lowerCamelCase__ ): snake_case__ = """train""" snake_case__ = """dev""" snake_case__ = """test""" class a__ : @staticmethod def __UpperCamelCase ( a__ : Union[str, Any] ,a__ : int) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def __UpperCamelCase ( a__ : List[str]) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def __UpperCamelCase ( a__ : List[Any] ,a__ : Union[str, Any] ,a__ : int ,a__ : str ,a__ : Union[str, Any]=False ,a__ : Union[str, Any]="[CLS]" ,a__ : List[Any]=1 ,a__ : Dict="[SEP]" ,a__ : Dict=False ,a__ : List[str]=False ,a__ : Tuple=0 ,a__ : Dict=0 ,a__ : Union[str, Any]=-100 ,a__ : List[Any]=0 ,a__ : List[str]=True ,) -> List[InputFeatures]: """simple docstring""" _lowerCAmelCase:str = {label: i for i, label in enumerate(snake_case__)} _lowerCAmelCase:Optional[Any] = [] for ex_index, example in enumerate(snake_case__): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' ,snake_case__ ,len(snake_case__)) _lowerCAmelCase:Dict = [] _lowerCAmelCase:Optional[int] = [] for word, label in zip(example.words ,example.labels): _lowerCAmelCase:Dict = tokenizer.tokenize(snake_case__) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case__) > 0: tokens.extend(snake_case__) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case__) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _lowerCAmelCase:Any = tokenizer.num_special_tokens_to_add() if len(snake_case__) > max_seq_length - special_tokens_count: _lowerCAmelCase:List[Any] = tokens[: (max_seq_length - special_tokens_count)] _lowerCAmelCase:int = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _lowerCAmelCase:Union[str, Any] = [sequence_a_segment_id] * len(snake_case__) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _lowerCAmelCase:Tuple = [cls_token] + tokens _lowerCAmelCase:Tuple = [pad_token_label_id] + label_ids _lowerCAmelCase:Tuple = [cls_token_segment_id] + segment_ids _lowerCAmelCase:int = tokenizer.convert_tokens_to_ids(snake_case__) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _lowerCAmelCase:str = [1 if mask_padding_with_zero else 0] * len(snake_case__) # Zero-pad up to the sequence length. _lowerCAmelCase:Optional[int] = max_seq_length - len(snake_case__) if pad_on_left: _lowerCAmelCase:List[Any] = ([pad_token] * padding_length) + input_ids _lowerCAmelCase:Any = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _lowerCAmelCase:List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids _lowerCAmelCase:Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case__) == max_seq_length assert len(snake_case__) == max_seq_length assert len(snake_case__) == max_seq_length assert len(snake_case__) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''') logger.info('''guid: %s''' ,example.guid) logger.info('''tokens: %s''' ,''' '''.join([str(snake_case__) for x in tokens])) logger.info('''input_ids: %s''' ,''' '''.join([str(snake_case__) for x in input_ids])) logger.info('''input_mask: %s''' ,''' '''.join([str(snake_case__) for x in input_mask])) logger.info('''segment_ids: %s''' ,''' '''.join([str(snake_case__) for x in segment_ids])) logger.info('''label_ids: %s''' ,''' '''.join([str(snake_case__) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: _lowerCAmelCase:Dict = None features.append( InputFeatures( input_ids=snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,label_ids=snake_case__)) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a__ ( lowerCamelCase__ ): snake_case__ = 42 snake_case__ = nn.CrossEntropyLoss().ignore_index def __init__( self : int ,a__ : str ,a__ : List[str] ,a__ : Union[str, Any] ,a__ : Optional[int] ,a__ : int ,a__ : Tuple = None ,a__ : List[str]=False ,a__ : List[str] = Split.train ,) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Tuple = os.path.join( snake_case__ ,'''cached_{}_{}_{}'''.format(mode.value ,tokenizer.__class__.__name__ ,str(snake_case__)) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase:List[Any] = cached_features_file + """.lock""" with FileLock(snake_case__): if os.path.exists(snake_case__) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}') _lowerCAmelCase:Union[str, Any] = torch.load(snake_case__) else: logger.info(F'Creating features from dataset file at {data_dir}') _lowerCAmelCase:Dict = token_classification_task.read_examples_from_file(snake_case__ ,snake_case__) # TODO clean up all this to leverage built-in features of tokenizers _lowerCAmelCase:Dict = token_classification_task.convert_examples_to_features( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,cls_token_at_end=bool(model_type in ['''xlnet''']) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=snake_case__ ,pad_on_left=bool(tokenizer.padding_side == '''left''') ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(F'Saving features into cached file {cached_features_file}') torch.save(self.features ,snake_case__) def __len__( self : Dict) -> Optional[Any]: """simple docstring""" return len(self.features) def __getitem__( self : Union[str, Any] ,a__ : int) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class a__ : snake_case__ = 42 snake_case__ = -1_0_0 def __init__( self : Union[str, Any] ,a__ : Tuple ,a__ : str ,a__ : Optional[Any] ,a__ : int ,a__ : Optional[int] ,a__ : Union[str, Any] = None ,a__ : Union[str, Any]=False ,a__ : Tuple = Split.train ,) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Optional[Any] = token_classification_task.read_examples_from_file(snake_case__ ,snake_case__) # TODO clean up all this to leverage built-in features of tokenizers _lowerCAmelCase:Optional[Any] = token_classification_task.convert_examples_to_features( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,cls_token_at_end=bool(model_type in ['''xlnet''']) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=snake_case__ ,pad_on_left=bool(tokenizer.padding_side == '''left''') ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _lowerCAmelCase:int = tf.data.Dataset.from_generator( snake_case__ ,({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) ,( {'''input_ids''': tf.TensorShape([None]), '''attention_mask''': tf.TensorShape([None])}, tf.TensorShape([None]), ) ,) else: _lowerCAmelCase:Any = tf.data.Dataset.from_generator( snake_case__ ,({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) ,( { '''input_ids''': tf.TensorShape([None]), '''attention_mask''': tf.TensorShape([None]), '''token_type_ids''': tf.TensorShape([None]), }, tf.TensorShape([None]), ) ,) def __UpperCamelCase ( self : Dict) -> str: """simple docstring""" _lowerCAmelCase:Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__( self : Any) -> int: """simple docstring""" return len(self.features) def __getitem__( self : List[str] ,a__ : Optional[Any]) -> InputFeatures: """simple docstring""" return self.features[i]
227
def __magic_name__ ( lowercase ) -> list[list]: """simple docstring""" lowercase_ : int = current_set.copy() for row_index, row in enumerate(lowercase ): lowercase_ : Tuple = row[0] for column_index, column in enumerate(lowercase ): if magnitude == 0: lowercase_ : Optional[int] = column continue lowercase_ : List[str] = column / magnitude # Subtract to cancel term lowercase_ : List[str] = current_set[0] lowercase_ : Optional[int] = [first_row] lowercase_ : Optional[Any] = current_set[1::] for row in current_set: lowercase_ : Union[str, Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase ) continue for column_index in range(len(lowercase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase_ : Tuple = final_set[0] lowercase_ : Dict = [] lowercase_ : Any = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase_ : Optional[Any] = simplify(lowercase ) for i in range(len(lowercase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowercase ) lowercase_ : Tuple = resultant return final_set def __magic_name__ ( lowercase ) -> list: """simple docstring""" if len(lowercase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase_ : Tuple = len(lowercase ) + 1 if any(len(lowercase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowercase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowercase ) == 1: return [equations[0][-1] / equations[0][0]] lowercase_ : List[str] = equations.copy() if any(0 in row for row in data_set ): lowercase_ : int = data_set.copy() lowercase_ : Dict = [] for row_index, row in enumerate(lowercase ): if 0 not in row: lowercase_ : Dict = data_set.pop(lowercase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowercase ) lowercase_ : Tuple = data_set.copy() lowercase_ : List[Any] = simplify(lowercase ) lowercase_ : Dict = simplified[::-1] lowercase_ : list = [] for row in simplified: lowercase_ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase_ : Any = row.copy()[: len(lowercase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase ) == 0: solutions.append(0 ) continue lowercase_ : Any = temp_row[1::] lowercase_ : Union[str, Any] = temp_row[::-1] for column_index, column in enumerate(lowercase ): current_solution -= column * solutions[column_index] solutions.append(lowercase ) lowercase_ : Any = [] for item in solutions: final.append(float(round(lowercase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
458
0
A_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} A_ = ["a", "b", "c", "d", "e"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = start # add current to visited visited.append(__UpperCamelCase ) lowerCamelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # return sort return sort if __name__ == "__main__": A_ = topological_sort("a", [], []) print(sort)
720
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ = "src/transformers" A_ = "docs/source/en/tasks" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: with open(__UpperCamelCase ,'r' ,encoding='utf-8' ,newline='\n' ) as f: lowerCamelCase_ = f.readlines() # Find the start prompt. lowerCamelCase_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 lowerCamelCase_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ = direct_transformers_import(TRANSFORMERS_PATH) A_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]: lowerCamelCase_ = TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase ,set() ) lowerCamelCase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=False ) -> int: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' ,end_prompt='<!--End of the generated tip-->' ,) lowerCamelCase_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,'w' ,encoding='utf-8' ,newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
384
0
from __future__ import annotations from collections.abc import Iterator class snake_case__ : def __init__( self : List[str] , _lowerCamelCase : Tuple ): snake_case__ : Tuple = value snake_case__ : Node | None = None snake_case__ : Node | None = None class snake_case__ : def __init__( self : List[Any] , _lowerCamelCase : List[str] ): snake_case__ : List[str] = tree def UpperCAmelCase__ ( self : Dict , _lowerCamelCase : Optional[Any] ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Tuple ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
170
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
0
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Union[str, Any] = int(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=300 ): '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowercase__ : Dict = f"""{elt:.6f}""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else str(_lowerCAmelCase ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase_ : lowerCamelCase__ : Tuple = 5 lowerCamelCase__ : Optional[Any] = 0.2 def __init__( self , a , a = None , a = True , a = None , a = 3_0_0 , ) -> Union[str, Any]: lowercase__ : Optional[int] = total lowercase__ : Union[str, Any] = '' if prefix is None else prefix lowercase__ : Optional[int] = leave lowercase__ : Union[str, Any] = parent lowercase__ : int = width lowercase__ : Optional[Any] = None lowercase__ : Dict = None lowercase__ : List[Any] = None def _UpperCAmelCase ( self , a , a = False , a = None ) -> Optional[int]: lowercase__ : List[Any] = value if comment is not None: lowercase__ : Optional[int] = comment if self.last_value is None: lowercase__ : Dict = time.time() lowercase__ : Optional[Any] = value lowercase__ : Any = None lowercase__ : Union[str, Any] = self.warmup lowercase__ : List[str] = 1 self.update_bar(a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowercase__ : Union[str, Any] = time.time() lowercase__ : Any = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowercase__ : Optional[int] = self.elapsed_time / (value - self.start_value) else: lowercase__ : Tuple = None if value >= self.total: lowercase__ : str = self.total lowercase__ : int = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowercase__ : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(a ) lowercase__ : Any = value lowercase__ : str = current_time if self.average_time_per_item is None: lowercase__ : List[str] = 1 else: lowercase__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[int]: lowercase__ : Optional[Any] = ' ' * (len(str(self.total ) ) - len(str(a ) )) + str(a ) if self.elapsed_time is None: lowercase__ : Optional[int] = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: lowercase__ : Optional[Any] = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: lowercase__ : Optional[int] = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowercase__ : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=a ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=None ) -> Tuple: super().__init__(a ) lowercase__ : Union[str, Any] = None if column_names is None else [column_names] lowercase__ : Optional[int] = None def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowercase__ : str = disp.display(disp.HTML(self.html_code ) , display_id=a ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase ( self , a ) -> str: if self.inner_table is None: lowercase__ : Optional[int] = [list(values.keys() ), list(values.values() )] else: lowercase__ : List[str] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(a ) lowercase__ : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def _UpperCAmelCase ( self , a , a=None , a=3_0_0 ) -> Union[str, Any]: lowercase__ : Any = NotebookProgressBar(a , prefix=a , parent=self , width=a ) return self.child_bar def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : str = None self.display() class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = None lowercase__ : Any = None lowercase__ : List[Any] = False def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: lowercase__ : Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' lowercase__ : int = 0 lowercase__ : Tuple = 0 lowercase__ : Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) lowercase__ : Optional[int] = NotebookTrainingTracker(state.max_steps , a ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: lowercase__ : int = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) lowercase__ : int = False def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> Optional[Any]: if not has_length(a ): return if self.prediction_bar is None: if self.training_tracker is not None: lowercase__ : List[Any] = self.training_tracker.add_child(len(a ) ) else: lowercase__ : Any = NotebookProgressBar(len(a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: if self.prediction_bar is not None: self.prediction_bar.close() lowercase__ : str = None def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> List[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowercase__ : Any = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy lowercase__ : Optional[Any] = state.global_step self.training_tracker.write_line(a ) def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> List[str]: if self.training_tracker is not None: lowercase__ : List[Any] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: lowercase__ : str = log['loss'] break if self.first_column == "Epoch": lowercase__ : Union[str, Any] = int(state.epoch ) else: lowercase__ : str = state.global_step lowercase__ : Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): lowercase__ : Dict = re.sub(R'\_loss$' , '' , a ) lowercase__ : Dict = metrics.pop('total_flos' , a ) lowercase__ : str = metrics.pop('epoch' , a ) lowercase__ : Any = metrics.pop(f"""{metric_key_prefix}_runtime""" , a ) lowercase__ : Optional[int] = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , a ) lowercase__ : Tuple = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , a ) lowercase__ : Optional[Any] = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , a ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": lowercase__ : List[Any] = v else: lowercase__ : Any = k.split('_' ) lowercase__ : str = ' '.join([part.capitalize() for part in splits[1:]] ) lowercase__ : Optional[int] = v self.training_tracker.write_line(a ) self.training_tracker.remove_child() lowercase__ : Optional[int] = None # Evaluation takes a long time so we should force the next update. lowercase__ : List[str] = True def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=a ) lowercase__ : Optional[Any] = None
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=0 , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : str = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : List[str] = scope _lowerCAmelCase : int = projection_dim def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : str = None _lowerCAmelCase : Any = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) _lowerCAmelCase : Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Union[str, Any] = TFDPRContextEncoder(config=lowercase_ ) _lowerCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _lowerCAmelCase : Any = model(lowercase_ , token_type_ids=lowercase_ ) _lowerCAmelCase : Dict = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : int = TFDPRQuestionEncoder(config=lowercase_ ) _lowerCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _lowerCAmelCase : Tuple = model(lowercase_ , token_type_ids=lowercase_ ) _lowerCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Any = TFDPRReader(config=lowercase_ ) _lowerCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = config_and_inputs _lowerCAmelCase : Any = {"input_ids": input_ids} return config, inputs_dict @require_tf class __A ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): '''simple docstring''' a_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a_ = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = TFDPRModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = TFDPRQuestionEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = TFDPRReader.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _lowerCAmelCase : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowerCAmelCase : Dict = model(lowercase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowerCAmelCase : Optional[int] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
424
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ) -> None: '''simple docstring''' assert and_gate(0, 0 ) == 0 assert and_gate(0, 1 ) == 0 assert and_gate(1, 0 ) == 0 assert and_gate(1, 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
640
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : List[Any] = DistilBertTokenizer _A : Optional[int] = DistilBertTokenizerFast _A : List[Any] = True @slow def lowerCAmelCase_ ( self: Dict ) -> Any: snake_case_ :List[str] = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) snake_case_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case ) snake_case_ :Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case ) snake_case_ :str = tokenizer.build_inputs_with_special_tokens(snake_case ) snake_case_ :str = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
310
"""simple docstring""" from __future__ import annotations __a = list[tuple[int, int]] __a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __a = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase : '''simple docstring''' def __init__( self: int , snake_case: int , snake_case: int , snake_case: int , snake_case: int , snake_case: float , snake_case: Node | None , ) -> Any: snake_case_ :Tuple = pos_x snake_case_ :Optional[Any] = pos_y snake_case_ :List[Any] = (pos_y, pos_x) snake_case_ :int = goal_x snake_case_ :Optional[Any] = goal_y snake_case_ :str = g_cost snake_case_ :Tuple = parent snake_case_ :Tuple = self.calculate_heuristic() def lowerCAmelCase_ ( self: Any ) -> float: snake_case_ :List[Any] = abs(self.pos_x - self.goal_x ) snake_case_ :Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self: Any , snake_case: Optional[Any] ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase : '''simple docstring''' def __init__( self: Any , snake_case: tuple[int, int] , snake_case: tuple[int, int] ) -> str: snake_case_ :List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case ) snake_case_ :str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , snake_case ) snake_case_ :str = [self.start] snake_case_ :list[Node] = [] snake_case_ :Dict = False def lowerCAmelCase_ ( self: List[Any] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case_ :Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case_ :Optional[Any] = True return self.retrace_path(snake_case ) self.closed_nodes.append(snake_case ) snake_case_ :int = self.get_successors(snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case ) else: # retrieve the best current path snake_case_ :Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case ) else: self.open_nodes.append(snake_case ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase_ ( self: Tuple , snake_case: Node ) -> list[Node]: snake_case_ :List[Any] = [] for action in delta: snake_case_ :int = parent.pos_x + action[1] snake_case_ :List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case , snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case , ) ) return successors def lowerCAmelCase_ ( self: List[str] , snake_case: Node | None ) -> Path: snake_case_ :Dict = node snake_case_ :List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ :Any = current_node.parent path.reverse() return path if __name__ == "__main__": __a = (0, 0) __a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") __a = GreedyBestFirst(init, goal) __a = greedy_bf.search() if path: for pos_x, pos_y in path: __a = 2 for elem in grid: print(elem)
310
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = AutoencoderKL lowercase__ = 'sample' lowercase__ = 1E-2 @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes).to(__a) return {"sample": image} @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return (3, 32, 32) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self) -> int: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' # enable deterministic behavior for gradient checkpointing _UpperCamelCase , _UpperCamelCase = self.prepare_init_args_and_inputs_for_common() _UpperCamelCase = self.model_class(**__a) model.to(__a) assert not model.is_gradient_checkpointing and model.training _UpperCamelCase = model(**__a).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCamelCase = torch.randn_like(__a) _UpperCamelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCamelCase = self.model_class(**__a) # clone model model_a.load_state_dict(model.state_dict()) model_a.to(__a) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCamelCase = model_a(**__a).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCamelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5) _UpperCamelCase = dict(model.named_parameters()) _UpperCamelCase = dict(model_a.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5)) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=__a) self.assertIsNotNone(__a) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(__a) _UpperCamelCase = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''') _UpperCamelCase = model.to(__a) model.eval() if torch_device == "mps": _UpperCamelCase = torch.manual_seed(0) else: _UpperCamelCase = torch.Generator(device=__a).manual_seed(0) _UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) _UpperCamelCase = image.to(__a) with torch.no_grad(): _UpperCamelCase = model(__a , sample_posterior=__a , generator=__a).sample _UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCamelCase = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ]) elif torch_device == "cpu": _UpperCamelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]) else: _UpperCamelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]) self.assertTrue(torch_all_close(__a , __a , rtol=1e-2)) @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={"_".join([str(__a) for s in shape])}.npy''' def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __a=0 , __a=(4, 3, 5_12, 5_12) , __a=False) -> str: '''simple docstring''' _UpperCamelCase = torch.floataa if fpaa else torch.floataa _UpperCamelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a))).to(__a).to(__a) return image def UpperCAmelCase ( self , __a="CompVis/stable-diffusion-v1-4" , __a=False) -> Any: '''simple docstring''' _UpperCamelCase = '''fp16''' if fpaa else None _UpperCamelCase = torch.floataa if fpaa else torch.floataa _UpperCamelCase = AutoencoderKL.from_pretrained( __a , subfolder='''vae''' , torch_dtype=__a , revision=__a , ) model.to(__a).eval() return model def UpperCAmelCase ( self , __a=0) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(__a) return torch.Generator(device=__a).manual_seed(__a) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model(__a , generator=__a , sample_posterior=__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice) assert torch_all_close(__a , __a , atol=3e-3) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , fpaa=__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model(__a , generator=__a , sample_posterior=__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) with torch.no_grad(): _UpperCamelCase = model(__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice) assert torch_all_close(__a , __a , atol=3e-3) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=1e-3) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=5e-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''') def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(__a , __a , atol=1e-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''') def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(__a , __a , atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model.encode(__a).latent_dist _UpperCamelCase = dist.sample(generator=__a) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCamelCase = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCamelCase = torch.tensor(__a) _UpperCamelCase = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(__a , __a , atol=__a)
19
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def _UpperCAmelCase ( __A : str , __A : Optional[Any]=1_00 , __A : int=" " ): a_ : Optional[int] = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def _UpperCAmelCase ( __A : dict ): a_ , a_ : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else '''''' ) texts.append(__A ) return {"title": titles, "text": texts} def _UpperCAmelCase ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ): a_ : int = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] a_ : List[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _UpperCAmelCase ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ): ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a_ : List[str] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a_ : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings a_ : str = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) a_ : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a_ : Union[str, Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space a_ : Union[str, Any] = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset a_ : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a_ : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__A ) # And save the index a_ : Optional[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
466
0
'''simple docstring''' def __UpperCAmelCase ( a_: list, a_: list, a_: int ): _UpperCAmelCase : int = len(a_ ) _UpperCAmelCase : List[Any] = [[0] * n for i in range(a_ )] for i in range(a_ ): _UpperCAmelCase : Dict = y_points[i] for i in range(2, a_ ): for j in range(a_, a_ ): _UpperCAmelCase : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
257
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = XGLMTokenizer UpperCamelCase_ : int = XGLMTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = True def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[str] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = "<pad>" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_8 ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) _UpperCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : str = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = "I was born in 92000, and this is falsé." _UpperCAmelCase : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Any = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = "Hello World!" _UpperCAmelCase : Union[str, Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off _UpperCAmelCase : Dict = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = { "input_ids": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
257
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : list[str] ) -> str: """simple docstring""" __snake_case = '' for word_or_phrase in separated: if not isinstance(lowercase__ , lowercase__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCamelCase_ ( UpperCamelCase ): lowercase = '''pegasus''' lowercase = ['''past_key_values'''] lowercase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase=50_265 , lowercase=1_024 , lowercase=12 , lowercase=4_096 , lowercase=16 , lowercase=12 , lowercase=4_096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=1_024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0 , lowercase=False , lowercase=0 , lowercase=1 , lowercase=1 , **lowercase , ) -> Tuple: _a : Any = vocab_size _a : List[str] = max_position_embeddings _a : Any = d_model _a : Tuple = encoder_ffn_dim _a : List[Any] = encoder_layers _a : str = encoder_attention_heads _a : Dict = decoder_ffn_dim _a : Optional[int] = decoder_layers _a : Any = decoder_attention_heads _a : List[str] = dropout _a : List[Any] = attention_dropout _a : List[Any] = activation_dropout _a : int = activation_function _a : List[Any] = init_std _a : Any = encoder_layerdrop _a : int = decoder_layerdrop _a : Any = use_cache _a : Optional[int] = encoder_layers _a : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) @property def snake_case__( self ) -> int: return self.encoder_attention_heads @property def snake_case__( self ) -> int: return self.d_model
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
307
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : str = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : Union[str, Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
1
'''simple docstring''' from math import factorial class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Any: '''simple docstring''' UpperCamelCase : List[str] = real if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Dict = [1] * rank else: UpperCamelCase : Union[str, Any] = rank def __repr__( self ) -> List[str]: '''simple docstring''' return ( f'''{self.real}+''' f'''{'+'.join(str(lowerCamelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCamelCase ) def __add__( self , lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): return Dual(self.real + other , self.duals ) UpperCamelCase : Optional[Any] = self.duals.copy() UpperCamelCase : List[Any] = other.duals.copy() if len(lowerCamelCase ) > len(lowerCamelCase ): o_dual.extend([1] * (len(lowerCamelCase ) - len(lowerCamelCase )) ) elif len(lowerCamelCase ) < len(lowerCamelCase ): s_dual.extend([1] * (len(lowerCamelCase ) - len(lowerCamelCase )) ) UpperCamelCase : List[str] = [] for i in range(len(lowerCamelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCamelCase ) __SCREAMING_SNAKE_CASE = __add__ def __sub__( self , lowerCamelCase ) -> List[Any]: '''simple docstring''' return self + other * -1 def __mul__( self , lowerCamelCase ) -> List[Any]: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : List[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCamelCase ) UpperCamelCase : Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase ) __SCREAMING_SNAKE_CASE = __mul__ def __truediv__( self , lowerCamelCase ) -> Any: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Optional[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCamelCase ) raise ValueError def __floordiv__( self , lowerCamelCase ) -> List[Any]: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCamelCase ) raise ValueError def __pow__( self , lowerCamelCase ) -> Any: '''simple docstring''' if n < 0 or isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self UpperCamelCase : Optional[Any] = self for _ in range(n - 1 ): x *= self return x def A__ ( A : List[Any] , A : Any , A : Optional[int]): '''simple docstring''' if not callable(A): raise ValueError("differentiate() requires a function as input for func") if not isinstance(A , (float, int)): raise ValueError("differentiate() requires a float as input for position") if not isinstance(A , A): raise ValueError("differentiate() requires an int as input for order") UpperCamelCase : Union[str, Any] = Dual(A , 1) UpperCamelCase : Optional[Any] = func(A) if order == 0: return result.real return result.duals[order - 1] * factorial(A) if __name__ == "__main__": import doctest doctest.testmod() def A__ ( A : Any): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
435
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
435
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase = s_dict.pop(__magic_name__ ) elif "subsample" in key: lowercase = s_dict.pop(__magic_name__ ) def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase = emb.weight.data return lin_layer def __snake_case ( __magic_name__ , __magic_name__ ): '''simple docstring''' lowercase = torch.load(__magic_name__ , map_location="cpu" ) lowercase = mam_aaa["args"] lowercase = mam_aaa["model"] lowercase = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(__magic_name__ ) rename_keys(__magic_name__ ) lowercase = state_dict["decoder.embed_tokens.weight"].shape[0] lowercase = args.share_decoder_input_output_embed lowercase = [int(__magic_name__ ) for i in args.conv_kernel_sizes.split("," )] lowercase = SpeechaTextConfig( vocab_size=__magic_name__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(__magic_name__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=__magic_name__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__magic_name__ , num_beams=5 , max_length=200 , use_cache=__magic_name__ , decoder_start_token_id=2 , early_stopping=__magic_name__ , ) lowercase = SpeechaTextForConditionalGeneration(__magic_name__ ) lowercase , lowercase = model.model.load_state_dict(__magic_name__ , strict=__magic_name__ ) if len(__magic_name__ ) > 0 and not set(__magic_name__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: lowercase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase = lm_head_weights model.save_pretrained(__magic_name__ ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _snake_case : int = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
441
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _snake_case : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class UpperCamelCase_ ( __a ): '''simple docstring''' def __init__( self :Tuple , **lowerCAmelCase__ :Dict ) ->int: super().__init__(**lowerCAmelCase__ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Tuple , **lowerCAmelCase__ :Union[str, Any] ) ->List[Any]: lowercase = {} lowercase = {} lowercase = {} # preprocess args if "points_per_batch" in kwargs: lowercase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: lowercase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: lowercase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: lowercase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: lowercase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: lowercase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: lowercase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: lowercase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: lowercase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: lowercase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: lowercase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: lowercase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :List[str] , lowerCAmelCase__ :int , *lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :List[str] ) ->Optional[int]: return super().__call__(lowerCAmelCase__ , *lowerCAmelCase__ , num_workers=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :float = 512 / 1500 , lowerCAmelCase__ :Optional[int] = 32 , lowerCAmelCase__ :Optional[int] = 1 , ) ->Any: lowercase = load_image(lowerCAmelCase__ ) lowercase = self.image_processor.size["longest_edge"] lowercase , lowercase , lowercase , lowercase = self.image_processor.generate_crop_boxes( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = self.image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": lowercase = self.get_inference_context() with inference_context(): lowercase = self._ensure_tensor_on_device(lowerCAmelCase__ , device=self.device ) lowercase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) lowercase = image_embeddings lowercase = grid_points.shape[1] lowercase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = grid_points[:, i : i + points_per_batch, :, :] lowercase = input_labels[:, i : i + points_per_batch] lowercase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict=0.88 , lowerCAmelCase__ :Dict=0.95 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :int=1 , ) ->str: lowercase = model_inputs.pop("input_boxes" ) lowercase = model_inputs.pop("is_last" ) lowercase = model_inputs.pop("original_sizes" ).tolist() lowercase = model_inputs.pop("reshaped_input_sizes" ).tolist() lowercase = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase = model_outputs["pred_masks"] lowercase = self.image_processor.post_process_masks( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , binarize=lowerCAmelCase__ ) lowercase = model_outputs["iou_scores"] lowercase , lowercase , lowercase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :str=False , lowerCAmelCase__ :int=0.7 , ) ->List[Any]: lowercase = [] lowercase = [] lowercase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase , lowercase , lowercase , lowercase = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) lowercase = {} if output_rle_mask: lowercase = rle_mask if output_bboxes_mask: lowercase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
441
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Tuple ): __lowerCamelCase : Any =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowerCamelCase : Any =Vector() def __lowercase ( self :Dict ): __lowerCamelCase : Tuple =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__lowercase ) , '''(0,0,0,0,0,1)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : int =Vector([1, 2, 3, 4] ) self.assertEqual(len(__lowercase ) , 4 ) def __lowercase ( self :Dict ): __lowerCamelCase : Optional[Any] =Vector([1, 2] ) __lowerCamelCase : Dict =Vector([1, 2, 3, 4, 5] ) __lowerCamelCase : List[Any] =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowerCamelCase : int =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =Vector([1, 2, 3] ) __lowerCamelCase : Any =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowercase ( self :str ): __lowerCamelCase : Union[str, Any] =Vector([1, 2, 3] ) __lowerCamelCase : int =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowercase ( self :int ): __lowerCamelCase : List[Any] =Vector([1, 2, 3] ) __lowerCamelCase : List[Any] =Vector([2, -1, 4] ) # for test of dot product __lowerCamelCase : Any =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowercase ( self :List[Any] ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowercase ( self :Union[str, Any] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowercase ( self :List[Any] ): __lowerCamelCase : Any =Vector([1, 2, 3] ) __lowerCamelCase : Optional[int] =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __lowercase , __lowercase ) ) , '''(3,4,7)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : List[Any] =Vector([1, 0, 0, 0, 0, 0] ) __lowerCamelCase : Optional[int] =x.copy() self.assertEqual(str(__lowercase ) , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : str =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__lowercase ) , '''(0,1,0)''' ) def __lowercase ( self :int ): __lowerCamelCase : Any =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[Any] =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__lowercase , __lowercase ) ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Tuple =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__lowercase , __lowercase ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowercase ( self :int ): __lowerCamelCase : Union[str, Any] =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowerCamelCase : Tuple =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :str ): __lowerCamelCase : str =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[str] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : int =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Optional[int] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowercase ( self :Any ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
363
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : List[Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } lowercase_ : int = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } lowercase_ : Optional[Any] = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_INIT_CONFIGURATION __A = ['''input_ids''', '''attention_mask'''] __A = DistilBertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) lowercase = do_lower_case lowercase = strip_accents lowercase = tokenize_chinese_chars lowercase = normalizer_class(**_lowerCAmelCase ) lowercase = do_lower_case def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Any: '''simple docstring''' lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
588
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def _a ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def _a ( self ) -> int: '''simple docstring''' def extract(*_lowerCAmelCase , **_lowerCAmelCase ): class __UpperCamelCase : def __init__( self ) -> List[str]: '''simple docstring''' lowercase = torch.ones([0] ) def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def _a ( self ) -> str: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ) lowercase = output.images lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> int: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase = init_image.resize((760, 504) ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] lowercase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Tuple: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase = init_image.resize((768, 512) ) lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
588
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowercase ( __UpperCamelCase ) -> int: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> Dict: from diffusers.utils.testing_utils import pytest_terminal_summary_main __magic_name__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase )
190
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: __magic_name__ = XCLIPTextConfig() # derive patch size from model name __magic_name__ = model_name.find('''patch''' ) __magic_name__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __magic_name__ = XCLIPVisionConfig(patch_size=__UpperCamelCase , num_frames=__UpperCamelCase ) if "large" in model_name: __magic_name__ = 768 __magic_name__ = 3072 __magic_name__ = 12 __magic_name__ = 1024 __magic_name__ = 4096 __magic_name__ = 16 __magic_name__ = 24 __magic_name__ = 768 __magic_name__ = 3072 if model_name == "xclip-large-patch14-16-frames": __magic_name__ = 336 __magic_name__ = XCLIPConfig.from_text_vision_configs(__UpperCamelCase , __UpperCamelCase ) if "large" in model_name: __magic_name__ = 768 return config def lowercase ( __UpperCamelCase ) -> Dict: # text encoder if name == "token_embedding.weight": __magic_name__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __magic_name__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __magic_name__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __magic_name__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __magic_name__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __magic_name__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __magic_name__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __magic_name__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __magic_name__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __magic_name__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __magic_name__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __magic_name__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __magic_name__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __magic_name__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __magic_name__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __magic_name__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __magic_name__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __magic_name__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __magic_name__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __magic_name__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __magic_name__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __magic_name__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(__UpperCamelCase ) if "attn.in_proj" in key: __magic_name__ = key.split('''.''' ) if key.startswith('''visual''' ): __magic_name__ = key_split[3] __magic_name__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __magic_name__ = val[ :dim, : ] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[ -dim:, : ] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: if "weight" in key: __magic_name__ = val[ :dim, : ] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[ -dim:, : ] else: __magic_name__ = val[:dim] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[-dim:] elif key.startswith('''mit''' ): __magic_name__ = key_split[2] __magic_name__ = config.vision_config.mit_hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[dim : dim * 2, :] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = key_split[2] __magic_name__ = config.text_config.hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[-dim:] else: __magic_name__ = rename_key(__UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __magic_name__ = val.T __magic_name__ = val return orig_state_dict def lowercase ( __UpperCamelCase ) -> Any: if num_frames == 8: __magic_name__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __magic_name__ = '''eating_spaghetti.npy''' elif num_frames == 32: __magic_name__ = '''eating_spaghetti_32_frames.npy''' __magic_name__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__UpperCamelCase , repo_type='''dataset''' , ) __magic_name__ = np.load(__UpperCamelCase ) return list(__UpperCamelCase ) def lowercase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ) -> Tuple: __magic_name__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __magic_name__ = model_to_url[model_name] __magic_name__ = 8 if "16-frames" in model_name: __magic_name__ = 16 elif "shot" in model_name: __magic_name__ = 32 __magic_name__ = get_xclip_config(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = XCLIPModel(__UpperCamelCase ) model.eval() if "drive" in checkpoint_url: __magic_name__ = '''pytorch_model.bin''' gdown.cached_download(__UpperCamelCase , __UpperCamelCase , quiet=__UpperCamelCase ) __magic_name__ = torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] else: __magic_name__ = torch.hub.load_state_dict_from_url(__UpperCamelCase )['''model'''] __magic_name__ = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = XCLIPModel(__UpperCamelCase ) __magic_name__ , __magic_name__ = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __magic_name__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __magic_name__ = VideoMAEImageProcessor(size=__UpperCamelCase ) __magic_name__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ = XCLIPProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) __magic_name__ = prepare_video(__UpperCamelCase ) __magic_name__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__UpperCamelCase , return_tensors='''pt''' , padding=__UpperCamelCase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase ) # Verify outputs __magic_name__ = outputs.logits_per_video __magic_name__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , __UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": __magic_name__ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": __magic_name__ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": __magic_name__ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": __magic_name__ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": __magic_name__ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": __magic_name__ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __magic_name__ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __magic_name__ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __magic_name__ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __magic_name__ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __magic_name__ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __magic_name__ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __magic_name__ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __magic_name__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __magic_name__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __magic_name__ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __magic_name__ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __magic_name__ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__UpperCamelCase , organization='''nielsr''' ) processor.push_to_hub(__UpperCamelCase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__UpperCamelCase , organization='''nielsr''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
190
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __magic_name__ : Union[str, Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __magic_name__ : Union[str, Any] = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __magic_name__ : Tuple = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def snake_case ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def snake_case ( self : Optional[int] , __A : Optional[Any] , __A : Tuple , __A : Optional[int]=None ): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__A , __A , sample_weight=__A ) ), }
497
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __magic_name__ : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') __magic_name__ : int = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __magic_name__ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def A__ ( A_ ) -> Any: with open(A_ , "rb" ) as f: _lowercase = Image.open(A_ ) return im.convert("RGB" ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the training data.'} ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the validation data.'} ) UpperCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def snake_case ( self : int ): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCamelCase__ )} , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) UpperCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'Name or path of preprocessor config.'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def A__ ( A_ ) -> Optional[Any]: _lowercase = torch.stack([example["pixel_values"] for example in examples] ) _lowercase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def A__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , A_ , A_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase = training_args.get_process_log_level() logger.setLevel(A_ ) transformers.utils.logging.set_verbosity(A_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowercase = {} if data_args.train_dir is not None: _lowercase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _lowercase = os.path.join(data_args.validation_dir , "**" ) _lowercase = load_dataset( "imagefolder" , data_files=A_ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _lowercase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A_ ) and data_args.train_val_split > 0.0: _lowercase = dataset["train"].train_test_split(data_args.train_val_split ) _lowercase = split["train"] _lowercase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowercase = dataset["train"].features["labels"].names _lowercase , _lowercase = {}, {} for i, label in enumerate(A_ ): _lowercase = str(A_ ) _lowercase = label # Load the accuracy metric from the datasets package _lowercase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A_ ) , labelaid=A_ , idalabel=A_ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _lowercase = image_processor.size["shortest_edge"] else: _lowercase = (image_processor.size["height"], image_processor.size["width"]) _lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _lowercase = Compose( [ RandomResizedCrop(A_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _lowercase = Compose( [ Resize(A_ ), CenterCrop(A_ ), ToTensor(), normalize, ] ) def train_transforms(A_ ): _lowercase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A_ ): _lowercase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _lowercase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _lowercase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A_ ) # Initalize our trainer _lowercase = Trainer( model=A_ , args=A_ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=A_ , tokenizer=A_ , data_collator=A_ , ) # Training if training_args.do_train: _lowercase = None if training_args.resume_from_checkpoint is not None: _lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase = last_checkpoint _lowercase = trainer.train(resume_from_checkpoint=A_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowercase = trainer.evaluate() trainer.log_metrics("eval" , A_ ) trainer.save_metrics("eval" , A_ ) # Write model card and (optionally) push to hub _lowercase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A_ ) else: trainer.create_model_card(**A_ ) if __name__ == "__main__": main()
497
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase_ = [144, 192, 240] UpperCAmelCase_ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase_ = [96, 120, 144] UpperCAmelCase_ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase_ = [64, 80, 96] UpperCAmelCase_ = [16, 16, 24, 48, 64, 80, 320] UpperCAmelCase_ = 0.05 UpperCAmelCase_ = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 21 UpperCAmelCase_ = '''pascal-voc-id2label.json''' else: UpperCAmelCase_ = 1000 UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' for i in range(1 , 6 ): if f"layer_{i}." in name: UpperCAmelCase_ = name.replace(f"layer_{i}." , f"encoder.layer.{i - 1}." ) if "conv_1." in name: UpperCAmelCase_ = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: UpperCAmelCase_ = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: UpperCAmelCase_ = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: UpperCAmelCase_ = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: UpperCAmelCase_ = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: UpperCAmelCase_ = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: UpperCAmelCase_ = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: UpperCAmelCase_ = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: UpperCAmelCase_ = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: UpperCAmelCase_ = name.replace(f".{i}.{j}." , f".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: UpperCAmelCase_ = name.replace(f".{i}.{j}." , f".{i}." ) if "expand_1x1" in name: UpperCAmelCase_ = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: UpperCAmelCase_ = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: UpperCAmelCase_ = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if f".global_rep.{i}.weight" in name: UpperCAmelCase_ = name.replace(f".global_rep.{i}.weight" , '''.layernorm.weight''' ) if f".global_rep.{i}.bias" in name: UpperCAmelCase_ = name.replace(f".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: UpperCAmelCase_ = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: UpperCAmelCase_ = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase_ = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: UpperCAmelCase_ = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: UpperCAmelCase_ = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: UpperCAmelCase_ = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: UpperCAmelCase_ = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase_ = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: UpperCAmelCase_ = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase_ = '''mobilevit.''' + name return name def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' if base_model: UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = '''mobilevit.''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__UpperCAmelCase ) if key[:8] == "encoder.": UpperCAmelCase_ = key[8:] if "qkv" in key: UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ = int(key_split[0][6:] ) - 1 UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}" ) UpperCAmelCase_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase_ = ( f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = val return orig_state_dict def A ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' UpperCAmelCase_ = get_mobilevit_config(__UpperCAmelCase ) # load original state_dict UpperCAmelCase_ = torch.load(__UpperCAmelCase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): UpperCAmelCase_ = MobileViTForSemanticSegmentation(__UpperCAmelCase ).eval() else: UpperCAmelCase_ = MobileViTForImageClassification(__UpperCAmelCase ).eval() UpperCAmelCase_ = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = model(**__UpperCAmelCase ) UpperCAmelCase_ = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase_ = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase_ = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase_ = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCAmelCase_ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase_ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: UpperCAmelCase_ = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) UpperCAmelCase_ = model_mapping[mobilevit_name] image_processor.push_to_hub(__UpperCAmelCase , organization='''apple''' ) model.push_to_hub(__UpperCAmelCase , organization='''apple''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs'," " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
719
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__UpperCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = _distribute_shards(**__UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = _split_gen_kwargs(__UpperCAmelCase , __UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__UpperCAmelCase ): _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) else: UpperCAmelCase_ = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) assert out == expected
561
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , a : Optional[int] , a : Dict=7 , a : Union[str, Any]=3 , a : List[Any]=30 , a : int=400 , a : Tuple=True , a : int=None , a : Optional[int]=True , a : int=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , a : int=True , a : str=1 / 255 , a : str=True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : List[Any] = min_resolution SCREAMING_SNAKE_CASE : Dict = max_resolution SCREAMING_SNAKE_CASE : List[Any] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Tuple = do_normalize SCREAMING_SNAKE_CASE : int = image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_pad def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : List[str] , a : Optional[int] , a : Optional[Any]=False ) -> Any: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE : Tuple = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = image.size else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : Optional[int] = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE : List[str] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : Dict = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : int = [] for image in image_inputs: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Optional[int] = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE : Optional[int] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessingTester(self ) @property def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , a ) SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(a , batched=a ) SCREAMING_SNAKE_CASE : Any = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Tuple = json.loads(f.read() ) SCREAMING_SNAKE_CASE : int = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=a , annotations=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : List[str] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify orig_size SCREAMING_SNAKE_CASE : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : str = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE : List[str] = ConditionalDetrImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE : Optional[int] = image_processing(images=a , annotations=a , masks_path=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : List[str] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify masks SCREAMING_SNAKE_CASE : Dict = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , a ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) )
25
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) # Check that tokenizer_type ≠ model_type UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , config=__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with pytest.raises(__magic_name__ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __magic_name__ ) else: self.assertEqual(tokenizer.do_lower_case , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase_ ( self : Dict ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __magic_name__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCamelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TOKENIZER_MAPPING.values() UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : Any ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__magic_name__ ) , __magic_name__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__magic_name__ ) UpperCamelCase = """Hello, world. How are you?""" UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCamelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__magic_name__ ) UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = get_tokenizer_config("""bert-base-cased""" ) UpperCamelCase = config.pop("""_commit_hash""" , __magic_name__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__magic_name__ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase = get_tokenizer_config(__magic_name__ ) self.assertDictEqual(__magic_name__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = get_tokenizer_config(__magic_name__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) UpperCamelCase = CustomTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) # Can register in two steps AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __magic_name__ , slow_tokenizer_class=__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = BertTokenizerFast.from_pretrained(__magic_name__ ) bert_tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" class UpperCAmelCase ( __snake_case ): lowercase = False class UpperCAmelCase ( __snake_case ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
386
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCamelCase__ : """simple docstring""" def __init__( self : List[str] ): """simple docstring""" _lowercase = {} def snake_case ( self : List[Any] , __A : str ): """simple docstring""" _lowercase = {} def snake_case ( self : Optional[int] , __A : str , __A : str , __A : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__A ) if nodea not in self.connections: self.add_node(__A ) _lowercase = probability def snake_case ( self : Union[str, Any] ): """simple docstring""" return list(self.connections ) def snake_case ( self : Union[str, Any] , __A : str ): """simple docstring""" _lowercase = 0 _lowercase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A__ ( A_ , A_ , A_ ) -> dict[str, int]: _lowercase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A_ , A_ , A_ ) _lowercase = Counter(graph.get_nodes() ) _lowercase = start for _ in range(A_ ): _lowercase = graph.transition(A_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import math def A__ ( A_ , A_ = 0 , A_ = 0 ) -> list: _lowercase = end or len(A_ ) for i in range(A_ , A_ ): _lowercase = i _lowercase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase = array[temp_index - 1] temp_index -= 1 _lowercase = temp_index_value return array def A__ ( A_ , A_ , A_ ) -> None: # Max Heap _lowercase = index _lowercase = 2 * index + 1 # Left Node _lowercase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase = right_index if largest != index: _lowercase , _lowercase = array[largest], array[index] heapify(A_ , A_ , A_ ) def A__ ( A_ ) -> list: _lowercase = len(A_ ) for i in range(n // 2 , -1 , -1 ): heapify(A_ , A_ , A_ ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase = array[0], array[i] heapify(A_ , 0 , A_ ) return array def A__ ( A_ , A_ , A_ , A_ ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A__ ( A_ , A_ , A_ , A_ ) -> int: _lowercase = low _lowercase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase = array[j], array[i] i += 1 def A__ ( A_ ) -> list: if len(A_ ) == 0: return array _lowercase = 2 * math.ceil(math.loga(len(A_ ) ) ) _lowercase = 16 return intro_sort(A_ , 0 , len(A_ ) , A_ , A_ ) def A__ ( A_ , A_ , A_ , A_ , A_ ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 _lowercase = median_of_a(A_ , A_ , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase = partition(A_ , A_ , A_ , A_ ) intro_sort(A_ , A_ , A_ , A_ , A_ ) _lowercase = p return insertion_sort(A_ , A_ , A_ ) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ : List[str] = input('''Enter numbers separated by a comma : ''').strip() __magic_name__ : Dict = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
602
0
'''simple docstring''' def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(UpperCAmelCase ) * abs(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
531
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(lowercase ) from datasets import load_dataset lowerCAmelCase = load_dataset("""nielsr/rvlcdip-demo""" ) lowerCAmelCase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowercase ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase ) lowerCAmelCase = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=lowercase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) )
532
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : str )-> None: warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
720
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case = inspect.getfile(accelerate.test_utils ) snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) snake_case = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase ( self : int )-> List[str]: snake_case = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() snake_case = [sys.executable] + distributed_args execute_subprocess_async(__snake_case , env=os.environ.copy() )
517
0
# flake8: noqa # Lint as: python3 UpperCAmelCase_ = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
2
from math import factorial, radians def __A ( __lowerCamelCase , __lowerCamelCase = 18 , __lowerCamelCase = 10 ) -> float: a = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians a = radians(__lowerCamelCase ) a = angle_in_radians a = 3 a = -1 for _ in range(__lowerCamelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCamelCase ) a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __import__("doctest").testmod()
468
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = ['''pixel_values'''] def __init__( self : Optional[int] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PIL.Image.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Union[str, Any] , ): super().__init__(**lowercase_ ) lowercase_ : Any = size if size is not None else {"""height""": 256, """width""": 256} lowercase_ : str = get_size_dict(lowercase_ ) lowercase_ : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ : Dict = get_size_dict(lowercase_ , param_name="""crop_size""" ) lowercase_ : Dict = do_resize lowercase_ : List[str] = size lowercase_ : List[str] = resample lowercase_ : Tuple = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[str] = do_rescale lowercase_ : Any = rescale_factor lowercase_ : Optional[Any] = do_normalize lowercase_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PIL.Image.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ): lowercase_ : Optional[int] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowercase_ , size=(size["""height"""], size["""width"""]) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ): lowercase_ : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["""height"""], size["""width"""]) , data_format=lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : str=None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[str] , ): lowercase_ : str = do_resize if do_resize is not None else self.do_resize lowercase_ : str = resample if resample is not None else self.resample lowercase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase_ : List[str] = image_std if image_std is not None else self.image_std lowercase_ : Tuple = size if size is not None else self.size lowercase_ : Dict = get_size_dict(lowercase_ ) lowercase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(lowercase_ , param_name="""crop_size""" ) lowercase_ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase_ : int = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase_ : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase_ : Tuple = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase_ : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase_ : List[Any] = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
30
'''simple docstring''' _lowercase : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowerCamelCase ( UpperCAmelCase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Union[str, Any] = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCAmelCase__ ) lowercase_ : Dict = """""".join(bin(UpperCAmelCase__ )[2:].zfill(8 ) for byte in data ) lowercase_ : Union[str, Any] = len(UpperCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ : List[Any] = b"""=""" * ((6 - len(UpperCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase__ ) % 6) else: lowercase_ : Union[str, Any] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase__ ) , 6 ) ).encode() + padding ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[str] = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: lowercase_ : Optional[int] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowercase_ : Any = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ : Optional[int] = encoded_data[:-padding] lowercase_ : Any = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ : int = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ : Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase__ ) , 8 ) ] return bytes(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
30
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : int , **__magic_name__ : Tuple ) -> None: """simple docstring""" warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
def __lowerCAmelCase ( snake_case : Optional[int] ) -> bool: __lowerCamelCase: List[str] = [int(a__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(a__ ) == 4 and all(0 <= int(a__ ) <= 254 for octet in octets ) if __name__ == "__main__": _A : Optional[Any] = input().strip() _A : str = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
716
from sklearn.metrics import fa_score import datasets _A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _A : Dict = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _A : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : List[str]="binary" , SCREAMING_SNAKE_CASE_ : List[str]=None ): __lowerCamelCase: str = fa_score( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , pos_label=SCREAMING_SNAKE_CASE_ , average=SCREAMING_SNAKE_CASE_ , sample_weight=SCREAMING_SNAKE_CASE_ ) return {"f1": float(SCREAMING_SNAKE_CASE_ ) if score.size == 1 else score}
189
0
from math import isclose, sqrt def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> Union[str, Any]: '''simple docstring''' __snake_case = point_y / 4 / point_x __snake_case = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __snake_case = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __snake_case = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __snake_case = outgoing_gradient**2 + 4 __snake_case = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __snake_case = (point_y - outgoing_gradient * point_x) ** 2 - 100 __snake_case = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __snake_case = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __snake_case = x_minus if isclose(lowerCamelCase_ , lowerCamelCase_ ) else x_plus __snake_case = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def A ( snake_case__ : float = 1.4 , snake_case__ : float = -9.6 ) -> Any: '''simple docstring''' __snake_case = 0 __snake_case = first_x_coord __snake_case = first_y_coord __snake_case = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __snake_case = next_point(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
313
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Union[str, Any] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case : List[str] = flax_key_tuple[:-1] + ("weight",) snake_case : Union[str, Any] = torch.permute(lowerCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_ ): # linear layer snake_case : int = flax_key_tuple[:-1] + ("weight",) snake_case : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case : Any = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Union[str, Any] , lowerCamelCase_: str ): """simple docstring""" if "metadata" in layer: snake_case : Dict = layer.split("metadata" ) snake_case : Optional[Any] = "".join(split_layer[0] )[:-1] snake_case : Any = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: snake_case : List[str] = layer.split("kvstore" ) snake_case : Tuple = "".join(split_layer[0] )[:-1] snake_case : Union[str, Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: snake_case : List[Any] = layer.split("/" ) snake_case : Union[str, Any] = "/".join(split_layer[:-1] ) snake_case : int = (split_layer[-1],) if "kvstore/path" in layer: snake_case : str = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: snake_case : Tuple = "file" else: snake_case : int = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] , lowerCamelCase_: Dict ): """simple docstring""" snake_case : Optional[int] = rename_keys(lowerCamelCase_ ) snake_case : str = {} for k, v in current_block.items(): snake_case : List[str] = v snake_case : List[str] = new_current_block torch.save(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Tuple , lowerCamelCase_: Optional[Any] , lowerCamelCase_: Dict , lowerCamelCase_: int , lowerCamelCase_: str = WEIGHTS_NAME ): """simple docstring""" snake_case : List[str] = convert_file_size_to_int(lowerCamelCase_ ) snake_case : List[Any] = [] snake_case : Dict = {} snake_case : str = 0 snake_case : List[str] = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: snake_case : List[Any] = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] snake_case : Union[str, Any] = flatten_dict(lowerCamelCase_ , sep="/" ) snake_case : Optional[int] = {} for layer in checkpoint_info.keys(): snake_case , snake_case , snake_case : Union[str, Any] = get_key_and_tensorstore_dict( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if curr_real_layer_name in all_layers: snake_case : str = content else: snake_case : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case : Tuple = torch.tensor(lowerCamelCase_ ) snake_case : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case , snake_case : Dict = rename_base_flax_keys(tuple(key.split("/" ) ) , lowerCamelCase_ ) snake_case : Union[str, Any] = "/".join(lowerCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case : str = os.path.join( lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case : Any = {} snake_case : Union[str, Any] = 0 snake_case : Any = raw_weights.to(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case : List[Any] = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case : List[Any] = {} snake_case : Dict = {} for idx, shard in enumerate(lowerCamelCase_ ): snake_case : List[Any] = weights_name.replace( ".bin" , f'''-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} snake_case : Tuple = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) snake_case : Union[str, Any] = shard for key in shard: snake_case : List[Any] = shard_file # Add the metadata snake_case : Optional[int] = {"total_size": total_size} snake_case : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , "w" , encoding="utf-8" ) as f: snake_case : Tuple = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + "\n" f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case : List[Any] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) snake_case : List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) snake_case : Dict = TaTokenizer.from_pretrained("t5-small" ) snake_case : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." snake_case : Dict = tokenizer(lowerCamelCase_ , return_tensors="pt" ).input_ids snake_case : Optional[int] = model.generate(lowerCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
449
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCAmelCase__ : str = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(__lowercase ) ,version.parse(__lowercase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase = None ) -> List[Any]: UpperCAmelCase_ : int = f"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' ,__lowercase ): UpperCAmelCase_ : List[str] = requirement, None, None else: UpperCAmelCase_ : Optional[int] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' ,__lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f""" got {requirement}""" ) UpperCAmelCase_ : Tuple = match[0] UpperCAmelCase_ : Optional[Any] = want_full.split(',' ) # there could be multiple requirements UpperCAmelCase_ : Optional[int] = {} for w in want_range: UpperCAmelCase_ : int = re.findall(r'^([\s!=<>]{1,2})(.+)' ,__lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f""" but got {requirement}""" ) UpperCAmelCase_ : Any = match[0] UpperCAmelCase_ : int = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCAmelCase_ : Union[str, Any] = '.'.join([str(__lowercase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) return # check if any version is installed try: UpperCAmelCase_ : Dict = importlib.metadata.version(__lowercase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The \'{requirement}\' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Dict: UpperCAmelCase_ : int = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(__lowercase ,__lowercase )
704
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( a_ ): def __get__( self , _snake_case , _snake_case=None) -> List[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') UpperCAmelCase_ : str = '__cached_' + self.fget.__name__ UpperCAmelCase_ : Union[str, Any] = getattr(_snake_case , _snake_case , _snake_case) if cached is None: UpperCAmelCase_ : Union[str, Any] = self.fget(_snake_case) setattr(_snake_case , _snake_case , _snake_case) return cached def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> str: if is_torch_fx_proxy(UpperCamelCase ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase ,torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase ,tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase ,(jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase ,np.ndarray ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: return isinstance(UpperCamelCase ,np.ndarray ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Union[str, Any]: return _is_numpy(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: import torch return isinstance(UpperCamelCase ,torch.Tensor ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[int]: return False if not is_torch_available() else _is_torch(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> str: import torch return isinstance(UpperCamelCase ,torch.device ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> str: return False if not is_torch_available() else _is_torch_device(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: import torch if isinstance(UpperCamelCase ,UpperCamelCase ): if hasattr(UpperCamelCase ,UpperCamelCase ): UpperCAmelCase_ : Any = getattr(UpperCamelCase ,UpperCamelCase ) else: return False return isinstance(UpperCamelCase ,torch.dtype ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: import tensorflow as tf return isinstance(UpperCamelCase ,tf.Tensor ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Tuple: return False if not is_tf_available() else _is_tensorflow(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase ,'is_symbolic_tensor' ): return tf.is_symbolic_tensor(UpperCamelCase ) return type(UpperCamelCase ) == tf.Tensor def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase ,jnp.ndarray ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Tuple: return False if not is_flax_available() else _is_jax(UpperCamelCase ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Any: if isinstance(UpperCamelCase ,(dict, UserDict) ): return {k: to_py_obj(UpperCamelCase ) for k, v in obj.items()} elif isinstance(UpperCamelCase ,(list, tuple) ): return [to_py_obj(UpperCamelCase ) for o in obj] elif is_tf_tensor(UpperCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase ): return np.asarray(UpperCamelCase ).tolist() elif isinstance(UpperCamelCase ,(np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: if isinstance(UpperCamelCase ,(dict, UserDict) ): return {k: to_numpy(UpperCamelCase ) for k, v in obj.items()} elif isinstance(UpperCamelCase ,(list, tuple) ): return np.array(UpperCamelCase ) elif is_tf_tensor(UpperCamelCase ): return obj.numpy() elif is_torch_tensor(UpperCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase ): return np.asarray(UpperCamelCase ) else: return obj class lowercase ( a_ ): def _snake_case ( self) -> Any: UpperCAmelCase_ : Dict = fields(self) # Safety and consistency checks if not len(_snake_case): raise ValueError(F"""{self.__class__.__name__} has no fields.""") if not all(field.default is None for field in class_fields[1:]): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""") UpperCAmelCase_ : int = getattr(self , class_fields[0].name) UpperCAmelCase_ : Union[str, Any] = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(_snake_case): if isinstance(_snake_case , _snake_case): UpperCAmelCase_ : str = first_field.items() UpperCAmelCase_ : Any = True else: try: UpperCAmelCase_ : str = iter(_snake_case) UpperCAmelCase_ : List[str] = True except TypeError: UpperCAmelCase_ : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_snake_case): if ( not isinstance(_snake_case , (list, tuple)) or not len(_snake_case) == 2 or not isinstance(element[0] , _snake_case) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase_ : Optional[int] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""") break setattr(self , element[0] , element[1]) if element[1] is not None: UpperCAmelCase_ : Tuple = element[1] elif first_field is not None: UpperCAmelCase_ : Dict = first_field else: for field in class_fields: UpperCAmelCase_ : Union[str, Any] = getattr(self , field.name) if v is not None: UpperCAmelCase_ : Union[str, Any] = v def __delitem__( self , *_snake_case , **_snake_case) -> Optional[Any]: raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""") def _snake_case ( self , *_snake_case , **_snake_case) -> Any: raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""") def _snake_case ( self , *_snake_case , **_snake_case) -> str: raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""") def _snake_case ( self , *_snake_case , **_snake_case) -> Any: raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""") def __getitem__( self , _snake_case) -> Optional[Any]: if isinstance(_snake_case , _snake_case): UpperCAmelCase_ : Dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _snake_case , _snake_case) -> Optional[int]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_snake_case , _snake_case) super().__setattr__(_snake_case , _snake_case) def __setitem__( self , _snake_case , _snake_case) -> List[Any]: # Will raise a KeyException if needed super().__setitem__(_snake_case , _snake_case) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_snake_case , _snake_case) def _snake_case ( self) -> Tuple[Any]: return tuple(self[k] for k in self.keys()) class lowercase ( a_, a_ ): @classmethod def _snake_case ( cls , _snake_case) -> List[str]: raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}""") class lowercase ( a_ ): _lowerCamelCase : Tuple= "longest" _lowerCamelCase : Tuple= "max_length" _lowerCamelCase : int= "do_not_pad" class lowercase ( a_ ): _lowerCamelCase : Union[str, Any]= "pt" _lowerCamelCase : Any= "tf" _lowerCamelCase : Dict= "np" _lowerCamelCase : Tuple= "jax" class lowercase : def __init__( self , _snake_case) -> Tuple: UpperCAmelCase_ : int = context_managers UpperCAmelCase_ : Any = ExitStack() def __enter__( self) -> Optional[Any]: for context_manager in self.context_managers: self.stack.enter_context(_snake_case) def __exit__( self , *_snake_case , **_snake_case) -> List[Any]: self.stack.__exit__(*_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> int: UpperCAmelCase_ : Dict = infer_framework(UpperCamelCase ) if framework == "tf": UpperCAmelCase_ : Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : Tuple = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : str = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = model_class.__name__ UpperCAmelCase_ : Optional[int] = infer_framework(UpperCamelCase ) if framework == "tf": UpperCAmelCase_ : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : str = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase = "" ,UpperCamelCase = "." ) -> List[Any]: def _flatten_dict(UpperCamelCase ,UpperCamelCase="" ,UpperCamelCase="." ): for k, v in d.items(): UpperCAmelCase_ : Any = str(UpperCamelCase ) + delimiter + str(UpperCamelCase ) if parent_key else k if v and isinstance(UpperCamelCase ,UpperCamelCase ): yield from flatten_dict(UpperCamelCase ,UpperCamelCase ,delimiter=UpperCamelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) ) @contextmanager def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase = False ) -> Any: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase=None ) -> Optional[Any]: if is_numpy_array(UpperCamelCase ): return np.transpose(UpperCamelCase ,axes=UpperCamelCase ) elif is_torch_tensor(UpperCamelCase ): return array.T if axes is None else array.permute(*UpperCamelCase ) elif is_tf_tensor(UpperCamelCase ): import tensorflow as tf return tf.transpose(UpperCamelCase ,perm=UpperCamelCase ) elif is_jax_tensor(UpperCamelCase ): return jnp.transpose(UpperCamelCase ,axes=UpperCamelCase ) else: raise ValueError(f"""Type not supported for transpose: {type(UpperCamelCase )}.""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> int: if is_numpy_array(UpperCamelCase ): return np.reshape(UpperCamelCase ,UpperCamelCase ) elif is_torch_tensor(UpperCamelCase ): return array.reshape(*UpperCamelCase ) elif is_tf_tensor(UpperCamelCase ): import tensorflow as tf return tf.reshape(UpperCamelCase ,UpperCamelCase ) elif is_jax_tensor(UpperCamelCase ): return jnp.reshape(UpperCamelCase ,UpperCamelCase ) else: raise ValueError(f"""Type not supported for reshape: {type(UpperCamelCase )}.""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase=None ) -> Optional[int]: if is_numpy_array(UpperCamelCase ): return np.squeeze(UpperCamelCase ,axis=UpperCamelCase ) elif is_torch_tensor(UpperCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase ) elif is_tf_tensor(UpperCamelCase ): import tensorflow as tf return tf.squeeze(UpperCamelCase ,axis=UpperCamelCase ) elif is_jax_tensor(UpperCamelCase ): return jnp.squeeze(UpperCamelCase ,axis=UpperCamelCase ) else: raise ValueError(f"""Type not supported for squeeze: {type(UpperCamelCase )}.""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> Optional[int]: if is_numpy_array(UpperCamelCase ): return np.expand_dims(UpperCamelCase ,UpperCamelCase ) elif is_torch_tensor(UpperCamelCase ): return array.unsqueeze(dim=UpperCamelCase ) elif is_tf_tensor(UpperCamelCase ): import tensorflow as tf return tf.expand_dims(UpperCamelCase ,axis=UpperCamelCase ) elif is_jax_tensor(UpperCamelCase ): return jnp.expand_dims(UpperCamelCase ,axis=UpperCamelCase ) else: raise ValueError(f"""Type not supported for expand_dims: {type(UpperCamelCase )}.""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: if is_numpy_array(UpperCamelCase ): return np.size(UpperCamelCase ) elif is_torch_tensor(UpperCamelCase ): return array.numel() elif is_tf_tensor(UpperCamelCase ): import tensorflow as tf return tf.size(UpperCamelCase ) elif is_jax_tensor(UpperCamelCase ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(UpperCamelCase )}.""" ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCamelCase ,(tuple, list) ): UpperCAmelCase_ : Union[str, Any] = [f"""{repo_id}--{v}""" if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase_ : Any = f"""{repo_id}--{value}""" return auto_map def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCamelCase ): UpperCAmelCase_ : int = base_class.__module__ UpperCAmelCase_ : Dict = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
471
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """visual_bert""" def __init__( self , lowerCAmelCase=30_522 , lowerCAmelCase=768 , lowerCAmelCase=512 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3_072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , **lowerCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =hidden_size _lowercase =visual_embedding_dim _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =type_vocab_size _lowercase =layer_norm_eps _lowercase =bypass_transformer _lowercase =special_visual_initialize
291
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = False ) -> str: '''simple docstring''' _lowercase =scheduler _lowercase =optimizers if isinstance(lowerCAmelCase , (list, tuple) ) else [optimizers] _lowercase =split_batches _lowercase =step_with_optimizer _lowercase =GradientState() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _lowercase =AcceleratorState().num_processes for _ in range(lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' return self.scheduler.get_last_lr() def A__ ( self ) -> Tuple: '''simple docstring''' return self.scheduler.state_dict() def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' self.scheduler.load_state_dict(lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' return self.scheduler.get_lr() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return self.scheduler.print_lr(*lowerCAmelCase , **lowerCAmelCase )
291
1
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] lowerCAmelCase_ = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] lowerCAmelCase_ = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase_ = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Any: for tf_name, hf_name in patterns: _SCREAMING_SNAKE_CASE : Any = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return k def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[str]: _SCREAMING_SNAKE_CASE : str = BigBirdPegasusConfig(**_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = BigBirdPegasusForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[str] = torch_model.state_dict() _SCREAMING_SNAKE_CASE : int = {} # separating decoder weights _SCREAMING_SNAKE_CASE : Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} _SCREAMING_SNAKE_CASE : Optional[int] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): _SCREAMING_SNAKE_CASE : Tuple = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(_SCREAMING_SNAKE_CASE ): continue _SCREAMING_SNAKE_CASE : Union[str, Any] = DECODER_PATTERNS _SCREAMING_SNAKE_CASE : List[Any] = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _SCREAMING_SNAKE_CASE : str = v.T _SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): _SCREAMING_SNAKE_CASE : Optional[Any] = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(_SCREAMING_SNAKE_CASE ): continue _SCREAMING_SNAKE_CASE : int = REMAINING_PATTERNS _SCREAMING_SNAKE_CASE : int = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _SCREAMING_SNAKE_CASE : Any = v.T _SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(_SCREAMING_SNAKE_CASE ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _SCREAMING_SNAKE_CASE : str = mapping["""model.embed_positions.weight"""] _SCREAMING_SNAKE_CASE : Tuple = mapping.pop("""model.embed_positions.weight""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = torch_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = {} _SCREAMING_SNAKE_CASE : int = ["""global_step"""] for name, shape in tqdm(_SCREAMING_SNAKE_CASE , desc="""converting tf checkpoint to dict""" ): _SCREAMING_SNAKE_CASE : Any = any(pat in name for pat in ignore_name ) if skip_key: continue _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = array return tf_weights def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = get_tf_weights_as_numpy(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = convert_bigbird_pegasus(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
707
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(_A) _SCREAMING_SNAKE_CASE : Any = -1 _SCREAMING_SNAKE_CASE : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) _SCREAMING_SNAKE_CASE : Dict = model.generate(_A , max_new_tokens=1_0 , do_sample=_A) _SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _SCREAMING_SNAKE_CASE : Any = TextStreamer(_A) model.generate(_A , max_new_tokens=1_0 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _SCREAMING_SNAKE_CASE : str = cs.out[:-1] self.assertEqual(_A , _A) def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(_A) _SCREAMING_SNAKE_CASE : List[Any] = -1 _SCREAMING_SNAKE_CASE : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) _SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(_A , max_new_tokens=1_0 , do_sample=_A) _SCREAMING_SNAKE_CASE : Any = tokenizer.decode(greedy_ids[0]) _SCREAMING_SNAKE_CASE : List[Any] = TextIteratorStreamer(_A) _SCREAMING_SNAKE_CASE : Any = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} _SCREAMING_SNAKE_CASE : List[Any] = Thread(target=model.generate , kwargs=_A) thread.start() _SCREAMING_SNAKE_CASE : Any = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(_A , _A) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(_A) _SCREAMING_SNAKE_CASE : Any = -1 _SCREAMING_SNAKE_CASE : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) _SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(_A , max_new_tokens=1_0 , do_sample=_A) _SCREAMING_SNAKE_CASE : str = greedy_ids[:, input_ids.shape[1] :] _SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _SCREAMING_SNAKE_CASE : Any = TextStreamer(_A , skip_prompt=_A) model.generate(_A , max_new_tokens=1_0 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _SCREAMING_SNAKE_CASE : Optional[int] = cs.out[:-1] self.assertEqual(_A , _A) def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""distilgpt2""") _SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""").to(_A) _SCREAMING_SNAKE_CASE : int = -1 _SCREAMING_SNAKE_CASE : List[str] = torch.ones((1, 5) , device=_A).long() * model.config.bos_token_id with CaptureStdout() as cs: _SCREAMING_SNAKE_CASE : Optional[int] = TextStreamer(_A , skip_special_tokens=_A) model.generate(_A , max_new_tokens=1 , do_sample=_A , streamer=_A) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _SCREAMING_SNAKE_CASE : Optional[Any] = cs.out[:-1] # Remove the final "\n" _SCREAMING_SNAKE_CASE : Tuple = tokenizer(_A , return_tensors="""pt""") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _SCREAMING_SNAKE_CASE : List[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(_A) _SCREAMING_SNAKE_CASE : Tuple = -1 _SCREAMING_SNAKE_CASE : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) _SCREAMING_SNAKE_CASE : int = TextIteratorStreamer(_A , timeout=0.001) _SCREAMING_SNAKE_CASE : List[Any] = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} _SCREAMING_SNAKE_CASE : List[str] = Thread(target=model.generate , kwargs=_A) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_A): _SCREAMING_SNAKE_CASE : str = """""" for new_text in streamer: streamer_text += new_text
635
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): lowerCAmelCase__ :List[Any] = F"Input value of [number={number}] must be an integer" raise TypeError(__snake_case ) if number < 0: return False lowerCAmelCase__ :Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
93
'''simple docstring''' import functools def a_ ( __snake_case : str , __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =len(__snake_case ) @functools.cache def min_distance(__snake_case : int , __snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCamelCase_ =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __UpperCAmelCase ( __A , __A , __A ) -> str: '''simple docstring''' UpperCAmelCase__ = state_dict.pop(__A ) UpperCAmelCase__ = val def __UpperCAmelCase ( __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value return new_state_dict def __UpperCAmelCase ( __A , __A=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = "" if is_panoptic: UpperCAmelCase__ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_5_6, :] UpperCAmelCase__ = in_proj_bias[:2_5_6] UpperCAmelCase__ = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias[-2_5_6:] def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __A , __A ) -> int: '''simple docstring''' UpperCAmelCase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase__ = "resnet101" if "dc5" in model_name: UpperCAmelCase__ = True UpperCAmelCase__ = "panoptic" in model_name if is_panoptic: UpperCAmelCase__ = 2_5_0 else: UpperCAmelCase__ = 9_1 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "coco-detection-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(__A , __A , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase__ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase__ = ConditionalDetrImageProcessor(format=__A ) # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__A , return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase__ = torch.hub.load("DeppMeng/ConditionalDETR" , __A , pretrained=__A ).eval() UpperCAmelCase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase__ = "conditional_detr." + src rename_key(__A , __A , __A ) UpperCAmelCase__ = rename_backbone_keys(__A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase__ = state_dict.pop(__A ) UpperCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase__ = state_dict.pop(__A ) UpperCAmelCase__ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase__ = state_dict.pop(__A ) UpperCAmelCase__ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase__ = state_dict.pop(__A ) UpperCAmelCase__ = val # finally, create HuggingFace model and load state dict UpperCAmelCase__ = ConditionalDetrForSegmentation(__A ) if is_panoptic else ConditionalDetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() model.push_to_hub(repo_id=__A , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase__ = conditional_detr(__A ) UpperCAmelCase__ = model(__A ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
705
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to SortishSamler or not.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'whether to use adafactor'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) A__= field( default='linear' , metadata={'help': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
277
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=snake_case_ , ) assert hasattr(self , '''env''' ) def __a ( self , snake_case_=1 ) -> str: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=snake_case_ , instance_type=self.instance_type , debugger_hook_config=snake_case_ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def __a ( self , snake_case_ ) -> Dict: TrainingJobAnalytics(snake_case_ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def __a ( self ) -> Any: # create estimator SCREAMING_SNAKE_CASE : int =self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : int =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : Optional[Any] =list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Any =list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Dict =( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , snake_case_ )
258
"""simple docstring""" def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): '''simple docstring''' if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients lowercase__ , lowercase__ , lowercase__ : Optional[Any] = equationa lowercase__ , lowercase__ , lowercase__ : int = equationa # Calculate the determinants of the matrices lowercase__ : int = aa * ba - aa * ba lowercase__ : int = ca * ba - ca * ba lowercase__ : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowercase__ : Any = determinant_x / determinant lowercase__ : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
599
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel snake_case : Any = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def lowercase__ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' return torch.atana(__UpperCamelCase , __UpperCamelCase ) / math.pi * 2 def lowercase__ ( __UpperCamelCase : Optional[int] ): '''simple docstring''' __lowercase = torch.sin(t * math.pi / 2 ) ** 2 __lowercase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__UpperCamelCase , __UpperCamelCase ) class lowerCamelCase__( snake_case_ ): pass class lowerCamelCase__( nn.Module ): def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() __lowercase = DiffusionAttnUnetaD(__UpperCAmelCase , n_attn_layers=4 ) __lowercase = deepcopy(self.diffusion ) __lowercase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCAmelCase ) def lowercase__ ( __UpperCamelCase : Optional[int] ): '''simple docstring''' __lowercase = MODELS_MAP[model_name]["""url"""] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' snake_case : Dict = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } snake_case : Optional[int] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } snake_case : str = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } snake_case : Any = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } snake_case : Tuple = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } snake_case : int = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowercase__ ( __UpperCamelCase : int ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase__ ( __UpperCamelCase : Any ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(__UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): return name.replace(__UpperCamelCase , __UpperCamelCase ) elif name.startswith(__UpperCamelCase ): return [name.replace(__UpperCamelCase , __UpperCamelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def lowercase__ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str=13 ): '''simple docstring''' __lowercase = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) __lowercase = 0 if string.startswith("""net.3.""" ): depth += 1 __lowercase = string[6:] elif string.startswith("""net.""" ): __lowercase = string[4:] while string.startswith("""main.7.""" ): depth += 1 __lowercase = string[7:] if string.startswith("""main.""" ): __lowercase = string[5:] # mid block if string[:2].isdigit(): __lowercase = string[:2] __lowercase = string[2:] else: __lowercase = string[0] __lowercase = string[1:] if depth == max_depth: __lowercase = MID_NUM_TO_LAYER[layer_num] __lowercase = """mid_block""" elif depth > 0 and int(__UpperCamelCase ) < 7: __lowercase = DOWN_NUM_TO_LAYER[layer_num] __lowercase = F'''down_blocks.{depth}''' elif depth > 0 and int(__UpperCamelCase ) > 7: __lowercase = UP_NUM_TO_LAYER[layer_num] __lowercase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __lowercase = DEPTH_0_TO_LAYER[layer_num] __lowercase = F'''up_blocks.{max_depth - 1}''' if int(__UpperCamelCase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) __lowercase = string_left[1:] if "resnets" in new_layer: __lowercase = convert_resconv_naming(__UpperCamelCase ) elif "attentions" in new_layer: __lowercase = convert_attn_naming(__UpperCamelCase ) __lowercase = new_string_left if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = prefix + """.""" + new_layer + """.""" + string_left else: __lowercase = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def lowercase__ ( __UpperCamelCase : List[Any] ): '''simple docstring''' __lowercase = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue __lowercase = rename(__UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = transform_conv_attns(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __lowercase = v return new_state_dict def lowercase__ ( __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : int ): '''simple docstring''' if len(__UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight __lowercase = v[:, :, 0] else: # bias __lowercase = v else: # qkv matrices __lowercase = v.shape[0] __lowercase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowercase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowercase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase__ ( __UpperCamelCase : int ): '''simple docstring''' __lowercase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __lowercase = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __lowercase = download(__UpperCamelCase ) __lowercase = MODELS_MAP[model_name]["""sample_rate"""] __lowercase = MODELS_MAP[model_name]["""sample_size"""] __lowercase = Object() __lowercase = sample_size __lowercase = sample_rate __lowercase = 0 __lowercase = UNetaDModel(sample_size=__UpperCamelCase , sample_rate=__UpperCamelCase ) __lowercase = diffusers_model.state_dict() __lowercase = DiffusionUncond(__UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__UpperCamelCase )["""state_dict"""] ) __lowercase = orig_model.diffusion_ema.eval() __lowercase = orig_model.state_dict() __lowercase = rename_orig_weights(__UpperCamelCase ) __lowercase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowercase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__UpperCamelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("""kernel""" ) for k in list(__UpperCamelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __lowercase = value.squeeze() __lowercase = value diffusers_model.load_state_dict(__UpperCamelCase ) __lowercase = 100 __lowercase = 33 __lowercase = IPNDMScheduler(num_train_timesteps=__UpperCamelCase ) __lowercase = torch.manual_seed(__UpperCamelCase ) __lowercase = torch.randn([1, 2, config.sample_size] , generator=__UpperCamelCase ).to(__UpperCamelCase ) __lowercase = torch.linspace(1 , 0 , steps + 1 , device=__UpperCamelCase )[:-1] __lowercase = get_crash_schedule(__UpperCamelCase ) __lowercase = DanceDiffusionPipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) __lowercase = torch.manual_seed(33 ) __lowercase = pipe(num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase ).audios __lowercase = sampling.iplms_sample(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {} ) __lowercase = generated.clamp(-1 , 1 ) __lowercase = (generated - audio).abs().sum() __lowercase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , __UpperCamelCase ) print("""Diff max""" , __UpperCamelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') snake_case : int = parser.parse_args() main(args)
339
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
339
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : str ) -> int: """simple docstring""" debug_launcher(test_script.main ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" debug_launcher(test_ops.main )
423
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : str = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCamelCase (lowercase_: List[Any] ) -> List[Any]: A__ : Optional[Any] = {} with open(lowercase_ , """r""" ) as file: for line_number, line in enumerate(lowercase_ ): A__ : Any = line.strip() if line: A__ : Optional[int] = line.split() A__ : Any = line_number A__ : Tuple = words[0] A__ : Union[str, Any] = value return result def UpperCamelCase (lowercase_: List[str] , lowercase_: Tuple , lowercase_: int , lowercase_: Optional[int] , lowercase_: Optional[int] ) -> Dict: for attribute in key.split(""".""" ): A__ : Optional[int] = getattr(lowercase_ , lowercase_ ) A__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): A__ : Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] A__ : str = """param""" if weight_type is not None and weight_type != "param": A__ : List[Any] = getattr(lowercase_ , lowercase_ ).shape elif weight_type is not None and weight_type == "param": A__ : Optional[int] = hf_pointer for attribute in hf_param_name.split(""".""" ): A__ : Optional[Any] = getattr(lowercase_ , lowercase_ ) A__ : List[Any] = shape_pointer.shape # let's reduce dimension A__ : str = value[0] else: A__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ : Any = value elif weight_type == "weight_g": A__ : List[str] = value elif weight_type == "weight_v": A__ : Union[str, Any] = value elif weight_type == "bias": A__ : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): A__ : Dict = getattr(lowercase_ , lowercase_ ) A__ : Tuple = value else: A__ : List[str] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase (lowercase_: Any , lowercase_: Optional[Any] , lowercase_: Tuple , lowercase_: Any , lowercase_: Union[str, Any] ) -> Tuple: A__ : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): A__ : List[Any] = PARAM_MAPPING[full_name.split(""".""" )[-1]] A__ : List[str] = """param""" if weight_type is not None and weight_type != "param": A__ : int = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ : Union[str, Any] = """.""".join([key, hf_param_name] ) else: A__ : Optional[Any] = key A__ : Tuple = value if """lm_head""" in full_key else value[0] A_ : List[Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCamelCase (lowercase_: List[str] , lowercase_: Tuple , lowercase_: Any=None , lowercase_: Optional[int]=None ) -> List[Any]: A__ : int = False for key, mapped_key in MAPPING.items(): A__ : int = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A__ : Optional[Any] = True if "*" in mapped_key: A__ : List[Any] = name.split(lowercase_ )[0].split(""".""" )[-2] A__ : int = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: A__ : List[Any] = """weight_g""" elif "weight_v" in name: A__ : int = """weight_v""" elif "bias" in name: A__ : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ : str = """weight""" else: A__ : str = None if hf_dict is not None: rename_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return is_used return is_used def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Optional[int] , lowercase_: Any ) -> Tuple: A__ : List[Any] = [] A__ : Tuple = fairseq_model.state_dict() A__ : Any = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ : Any = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) A__ : Any = True else: A__ : Union[str, Any] = load_wavaveca_layer(lowercase_ , lowercase_ , lowercase_ ) if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: List[str] , lowercase_: Any , lowercase_: Union[str, Any] , lowercase_: Any ) -> Dict: A__ : str = full_name.split("""conv_layers.""" )[-1] A__ : Optional[Any] = name.split(""".""" ) A__ : Optional[int] = int(items[0] ) A__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) A__ : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def UpperCamelCase (lowercase_: List[Any] , lowercase_: int , lowercase_: str=None , lowercase_: Tuple=None , lowercase_: List[str]=True , lowercase_: Any=False ) -> str: if config_path is not None: A__ : Any = WavaVecaConfig.from_pretrained(lowercase_ ) else: A__ : int = WavaVecaConfig() if is_seq_class: A__ : Optional[Any] = read_txt_into_dict(lowercase_ ) A__ : List[str] = idalabel A__ : Any = WavaVecaForSequenceClassification(lowercase_ ) A__ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) feature_extractor.save_pretrained(lowercase_ ) elif is_finetuned: if dict_path: A__ : List[Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ : Tuple = target_dict.pad_index A__ : Union[str, Any] = target_dict.bos_index A__ : List[Any] = target_dict.eos_index A__ : List[str] = len(target_dict.symbols ) A__ : str = os.path.join(lowercase_ , """vocab.json""" ) if not os.path.isdir(lowercase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) A__ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched A__ : List[str] = 0 A__ : Optional[Any] = 1 with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase_ , lowercase_ ) A__ : List[str] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , ) A__ : List[Any] = True if config.feat_extract_norm == """layer""" else False A__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) A__ : str = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) A__ : Optional[Any] = WavaVecaForCTC(lowercase_ ) else: A__ : str = WavaVecaForPreTraining(lowercase_ ) if is_finetuned or is_seq_class: A__ , A__ , A__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A__ : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) A__ : Any = fairseq.tasks.setup_task(lowercase_ ) A__ , A__ , A__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase_ ) A__ : Tuple = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : Any = parser.parse_args() A_ : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
456
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
"""simple docstring""" import os def __lowerCAmelCase ( ): '''simple docstring''' with open(os.path.dirname(__UpperCamelCase ) + """/grid.txt""" ) as f: snake_case_ : List[Any] = [] # noqa: E741 for _ in range(2_0 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) snake_case_ : Optional[Any] = 0 # right for i in range(2_0 ): for j in range(1_7 ): snake_case_ : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case_ : int = temp # down for i in range(1_7 ): for j in range(2_0 ): snake_case_ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case_ : str = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): snake_case_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case_ : Dict = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): snake_case_ : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case_ : Optional[Any] = temp return maximum if __name__ == "__main__": print(solution())
58
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) snake_case_ : str = precision snake_case_ : Any = ceil(precision / 1_4 ) snake_case_ : Dict = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() snake_case_ : Optional[Any] = 1 snake_case_ : List[str] = 1_3_5_9_1_4_0_9 snake_case_ : Optional[int] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): snake_case_ : Any = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : int = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
58
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Any = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( A__ ): """simple docstring""" snake_case ="""encodec""" def __init__( self , _snake_case=[1.5, 3.0, 6.0, 12.0, 24.0] , _snake_case=2_4000 , _snake_case=1 , _snake_case=False , _snake_case=None , _snake_case=None , _snake_case=128 , _snake_case=32 , _snake_case=1 , _snake_case=[8, 5, 4, 2] , _snake_case="weight_norm" , _snake_case=7 , _snake_case=7 , _snake_case=3 , _snake_case=2 , _snake_case=True , _snake_case="reflect" , _snake_case=2 , _snake_case=2 , _snake_case=1.0 , _snake_case=1024 , _snake_case=None , _snake_case=True , **_snake_case , ): _UpperCAmelCase =target_bandwidths _UpperCAmelCase =sampling_rate _UpperCAmelCase =audio_channels _UpperCAmelCase =normalize _UpperCAmelCase =chunk_length_s _UpperCAmelCase =overlap _UpperCAmelCase =hidden_size _UpperCAmelCase =num_filters _UpperCAmelCase =num_residual_layers _UpperCAmelCase =upsampling_ratios _UpperCAmelCase =norm_type _UpperCAmelCase =kernel_size _UpperCAmelCase =last_kernel_size _UpperCAmelCase =residual_kernel_size _UpperCAmelCase =dilation_growth_rate _UpperCAmelCase =use_causal_conv _UpperCAmelCase =pad_mode _UpperCAmelCase =compress _UpperCAmelCase =num_lstm_layers _UpperCAmelCase =trim_right_ratio _UpperCAmelCase =codebook_size _UpperCAmelCase =codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**_snake_case ) @property def SCREAMING_SNAKE_CASE ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE ( self ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
700
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase =tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase =tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase =output[output != -float("inf" )] _UpperCAmelCase =tf.cast( tf.where(tf.not_equal(_snake_case , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-1_2 ) tf.debugging.assert_equal(_snake_case , _snake_case ) @require_tf class _a ( unittest.TestCase , A__ ): """simple docstring""" if is_tf_available(): snake_case ={ """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def SCREAMING_SNAKE_CASE ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =2 _UpperCAmelCase =2 class _a ( tf.Module ): """simple docstring""" def __init__( self , _snake_case ): super(_snake_case , self ).__init__() _UpperCAmelCase =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=_snake_case , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase =[[2, 0], [102, 103]] _UpperCAmelCase =[[1, 0], [1, 1]] _UpperCAmelCase =DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"serving_default": dummy_model.serving} ) _UpperCAmelCase =tf.saved_model.load(_snake_case ).signatures["serving_default"] for batch_size in range(1 , len(_snake_case ) + 1 ): _UpperCAmelCase ={ "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase =serving_func(**_snake_case )["sequences"] _UpperCAmelCase =test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow def SCREAMING_SNAKE_CASE ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =1 _UpperCAmelCase =2 class _a ( tf.Module ): """simple docstring""" def __init__( self , _snake_case ): super(_snake_case , self ).__init__() _UpperCAmelCase =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=_snake_case , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase =[[2], [102, 103]] _UpperCAmelCase =[[1], [1, 1]] _UpperCAmelCase =DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"serving_default": dummy_model.serving} ) _UpperCAmelCase =tf.saved_model.load(_snake_case ).signatures["serving_default"] for input_row in range(len(_snake_case ) ): _UpperCAmelCase ={ "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase =serving_func(**_snake_case )["sequences"] _UpperCAmelCase =test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_snake_case ) class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): super().__init__() _UpperCAmelCase =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_snake_case , "spiece.model" ) , "rb" ).read() ) _UpperCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def SCREAMING_SNAKE_CASE ( self , _snake_case , *_snake_case , **_snake_case ): _UpperCAmelCase =self.tokenizer.tokenize(_snake_case ) _UpperCAmelCase , _UpperCAmelCase =text.pad_model_inputs( _snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase =self.model.generate(input_ids=_snake_case , attention_mask=_snake_case ) return self.tokenizer.detokenize(_snake_case ) _UpperCAmelCase =CompleteSentenceTransformer() _UpperCAmelCase =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) _UpperCAmelCase =complete_model(_snake_case ) _UpperCAmelCase =tf.keras.Model(_snake_case , _snake_case ) keras_model.save(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): # Has PT equivalent: this test relies on random sampling _UpperCAmelCase ={ "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } _UpperCAmelCase =14 _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase ="Hello, my dog is cute and" _UpperCAmelCase =tokenizer(_snake_case , return_tensors="tf" ) _UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCAmelCase =model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase =[638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCAmelCase =model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE ( self ): # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase ="Hugging Face is a technology company based in New York and Paris." _UpperCAmelCase =bart_tokenizer(_snake_case , return_tensors="tf" ).input_ids _UpperCAmelCase =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase =bart_model.generate(_snake_case ).numpy() class _a ( A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=None , **_snake_case ): return super().call(_snake_case , **_snake_case ) _UpperCAmelCase =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase =bart_model.generate(_snake_case , foo="bar" ).numpy() self.assertTrue(np.array_equal(_snake_case , _snake_case ) ) class _a ( bart_model.model.encoder.__class__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , _snake_case , **_snake_case ): return super().call(_snake_case , **_snake_case ) _UpperCAmelCase =FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase =bart_model.generate(_snake_case ).numpy() with self.assertRaises(_snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_snake_case , foo="bar" )
592
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a_ = logging.getLogger(__name__) def __lowercase ( snake_case_ : torch.nn.Module ,snake_case_ : BnbQuantizationConfig ,snake_case_ : Union[str, os.PathLike] = None ,snake_case_ : Optional[Dict[str, Union[int, str, torch.device]]] = None ,snake_case_ : Optional[List[str]] = None ,snake_case_ : Optional[Dict[Union[int, str], Union[int, str]]] = None ,snake_case_ : Optional[Union[str, os.PathLike]] = None ,snake_case_ : bool = False ,) ->Optional[Any]: '''simple docstring''' __A : Any = bnb_quantization_config.load_in_abit __A : Tuple = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) __A : Dict = [] # custom device map if isinstance(A__ ,A__ ) and len(device_map.keys() ) > 1: __A : Any = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __A : Optional[Any] = get_keys_to_not_convert(A__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A__ ) __A : Optional[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __A : List[str] = [] __A : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A__ ) # compatibility with peft __A : Tuple = load_in_abit __A : Tuple = load_in_abit __A : Union[str, Any] = get_parameter_device(A__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) __A : List[Any] = replace_with_bnb_layers(A__ ,A__ ,modules_to_not_convert=A__ ) # convert param to the right dtype __A : List[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __A : Optional[int] = name.replace('''.weight''' ,'''''' ).replace('''.bias''' ,'''''' ) __A : Dict = getattr(A__ ,A__ ,A__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A__ ): param.to(A__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): __A : Union[str, Any] = replace_with_bnb_layers( A__ ,A__ ,modules_to_not_convert=A__ ) __A : Optional[int] = get_quantized_model_device_map( A__ ,A__ ,A__ ,max_memory=A__ ,no_split_module_classes=A__ ,) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __A : Tuple = True __A : Union[str, Any] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( A__ ,A__ ,A__ ,dtype=bnb_quantization_config.torch_dtype ,offload_folder=A__ ,offload_state_dict=A__ ,keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules ,offload_abit_bnb=load_in_abit and offload ,) return dispatch_model(A__ ,device_map=A__ ,offload_dir=A__ ) def __lowercase ( snake_case_ : Any ,snake_case_ : str ,snake_case_ : List[Any]=None ,snake_case_ : List[Any]=None ,snake_case_ : Dict=None ) ->Optional[int]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): __A : Optional[Any] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(A__ ,A__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) __A : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __A : Any = {} __A : Tuple = special_dtypes __A : Tuple = no_split_module_classes __A : Dict = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __A : List[str] = get_balanced_memory( A__ ,low_zero=(device_map == '''balanced_low_0''') ,max_memory=A__ ,**A__ ,) __A : str = max_memory __A : Tuple = infer_auto_device_map(A__ ,**A__ ) if isinstance(A__ ,A__ ): # check if don't have any quantized module on the cpu __A : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __A : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __lowercase ( snake_case_ : Union[str, Any] ,snake_case_ : Union[str, Any] ,snake_case_ : List[Any]=None ,snake_case_ : Optional[int]=None ) ->List[str]: '''simple docstring''' if modules_to_not_convert is None: __A : str = [] __A , __A : Any = _replace_with_bnb_layers( A__ ,A__ ,A__ ,A__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __lowercase ( snake_case_ : int ,snake_case_ : str ,snake_case_ : Dict=None ,snake_case_ : List[str]=None ,) ->Tuple: '''simple docstring''' __A : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: __A : Optional[Any] = [] current_key_name.append(A__ ) if isinstance(A__ ,nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __A : int = '''.'''.join(A__ ) __A : Union[str, Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __A : Union[str, Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __A : Any = bnb.nn.LinearabitLt( module.in_features ,module.out_features ,module.bias is not None ,has_fpaa_weights=A__ ,threshold=bnb_quantization_config.llm_inta_threshold ,) elif bnb_quantization_config.load_in_abit: __A : List[str] = bnb.nn.Linearabit( module.in_features ,module.out_features ,module.bias is not None ,bnb_quantization_config.bnb_abit_compute_dtype ,compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant ,quant_type=bnb_quantization_config.bnb_abit_quant_type ,) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) __A : Dict = module.weight.data if module.bias is not None: __A : str = module.bias.data bnb_module.requires_grad_(A__ ) setattr(A__ ,A__ ,A__ ) __A : List[str] = True if len(list(module.children() ) ) > 0: __A , __A : Dict = _replace_with_bnb_layers( A__ ,A__ ,A__ ,A__ ) __A : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowercase ( snake_case_ : Optional[int] ) ->List[str]: '''simple docstring''' with init_empty_weights(): __A : int = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __A : Optional[Any] = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ ,A__ ): __A : Optional[int] = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: __A : Dict = sum(A__ ,[] ) __A : Union[str, Any] = len(A__ ) > 0 # Check if it is a base model __A : int = False if hasattr(A__ ,'''base_model_prefix''' ): __A : Union[str, Any] = not hasattr(A__ ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __A : Optional[Any] = list(model.named_children() ) __A : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights __A : int = set(A__ ) - set(A__ ) __A : Any = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys __A : Any = ['''.weight''', '''.bias'''] __A : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __A : Tuple = name.replace(A__ ,'''''' ) filtered_module_names.append(A__ ) return filtered_module_names def __lowercase ( snake_case_ : Union[str, Any] ) ->Tuple: '''simple docstring''' for m in model.modules(): if isinstance(A__ ,bnb.nn.Linearabit ): return True return False def __lowercase ( snake_case_ : nn.Module ) ->Optional[int]: '''simple docstring''' return next(parameter.parameters() ).device def __lowercase ( snake_case_ : List[Any] ,snake_case_ : int ,snake_case_ : str ,snake_case_ : int ,snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : str ) ->int: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(A__ ,A__ ,0 ,dtype=A__ ,value=A__ ) __A : Dict = param_name __A : Optional[int] = model if "." in tensor_name: __A : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: __A : Any = getattr(A__ ,A__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __A : List[Any] = new_module __A : int = splits[-1] # offload weights __A : Optional[Any] = False offload_weight(module._parameters[tensor_name] ,A__ ,A__ ,index=A__ ) if hasattr(module._parameters[tensor_name] ,'''SCB''' ): offload_weight( module._parameters[tensor_name].SCB ,param_name.replace('''weight''' ,'''SCB''' ) ,A__ ,index=A__ ,) else: offload_weight(A__ ,A__ ,A__ ,index=A__ ) offload_weight(A__ ,param_name.replace('''weight''' ,'''SCB''' ) ,A__ ,index=A__ ) set_module_tensor_to_device(A__ ,A__ ,'''meta''' ,dtype=A__ ,value=torch.empty(*param.size() ) )
177
def _lowerCAmelCase ( A__: str , A__: Tuple ): '''simple docstring''' print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(A__ ): for j in range(A__ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _lowerCAmelCase ( A__: List[Any] , A__: Any ): '''simple docstring''' UpperCAmelCase = [[float('''inf''' ) for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): UpperCAmelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(A__ ): # looping through rows of graph array for i in range(A__ ): # looping through columns of graph array for j in range(A__ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCAmelCase = dist[i][k] + dist[k][j] _print_dist(A__ , A__ ) return dist, v if __name__ == "__main__": __magic_name__ = int(input("Enter number of vertices: ")) __magic_name__ = int(input("Enter number of edges: ")) __magic_name__ = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __magic_name__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __magic_name__ = int(input("Enter source:")) __magic_name__ = int(input("Enter destination:")) __magic_name__ = float(input("Enter weight:")) __magic_name__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
254
0
import os from pathlib import Path def __lowerCAmelCase ( ) -> Dict: from torch.utils.cpp_extension import load lowerCamelCase_ = Path(UpperCAmelCase__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase_ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , UpperCAmelCase__ , with_cuda=UpperCAmelCase__ , extra_include_paths=[str(UpperCAmelCase__ )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
721
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A: def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : Any=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Union[str, Any]=0 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRContextEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDPRReader(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCamelCase_ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(__UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _a = True except ImportError: _a = False try: from torch.hub import _get_torch_home _a = _get_torch_home() except ImportError: _a = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) _a = os.path.join(torch_cache_home, "transformers") _a = 'https://cdn.huggingface.co' _a = 'https://s3.amazonaws.com/models.huggingface.co/bert' _a = '/'.join(str(Path(__file__).resolve()).split("/")[:-1]) _a = os.path.join(PATH, "config.yaml") _a = os.path.join(PATH, "attributes.txt") _a = os.path.join(PATH, "objects.txt") _a = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) _a = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) _a = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) _a = 'pytorch_model.bin' _a = 'config.yaml' def lowerCAmelCase__(__snake_case=OBJECTS ,__snake_case=ATTRIBUTES ) -> Dict: '''simple docstring''' lowerCamelCase__ = [] with open(A__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase__ = [] with open(A__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = OrderedDict() with open(A__ ,'''rb''' ) as f: lowerCamelCase__ = pkl.load(A__ )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase__ = ckp.pop(A__ ) if isinstance(A__ ,np.ndarray ): lowerCamelCase__ = torch.tensor(A__ ) else: assert isinstance(A__ ,torch.tensor ), type(A__ ) lowerCamelCase__ = v return r class __A : '''simple docstring''' lowerCAmelCase_ = {} def __init__( self , __lowerCAmelCase , __lowerCAmelCase = "root" , __lowerCAmelCase=0 ): '''simple docstring''' lowerCamelCase__ = name lowerCamelCase__ = level lowerCamelCase__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase__ = copy.deepcopy(lowerCAmelCase__ ) lowerCamelCase__ = copy.deepcopy(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCamelCase__ = Config(lowerCAmelCase__ , name=lowerCAmelCase__ , level=level + 1 ) lowerCamelCase__ = v setattr(self , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase__ = d def __repr__( self ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = val lowerCamelCase__ = val lowerCamelCase__ = key.split('''.''' ) lowerCamelCase__ = len(lowerCAmelCase__ ) - 1 lowerCamelCase__ = self._pointer if len(lowerCAmelCase__ ) > 1: for i, l in enumerate(lowerCAmelCase__ ): if hasattr(self , lowerCAmelCase__ ) and isinstance(getattr(self , lowerCAmelCase__ ) , lowerCAmelCase__ ): setattr(getattr(self , lowerCAmelCase__ ) , '''.'''.join(levels[i:] ) , lowerCAmelCase__ ) if l == last_level: lowerCamelCase__ = val else: lowerCamelCase__ = pointer[l] def __lowerCamelCase ( self ): '''simple docstring''' return self._pointer def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' with open(lowerCAmelCase__ ) as stream: lowerCamelCase__ = load(lowerCAmelCase__ , Loader=lowerCAmelCase__ ) return data def __str__( self ): '''simple docstring''' lowerCamelCase__ = ' ' if self._name != "root": lowerCamelCase__ = F'{t * (self._level-1)}{self._name}:\n' else: lowerCamelCase__ = '' lowerCamelCase__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(lowerCAmelCase__ ).__name__})\n' lowerCamelCase__ = level return r[:-1] @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) return cls(lowerCAmelCase__ ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''cache_dir''' , lowerCAmelCase__ ) lowerCamelCase__ = kwargs.pop('''force_download''' , lowerCAmelCase__ ) lowerCamelCase__ = kwargs.pop('''resume_download''' , lowerCAmelCase__ ) lowerCamelCase__ = kwargs.pop('''proxies''' , lowerCAmelCase__ ) lowerCamelCase__ = kwargs.pop('''local_files_only''' , lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ): lowerCamelCase__ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) elif os.path.isfile(lowerCAmelCase__ ) or is_remote_url(lowerCAmelCase__ ): lowerCamelCase__ = pretrained_model_name_or_path else: lowerCamelCase__ = hf_bucket_url(lowerCAmelCase__ , filename=lowerCAmelCase__ , use_cdn=lowerCAmelCase__ ) try: # Load from URL or cache if already cached lowerCamelCase__ = cached_path( lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase__ = Config.load_yaml(lowerCAmelCase__ ) except EnvironmentError: lowerCamelCase__ = 'Can\'t load config for' raise EnvironmentError(lowerCAmelCase__ ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(lowerCAmelCase__ ), kwargs def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase__ = in_tensor.numpy() lowerCamelCase__ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(A__ ,A__ ,rtol=0.0_1 ,atol=0.1 ), ( F'{sum([1 for x in np.isclose(A__ ,A__ ,rtol=0.0_1 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = urlparse(A__ ) return parsed.scheme in ("http", "https") def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=True ) -> int: '''simple docstring''' lowerCamelCase__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase__ = '/' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=None ,__snake_case=0 ,__snake_case=None ,) -> str: '''simple docstring''' lowerCamelCase__ = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A__ ,A__ ): ua += "; " + "; ".join('''{}/{}'''.format(A__ ,A__ ) for k, v in user_agent.items() ) elif isinstance(A__ ,A__ ): ua += "; " + user_agent lowerCamelCase__ = {'user-agent': ua} if resume_size > 0: lowerCamelCase__ = 'bytes=%d-' % (resume_size,) lowerCamelCase__ = requests.get(A__ ,stream=A__ ,proxies=A__ ,headers=A__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase__ = response.headers.get('''Content-Length''' ) lowerCamelCase__ = resume_size + int(A__ ) if content_length is not None else None lowerCamelCase__ = tqdm( unit='''B''' ,unit_scale=A__ ,total=A__ ,initial=A__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A__ ) ) temp_file.write(A__ ) progress.close() def lowerCAmelCase__(__snake_case ,__snake_case=None ,__snake_case=False ,__snake_case=None ,__snake_case=10 ,__snake_case=False ,__snake_case=None ,__snake_case=False ,) -> int: '''simple docstring''' if cache_dir is None: lowerCamelCase__ = TRANSFORMERS_CACHE if isinstance(A__ ,A__ ): lowerCamelCase__ = str(A__ ) os.makedirs(A__ ,exist_ok=A__ ) lowerCamelCase__ = None if not local_files_only: try: lowerCamelCase__ = requests.head(A__ ,allow_redirects=A__ ,proxies=A__ ,timeout=A__ ) if response.status_code == 200: lowerCamelCase__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase__ = url_to_filename(A__ ,A__ ) # get cache path to put the file lowerCamelCase__ = os.path.join(A__ ,A__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A__ ): return cache_path else: lowerCamelCase__ = [ file for file in fnmatch.filter(os.listdir(A__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(A__ ) > 0: return os.path.join(A__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(A__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase__ = cache_path + '.lock' with FileLock(A__ ): # If the download just completed while the lock was activated. if os.path.exists(A__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase__ = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(A__ ,'''a+b''' ) as f: yield f lowerCamelCase__ = _resumable_file_manager if os.path.exists(A__ ): lowerCamelCase__ = os.stat(A__ ).st_size else: lowerCamelCase__ = 0 else: lowerCamelCase__ = partial(tempfile.NamedTemporaryFile ,dir=A__ ,delete=A__ ) lowerCamelCase__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,A__ ,temp_file.name ,) http_get( A__ ,A__ ,proxies=A__ ,resume_size=A__ ,user_agent=A__ ,) os.replace(temp_file.name ,A__ ) lowerCamelCase__ = {'url': url, 'etag': etag} lowerCamelCase__ = cache_path + '.json' with open(A__ ,'''w''' ) as meta_file: json.dump(A__ ,A__ ) return cache_path def lowerCAmelCase__(__snake_case ,__snake_case=None ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = url.encode('''utf-8''' ) lowerCamelCase__ = shaaaa(A__ ) lowerCamelCase__ = url_hash.hexdigest() if etag: lowerCamelCase__ = etag.encode('''utf-8''' ) lowerCamelCase__ = shaaaa(A__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowerCAmelCase__(__snake_case ,__snake_case=None ,__snake_case=False ,__snake_case=None ,__snake_case=False ,__snake_case=None ,__snake_case=False ,__snake_case=False ,__snake_case=False ,) -> Tuple: '''simple docstring''' if cache_dir is None: lowerCamelCase__ = TRANSFORMERS_CACHE if isinstance(A__ ,A__ ): lowerCamelCase__ = str(A__ ) if isinstance(A__ ,A__ ): lowerCamelCase__ = str(A__ ) if is_remote_url(A__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase__ = get_from_cache( A__ ,cache_dir=A__ ,force_download=A__ ,proxies=A__ ,resume_download=A__ ,user_agent=A__ ,local_files_only=A__ ,) elif os.path.exists(A__ ): # File, and it exists. lowerCamelCase__ = url_or_filename elif urlparse(A__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(A__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(A__ ) ) if extract_compressed_file: if not is_zipfile(A__ ) and not tarfile.is_tarfile(A__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase__ = os.path.split(A__ ) lowerCamelCase__ = output_file.replace('''.''' ,'''-''' ) + '-extracted' lowerCamelCase__ = os.path.join(A__ ,A__ ) if os.path.isdir(A__ ) and os.listdir(A__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase__ = output_path + '.lock' with FileLock(A__ ): shutil.rmtree(A__ ,ignore_errors=A__ ) os.makedirs(A__ ) if is_zipfile(A__ ): with ZipFile(A__ ,'''r''' ) as zip_file: zip_file.extractall(A__ ) zip_file.close() elif tarfile.is_tarfile(A__ ): lowerCamelCase__ = tarfile.open(A__ ) tar_file.extractall(A__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(A__ ) ) return output_path_extracted return output_path def lowerCAmelCase__(__snake_case ,__snake_case="," ) -> Union[str, Any]: '''simple docstring''' assert isinstance(A__ ,A__ ) if os.path.isfile(A__ ): with open(A__ ) as f: lowerCamelCase__ = eval(f.read() ) else: lowerCamelCase__ = requests.get(A__ ) try: lowerCamelCase__ = requests.json() except Exception: lowerCamelCase__ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase__ = eval(A__ ) except Exception: lowerCamelCase__ = data.split('''\n''' ) req.close() return data def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = requests.get(A__ ) lowerCamelCase__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A__ ) with open(A__ ,'''rb''' ) as stream: lowerCamelCase__ = pkl.load(A__ ) lowerCamelCase__ = weights.pop('''model''' ) lowerCamelCase__ = {} for k, v in model.items(): lowerCamelCase__ = torch.from_numpy(A__ ) if "running_var" in k: lowerCamelCase__ = torch.tensor([0] ) lowerCamelCase__ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase__ = zero return new def lowerCAmelCase__() -> str: '''simple docstring''' print(F'{os.path.abspath(os.path.join(A__ ,os.pardir ) )}/demo.ipynb' ) def lowerCAmelCase__(__snake_case ,__snake_case="RGB" ) -> int: '''simple docstring''' assert isinstance(A__ ,A__ ) if os.path.isfile(A__ ): lowerCamelCase__ = cva.imread(A__ ) else: lowerCamelCase__ = get_image_from_url(A__ ) assert img is not None, F'could not connect to: {im}' lowerCamelCase__ = cva.cvtColor(A__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase__ = img[:, :, ::-1] return img def lowerCAmelCase__(__snake_case ,__snake_case=1 ) -> Union[str, Any]: '''simple docstring''' return (images[i : i + batch] for i in range(0 ,len(A__ ) ,A__ ))
481
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """git_vision_model""" def __init__( self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__="quick_gelu" , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """git""" def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1_0_1 , lowerCAmelCase__=1_0_2 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Dict = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) SCREAMING_SNAKE_CASE_ : str = GitVisionConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[str] = position_embedding_type SCREAMING_SNAKE_CASE_ : List[str] = use_cache SCREAMING_SNAKE_CASE_ : Any = tie_word_embeddings SCREAMING_SNAKE_CASE_ : Dict = num_image_with_embedding SCREAMING_SNAKE_CASE_ : List[str] = bos_token_id SCREAMING_SNAKE_CASE_ : str = eos_token_id def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : str = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[int] = self.__class__.model_type return output
101
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : # setable values lowercase__ = None lowercase__ = None lowercase__ = None # sigma(t_i) @classmethod def _UpperCAmelCase ( cls : Any): """simple docstring""" return cls() @dataclass class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): @property def _UpperCAmelCase ( self : int): """simple docstring""" return True @register_to_config def __init__( self : Union[str, Any] , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1_0_0 , lowerCAmelCase_ : float = 1.007 , lowerCAmelCase_ : float = 8_0 , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 5_0 , ): """simple docstring""" pass def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return KarrasVeSchedulerState.create() def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = ()): """simple docstring""" lowercase_ = jnp.arange(0 , lowerCAmelCase_)[::-1].copy() lowercase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase_ , schedule=jnp.array(lowerCAmelCase_ , dtype=jnp.floataa) , timesteps=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowercase_ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1) else: lowercase_ = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase_ = random.split(lowerCAmelCase_ , num=1) lowercase_ = self.config.s_noise * random.normal(key=lowerCAmelCase_ , shape=sample.shape) lowercase_ = sigma + gamma * sigma lowercase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = sample_hat + sigma_hat * model_output lowercase_ = (sample_hat - pred_original_sample) / sigma_hat lowercase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = sample_prev + sigma_prev * model_output lowercase_ = (sample_prev - pred_original_sample) / sigma_prev lowercase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" raise NotImplementedError()
714
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
100
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = parent def a__ ( self ) -> List[str]: return {} def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' UpperCAmelCase_ : List[str] = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = MarkupLMFeatureExtractor if is_bsa_available() else None def a__ ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = MarkupLMFeatureExtractionTester(self ) @property def a__ ( self ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def a__ ( self ) -> int: # Initialize feature_extractor UpperCAmelCase_ : Dict = self.feature_extraction_class() # Test not batched input UpperCAmelCase_ : Union[str, Any] = get_html_strings()[0] UpperCAmelCase_ : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off UpperCAmelCase_ : List[Any] = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] UpperCAmelCase_ : Any = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes ,_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths ,_SCREAMING_SNAKE_CASE ) # Test batched UpperCAmelCase_ : str = get_html_strings() UpperCAmelCase_ : Tuple = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off UpperCAmelCase_ : str = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] UpperCAmelCase_ : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths ,_SCREAMING_SNAKE_CASE )
30
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: try: _snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case = default else: # KEY is set, convert it to True or False. try: _snake_case = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value snake_case = parse_flag_from_env('''RUN_SLOW''', default=False) def snake_case ( lowerCAmelCase_ ) -> Any: return unittest.skip('''Test was skipped''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> str: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Optional[int]: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Optional[int]: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> List[Any]: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Tuple: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Optional[int]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Any: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> int: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> int: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Any: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> int: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Any: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Optional[Any]: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Dict: if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __lowerCAmelCase ) , f"""test requires torch version >= {version}""" )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> Dict: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> List[str]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__lowerCAmelCase ) def snake_case ( lowerCAmelCase_ ) -> List[Any]: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__lowerCAmelCase ) snake_case = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case ( lowerCAmelCase_ ) -> Union[str, Any]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__lowerCAmelCase ) class UpperCAmelCase ( unittest.TestCase ): A__ : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls : int ): """simple docstring""" _snake_case = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls : Optional[Any] ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_a ) class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = mocks if isinstance(_a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case ( lowerCAmelCase_ ) -> List[str]: _snake_case = AcceleratorState() _snake_case = tensor[None].clone().to(state.device ) _snake_case = gather(__lowerCAmelCase ).cpu() _snake_case = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class UpperCAmelCase : def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = returncode _snake_case = stdout _snake_case = stderr async def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: while True: _snake_case = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) ) _snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case = [] _snake_case = [] def tee(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="" ): _snake_case = line.decode('''utf-8''' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase_ : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase_ : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=180 , lowerCAmelCase_=False , lowerCAmelCase_=True ) -> _RunOutput: _snake_case = asyncio.get_event_loop() _snake_case = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) _snake_case = """ """.join(__lowerCAmelCase ) if result.returncode > 0: _snake_case = """\n""".join(result.stderr ) raise RuntimeError( f"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class UpperCAmelCase ( UpperCamelCase_ ): pass def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> str: try: _snake_case = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , '''decode''' ): _snake_case = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
712
"""simple docstring""" from collections.abc import Sequence from queue import Queue class UpperCAmelCase : def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=None ): """simple docstring""" _snake_case = start _snake_case = end _snake_case = val _snake_case = (start + end) // 2 _snake_case = left _snake_case = right def __repr__( self : List[str] ): """simple docstring""" return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class UpperCAmelCase : def __init__( self : Dict , __lowerCamelCase : Sequence , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = collection _snake_case = function if self.collection: _snake_case = self._build_tree(0 , len(__lowerCamelCase ) - 1 ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict ): """simple docstring""" self._update_tree(self.root , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" return self._query_range(self.root , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ): """simple docstring""" if start == end: return SegmentTreeNode(__lowerCamelCase , __lowerCamelCase , self.collection[start] ) _snake_case = (start + end) // 2 _snake_case = self._build_tree(__lowerCamelCase , __lowerCamelCase ) _snake_case = self._build_tree(mid + 1 , __lowerCamelCase ) return SegmentTreeNode(__lowerCamelCase , __lowerCamelCase , self.fn(left.val , right.val ) , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" if node.start == i and node.end == i: _snake_case = val return if i <= node.mid: self._update_tree(node.left , __lowerCamelCase , __lowerCamelCase ) else: self._update_tree(node.right , __lowerCamelCase , __lowerCamelCase ) _snake_case = self.fn(node.left.val , node.right.val ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __lowerCamelCase , __lowerCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __lowerCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , __lowerCamelCase ) , ) else: # range in right child tree return self._query_range(node.right , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" if self.root is not None: _snake_case = Queue() queue.put(self.root ) while not queue.empty(): _snake_case = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 5_0) snake_case = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
404
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _UpperCamelCase : Dict = logging.get_logger(__name__) class _snake_case : SCREAMING_SNAKE_CASE : List[str] = None @experimental def snake_case ( snake_case : List[Any] , snake_case : List[Any] , snake_case : Dict , snake_case : List[Any] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> str: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) return _map_with_joblib(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) def snake_case ( snake_case : str , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : List[str] , snake_case : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase = num_proc if num_proc <= len(snake_case ) else len(snake_case ) lowerCAmelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(snake_case ): lowerCAmelCase = len(snake_case ) // num_proc lowerCAmelCase = len(snake_case ) % num_proc lowerCAmelCase = div * index + min(snake_case , snake_case ) lowerCAmelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(snake_case ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(snake_case )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) lowerCAmelCase , lowerCAmelCase = None, None if not disable_tqdm: lowerCAmelCase , lowerCAmelCase = (RLock(),), tqdm.set_lock with Pool(snake_case , initargs=snake_case , initializer=snake_case ) as pool: lowerCAmelCase = pool.map(snake_case , snake_case ) logger.info(F'Finished {num_proc} processes' ) lowerCAmelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(snake_case )} objects' ) return mapped def snake_case ( snake_case : List[str] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Tuple , snake_case : Dict , snake_case : Any ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=snake_case ): return joblib.Parallel()( joblib.delayed(snake_case )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case ( snake_case : str ) -> Dict: """simple docstring""" lowerCAmelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCAmelCase = None
284
'''simple docstring''' def snake_case ( snake_case : dict ) -> set: """simple docstring""" lowerCAmelCase = set() # edges = list of graph's edges lowerCAmelCase = get_edges(snake_case ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase , lowerCAmelCase = edges.pop() chosen_vertices.add(snake_case ) chosen_vertices.add(snake_case ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(snake_case ) return chosen_vertices def snake_case ( snake_case : dict ) -> set: """simple docstring""" lowerCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
284
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None )-> None: '''simple docstring''' if components is None: UpperCamelCase = [] UpperCamelCase = list(A_ ) def __len__( self )-> int: '''simple docstring''' return len(self.__components ) def __str__( self )-> str: '''simple docstring''' return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ )-> Vector: '''simple docstring''' UpperCamelCase = len(self ) if size == len(A_ ): UpperCamelCase = [self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ )-> Vector: '''simple docstring''' UpperCamelCase = len(self ) if size == len(A_ ): UpperCamelCase = [self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ )-> Vector: '''simple docstring''' ... @overload def __mul__( self , A_ )-> float: '''simple docstring''' ... def __mul__( self , A_ )-> float | Vector: '''simple docstring''' if isinstance(A_ , (float, int) ): UpperCamelCase = [c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): UpperCamelCase = len(self ) UpperCamelCase = [self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def UpperCAmelCase_ ( self )-> Vector: '''simple docstring''' return Vector(self.__components ) def UpperCAmelCase_ ( self , A_ )-> float: '''simple docstring''' if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCAmelCase_ ( self , A_ , A_ )-> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) UpperCamelCase = value def UpperCAmelCase_ ( self )-> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) UpperCamelCase = [c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> float: '''simple docstring''' UpperCamelCase = self * other UpperCamelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A_( A : int): '''simple docstring''' assert isinstance(A , A) return Vector([0] * dimension) def A_( A : int , A : int): '''simple docstring''' assert isinstance(A , A) and (isinstance(A , A)) UpperCamelCase = [0] * dimension UpperCamelCase = 1 return Vector(A) def A_( A : float , A : Vector , A : Vector): '''simple docstring''' assert ( isinstance(A , A) and isinstance(A , A) and (isinstance(A , (int, float))) ) return x * scalar + y def A_( A : int , A : int , A : int): '''simple docstring''' random.seed(A) UpperCamelCase = [random.randint(A , A) for _ in range(A)] return Vector(A) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_ , A_ )-> None: '''simple docstring''' UpperCamelCase = matrix UpperCamelCase = w UpperCamelCase = h def __str__( self )-> str: '''simple docstring''' UpperCamelCase = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ )-> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase = [] for i in range(self.__height ): UpperCamelCase = [ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ )-> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase = [] for i in range(self.__height ): UpperCamelCase = [ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ )-> Matrix: '''simple docstring''' ... @overload def __mul__( self , A_ )-> Vector: '''simple docstring''' ... def __mul__( self , A_ )-> Vector | Matrix: '''simple docstring''' if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: UpperCamelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCamelCase = [ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar UpperCamelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return self.__height def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return self.__width def UpperCAmelCase_ ( self , A_ , A_ )-> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: UpperCamelCase = value else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , A_ , A_ )-> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) UpperCamelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): UpperCamelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCAmelCase_ ( self , A_ , A_ )-> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def UpperCAmelCase_ ( self )-> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCamelCase = [ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def A_( A : int): '''simple docstring''' UpperCamelCase = [[0] * n for _ in range(A)] return Matrix(A , A , A) def A_( A : int , A : int , A : int , A : int): '''simple docstring''' random.seed(A) UpperCamelCase = [ [random.randint(A , A) for _ in range(A)] for _ in range(A) ] return Matrix(A , A , A)
700
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase : int = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase : int = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase : int = 'roberta' elif args.model_type == "gpt2": lowerCAmelCase : Optional[int] = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase : Optional[int] = 'transformer' lowerCAmelCase : str = model.state_dict() lowerCAmelCase : List[str] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase : Any = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase : Tuple = f"""{prefix}.embeddings.{w}.weight""" lowerCAmelCase : str = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase : List[Any] = f"""{prefix}.embeddings.LayerNorm.{w}""" lowerCAmelCase : str = state_dict[param_name] # Transformer Blocks # lowerCAmelCase : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase : int = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] lowerCAmelCase : Union[str, Any] = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase : Any = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase : List[str] = state_dict[f"""lm_head.dense.{w}"""] lowerCAmelCase : Any = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase : Dict = state_dict[f"""{prefix}.ln_f.{w}"""] lowerCAmelCase : Tuple = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
432
0