code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def lowerCamelCase__ ( _a = 4000000): SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = b, a + b return sum(_a) if __name__ == "__main__": print(F'''{solution() = }''')
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from collections import defaultdict def __UpperCamelCase ( A , A ): UpperCamelCase__ = first_str.lower().strip() UpperCamelCase__ = second_str.lower().strip() # Remove whitespace UpperCamelCase__ = first_str.replace(''' ''' , '''''' ) UpperCamelCase__ = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(A ) != len(A ): return False # Default values for count should be 0 UpperCamelCase__ = defaultdict(A ) # For each character in input strings, # increment count in the corresponding for i in range(len(A ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __magic_name__ =input('''Enter the first string ''').strip() __magic_name__ =input('''Enter the second string ''').strip() __magic_name__ =check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
469
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__ =logging.get_logger(__name__) __magic_name__ ='''▁''' __magic_name__ ={'''vocab_file''': '''sentencepiece.bpe.model'''} __magic_name__ ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __magic_name__ ={ '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __magic_name__ =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : List[Any] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] =[] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' UpperCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ = legacy_behaviour super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ = 1 UpperCamelCase__ = len(self.sp_model ) UpperCamelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE_ ) } UpperCamelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase__ = src_lang if src_lang is not None else '''eng_Latn''' UpperCamelCase__ = self.lang_code_to_id[self._src_lang] UpperCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None UpperCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a (self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a (self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1] * len(self.prefix_tokens ) UpperCamelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ = src_lang UpperCamelCase__ = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tgt_lang_id return inputs def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a (self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = ''''''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_ , ''' ''' ).strip() return out_string def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "eng_Latn" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "fra_Latn" , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: '''simple docstring''' UpperCamelCase__ = src_lang UpperCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _a (self ) -> Dict: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase__ = [] UpperCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ = [self.cur_lang_code] UpperCamelCase__ = [self.eos_token_id] def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase__ = [] UpperCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ = [self.cur_lang_code] UpperCamelCase__ = [self.eos_token_id]
469
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=1_3 , __lowerCamelCase : Any=3_0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=3 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : int=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : str=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any=1_0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[int]=0.6 , __lowerCamelCase : str=None , ): UpperCAmelCase__ :Dict = parent UpperCAmelCase__ :Dict = batch_size UpperCAmelCase__ :Any = image_size UpperCAmelCase__ :List[Any] = patch_size UpperCAmelCase__ :Any = num_channels UpperCAmelCase__ :int = is_training UpperCAmelCase__ :str = use_labels UpperCAmelCase__ :Optional[int] = hidden_size UpperCAmelCase__ :str = num_hidden_layers UpperCAmelCase__ :Dict = num_attention_heads UpperCAmelCase__ :List[str] = intermediate_size UpperCAmelCase__ :Optional[Any] = hidden_act UpperCAmelCase__ :Dict = hidden_dropout_prob UpperCAmelCase__ :Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ :Tuple = type_sequence_label_size UpperCAmelCase__ :List[str] = initializer_range UpperCAmelCase__ :Optional[int] = mask_ratio UpperCAmelCase__ :List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ :List[str] = (image_size // patch_size) ** 2 UpperCAmelCase__ :str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ :List[str] = None if self.use_labels: UpperCAmelCase__ :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ :Optional[int] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : List[Any] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Any ): UpperCAmelCase__ :Dict = TFViTMAEModel(config=__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int ): UpperCAmelCase__ :Optional[Any] = TFViTMAEForPreTraining(__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase , training=__lowerCamelCase ) # expected sequence length = num_patches UpperCAmelCase__ :Dict = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ :Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ :Union[str, Any] = 1 UpperCAmelCase__ :int = TFViTMAEForPreTraining(__lowerCamelCase ) UpperCAmelCase__ :List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ :Tuple = model(__lowerCamelCase , training=__lowerCamelCase ) UpperCAmelCase__ :str = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :str = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) :List[str] = config_and_inputs UpperCAmelCase__ :Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCAmelCase = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :Any = TFViTMAEModelTester(self ) UpperCAmelCase__ :Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ :Tuple = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Layer ) ) def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ , UpperCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ :Optional[int] = model_class(__lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ :Any = [*signature.parameters.keys()] UpperCAmelCase__ :Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): UpperCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ :Any = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ :Tuple = model_class(__lowerCamelCase ) UpperCAmelCase__ :List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = model(__lowerCamelCase , noise=__lowerCamelCase ) UpperCAmelCase__ :Dict = copy.deepcopy(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCAmelCase__ :Dict = model(**__lowerCamelCase , noise=__lowerCamelCase ) UpperCAmelCase__ :Dict = outputs_dict[0].numpy() UpperCAmelCase__ :Union[str, Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ :str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowerCamelCase : List[Any] ): UpperCAmelCase__ :str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowerCamelCase ): UpperCAmelCase__ :Tuple = v.numpy() else: UpperCAmelCase__ :Union[str, Any] = np.array(__lowerCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase__ :int = model_class(__lowerCamelCase ) UpperCAmelCase__ :Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :int = prepare_numpy_arrays(__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model(__lowerCamelCase , noise=__lowerCamelCase ) UpperCAmelCase__ :Dict = model(**__lowerCamelCase , noise=__lowerCamelCase ) self.assert_outputs_same(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ :Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase__ :Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ :Union[str, Any] = tf.constant(__lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ :Tuple = tf_noise super().check_pt_tf_models(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ :List[Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowerCamelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__lowerCamelCase , __lowerCamelCase ),) if isinstance(__lowerCamelCase , __lowerCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowerCamelCase , '''_keras_serializable''' , __lowerCamelCase ) } UpperCAmelCase__ :Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ :str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ :Tuple = tf.convert_to_tensor(__lowerCamelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase__ :Union[str, Any] = main_layer_class(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase__ :Dict = tf.keras.Model(__lowerCamelCase , outputs=main_layer(__lowerCamelCase ) ) UpperCAmelCase__ :List[Any] = model(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ :Optional[int] = os.path.join(__lowerCamelCase , '''keras_model.h5''' ) model.save(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = tf.keras.models.load_model( __lowerCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowerCamelCase , tf.keras.Model ) UpperCAmelCase__ :Tuple = model(__lowerCamelCase ) self.assert_outputs_same(__lowerCamelCase , __lowerCamelCase ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ :Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ :List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ :str = model_class(__lowerCamelCase ) UpperCAmelCase__ :Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = model(__lowerCamelCase , noise=__lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase__ :Union[str, Any] = outputs.last_hidden_state.numpy() UpperCAmelCase__ :Optional[Any] = 0 else: UpperCAmelCase__ :Optional[int] = outputs.logits.numpy() UpperCAmelCase__ :List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = model_class.from_pretrained(__lowerCamelCase ) UpperCAmelCase__ :str = model(__lowerCamelCase , noise=__lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase__ :Optional[int] = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase__ :Any = 0 else: UpperCAmelCase__ :Optional[int] = after_outputs['''logits'''].numpy() UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) def __SCREAMING_SNAKE_CASE ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ :Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ :Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ :Any = model_class(__lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = model(__lowerCamelCase , noise=__lowerCamelCase ) UpperCAmelCase__ :str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase__ :Optional[int] = model_class.from_config(model.config ) UpperCAmelCase__ :Optional[Any] = new_model(__lowerCamelCase ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase__ :List[Any] = new_model(__lowerCamelCase , noise=__lowerCamelCase ) self.assert_outputs_same(__lowerCamelCase , __lowerCamelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __SCREAMING_SNAKE_CASE ( self : Any ): pass @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Optional[Any] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__lowerCamelCase ) def a__ ( ): UpperCAmelCase__ :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self : int ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Any ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ :Union[str, Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase__ :List[Any] = self.default_image_processor UpperCAmelCase__ :Optional[Any] = prepare_img() UpperCAmelCase__ :Tuple = image_processor(images=__lowerCamelCase , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ :Union[str, Any] = ViTMAEConfig() UpperCAmelCase__ :Optional[int] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ :Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase__ :List[Any] = model(**__lowerCamelCase , noise=__lowerCamelCase ) # verify the logits UpperCAmelCase__ :Optional[Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase__ :Dict = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 )
467
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( _snake_case ): UpperCAmelCase = ["image_processor", "tokenizer"] UpperCAmelCase = "OwlViTImageProcessor" UpperCAmelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str ): UpperCAmelCase__ :int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCamelCase , ) UpperCAmelCase__ :Union[str, Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase__ :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : int , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str="max_length" , __lowerCamelCase : Any="np" , **__lowerCamelCase : Tuple ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): UpperCAmelCase__ :Any = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): UpperCAmelCase__ :Tuple = [] # Maximum number of queries across batch UpperCAmelCase__ :List[str] = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: UpperCAmelCase__ :str = t + [''' '''] * (max_num_queries - len(__lowerCamelCase )) UpperCAmelCase__ :Tuple = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": UpperCAmelCase__ :List[Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Any = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Union[str, Any] = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :List[str] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :Optional[Any] = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) UpperCAmelCase__ :List[Any] = BatchEncoding() UpperCAmelCase__ :Union[str, Any] = input_ids UpperCAmelCase__ :Dict = attention_mask if query_images is not None: UpperCAmelCase__ :Tuple = BatchEncoding() UpperCAmelCase__ :int = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values UpperCAmelCase__ :Optional[int] = query_pixel_values if images is not None: UpperCAmelCase__ :str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ :Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ): return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ): return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ): return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCamelCase , ) return self.image_processor_class @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCamelCase , ) return self.image_processor
467
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCAmelCase_: Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class a__ ( _a ): def __init__( self, _UpperCAmelCase = 101 ): '''simple docstring''' lowercase__ = length def __len__( self ): '''simple docstring''' return self.length def __getitem__( self, _UpperCAmelCase ): '''simple docstring''' return i class a__ : def __call__( self, _UpperCAmelCase ): '''simple docstring''' return {"input_ids": torch.tensor(_UpperCAmelCase ), "labels": torch.tensor(_UpperCAmelCase )} class a__ ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__ = nn.Linear(120, 80 ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device ), input_ids else: return input_ids class a__ ( _a ): @require_torch_neuroncore def snake_case__ ( self ): '''simple docstring''' lowercase__ = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F'''--output_dir {output_dir}'''.split() lowercase__ = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCAmelCase, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class a__ ( _a ): @require_torch_multi_gpu def snake_case__ ( self ): '''simple docstring''' lowercase__ = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = F'''--output_dir {output_dir}'''.split() lowercase__ = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCAmelCase, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCAmelCase_: List[str] = HfArgumentParser((TrainingArguments,)) lowerCAmelCase_: Union[str, Any] = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: lowerCAmelCase_: List[str] = DummyDataset(dataset_length) def __a ( A ): '''simple docstring''' lowercase__ = list(range(len(A ) ) ) lowercase__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowerCAmelCase_: List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCAmelCase_: str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase_: List[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase_: List[str] = 2 lowerCAmelCase_: Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase_: List[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase_: str = None
668
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=400 , a=True , a=None , a=True , ) -> Tuple: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = apply_ocr def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( A__ , unittest.TestCase ): _lowercase : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'size')) self.assertTrue(hasattr(a , 'apply_ocr')) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: pass def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a) for image in image_inputs: self.assertIsInstance(a , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , a) self.assertIsInstance(encoding.boxes , a) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for image in image_inputs: self.assertIsInstance(a , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for image in image_inputs: self.assertIsInstance(a , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: # with apply_OCR = True SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') SCREAMING_SNAKE_CASE = Image.open(ds[0]['file']).convert('RGB') SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a) self.assertListEqual(encoding.boxes , a) # with apply_OCR = False SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor(apply_ocr=a) SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
73
'''simple docstring''' import csv import tweepy # Twitter API credentials __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = '''''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: # authorize twitter, initialize tweepy A_ = tweepy.OAuthHandler(UpperCAmelCase__, UpperCAmelCase__ ) auth.set_access_token(UpperCAmelCase__, UpperCAmelCase__ ) A_ = tweepy.API(UpperCAmelCase__ ) # initialize a list to hold all the tweepy Tweets A_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) A_ = api.user_timeline(screen_name=UpperCAmelCase__, count=2_00 ) # save most recent tweets alltweets.extend(UpperCAmelCase__ ) # save the id of the oldest tweet less one A_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(UpperCAmelCase__ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates A_ = api.user_timeline( screen_name=UpperCAmelCase__, count=2_00, max_id=UpperCAmelCase__ ) # save most recent tweets alltweets.extend(UpperCAmelCase__ ) # update the id of the oldest tweet less one A_ = alltweets[-1].id - 1 print(F'''...{len(UpperCAmelCase__ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv A_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''', """w""" ) as f: A_ = csv.writer(UpperCAmelCase__ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(UpperCAmelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
288
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: SCREAMING_SNAKE_CASE_ : Tuple = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : Dict = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} SCREAMING_SNAKE_CASE_ : Union[str, Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Optional[int] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : List[str] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Any: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: SCREAMING_SNAKE_CASE_ : Tuple = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ : str = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE_ : Any = iter_sql_file(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ : Any = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE_ : Optional[Any] = iter_sql_file(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ : Tuple = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() with pytest.raises(SCREAMING_SNAKE_CASE ): SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
702
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__: Optional[int] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" lowerCAmelCase__: Dict = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" lowerCAmelCase__: List[str] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ): if rouge_types is None: SCREAMING_SNAKE_CASE_ : Optional[int] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE_ : str = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE_ : Optional[int] = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE_ : Tuple = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE_ : List[str] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE_ : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE_ : List[Any] = [score[key] for score in scores] return result
311
0
"""simple docstring""" import re def __A ( a_ :str) -> str: if len(re.findall('''[ATCG]''' , a_)) != len(a_): raise ValueError('''Invalid Strand''') return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''')) if __name__ == "__main__": import doctest doctest.testmod()
52
'''simple docstring''' a__ : Optional[Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def __lowerCamelCase ( UpperCAmelCase_ ) ->int: snake_case__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(UpperCAmelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(UpperCAmelCase_ ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](UpperCAmelCase_ , UpperCAmelCase_ ) operand_stack.push(UpperCAmelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a__ : Any = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
368
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( _lowerCamelCase): A_ : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self , _SCREAMING_SNAKE_CASE=20_48 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=[16, 16] , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=4_41_00 , _SCREAMING_SNAKE_CASE=86 , _SCREAMING_SNAKE_CASE=20_48 , _SCREAMING_SNAKE_CASE=0.0 , **_SCREAMING_SNAKE_CASE , ): super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = spectrogram_length __lowerCAmelCase : List[Any] = num_channels __lowerCAmelCase : Any = patch_size __lowerCAmelCase : Dict = feature_size // self.patch_size[1] __lowerCAmelCase : Dict = n_fft __lowerCAmelCase : str = sampling_rate // hop_length_to_sampling_rate __lowerCAmelCase : List[str] = sampling_rate __lowerCAmelCase : str = padding_value __lowerCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm='slaney' , mel_scale='slaney' , ).T def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowerCAmelCase : Optional[int] = log_spec[:, :-1] __lowerCAmelCase : List[str] = log_spec - 20.0 __lowerCAmelCase : Dict = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCAmelCase : int = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __lowerCAmelCase : int = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): __lowerCAmelCase : str = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCAmelCase : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowerCAmelCase : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCAmelCase : List[str] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowerCAmelCase : Optional[Any] = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __lowerCAmelCase : List[str] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCAmelCase : int = np.ones([len(_SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowerCAmelCase : Any = padded_audio_features * self.padding_value for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : str = audio_features[i] __lowerCAmelCase : Dict = feature # return as BatchFeature if return_attention_mask: __lowerCAmelCase : Optional[Any] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowerCAmelCase : Any = {'audio_values': padded_audio_features} __lowerCAmelCase : Dict = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_inputs
549
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = False ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = F"Expected string as input, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = F"Expected boolean as use_pascal parameter, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) __lowerCAmelCase : Tuple = input_str.split('_' ) __lowerCAmelCase : int = 0 if use_pascal else 1 __lowerCAmelCase : Any = words[start_index:] __lowerCAmelCase : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCAmelCase : Any = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
549
1
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A__ : str = datasets.logging.get_logger(__name__) A__ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' A__ : Optional[Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' A__ : Any = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : str=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[str]="dummy_doc" ) -> List[str]: lowerCamelCase_ : Any ={doc: key_lines} lowerCamelCase_ : Optional[Any] ={doc: sys_lines} lowerCamelCase_ : List[str] ={} lowerCamelCase_ : int =0 lowerCamelCase_ : Any =0 lowerCamelCase_ : Optional[int] =0 lowerCamelCase_ : str =0 lowerCamelCase_ : Tuple =0 lowerCamelCase_ : int =0 lowerCamelCase_ , lowerCamelCase_ : Dict =reader.get_doc_mentions(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ : Union[str, Any] =reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Dict =reader.get_doc_mentions(lowerCamelCase__ , sys_doc_lines[doc] , lowerCamelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ : Optional[Any] =reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ : Optional[int] =reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ : Dict =reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ : Tuple =reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[Any] =reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[Any] =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ : int =get_coref_infos(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Tuple ={} lowerCamelCase_ : str =0 lowerCamelCase_ : Union[str, Any] =0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =evaluator.evaluate_documents(lowerCamelCase__ , lowerCamelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 100:.2f}""" , F""" Precision: {precision * 100:.2f}""" , F""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ : int =(conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def _snake_case ( lowerCamelCase__ : Optional[int] ) -> int: lowerCamelCase_ : Union[str, Any] =False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: lowerCamelCase_ : Dict =line.split()[5] if not parse_col == "-": lowerCamelCase_ : Any =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Dict=False , snake_case__ : str=False ): lowerCamelCase_ : Optional[int] =[ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowerCamelCase_ : str =util.check_gold_parse_annotation(snake_case__ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ : Dict =evaluate( key_lines=snake_case__ , sys_lines=snake_case__ , metrics=snake_case__ , NP_only=snake_case__ , remove_nested=snake_case__ , keep_singletons=snake_case__ , min_span=snake_case__ , ) return score
153
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = DDIMPipeline _UpperCAmelCase :List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCAmelCase :List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCAmelCase :Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase :Tuple = False def UpperCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCamelCase_ : Tuple =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) lowerCamelCase_ : Union[str, Any] =DDIMScheduler() lowerCamelCase_ : int ={"unet": unet, "scheduler": scheduler} return components def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any=0 ): if str(snake_case__ ).startswith("mps" ): lowerCamelCase_ : Any =torch.manual_seed(snake_case__ ) else: lowerCamelCase_ : List[Any] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCamelCase_ : List[Any] ={ "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : List[Any] ="cpu" lowerCamelCase_ : List[Any] =self.get_dummy_components() lowerCamelCase_ : Union[str, Any] =self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Any =self.get_dummy_inputs(snake_case__ ) lowerCamelCase_ : List[str] =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCamelCase_ : Optional[Any] =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCamelCase_ : Dict =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1E-3 ) def UpperCAmelCase__ ( self : List[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self : Dict ): super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self : str ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Any ="google/ddpm-cifar10-32" lowerCamelCase_ : List[Any] =UNetaDModel.from_pretrained(snake_case__ ) lowerCamelCase_ : str =DDIMScheduler() lowerCamelCase_ : Optional[int] =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddim.to(snake_case__ ) ddim.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[int] =torch.manual_seed(0 ) lowerCamelCase_ : str =ddim(generator=snake_case__ , eta=0.0 , output_type="numpy" ).images lowerCamelCase_ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : int =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str ="google/ddpm-ema-bedroom-256" lowerCamelCase_ : Tuple =UNetaDModel.from_pretrained(snake_case__ ) lowerCamelCase_ : Dict =DDIMScheduler.from_pretrained(snake_case__ ) lowerCamelCase_ : str =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddpm.to(snake_case__ ) ddpm.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int =torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] =ddpm(generator=snake_case__ , output_type="numpy" ).images lowerCamelCase_ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase_ : Tuple =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
153
1
from __future__ import annotations import typing from collections import Counter def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowerCAmelCase , max_perimeter + 1 ): UpperCAmelCase_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowerCAmelCase ): UpperCAmelCase_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case__ ( __SCREAMING_SNAKE_CASE = 1000 ) -> str: UpperCAmelCase_ = pythagorean_triple(_lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch'''])
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" SCREAMING_SNAKE_CASE__ : Dict = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) ,interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) ,(0.26862954, 0.26130258, 0.27577711) ), ] ) SCREAMING_SNAKE_CASE__ : Any = transform(_snake_case ).unsqueeze(0 ).to(_snake_case ) return image def lowercase_ ( _snake_case ): if "visual_encoder" in key: SCREAMING_SNAKE_CASE__ : Optional[Any] = re.sub("""visual_encoder*""" ,"""vision_model.encoder""" ,_snake_case ) if "blocks" in key: SCREAMING_SNAKE_CASE__ : List[str] = re.sub(R"""blocks""" ,"""layers""" ,_snake_case ) if "attn" in key: SCREAMING_SNAKE_CASE__ : Dict = re.sub(R"""attn""" ,"""self_attn""" ,_snake_case ) if "norm1" in key: SCREAMING_SNAKE_CASE__ : List[str] = re.sub(R"""norm1""" ,"""layer_norm1""" ,_snake_case ) if "norm2" in key: SCREAMING_SNAKE_CASE__ : Tuple = re.sub(R"""norm2""" ,"""layer_norm2""" ,_snake_case ) if "encoder.norm" in key: SCREAMING_SNAKE_CASE__ : List[str] = re.sub(R"""encoder.norm""" ,"""post_layernorm""" ,_snake_case ) if "encoder.patch_embed.proj" in key: SCREAMING_SNAKE_CASE__ : int = re.sub(R"""encoder.patch_embed.proj""" ,"""embeddings.patch_embedding""" ,_snake_case ) if "encoder.pos_embed" in key: SCREAMING_SNAKE_CASE__ : List[str] = re.sub(R"""encoder.pos_embed""" ,"""embeddings.position_embedding""" ,_snake_case ) if "encoder.cls_token" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.sub(R"""encoder.cls_token""" ,"""embeddings.class_embedding""" ,_snake_case ) if "self_attn" in key: SCREAMING_SNAKE_CASE__ : str = re.sub(R"""self_attn.proj""" ,"""self_attn.projection""" ,_snake_case ) return key @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case=None ): if config_path is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = BlipConfig.from_pretrained(_snake_case ) else: SCREAMING_SNAKE_CASE__ : List[str] = BlipConfig(projection_dim=512 ,text_config={} ,vision_config={} ) SCREAMING_SNAKE_CASE__ : Optional[int] = BlipForConditionalGeneration(_snake_case ).eval() SCREAMING_SNAKE_CASE__ : Tuple = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" SCREAMING_SNAKE_CASE__ : Any = blip_decoder(pretrained=_snake_case ,image_size=384 ,vit="""base""" ) SCREAMING_SNAKE_CASE__ : List[str] = pt_model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE__ : str = modified_state_dict.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = rename_key(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = value hf_model.load_state_dict(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = 384 SCREAMING_SNAKE_CASE__ : int = load_demo_image(image_size=_snake_case ,device="""cpu""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE__ : str = tokenizer(["""a picture of"""] ).input_ids SCREAMING_SNAKE_CASE__ : Any = hf_model.generate(_snake_case ,_snake_case ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] SCREAMING_SNAKE_CASE__ : Tuple = hf_model.generate(_snake_case ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' SCREAMING_SNAKE_CASE__ : Optional[int] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = blip_vqa(pretrained=_snake_case ,image_size=_snake_case ,vit="""base""" ) vqa_model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE__ : Optional[int] = modified_state_dict.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = rename_key(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = value SCREAMING_SNAKE_CASE__ : List[Any] = BlipForQuestionAnswering(_snake_case ) hf_vqa_model.load_state_dict(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = ["""How many dogs are in this image?"""] SCREAMING_SNAKE_CASE__ : str = tokenizer(_snake_case ,return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = hf_vqa_model.generate(_snake_case ,_snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) SCREAMING_SNAKE_CASE__ : Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" SCREAMING_SNAKE_CASE__ : Optional[int] = blip_itm(pretrained=_snake_case ,image_size=_snake_case ,vit="""base""" ) itm_model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = itm_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE__ : List[Any] = modified_state_dict.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = rename_key(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = value SCREAMING_SNAKE_CASE__ : str = BlipForImageTextRetrieval(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = ["""A picture of a woman with a dog sitting in a beach"""] SCREAMING_SNAKE_CASE__ : int = tokenizer( _snake_case ,return_tensors="""pt""" ,padding="""max_length""" ,truncation=_snake_case ,max_length=35 ,).input_ids hf_itm_model.load_state_dict(_snake_case ) hf_itm_model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = hf_itm_model(_snake_case ,_snake_case ,use_itm_head=_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = hf_itm_model(_snake_case ,_snake_case ,use_itm_head=_snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] ,dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase__ : str = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
721
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''detr''' __UpperCamelCase : List[Any] = ['''past_key_values'''] __UpperCamelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__="resnet50" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ : int = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = None, None, None SCREAMING_SNAKE_CASE__ : Optional[int] = use_timm_backbone SCREAMING_SNAKE_CASE__ : Tuple = backbone_config SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : str = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = dropout SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout SCREAMING_SNAKE_CASE__ : Tuple = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Any = init_std SCREAMING_SNAKE_CASE__ : Dict = init_xavier_std SCREAMING_SNAKE_CASE__ : Any = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = encoder_layers SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss SCREAMING_SNAKE_CASE__ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ : List[str] = backbone SCREAMING_SNAKE_CASE__ : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Any = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : Tuple = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __magic_name__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __magic_name__ (self ) -> int: """simple docstring""" return self.d_model @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Dict = self.__class__.model_type return output class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Any = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-5 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
545
0
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) lowerCamelCase_ = str(bin(lowercase ) )[2:] # remove the leading "0b" lowerCamelCase_ = str(bin(lowercase ) )[2:] lowerCamelCase_ = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
70
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __lowercase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _lowercase ( __lowerCamelCase ): _lowercase : List[Any] = VOCAB_FILES_NAMES _lowercase : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : int = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __lowercase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(__lowerCamelCase ) class _lowercase : def __call__( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Union[bool, str] = False , lowerCamelCase__ : Union[bool, str] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : Optional[int] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) elif titles is None or texts is None: A_ = titles if texts is None else texts return super().__call__( lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) A_ = titles if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [titles] A_ = texts if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [texts] A_ = len(lowerCamelCase__ ) A_ = questions if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [questions] * n_passages if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( F"There should be as many titles than texts but got {len(lowerCamelCase__ )} titles and {len(lowerCamelCase__ )} texts." ) A_ = super().__call__(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] A_ = super().__call__(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] A_ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase__ , lowerCamelCase__ ) ] } if return_attention_mask is not False: A_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A_ = attention_mask return self.pad(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) def UpperCamelCase ( self : int , lowerCamelCase__ : BatchEncoding , lowerCamelCase__ : DPRReaderOutput , lowerCamelCase__ : int = 1_6 , lowerCamelCase__ : int = 6_4 , lowerCamelCase__ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" A_ = reader_input['''input_ids'''] A_ ,A_ ,A_ = reader_output[:3] A_ = len(lowerCamelCase__ ) A_ = sorted(range(lowerCamelCase__ ) , reverse=lowerCamelCase__ , key=relevance_logits.__getitem__ ) A_ = [] for doc_id in sorted_docs: A_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A_ = sequence_ids.index(self.pad_token_id ) else: A_ = len(lowerCamelCase__ ) A_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase__ , top_spans=lowerCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase__ , start_index=lowerCamelCase__ , end_index=lowerCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : int , lowerCamelCase__ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" A_ = [] for start_index, start_score in enumerate(lowerCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A_ = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] , reverse=lowerCamelCase__ ) A_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]" ) A_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowerCamelCase ) class _lowercase ( __lowerCamelCase,__lowerCamelCase ): _lowercase : Any = VOCAB_FILES_NAMES _lowercase : Any = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = ['input_ids', 'attention_mask']
203
0
'''simple docstring''' def UpperCAmelCase ( lowercase__ : int = 600851475143 ): '''simple docstring''' try: a__ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) a__ = 2 a__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a__ = i while n % i == 0: a__ = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
705
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : int =16 _lowercase : int =32 def UpperCAmelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" ): '''simple docstring''' a__ = AutoTokenizer.from_pretrained(lowercase__ ) a__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : int ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) a__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config["""lr"""] a__ = int(config["""num_epochs"""] ) a__ = int(config["""seed"""] ) a__ = int(config["""batch_size"""] ) a__ = args.model_name_or_path set_seed(lowercase__ ) a__ , a__ = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ = 1 a__ = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: a__ = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = evaluate.load("""glue""" , """mrpc""" ) a__ = 0 a__ = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): a__ = model(**lowercase__ ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**lowercase__ ) a__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a__ , a__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: a__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) a__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' a__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) a__ = parser.parse_args() a__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
412
0
import numpy as np from transformers import Pipeline def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = np.max(__snake_case ,axis=-1 ,keepdims=__snake_case ) lowerCamelCase__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__snake_case ) class __A ( lowerCAmelCase ): '''simple docstring''' def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = {} if "second_text" in kwargs: lowerCamelCase__ = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ): '''simple docstring''' return self.tokenizer(__lowerCAmelCase , text_pair=__lowerCAmelCase , return_tensors=self.framework ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = model_outputs.logits[0].numpy() lowerCamelCase__ = softmax(__lowerCAmelCase ) lowerCamelCase__ = np.argmax(__lowerCAmelCase ) lowerCamelCase__ = self.model.config.idalabel[best_class] lowerCamelCase__ = probabilities[best_class].item() lowerCamelCase__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
481
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
481
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a ( snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Tuple = VideoToVideoSDPipeline __lowerCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} __lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} __lowerCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase : List[str] = False # No `output_type`. __lowerCAmelCase : Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __UpperCamelCase ( self ) -> Dict: torch.manual_seed(0 ) _a : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) _a : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _a : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) _a : Tuple = CLIPTextModel(lowerCamelCase_ ) _a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _a : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> Dict: # 3 frames _a : List[str] = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): _a : List[Any] = torch.manual_seed(lowerCamelCase_ ) else: _a : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _a : int = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __UpperCamelCase ( self ) -> Optional[int]: _a : str = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : str = self.get_dummy_components() _a : List[Any] = VideoToVideoSDPipeline(**lowerCamelCase_ ) _a : Optional[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _a : str = self.get_dummy_inputs(lowerCamelCase_ ) _a : Dict = 'np' _a : Tuple = sd_pipe(**lowerCamelCase_ ).frames _a : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) _a : Optional[int] = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self ) -> Dict: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self ) -> Tuple: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __UpperCamelCase ( self ) -> str: pass def __UpperCamelCase ( self ) -> str: return super().test_progress_bar() @slow @skip_mps class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> Tuple: _a : str = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _a : List[str] = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=lowerCamelCase_ ) _a : int = video.to('cuda' ) _a : int = 'Spiderman is surfing' _a : Tuple = pipe(lowerCamelCase_ , video=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=3 , output_type='pt' ).frames _a : Optional[int] = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
424
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
424
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch a : Union[str, Any] = random.Random() def snake_case__ ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): if rng is None: lowerCAmelCase_: Optional[int] = global_rng lowerCAmelCase_: Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=400 , lowerCamelCase__=2_000 , lowerCamelCase__=1 , lowerCamelCase__=0.0 , lowerCamelCase__=16_000 , lowerCamelCase__=True , lowerCamelCase__=80 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__="hann_window" , lowerCamelCase__=80 , lowerCamelCase__=7_600 , lowerCamelCase__=1E-10 , lowerCamelCase__=True , ): lowerCAmelCase_: Optional[int] = parent lowerCAmelCase_: Any = batch_size lowerCAmelCase_: Optional[Any] = min_seq_length lowerCAmelCase_: Optional[int] = max_seq_length lowerCAmelCase_: int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_: Dict = feature_size lowerCAmelCase_: Dict = padding_value lowerCAmelCase_: List[Any] = sampling_rate lowerCAmelCase_: List[str] = do_normalize lowerCAmelCase_: Any = num_mel_bins lowerCAmelCase_: Dict = hop_length lowerCAmelCase_: Any = win_length lowerCAmelCase_: Optional[int] = win_function lowerCAmelCase_: Any = fmin lowerCAmelCase_: str = fmax lowerCAmelCase_: List[str] = mel_floor lowerCAmelCase_: Any = return_attention_mask def _a ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _a ( self , lowerCamelCase__=False , lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: lowerCAmelCase_: List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_: str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_: List[Any] = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs def _a ( self , lowerCamelCase__=False , lowerCamelCase__=False ): if equal_length: lowerCAmelCase_: int = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase_: Union[str, Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_: Optional[int] = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[int] = SpeechTaFeatureExtractor def _a ( self ): lowerCAmelCase_: Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def _a ( self , lowerCamelCase__ ): self.assertTrue(np.all(np.mean(lowerCamelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def _a ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_: Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: Optional[int] = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_: int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase_: Dict = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase_: List[Any] = feat_extract(lowerCamelCase__ , return_tensors="np" ).input_values lowerCAmelCase_: Any = feat_extract(lowerCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def _a ( self ): lowerCAmelCase_: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_: List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: List[Any] = ["longest", "max_length", "do_not_pad"] lowerCAmelCase_: Union[str, Any] = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Optional[int] = feat_extract(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors="np" ) lowerCAmelCase_: Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_: List[Any] = range(800 , 1_400 , 200 ) lowerCAmelCase_: Tuple = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase_: str = ["longest", "max_length", "do_not_pad"] lowerCAmelCase_: Dict = [None, 1_600, None] for max_length, padding in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Any = feat_extract(lowerCamelCase__ , max_length=lowerCamelCase__ , padding=lowerCamelCase__ ) lowerCAmelCase_: List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _a ( self ): lowerCAmelCase_: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_: List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: List[str] = feat_extract( lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_000 , padding="max_length" , return_tensors="np" ) lowerCAmelCase_: Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _a ( self ): lowerCAmelCase_: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_: Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: str = feat_extract( lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase_: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowerCAmelCase_: Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: Any = feat_extract( lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=2_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase_: Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def _a ( self ): lowerCAmelCase_: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_: List[Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase_: Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_: Optional[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_: List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_: Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase_: Tuple = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase_: Optional[int] = feature_extractor(audio_target=lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase_: List[Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase_: Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase_: Tuple = feature_extractor(lowerCamelCase__ , return_tensors="np" ).input_values lowerCAmelCase_: Optional[Any] = feature_extractor(lowerCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_: int = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase_: Tuple = np.asarray(lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = feature_extractor(lowerCamelCase__ , return_tensors="np" ).input_values lowerCAmelCase_: int = feature_extractor(lowerCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_: int = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase_: List[Any] = feat_extract.model_input_names[0] lowerCAmelCase_: List[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , processed_features[input_name] ) ) ) lowerCAmelCase_: List[str] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase__ ) lowerCAmelCase_: str = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase_: Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase_: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ): lowerCAmelCase_: Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase_: str = feat_extract.model_input_names[0] lowerCAmelCase_: int = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase_: int = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase_: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ): lowerCAmelCase_: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase_: Dict = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_: Tuple = feat_extract.model_input_names[0] lowerCAmelCase_: Union[str, Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase_: int = feat_extract.num_mel_bins # hack! lowerCAmelCase_: Tuple = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase_: Dict = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _a ( self ): lowerCAmelCase_: List[str] = self.feat_extract_dict lowerCAmelCase_: Tuple = True lowerCAmelCase_: Union[str, Any] = self.feature_extraction_class(**lowerCamelCase__ ) lowerCAmelCase_: Tuple = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_: str = [len(lowerCamelCase__ ) for x in speech_inputs] lowerCAmelCase_: int = feat_extract.model_input_names[0] lowerCAmelCase_: List[str] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase_: Tuple = feat_extract.num_mel_bins # hack! lowerCAmelCase_: int = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: Dict = self.feat_extract_dict lowerCAmelCase_: Dict = True lowerCAmelCase_: Optional[int] = self.feature_extraction_class(**lowerCamelCase__ ) lowerCAmelCase_: int = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_: str = [len(lowerCamelCase__ ) for x in speech_inputs] lowerCAmelCase_: Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase_: Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase_: List[str] = min(lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = feat_extract.num_mel_bins # hack! lowerCAmelCase_: Dict = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _a ( self , lowerCamelCase__ ): from datasets import load_dataset lowerCAmelCase_: int = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase_: Union[str, Any] = ds.sort("id" ).select(range(lowerCamelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _a ( self ): # fmt: off lowerCAmelCase_: List[Any] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowerCAmelCase_: Tuple = self._load_datasamples(1 ) lowerCAmelCase_: Dict = SpeechTaFeatureExtractor() lowerCAmelCase_: Dict = feature_extractor(lowerCamelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase__ , atol=1E-6 ) ) def _a ( self ): # fmt: off lowerCAmelCase_: Dict = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCAmelCase_: Tuple = self._load_datasamples(1 ) lowerCAmelCase_: Any = SpeechTaFeatureExtractor() lowerCAmelCase_: Union[str, Any] = feature_extractor(audio_target=lowerCamelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase__ , atol=1E-4 ) )
613
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: Dict = 'efficientnet' def __init__( self , lowerCamelCase__ = 3 , lowerCamelCase__ = 600 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 3.1 , lowerCamelCase__ = 8 , lowerCamelCase__ = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase__ = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase__ = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase__ = [] , lowerCamelCase__ = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase__ = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase__ = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase__ = 0.2_5 , lowerCamelCase__ = "swish" , lowerCamelCase__ = 2_560 , lowerCamelCase__ = "mean" , lowerCamelCase__ = 0.0_2 , lowerCamelCase__ = 0.0_0_1 , lowerCamelCase__ = 0.9_9 , lowerCamelCase__ = 0.5 , lowerCamelCase__ = 0.2 , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) lowerCAmelCase_: str = num_channels lowerCAmelCase_: str = image_size lowerCAmelCase_: int = width_coefficient lowerCAmelCase_: Union[str, Any] = depth_coefficient lowerCAmelCase_: int = depth_divisor lowerCAmelCase_: List[str] = kernel_sizes lowerCAmelCase_: Tuple = in_channels lowerCAmelCase_: List[str] = out_channels lowerCAmelCase_: List[str] = depthwise_padding lowerCAmelCase_: Optional[int] = strides lowerCAmelCase_: List[str] = num_block_repeats lowerCAmelCase_: Any = expand_ratios lowerCAmelCase_: List[Any] = squeeze_expansion_ratio lowerCAmelCase_: Optional[int] = hidden_act lowerCAmelCase_: Optional[int] = hidden_dim lowerCAmelCase_: Dict = pooling_type lowerCAmelCase_: Optional[Any] = initializer_range lowerCAmelCase_: int = batch_norm_eps lowerCAmelCase_: List[str] = batch_norm_momentum lowerCAmelCase_: List[Any] = dropout_rate lowerCAmelCase_: Union[str, Any] = drop_connect_rate lowerCAmelCase_: Tuple = sum(lowerCamelCase__ ) * 4 class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[Any] = version.parse('1.11' ) @property def _a ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _a ( self ): return 1E-5
613
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCamelCase = 'vision-encoder-decoder' __UpperCamelCase = True def __init__( self : int , **A__ : List[Any] ) -> Any: '''simple docstring''' super().__init__(**A__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) a__ : Optional[int] = kwargs.pop('''encoder''' ) a__ : Dict = encoder_config.pop('''model_type''' ) a__ : Any = kwargs.pop('''decoder''' ) a__ : Optional[Any] = decoder_config.pop('''model_type''' ) a__ : Tuple = AutoConfig.for_model(A__ , **A__ ) a__ : List[Any] = AutoConfig.for_model(A__ , **A__ ) a__ : Union[str, Any] = True @classmethod def __lowerCAmelCase ( cls : Any , A__ : List[str] , A__ : Any , **A__ : str ) -> str: '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) a__ : Optional[int] = True a__ : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **A__ ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = copy.deepcopy(self.__dict__ ) a__ : Optional[int] = self.encoder.to_dict() a__ : Dict = self.decoder.to_dict() a__ : List[str] = self.__class__.model_type return output class lowerCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCamelCase = version.parse("1.11" ) @property def __lowerCAmelCase ( self : str ) -> Dict: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return 1E-4 @property def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowerCAmelCase ( self : List[str] ) -> int: '''simple docstring''' a__ : List[Any] = OrderedDict() a__ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} a__ : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} a__ : Any = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Union[str, Any] = -1 , A__ : int = -1 , A__ : Any = False , A__ : Tuple = None , ) -> List[str]: '''simple docstring''' import torch a__ : Any = OrderedDict() a__ : int = super().generate_dummy_inputs( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) a__ , a__ : Dict = dummy_input['''input_ids'''].shape a__ : int = (batch, encoder_sequence, self._config.encoder_hidden_size) a__ : Dict = dummy_input.pop('''input_ids''' ) a__ : Any = dummy_input.pop('''attention_mask''' ) a__ : Tuple = torch.zeros(A__ ) return common_inputs class lowerCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Tuple , A__ : Any ) -> List[str]: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(A__ ) def __lowerCAmelCase ( self : int , A__ : Dict , A__ : int , A__ : Optional[int] = "default" ) -> Tuple: '''simple docstring''' a__ : Any = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(A__ , A__ )
701
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): if b == 0: return (1, 0) ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , a % b ) a__ : Optional[int] = a // b return (y, x - k * y) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int = na * na a__ : Dict = ra * x * na + ra * y * na return (n % m + m) % m def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : Union[str, Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[Any] = (b % n + n) % n return b def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): a__ , a__ : Union[str, Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = na * na a__ : str = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
340
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : list, _lowerCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def UpperCamelCase ( _lowerCAmelCase : list[float] ) -> None: if point: if isinstance(_UpperCAmelCase, _UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase, (int, float) ): _UpperCAmelCase : List[str] = ( "Expected a list of numbers as input, found " f'''{type(_UpperCAmelCase ).__name__}''' ) raise TypeError(_UpperCAmelCase ) else: _UpperCAmelCase : Optional[int] = f'''Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}''' raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def UpperCamelCase ( _lowerCAmelCase : list, _lowerCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
238
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = "M-CLIP" def __init__( self : Union[str, Any] , A : Optional[Any]=1024 , A : List[str]=768 , **A : Union[str, Any] ): _UpperCAmelCase : str = transformerDimSize _UpperCAmelCase : int = imageDimSize super().__init__(**A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = MCLIPConfig def __init__( self : Optional[int] , A : Union[str, Any] , *A : Any , **A : Optional[int] ): super().__init__(A , *A , **A ) _UpperCAmelCase : Optional[int] = XLMRobertaModel(A ) _UpperCAmelCase : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _A ( self : int , A : int , A : int ): _UpperCAmelCase : Optional[int] = self.transformer(input_ids=A , attention_mask=A )[0] _UpperCAmelCase : Optional[int] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A ), embs
244
0
import math import sys import cva import numpy as np def A__ ( _a : np.ndarray , _a : float ): '''simple docstring''' snake_case__ : Optional[Any] =math.sqrt(_a ) snake_case__ : Dict =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def A__ ( _a : np.ndarray , _a : int , _a : int , _a : int ): '''simple docstring''' snake_case__ : Union[str, Any] =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def A__ ( _a : int , _a : float ): '''simple docstring''' snake_case__ : Union[str, Any] =np.zeros((kernel_size, kernel_size) ) for i in range(0 , _a ): for j in range(0 , _a ): snake_case__ : Any =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_a , _a ) def A__ ( _a : np.ndarray , _a : float , _a : float , _a : int , ): '''simple docstring''' snake_case__ : str =np.zeros(img.shape ) snake_case__ : List[Any] =get_gauss_kernel(_a , _a ) snake_case__ , snake_case__ : Union[str, Any] =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): snake_case__ : Any =get_slice(_a , _a , _a , _a ) snake_case__ : List[str] =img_s - img_s[kernel_size // 2, kernel_size // 2] snake_case__ : List[str] =vec_gaussian(_a , _a ) snake_case__ : str =np.multiply(_a , _a ) snake_case__ : Optional[int] =np.multiply(_a , _a ) snake_case__ : Dict =np.sum(_a ) / np.sum(_a ) snake_case__ : Tuple =val return imga def A__ ( _a : list ): '''simple docstring''' snake_case__ : str =args[1] if args[1:] else """../image_data/lena.jpg""" snake_case__ : Optional[Any] =float(args[2] ) if args[2:] else 1.0 snake_case__ : Tuple =float(args[3] ) if args[3:] else 1.0 if args[4:]: snake_case__ : Union[str, Any] =int(args[4] ) snake_case__ : Optional[int] =kernel_size + abs(kernel_size % 2 - 1 ) else: snake_case__ : List[str] =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parse_args(sys.argv) __lowerCamelCase : Dict = cva.imread(filename, 0) cva.imshow("""input image""", img) __lowerCamelCase : Any = img / 2_55 __lowerCamelCase : Tuple = out.astype("""float32""") __lowerCamelCase : List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __lowerCamelCase : Optional[Any] = out * 2_55 __lowerCamelCase : Tuple = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
448
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : Optional[int] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
448
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class __a( _a ): """simple docstring""" lowerCAmelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''image''': Image()} ) lowerCAmelCase = Features({'''labels''': ClassLabel} ) lowerCAmelCase = "image" lowerCAmelCase = "labels" def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,_SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase_ : Tuple = copy.deepcopy(self ) UpperCAmelCase_ : int = self.label_schema.copy() UpperCAmelCase_ : Optional[Any] = features[self.label_column] UpperCAmelCase_ : Dict = label_schema return task_template @property def a__ ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
30
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase__ : List[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCAmelCase__ : Any = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , **UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : str , **UpperCamelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : int , **UpperCamelCase : Tuple ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase__ : int = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : Dict = self.get_rust_tokenizer() lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : Dict = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ : int = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ : Union[str, Any] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) lowerCAmelCase__ : int = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : Tuple = self.get_tokenizer() lowerCAmelCase__ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase__ : Any = image_processor(UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : Optional[Any] = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : List[Any] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Tuple = """lower newer""" lowerCAmelCase__ : Union[str, Any] = processor(text=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer(UpperCamelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_image_processor() lowerCAmelCase__ : Optional[int] = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = """lower newer""" lowerCAmelCase__ : Tuple = self.prepare_image_inputs() lowerCAmelCase__ : Tuple = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : List[str] = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ : str = processor.batch_decode(UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : int = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = """lower newer""" lowerCAmelCase__ : Dict = self.prepare_image_inputs() lowerCAmelCase__ : Optional[int] = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
299
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = """philschmid/bart-large-cnn-samsum""" A__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) A__ = """summarizer""" A__ = AutoTokenizer A__ = AutoModelForSeqaSeqLM A__ = ["""text"""] A__ = ["""text"""] def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors="pt" , truncation=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.model.generate(**snake_case__ )[0] def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.pre_processor.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
295
"""simple docstring""" import collections import os import re from pathlib import Path lowercase_ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() lowercase_ : str = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowercase_ : List[Any] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase_ : Dict = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowercase_ : int = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowercase_ : Optional[Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase_ : List[Any] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowercase_ : Union[str, Any] = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowercase_ : Tuple = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowercase_ : List[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowercase_ : Optional[Any] = re.compile(R'''^\s*try:''') # Catches a line with else: lowercase_ : List[Any] = re.compile(R'''^\s*else:''') def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Dict: if _re_test_backend.search(lowerCamelCase__ ) is None: return None _SCREAMING_SNAKE_CASE : Any = [b[0] for b in _re_backend.findall(lowerCamelCase__ )] backends.sort() return "_and_".join(lowerCamelCase__ ) def _lowerCAmelCase ( lowerCamelCase__ : List[str] ) -> Any: with open(lowerCamelCase__, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : str = f.readlines() _SCREAMING_SNAKE_CASE : List[str] = 0 while line_index < len(lowerCamelCase__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase__ ): return None # First grab the objects without a specific backend in _import_structure _SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _SCREAMING_SNAKE_CASE : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase__ ).groups()[0] _SCREAMING_SNAKE_CASE : Union[str, Any] = re.findall(R"\[([^\]]+)\]", lowerCamelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _SCREAMING_SNAKE_CASE : Tuple = _re_import_struct_key_value.search(lowerCamelCase__ ) if single_line_import_search is not None: _SCREAMING_SNAKE_CASE : Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowerCamelCase__ ) > 0] objects.extend(lowerCamelCase__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _SCREAMING_SNAKE_CASE : Dict = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _SCREAMING_SNAKE_CASE : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _SCREAMING_SNAKE_CASE : Any = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase__ ) is not None: _SCREAMING_SNAKE_CASE : List[Any] = _re_import_struct_add_many.search(lowerCamelCase__ ).groups()[0].split(", " ) _SCREAMING_SNAKE_CASE : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase__ ) > 0] objects.extend(lowerCamelCase__ ) elif _re_between_brackets.search(lowerCamelCase__ ) is not None: _SCREAMING_SNAKE_CASE : List[str] = _re_between_brackets.search(lowerCamelCase__ ).groups()[0].split(", " ) _SCREAMING_SNAKE_CASE : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase__ ) > 0] objects.extend(lowerCamelCase__ ) elif _re_quote_object.search(lowerCamelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 _SCREAMING_SNAKE_CASE : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _SCREAMING_SNAKE_CASE : Any = [] while ( line_index < len(lowerCamelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : int = _re_import.search(lowerCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _SCREAMING_SNAKE_CASE : Optional[int] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _SCREAMING_SNAKE_CASE : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] _SCREAMING_SNAKE_CASE : List[Any] = _re_import.search(lowerCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict ) -> Tuple: def find_duplicates(lowerCamelCase__ : List[str] ): return [k for k, v in collections.Counter(lowerCamelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _SCREAMING_SNAKE_CASE : Any = [] for key in import_dict_objects.keys(): _SCREAMING_SNAKE_CASE : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _SCREAMING_SNAKE_CASE : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _SCREAMING_SNAKE_CASE : Dict = "base imports" if key == "none" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _lowerCAmelCase ( ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = [] for root, _, files in os.walk(lowerCamelCase__ ): if "__init__.py" in files: _SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowerCamelCase__, "__init__.py" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_init(lowerCamelCase__ ) if objects is not None: _SCREAMING_SNAKE_CASE : List[str] = analyze_results(*lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: _SCREAMING_SNAKE_CASE : Optional[int] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) > 0: raise ValueError("\n\n".join(lowerCamelCase__ ) ) def _lowerCAmelCase ( ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = [] for path, directories, files in os.walk(lowerCamelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(lowerCamelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase__ ) / folder).glob("*.py" ) ) ) == 0: continue _SCREAMING_SNAKE_CASE : Dict = str((Path(lowerCamelCase__ ) / folder).relative_to(lowerCamelCase__ ) ) _SCREAMING_SNAKE_CASE : Any = short_path.replace(os.path.sep, "." ) submodules.append(lowerCamelCase__ ) for fname in files: if fname == "__init__.py": continue _SCREAMING_SNAKE_CASE : Optional[int] = str((Path(lowerCamelCase__ ) / fname).relative_to(lowerCamelCase__ ) ) _SCREAMING_SNAKE_CASE : Dict = short_path.replace(".py", "" ).replace(os.path.sep, "." ) if len(submodule.split("." ) ) == 1: submodules.append(lowerCamelCase__ ) return submodules lowercase_ : Optional[int] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def _lowerCAmelCase ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase__, "__init__.py" ), "r" ) as f: _SCREAMING_SNAKE_CASE : Any = f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]", lowerCamelCase__ ) ) ) _SCREAMING_SNAKE_CASE : int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase__ ) > 0: _SCREAMING_SNAKE_CASE : List[Any] = "\n".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
295
1
import math class __lowercase : def UpperCamelCase__ ( self , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Any = 0.0 __lowerCAmelCase : List[str] = 0.0 for i in range(len(A_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ ) ->list[list[int | float]]: '''simple docstring''' for i in range(len(A_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowercase ( ): # Training Examples ( m, n ) __lowerCAmelCase : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowerCAmelCase : int = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowerCAmelCase : List[str] = SelfOrganizingMap() __lowerCAmelCase : str = 3 __lowerCAmelCase : Dict = 0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample __lowerCAmelCase : int = training_samples[j] # Compute the winning vector __lowerCAmelCase : Union[str, Any] = self_organizing_map.get_winner(lowercase__ , lowercase__ ) # Update the winning vector __lowerCAmelCase : Any = self_organizing_map.update(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # classify test sample __lowerCAmelCase : Any = [0, 0, 0, 1] __lowerCAmelCase : List[Any] = self_organizing_map.get_winner(lowercase__ , lowercase__ ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
492
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
492
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
1
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets A_ : Optional[int] ='\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' A_ : Union[str, Any] ='\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' A_ : Optional[int] ='\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : int = None , snake_case : str = False , )-> Union[str, Any]: if label_map is not None: for old_id, new_id in label_map.items(): _lowerCamelCase = new_id # turn into Numpy arrays _lowerCamelCase = np.array(UpperCAmelCase_ ) _lowerCamelCase = np.array(UpperCAmelCase_ ) if reduce_labels: _lowerCamelCase = 255 _lowerCamelCase = label - 1 _lowerCamelCase = 255 _lowerCamelCase = label != ignore_index _lowerCamelCase = np.not_equal(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCamelCase = pred_label[mask] _lowerCamelCase = np.array(UpperCAmelCase_ )[mask] _lowerCamelCase = pred_label[pred_label == label] _lowerCamelCase = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _lowerCamelCase = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _lowerCamelCase = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _lowerCamelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : int , snake_case : str , snake_case : Optional[Any] = None , snake_case : Optional[Any] = False , )-> Dict: _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCamelCase = intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Dict , snake_case : List[str] = None , snake_case : List[str] = None , snake_case : int = False , )-> Tuple: _lowerCamelCase = total_intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # compute metrics _lowerCamelCase = {} _lowerCamelCase = total_area_intersect.sum() / total_area_label.sum() _lowerCamelCase = total_area_intersect / total_area_union _lowerCamelCase = total_area_intersect / total_area_label _lowerCamelCase = np.nanmean(UpperCAmelCase_ ) _lowerCamelCase = np.nanmean(UpperCAmelCase_ ) _lowerCamelCase = all_acc _lowerCamelCase = iou _lowerCamelCase = acc if nan_to_num is not None: _lowerCamelCase = {metric: np.nan_to_num(UpperCAmelCase_ , nan=UpperCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = False , ): _lowerCamelCase = mean_iou( results=__a , gt_seg_maps=__a , num_labels=__a , ignore_index=__a , nan_to_num=__a , label_map=__a , reduce_labels=__a , ) return iou_result
650
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_: int = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Any = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Any = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: List[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowercase_: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
648
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __get__( self : Optional[Any] , __a : Optional[Any] , __a : Tuple=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _a = "__cached_" + self.fget.__name__ _a = getattr(__a , __a , __a ) if cached is None: _a = self.fget(__a ) setattr(__a , __a , __a ) return cached def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: _a = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[Any]: if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Optional[int]: return isinstance(lowercase , np.ndarray ) def _lowerCamelCase ( lowercase : int ) -> List[Any]: return _is_numpy(lowercase ) def _lowerCamelCase ( lowercase : Optional[int] ) -> int: import torch return isinstance(lowercase , torch.Tensor ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]: return False if not is_torch_available() else _is_torch(lowercase ) def _lowerCamelCase ( lowercase : int ) -> str: import torch return isinstance(lowercase , torch.device ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> int: return False if not is_torch_available() else _is_torch_device(lowercase ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[Any]: import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): _a = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: return False if not is_torch_available() else _is_torch_dtype(lowercase ) def _lowerCamelCase ( lowercase : Tuple ) -> List[str]: import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def _lowerCamelCase ( lowercase : Dict ) -> str: return False if not is_tf_available() else _is_tensorflow(lowercase ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Optional[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def _lowerCamelCase ( lowercase : int ) -> List[str]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def _lowerCamelCase ( lowercase : List[Any] ) -> int: return False if not is_flax_available() else _is_jax(lowercase ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> List[Any]: if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCamelCase ( lowercase : Dict ) -> str: if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : List[str] ): _a = fields(self ) # Safety and consistency checks if not len(__a ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _a = getattr(self , class_fields[0].name ) _a = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__a ): if isinstance(__a , __a ): _a = first_field.items() _a = True else: try: _a = iter(__a ) _a = True except TypeError: _a = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a ): if ( not isinstance(__a , (list, tuple) ) or not len(__a ) == 2 or not isinstance(element[0] , __a ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _a = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _a = element[1] elif first_field is not None: _a = first_field else: for field in class_fields: _a = getattr(self , field.name ) if v is not None: _a = v def __delitem__( self : List[str] , *__a : str , **__a : List[str] ): raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : Optional[int] , *__a : Dict , **__a : Tuple ): raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : int , *__a : Union[str, Any] , **__a : str ): raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : Optional[Any] , *__a : List[Any] , **__a : Optional[int] ): raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : Any , __a : Union[str, Any] ): if isinstance(__a , __a ): _a = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Tuple , __a : Optional[int] , __a : str ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a , __a ) super().__setattr__(__a , __a ) def __setitem__( self : Union[str, Any] , __a : str , __a : Any ): # Will raise a KeyException if needed super().__setitem__(__a , __a ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a , __a ) def UpperCamelCase__ ( self : Any ): return tuple(self[k] for k in self.keys() ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @classmethod def UpperCamelCase__ ( cls : Union[str, Any] , __a : int ): raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='longest' __a ='max_length' __a ='do_not_pad' class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='pt' __a ='tf' __a ='np' __a ='jax' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __a : List[ContextManager] ): _a = context_managers _a = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__a ) def __exit__( self : Optional[Any] , *__a : Any , **__a : Optional[int] ): self.stack.__exit__(*__a , **__a ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> int: _a = infer_framework(lowercase ) if framework == "tf": _a = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _a = inspect.signature(model_class.forward ) # PyTorch models else: _a = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: _a = model_class.__name__ _a = infer_framework(lowercase ) if framework == "tf": _a = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _a = inspect.signature(model_class.forward ) # PyTorch models else: _a = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCamelCase ( lowercase : MutableMapping , lowercase : str = "" , lowercase : str = "." ) -> Any: def _flatten_dict(lowercase : List[str] , lowercase : List[Any]="" , lowercase : List[Any]="." ): for k, v in d.items(): _a = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def _lowerCamelCase ( lowercase : Tuple , lowercase : bool = False ) -> Any: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Any=None ) -> Optional[Any]: if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'Type not supported for transpose: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Dict , lowercase : int ) -> Optional[Any]: if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'Type not supported for reshape: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any]=None ) -> Tuple: if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple ) -> Any: if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Union[str, Any]: if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): _a = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _a = F'{repo_id}--{value}' return auto_map def _lowerCamelCase ( lowercase : List[str] ) -> int: for base_class in inspect.getmro(lowercase ): _a = base_class.__module__ _a = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
703
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 100_0000 ) -> int: _a = set(range(3 , lowercase , 2 ) ) primes.add(2 ) for p in range(3 , lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase , lowercase ) ) ) _a = [float(lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase , limit + 1 , lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
521
0
"""simple docstring""" import random class lowerCAmelCase_ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : str ) -> tuple[list[int], list[int]]: A = [ord(A_ ) for i in text] A = [] A = [] for i in plain: A = random.randint(1 ,300 ) A = (i + k) * k cipher.append(A_ ) key.append(A_ ) return cipher, key @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : list[int] ,A_ : list[int] ) -> str: A = [] for i in range(len(A_ ) ): A = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(A_ ) ) return "".join(A_ ) if __name__ == "__main__": _lowercase , _lowercase = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
91
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase = get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving model to {ckpt_dir}' ) A = {'model': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def _snake_case ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = ( os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) A = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) A = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case__ ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: A = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) A = torch.load(snake_case__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: A = ( os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) A = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) A = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
91
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[str] = TypeVar("""T""") class lowerCamelCase_ ( Generic[T] ): def __init__( self , __lowerCAmelCase = True ): """simple docstring""" __magic_name__ :dict[T, list[T]] = {} # dictionary of lists __magic_name__ :Tuple = directed def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) self.adj_list[destination_vertex].append(__lowerCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __magic_name__ :Dict = [destination_vertex] __magic_name__ :Optional[int] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) __magic_name__ :Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __magic_name__ :Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __magic_name__ :Union[str, Any] = [destination_vertex] __magic_name__ :Union[str, Any] = [] return self def __repr__( self ): """simple docstring""" return pformat(self.adj_list )
180
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-m''', '''--pretrained_model_name_or_path''', type=snake_case, default=snake_case, required=snake_case, help='''Path to pretrained model or model identifier from huggingface.co/models.''', ) parser.add_argument( '''-c''', '''--caption''', type=snake_case, default='''robotic cat with wings''', help='''Text used to generate images.''', ) parser.add_argument( '''-n''', '''--images_num''', type=snake_case, default=4, help='''How much images to generate.''', ) parser.add_argument( '''-s''', '''--seed''', type=snake_case, default=4_2, help='''Seed for random process.''', ) parser.add_argument( '''-ci''', '''--cuda_id''', type=snake_case, default=0, help='''cuda_id.''', ) __magic_name__ :Optional[Any] = parser.parse_args() return args def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" if not len(snake_case ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) __magic_name__ , __magic_name__ :Tuple = imgs[0].size __magic_name__ :List[Any] = Image.new('''RGB''', size=(cols * w, rows * h) ) __magic_name__ , __magic_name__ :List[Any] = grid.size for i, img in enumerate(snake_case ): grid.paste(snake_case, box=(i % cols * w, i // cols * h) ) return grid def __lowercase ( snake_case, snake_case="robotic cat with wings", snake_case=7.5, snake_case=5_0, snake_case=1, snake_case=4_2, ): """simple docstring""" __magic_name__ :List[Any] = torch.Generator(pipeline.device ).manual_seed(snake_case ) __magic_name__ :str = pipeline( snake_case, guidance_scale=snake_case, num_inference_steps=snake_case, generator=snake_case, num_images_per_prompt=snake_case, ).images __magic_name__ :Tuple = int(math.sqrt(snake_case ) ) __magic_name__ :Union[str, Any] = image_grid(snake_case, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE__ : Any = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE__ : int = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") SCREAMING_SNAKE_CASE__ : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") SCREAMING_SNAKE_CASE__ : int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE__ : str = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): SCREAMING_SNAKE_CASE__ : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: SCREAMING_SNAKE_CASE__ : Dict = unet.to(torch.device("""cuda""", args.cuda_id)) SCREAMING_SNAKE_CASE__ : Any = pipeline.to(unet.device) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) SCREAMING_SNAKE_CASE__ : int = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
180
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCAmelCase = None def _snake_case ( ): """simple docstring""" _lowerCamelCase : List[Any] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__snake_case , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__snake_case , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _snake_case ( __snake_case : Dict ): """simple docstring""" _lowerCamelCase : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : Optional[Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _snake_case ( __snake_case : Union[str, Any] ): """simple docstring""" def remove_articles(__snake_case : List[str] ): return ARTICLES_REGEX.sub(""" """ , __snake_case ) def white_space_fix(__snake_case : Optional[int] ): return " ".join(text.split() ) def remove_punc(__snake_case : Optional[Any] ): _lowerCamelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def _snake_case ( __snake_case : Any ): """simple docstring""" if not s: return [] return normalize_answer(__snake_case ).split() def _snake_case ( __snake_case : Dict , __snake_case : int ): """simple docstring""" return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def _snake_case ( __snake_case : Tuple , __snake_case : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = get_tokens(__snake_case ) _lowerCamelCase : int = get_tokens(__snake_case ) _lowerCamelCase : Optional[Any] = collections.Counter(__snake_case ) & collections.Counter(__snake_case ) _lowerCamelCase : int = sum(common.values() ) if len(__snake_case ) == 0 or len(__snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _lowerCamelCase : List[str] = 1.0 * num_same / len(__snake_case ) _lowerCamelCase : Dict = 1.0 * num_same / len(__snake_case ) _lowerCamelCase : int = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( __snake_case : Optional[Any] , __snake_case : str ): """simple docstring""" _lowerCamelCase : List[Any] = {} _lowerCamelCase : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : Tuple = qa["""id"""] _lowerCamelCase : Optional[int] = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _lowerCamelCase : List[str] = [""""""] if qid not in preds: print(F'Missing prediction for {qid}' ) continue _lowerCamelCase : Any = preds[qid] # Take max over all gold answers _lowerCamelCase : Tuple = max(compute_exact(__snake_case , __snake_case ) for a in gold_answers ) _lowerCamelCase : List[str] = max(compute_fa(__snake_case , __snake_case ) for a in gold_answers ) return exact_scores, fa_scores def _snake_case ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : str ): """simple docstring""" _lowerCamelCase : str = {} for qid, s in scores.items(): _lowerCamelCase : Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: _lowerCamelCase : Any = float(not qid_to_has_ans[qid] ) else: _lowerCamelCase : List[str] = s return new_scores def _snake_case ( __snake_case : Any , __snake_case : int , __snake_case : Any=None ): """simple docstring""" if not qid_list: _lowerCamelCase : int = len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: _lowerCamelCase : List[str] = len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _snake_case ( __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int ): """simple docstring""" for k in new_eval: _lowerCamelCase : Optional[int] = new_eval[k] def _snake_case ( __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple ): """simple docstring""" plt.step(__snake_case , __snake_case , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__snake_case , __snake_case , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__snake_case ) plt.savefig(__snake_case ) plt.clf() def _snake_case ( __snake_case : int , __snake_case : Dict , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : List[Any]=None ): """simple docstring""" _lowerCamelCase : Any = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) _lowerCamelCase : List[Any] = 0.0 _lowerCamelCase : Optional[Any] = 1.0 _lowerCamelCase : Tuple = 0.0 _lowerCamelCase : Tuple = [1.0] _lowerCamelCase : List[Any] = [0.0] _lowerCamelCase : Optional[int] = 0.0 for i, qid in enumerate(__snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] _lowerCamelCase : List[str] = true_pos / float(i + 1 ) _lowerCamelCase : Optional[int] = true_pos / float(__snake_case ) if i == len(__snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__snake_case ) recalls.append(__snake_case ) if out_image: plot_pr_curve(__snake_case , __snake_case , __snake_case , __snake_case ) return {"ap": 100.0 * avg_prec} def _snake_case ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] ): """simple docstring""" if out_image_dir and not os.path.exists(__snake_case ): os.makedirs(__snake_case ) _lowerCamelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _lowerCamelCase : List[str] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) _lowerCamelCase : int = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) _lowerCamelCase : Union[str, Any] = {k: float(__snake_case ) for k, v in qid_to_has_ans.items()} _lowerCamelCase : Optional[Any] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__snake_case , __snake_case , """pr_exact""" ) merge_eval(__snake_case , __snake_case , """pr_f1""" ) merge_eval(__snake_case , __snake_case , """pr_oracle""" ) def _snake_case ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] ): """simple docstring""" if not qid_list: return _lowerCamelCase : Tuple = [na_probs[k] for k in qid_list] _lowerCamelCase : int = np.ones_like(__snake_case ) / float(len(__snake_case ) ) plt.hist(__snake_case , weights=__snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(__snake_case , F'na_prob_hist_{name}.png' ) ) plt.clf() def _snake_case ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any ): """simple docstring""" _lowerCamelCase : int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _lowerCamelCase : Optional[Any] = num_no_ans _lowerCamelCase : str = cur_score _lowerCamelCase : Dict = 0.0 _lowerCamelCase : Optional[int] = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) for i, qid in enumerate(__snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: _lowerCamelCase : List[str] = scores[qid] else: if preds[qid]: _lowerCamelCase : str = -1 else: _lowerCamelCase : List[str] = 0 cur_score += diff if cur_score > best_score: _lowerCamelCase : Any = cur_score _lowerCamelCase : Dict = na_probs[qid] return 100.0 * best_score / len(__snake_case ), best_thresh def _snake_case ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase , _lowerCamelCase : List[Any] = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase : Dict = best_exact _lowerCamelCase : Optional[int] = exact_thresh _lowerCamelCase : Any = best_fa _lowerCamelCase : Any = fa_thresh def _snake_case ( ): """simple docstring""" with open(OPTS.data_file ) as f: _lowerCamelCase : Union[str, Any] = json.load(__snake_case ) _lowerCamelCase : Dict = dataset_json["""data"""] with open(OPTS.pred_file ) as f: _lowerCamelCase : Union[str, Any] = json.load(__snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _lowerCamelCase : Any = json.load(__snake_case ) else: _lowerCamelCase : Optional[Any] = {k: 0.0 for k in preds} _lowerCamelCase : List[Any] = make_qid_to_has_ans(__snake_case ) # maps qid to True/False _lowerCamelCase : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if v] _lowerCamelCase : Optional[int] = [k for k, v in qid_to_has_ans.items() if not v] _lowerCamelCase , _lowerCamelCase : Union[str, Any] = get_raw_scores(__snake_case , __snake_case ) _lowerCamelCase : Dict = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) _lowerCamelCase : List[str] = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) _lowerCamelCase : Optional[Any] = make_eval_dict(__snake_case , __snake_case ) if has_ans_qids: _lowerCamelCase : Any = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , """HasAns""" ) if no_ans_qids: _lowerCamelCase : List[Any] = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , OPTS.out_image_dir ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__snake_case , __snake_case ) else: print(json.dumps(__snake_case , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
88
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _snake_case : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
493
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = process _SCREAMING_SNAKE_CASE = params def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.dataset[i] _SCREAMING_SNAKE_CASE = self.process(UpperCamelCase , **self.params ) return processed class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): _SCREAMING_SNAKE_CASE = loader _SCREAMING_SNAKE_CASE = infer _SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def __len__( self ): return len(self.loader ) def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) return self def lowercase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase , UpperCamelCase ): # Convert ModelOutput to tuple first _SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase , UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(UpperCamelCase ) self._loader_batch_index += 1 return result def lowercase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _SCREAMING_SNAKE_CASE = next(self.iterator ) _SCREAMING_SNAKE_CASE = self.infer(UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE = processed else: _SCREAMING_SNAKE_CASE = list(processed.keys() )[0] _SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = len(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): super().__init__(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) _SCREAMING_SNAKE_CASE = None return self def lowercase ( self ): if self.subiterator is None: _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) _SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class lowerCAmelCase ( __UpperCAmelCase ): def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) return self def lowercase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE = self.loader_batch_item() _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator while not is_last: _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE = processed else: _SCREAMING_SNAKE_CASE = list(processed.keys() )[0] _SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = len(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE = observed_batch_size _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE = self.loader_batch_item() _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator else: _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) return accumulator class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = key def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): return self.dataset[i][self.key] class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = keya _SCREAMING_SNAKE_CASE = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
493
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCAmelCase = { '''facebook/blenderbot_small-90M''': 512, } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = BlenderbotSmallTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case="<|endoftext|>" , snake_case="<|endoftext|>" , snake_case="<|endoftext|>" , snake_case=False , snake_case=True , **snake_case , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case , merges=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , ) , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , **snake_case , ) lowercase = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None ): lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
84
1
def UpperCamelCase__ ( UpperCAmelCase = 1000 ) -> int: """simple docstring""" _a : Optional[int] = 2**power _a : Union[str, Any] = 0 while n: _a , _a : Optional[int] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
307
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" _a : Any = LxmertConfig.from_json_file(UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _a : List[Any] = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
307
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = torch.load(__A , map_location='''cpu''') if "model" in sd.keys(): _a = torch.load(__A , map_location='''cpu''')['''model'''] # pop unnecessary weights _a = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(__A) _a = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _a = sd.pop(__A) _a = list(sd.keys()) for key in keys: if ".qkv_proj." in key: _a = sd[key] # We split QKV in separate Q,K,V _a = key.replace('''.qkv_proj.''' , '''.q_proj.''') _a = key.replace('''.qkv_proj.''' , '''.k_proj.''') _a = key.replace('''.qkv_proj.''' , '''.v_proj.''') _a = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _a , _a , _a = torch.split(__A , depth // 3 , dim=0) _a = q _a = k _a = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None): """simple docstring""" _a = load_checkpoint(__A) if config is not None: _a = OPTConfig.from_pretrained(__A) else: _a = OPTConfig() _a = OPTModel(__A).half().eval() model.load_state_dict(__A) # Check results Path(__A).mkdir(exist_ok=__A) model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
"""simple docstring""" from __future__ import annotations import time A : List[str] = list[tuple[int, int]] A : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase : '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Node | None ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = pos_x UpperCamelCase__ = pos_y UpperCamelCase__ = (pos_y, pos_x) UpperCamelCase__ = goal_x UpperCamelCase__ = goal_y UpperCamelCase__ = parent class lowerCAmelCase : '''simple docstring''' def __init__( self :int , lowerCamelCase_ :tuple[int, int] , lowerCamelCase_ :tuple[int, int] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = [self.start] UpperCamelCase__ = False def lowerCamelCase__ ( self :Any ) -> Path | None: """simple docstring""" while self.node_queue: UpperCamelCase__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase__ = True return self.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.get_successors(lowerCamelCase_ ) for node in successors: self.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self :str , lowerCamelCase_ :Node ) -> list[Node]: """simple docstring""" UpperCamelCase__ = [] for action in delta: UpperCamelCase__ = parent.pos_x + action[1] UpperCamelCase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , lowerCamelCase_ ) ) return successors def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Node | None ) -> Path: """simple docstring""" UpperCamelCase__ = node UpperCamelCase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase__ = current_node.parent path.reverse() return path class lowerCAmelCase : '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = False def lowerCamelCase__ ( self :int ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase__ = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase__ = True return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = current_bwd_node UpperCamelCase__ = current_fwd_node UpperCamelCase__ = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Node , lowerCamelCase_ :Node ) -> Path: """simple docstring""" UpperCamelCase__ = self.fwd_bfs.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.bwd_bfs.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : str = (0, 0) A : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Any = time.time() A : Optional[int] = BreadthFirstSearch(init, goal) A : List[str] = bfs.search() A : Dict = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) A : Optional[int] = time.time() A : Any = BidirectionalBreadthFirstSearch(init, goal) A : List[Any] = bd_bfs.search() A : Dict = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
516
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva UpperCamelCase : Dict = '' UpperCamelCase : Any = '' UpperCamelCase : Optional[Any] = '' UpperCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def A__ ( ): lowerCamelCase__ , lowerCamelCase__ = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("""Processing...""" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase__ = random_chars(32 ) lowerCamelCase__ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCamelCase__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) lowerCamelCase__ = [] for anno in new_annos[index]: lowerCamelCase__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = [] lowerCamelCase__ = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): lowerCamelCase__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: lowerCamelCase__ = in_file.readlines() lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) lowerCamelCase__ = [] for obj_list in obj_lists: lowerCamelCase__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ): lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for idx in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = [] lowerCamelCase__ = img_list[idx] path_list.append(__lowerCAmelCase ) lowerCamelCase__ = anno_list[idx] lowerCamelCase__ = cva.imread(__lowerCAmelCase ) if flip_type == 1: lowerCamelCase__ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowerCamelCase__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase__ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowerCamelCase__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def A__ ( __lowerCAmelCase : int = 32 ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase__ = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
9
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
1
import math def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
89
"""simple docstring""" __snake_case : str = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : str = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Optional[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
571
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a( _a ): """simple docstring""" lowerCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
710
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Dict = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase_ : int = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase_ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase_ : str = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname ,_SCREAMING_SNAKE_CASE ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) # load decoder from hub UpperCAmelCase_ : str = '''hf-internal-testing/ngram-beam-search-decoder''' def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = self.add_kwargs_tokens_map.copy() kwargs.update(_SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_feature_extractor() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase_ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def a__ ( self ) -> Dict: UpperCAmelCase_ : str = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = floats_list((3, 1_000) ) UpperCAmelCase_ : Any = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : Any = processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = '''This is a test string''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ,_SCREAMING_SNAKE_CASE=(2, 10, 16) ,_SCREAMING_SNAKE_CASE=77 ) -> int: np.random.seed(_SCREAMING_SNAKE_CASE ) return np.random.rand(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : int = self.get_feature_extractor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase_ : Optional[Any] = processor.decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = decoder.decode_beams(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_feature_extractor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase_ : Dict = processor.batch_decode(_SCREAMING_SNAKE_CASE ) else: with get_context(_SCREAMING_SNAKE_CASE ).Pool() as pool: UpperCAmelCase_ : str = processor.batch_decode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.logit_score ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.lm_score ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Any = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 15 UpperCAmelCase_ : Optional[Any] = -20.0 UpperCAmelCase_ : Tuple = -4.0 UpperCAmelCase_ : Union[str, Any] = processor.batch_decode( _SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = decoded_processor_out.text UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : str = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase_ : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase_ : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 2.0 UpperCAmelCase_ : Optional[int] = 5.0 UpperCAmelCase_ : List[Any] = -20.0 UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : str = processor.batch_decode( _SCREAMING_SNAKE_CASE ,alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Tuple = decoded_processor_out.text UpperCAmelCase_ : Optional[Any] = list(_SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : Optional[int] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : Dict = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : Any = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : int = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : List[str] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : List[Any] = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = os.listdir(_SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase_ : Optional[Any] = processor_wavaveca(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : List[str] = processor_auto(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase_ : Any = self._get_dummy_logits() UpperCAmelCase_ : int = processor_wavaveca.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = processor_auto.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Any = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def a__ ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : int = [d[key] for d in offsets] return retrieved_list def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Union[str, Any] = self._get_dummy_logits()[0] UpperCAmelCase_ : Tuple = processor.decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : int = self._get_dummy_logits() UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self ) -> Union[str, Any]: import torch UpperCAmelCase_ : List[str] = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase_ : Tuple = iter(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = next(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase_ : Dict = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase_ : List[str] = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ).logits.cpu().numpy() UpperCAmelCase_ : str = processor.decode(logits[0] ,output_word_offsets=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase_ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase_ : Any = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,output.text ) # output times UpperCAmelCase_ : List[Any] = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''start_time''' ) ) UpperCAmelCase_ : str = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''end_time''' ) ) # fmt: off UpperCAmelCase_ : str = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCAmelCase_ : Optional[int] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) )
300
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int | float | str ) -> tuple[int, int]: """simple docstring""" try: UpperCAmelCase_ : int = float(_SCREAMING_SNAKE_CASE ) except ValueError: raise ValueError("Please enter a valid number" ) UpperCAmelCase_ : List[str] = decimal - int(_SCREAMING_SNAKE_CASE ) if fractional_part == 0: return int(_SCREAMING_SNAKE_CASE ), 1 else: UpperCAmelCase_ : Any = len(str(_SCREAMING_SNAKE_CASE ).split("." )[1] ) UpperCAmelCase_ : Any = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase_ : Any = 10**number_of_frac_digits UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = denominator, numerator while True: UpperCAmelCase_ : List[str] = dividend % divisor if remainder == 0: break UpperCAmelCase_ , UpperCAmelCase_ : int = divisor, remainder UpperCAmelCase_ , UpperCAmelCase_ : Dict = numerator / divisor, denominator / divisor return int(_SCREAMING_SNAKE_CASE ), int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction('67') = }""") print(f"""{decimal_to_fraction('45.0') = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction('6.25') = }""") print(f"""{decimal_to_fraction('78td') = }""")
71
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.dummy_uncond_unet UpperCamelCase__ : List[str] = ScoreSdeVeScheduler() UpperCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Any = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE )[ 0 ] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = "google/ncsnpp-church-256" UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Tuple = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase__ : Any = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
228
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowerCamelCase : Dict = logging.getLogger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Any = 'sequence-classification' def __init__( self , A_ ): '''simple docstring''' if type(A_ ) == dict: UpperCamelCase : Any = Namespace(**A_ ) UpperCamelCase : Optional[int] = glue_output_modes[hparams.task] UpperCamelCase : Any = glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return self.model(**A_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase : Optional[int] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase : List[Any] = self(**A_ ) UpperCamelCase : Dict = outputs[0] UpperCamelCase : Optional[Any] = self.trainer.lr_schedulers[0]["scheduler"] UpperCamelCase : int = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.hparams UpperCamelCase : Tuple = processors[args.task]() UpperCamelCase : List[str] = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase : str = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , A_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCamelCase : Optional[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) UpperCamelCase : Any = convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , A_ ) torch.save(A_ , A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = False ): '''simple docstring''' UpperCamelCase : Dict = "dev" if mode == "test" else mode UpperCamelCase : str = self._feature_file(A_ ) logger.info("Loading features from cached file %s" , A_ ) UpperCamelCase : Dict = torch.load(A_ ) UpperCamelCase : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCamelCase : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCamelCase : List[str] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase : List[str] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ , shuffle=A_ , ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase : Union[str, Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase : Tuple = self(**A_ ) UpperCamelCase : Dict = outputs[:2] UpperCamelCase : Dict = logits.detach().cpu().numpy() UpperCamelCase : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() UpperCamelCase : Optional[int] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCamelCase : Any = np.argmax(A_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCamelCase : List[str] = np.squeeze(A_ ) UpperCamelCase : Union[str, Any] = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCamelCase : List[str] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase : Any = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase : List[str] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_ )} UpperCamelCase : Optional[Any] = dict(results.items() ) UpperCamelCase : str = results return ret, preds_list, out_label_list def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self._eval_end(A_ ) UpperCamelCase : Union[str, Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self._eval_end(A_ ) UpperCamelCase : List[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( "--max_seq_length" , default=128 , type=A_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=A_ , required=A_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=A_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def A_ ( ) -> Optional[int]: UpperCamelCase : Dict = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase , os.getcwd() ) UpperCamelCase : Optional[int] = GLUETransformer.add_model_specific_args(_lowerCAmelCase , os.getcwd() ) UpperCamelCase : List[str] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase : List[Any] = os.path.join( "./results" , F"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) UpperCamelCase : Optional[int] = GLUETransformer(_lowerCAmelCase ) UpperCamelCase : str = generic_train(_lowerCAmelCase , _lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase : List[str] = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_lowerCAmelCase ) ) UpperCamelCase : Tuple = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCAmelCase ) if __name__ == "__main__": main()
719
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__snake_case ): _UpperCAmelCase :Tuple = ['note_seq'] def __init__( self , *A_ , **A_ ): '''simple docstring''' requires_backends(self , ["note_seq"] ) @classmethod def __UpperCamelCase( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["note_seq"] ) @classmethod def __UpperCamelCase( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["note_seq"] )
38
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets a__ = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a__ = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ a__ = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __magic_name__ ( self : int): '''simple docstring''' if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def __magic_name__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int = CHRF.CHAR_ORDER , UpperCamelCase__ : int = CHRF.WORD_ORDER , UpperCamelCase__ : int = CHRF.BETA , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , ): '''simple docstring''' snake_case__ = len(references[0]) if any(len(UpperCamelCase__) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") snake_case__ = [[refs[i] for refs in references] for i in range(UpperCamelCase__)] snake_case__ = CHRF(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = sb_chrf.corpus_score(UpperCamelCase__ , UpperCamelCase__) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
654
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : UNetaDModel _lowercase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : ScoreSdeVeScheduler): '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 2_0_0_0 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[str] , ): '''simple docstring''' snake_case__ = self.unet.config.sample_size snake_case__ = (batch_size, 3, img_size, img_size) snake_case__ = self.unet snake_case__ = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__) * self.scheduler.init_noise_sigma snake_case__ = sample.to(self.device) self.scheduler.set_timesteps(UpperCamelCase__) self.scheduler.set_sigmas(UpperCamelCase__) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): snake_case__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): snake_case__ = self.unet(UpperCamelCase__ , UpperCamelCase__).sample snake_case__ = self.scheduler.step_correct(UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample # prediction step snake_case__ = model(UpperCamelCase__ , UpperCamelCase__).sample snake_case__ = self.scheduler.step_pred(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__) snake_case__ , snake_case__ = output.prev_sample, output.prev_sample_mean snake_case__ = sample_mean.clamp(0 , 1) snake_case__ = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": snake_case__ = self.numpy_to_pil(UpperCamelCase__) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase__)
654
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = 'pytorch_model.bin' @dataclasses.dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) __snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) __snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) __snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) __snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={"""help""": """The name of the task to train on."""} , ) __snake_case : Optional[List[str]] = dataclasses.field( default=snake_case__ , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) __snake_case : Optional[str] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) __snake_case : Optional[str] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) __snake_case : Optional[int] = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) __snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) __snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) __snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) __snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) __snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) __snake_case : Optional[int] = dataclasses.field( default=1_00 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) __snake_case : Optional[int] = dataclasses.field( default=snake_case__ , metadata={"""help""": """Random seed for initialization."""} , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[str] =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __lowerCamelCase : Optional[Any] =dataset.filter(lambda SCREAMING_SNAKE_CASE : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __lowerCamelCase : Tuple =int(eval_result * len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any =dataset.select(range(SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : int =dataset.remove_columns(['''label''', '''probability'''] ) __lowerCamelCase : int =dataset.rename_column('''prediction''' , '''label''' ) __lowerCamelCase : int =dataset.map(lambda SCREAMING_SNAKE_CASE : {"label": idalabel[example["label"]]} ) __lowerCamelCase : Dict =dataset.shuffle(seed=args.seed ) __lowerCamelCase : Tuple =os.path.join(SCREAMING_SNAKE_CASE , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) else: dataset.to_json(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __lowerCamelCase : Optional[Any] =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __lowerCamelCase : Union[str, Any] =STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =STDataArguments(train_file=SCREAMING_SNAKE_CASE , infer_file=SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE ).items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Sanity checks __lowerCamelCase : Optional[int] ={} __lowerCamelCase : Any =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __lowerCamelCase : List[str] =args.train_file __lowerCamelCase : int =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __lowerCamelCase : Tuple =args.eval_file for key in data_files: __lowerCamelCase : str =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __lowerCamelCase : str =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) __lowerCamelCase : Dict =F'{args.output_dir}/self-train_iter-{{}}'.format __lowerCamelCase : str =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __lowerCamelCase : Tuple =None __lowerCamelCase : Union[str, Any] =None __lowerCamelCase : Any =0 __lowerCamelCase : str =False # Show the progress bar __lowerCamelCase : Union[str, Any] =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __lowerCamelCase : Any =data_dir_format(SCREAMING_SNAKE_CASE ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __lowerCamelCase : Optional[int] =os.path.join(SCREAMING_SNAKE_CASE , '''stage-1''' ) __lowerCamelCase : Optional[Any] ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): arguments_dict.update({key: value} ) __lowerCamelCase : List[Any] =os.path.join(SCREAMING_SNAKE_CASE , '''best-checkpoint''' , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __lowerCamelCase : Optional[Any] =os.path.join(SCREAMING_SNAKE_CASE , '''best-checkpoint''' ) __lowerCamelCase : str =os.path.join(SCREAMING_SNAKE_CASE , '''stage-2''' ) # Update arguments_dict __lowerCamelCase : Union[str, Any] =model_path __lowerCamelCase : List[str] =data_files['''train'''] __lowerCamelCase : Dict =current_output_dir __lowerCamelCase : Dict =os.path.join(SCREAMING_SNAKE_CASE , '''best-checkpoint''' , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE ) __lowerCamelCase : str =iteration __lowerCamelCase : Union[str, Any] =data_dir_format(iteration + 1 ) __lowerCamelCase : Dict =AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''best-checkpoint''' ) ) __lowerCamelCase : Optional[Any] =config.idalabel __lowerCamelCase : Any =os.path.join(SCREAMING_SNAKE_CASE , '''eval_results_best-checkpoint.json''' ) __lowerCamelCase : int =os.path.join(SCREAMING_SNAKE_CASE , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: __lowerCamelCase : Tuple =float(json.load(SCREAMING_SNAKE_CASE )[args.eval_metric] ) __lowerCamelCase : str =os.path.join(SCREAMING_SNAKE_CASE , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Loading the dataset from local csv or json files. __lowerCamelCase : List[Any] =load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] __lowerCamelCase : Tuple =load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(SCREAMING_SNAKE_CASE ): shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __lowerCamelCase : Optional[Any] =os.path.join(SCREAMING_SNAKE_CASE , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __lowerCamelCase : List[Any] =eval_result if best_iteration is None: __lowerCamelCase : List[str] =new_iteration __lowerCamelCase : Tuple =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __lowerCamelCase : Any =new_iteration __lowerCamelCase : int =new_eval_result __lowerCamelCase : Tuple =0 else: if new_eval_result == best_eval_result: __lowerCamelCase : Tuple =new_iteration __lowerCamelCase : str =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __lowerCamelCase : str =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'eval_results_iter-{iteration}.json' ) , os.path.join(SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , )
704
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Tuple ): __lowerCamelCase : Any =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowerCamelCase : Any =Vector() def __lowercase ( self :Dict ): __lowerCamelCase : Tuple =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__lowercase ) , '''(0,0,0,0,0,1)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : int =Vector([1, 2, 3, 4] ) self.assertEqual(len(__lowercase ) , 4 ) def __lowercase ( self :Dict ): __lowerCamelCase : Optional[Any] =Vector([1, 2] ) __lowerCamelCase : Dict =Vector([1, 2, 3, 4, 5] ) __lowerCamelCase : List[Any] =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowerCamelCase : int =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =Vector([1, 2, 3] ) __lowerCamelCase : Any =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowercase ( self :str ): __lowerCamelCase : Union[str, Any] =Vector([1, 2, 3] ) __lowerCamelCase : int =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowercase ( self :int ): __lowerCamelCase : List[Any] =Vector([1, 2, 3] ) __lowerCamelCase : List[Any] =Vector([2, -1, 4] ) # for test of dot product __lowerCamelCase : Any =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowercase ( self :List[Any] ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowercase ( self :Union[str, Any] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowercase ( self :List[Any] ): __lowerCamelCase : Any =Vector([1, 2, 3] ) __lowerCamelCase : Optional[int] =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __lowercase , __lowercase ) ) , '''(3,4,7)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : List[Any] =Vector([1, 0, 0, 0, 0, 0] ) __lowerCamelCase : Optional[int] =x.copy() self.assertEqual(str(__lowercase ) , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : str =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__lowercase ) , '''(0,1,0)''' ) def __lowercase ( self :int ): __lowerCamelCase : Any =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[Any] =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__lowercase , __lowercase ) ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Tuple =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__lowercase , __lowercase ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowercase ( self :int ): __lowerCamelCase : Union[str, Any] =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowerCamelCase : Tuple =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :str ): __lowerCamelCase : str =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[str] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : int =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Optional[int] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowercase ( self :Any ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
363
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1_0_2_4} class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self , snake_case , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case = None , **snake_case , ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) lowerCAmelCase__ : Union[str, Any] = vocab_file lowerCAmelCase__ : Optional[Any] = monolingual_vocab_file lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(snake_case ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : Optional[int] = cnt cnt += 1 with open(snake_case , "r" , encoding="utf-8" ) as f: for line in f.readlines(): lowerCAmelCase__ : Union[str, Any] = line.strip().split()[0] lowerCAmelCase__ : List[str] = len(self.fairseq_tokens_to_ids ) if str(snake_case ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : int = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : str = None lowerCAmelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ : Any = {} lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] lowerCAmelCase__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None , snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[str] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ : Optional[Any] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( snake_case ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , snake_case ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(snake_case , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(snake_case )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
453
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase = 1_6 _UpperCamelCase = 3_2 def SCREAMING_SNAKE_CASE ( lowercase__ ) -> str: return int(x / 2**2_0 ) class __a : """simple docstring""" def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase__ : str = torch.cuda.memory_allocated() return self def __exit__( self , *snake_case ): """simple docstring""" gc.collect() torch.cuda.empty_cache() lowerCAmelCase__ : List[str] = torch.cuda.memory_allocated() lowerCAmelCase__ : Optional[int] = torch.cuda.max_memory_allocated() lowerCAmelCase__ : List[str] = bamb(self.end - self.begin ) lowerCAmelCase__ : Union[str, Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ = 1_6 , lowercase__ = "bert-base-cased" , lowercase__ = 3_2_0 , lowercase__ = 1_6_0 , ) -> str: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase__ : Optional[Any] = load_dataset( "glue" , "mrpc" , split={"train": F"""train[:{n_train}]""", "validation": F"""validation[:{n_val}]"""} ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ : str = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(lowercase__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase__ : Tuple = DataLoader( tokenized_datasets["train"] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase__ : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> Dict: # Initialize accelerator lowerCAmelCase__ : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Union[str, Any] = config["lr"] lowerCAmelCase__ : int = int(config["num_epochs"] ) lowerCAmelCase__ : Tuple = int(config["seed"] ) lowerCAmelCase__ : str = int(config["batch_size"] ) lowerCAmelCase__ : Any = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Any = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase__ : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase__ : Any = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase__ : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : List[str] = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase__ : Optional[int] = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ : str = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase__ : Tuple = 0 # Now we train the model lowerCAmelCase__ : List[Any] = {} for epoch in range(lowercase__ , lowercase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase__ : Optional[Any] = model(**lowercase__ ) lowerCAmelCase__ : Optional[int] = outputs.loss lowerCAmelCase__ : Any = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase__ : Optional[int] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCAmelCase__ : int = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=lowercase__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase__ , ) parser.add_argument( "--output_dir" , type=lowercase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=lowercase__ , default=lowercase__ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=lowercase__ , default=3_2_0 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=lowercase__ , default=1_6_0 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of train epochs." , ) lowerCAmelCase__ : Optional[int] = parser.parse_args() lowerCAmelCase__ : Dict = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
453
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase ( A : float , A : float , A : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(A ), magnitude * sin(A )] return [magnitude * cos(radians(A ) ), magnitude * sin(radians(A ) )] def UpperCAmelCase ( A : NDArray[floataa] , A : NDArray[floataa] , A : float = 10**-1 ): '''simple docstring''' _UpperCAmelCase = cross(A , A ) _UpperCAmelCase = sum(A ) return abs(A ) < eps if __name__ == "__main__": # Test to check if it works lowercase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline __UpperCAmelCase = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): def UpperCAmelCase ( self : int , a_ : List[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(a_ , a_ ): a__ : Any = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , a_ : Tuple , a_ : Optional[Any] , a_ : List[str] ) -> Optional[Any]: '''simple docstring''' if len(a_ ) == 0 or len(a_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(a_ ) ) if isinstance(a_ , a_ ): a__ : str = [sequences] a__ : Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(a_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *a_ : Tuple , **a_ : str ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = args_parser super().__init__(*a_ , **a_ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def UpperCAmelCase ( self : Optional[int] , a_ : List[Any] , a_ : int=True , a_ : Tuple=True , a_ : Tuple=TruncationStrategy.ONLY_FIRST , **a_ : Dict ) -> List[Any]: '''simple docstring''' a__ : str = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) a__ : List[str] = self.tokenizer.eos_token try: a__ : List[str] = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=a_ , ) except Exception as e: if "too short" in str(a_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. a__ : List[str] = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self : Tuple , **a_ : Tuple ) -> Optional[int]: '''simple docstring''' if kwargs.get("multi_class" , a_ ) is not None: a__ : str = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) a__ : Tuple = {} if "candidate_labels" in kwargs: a__ : Any = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: a__ : str = kwargs["hypothesis_template"] a__ : Tuple = {} if "multi_label" in kwargs: a__ : Dict = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : str , a_ : Union[str, List[str]] , *a_ : List[str] , **a_ : List[Any] , ) -> Tuple: '''simple docstring''' if len(a_ ) == 0: pass elif len(a_ ) == 1 and "candidate_labels" not in kwargs: a__ : Any = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(a_ , **a_ ) def UpperCAmelCase ( self : Optional[int] , a_ : Tuple , a_ : Any=None , a_ : Dict="This example is {}." ) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self._args_parser(a_ , a_ , a_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(a_ , a_ ) ): a__ : Union[str, Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(a_ ) - 1, **model_input, } def UpperCAmelCase ( self : Optional[int] , a_ : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : Dict = inputs["candidate_label"] a__ : Optional[int] = inputs["sequence"] a__ : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} a__ : int = self.model(**a_ ) a__ : Optional[int] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def UpperCAmelCase ( self : Dict , a_ : Any , a_ : List[str]=False ) -> Union[str, Any]: '''simple docstring''' a__ : int = [outputs["candidate_label"] for outputs in model_outputs] a__ : Optional[int] = [outputs["sequence"] for outputs in model_outputs] a__ : Union[str, Any] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) a__ : List[str] = logits.shape[0] a__ : Optional[int] = len(a_ ) a__ : List[str] = N // n a__ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(a_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently a__ : str = self.entailment_id a__ : str = -1 if entailment_id == 0 else 0 a__ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] a__ : List[Any] = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) a__ : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels a__ : str = reshaped_outputs[..., self.entailment_id] a__ : Optional[int] = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) a__ : List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
642
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __UpperCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __UpperCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self : Tuple , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Any=None ) -> Union[str, Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(a_ , a_ , sample_weight=a_ ) ), }
642
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' __a : Tuple = None def A__ ( self ) ->Any: UpperCAmelCase__ :List[str] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ :Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , A ) def A__ ( self ) ->Union[str, Any]: UpperCAmelCase__ :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ :Tuple = os.path.join(A , 'feat_extract.json' ) feat_extract_first.to_json_file(A ) UpperCAmelCase__ :Optional[Any] = self.feature_extraction_class.from_json_file(A ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A__ ( self ) ->List[Any]: UpperCAmelCase__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ :Union[str, Any] = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) UpperCAmelCase__ :List[str] = self.feature_extraction_class.from_pretrained(A ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A__ ( self ) ->List[Any]: UpperCAmelCase__ :str = self.feature_extraction_class() self.assertIsNotNone(A )
433
from math import isqrt def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :List[Any] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def A ( SCREAMING_SNAKE_CASE = 10**8 ): """simple docstring""" UpperCAmelCase__ :Any = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ :Optional[Any] = 0 UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Dict = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
433
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : str = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Any = features.copy() if features else default_expected_features __UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: __UpperCAmelCase : Dict = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): __UpperCAmelCase : Optional[int] = tmp_path / """cache""" __UpperCAmelCase : str = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() __UpperCAmelCase : Optional[int] = iter_sql_file(__lowerCamelCase ) __UpperCAmelCase : Dict = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): __UpperCAmelCase : int = tmp_path / """cache""" __UpperCAmelCase : int = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : Any = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() __UpperCAmelCase : Union[str, Any] = iter_sql_file(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
63
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a : List[Any] = True except ImportError: a : str = False try: from torch.hub import _get_torch_home a : List[Any] = _get_torch_home() except ImportError: a : int = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) a : Optional[Any] = os.path.join(torch_cache_home, "transformers") a : Optional[Any] = "https://cdn.huggingface.co" a : List[str] = "https://s3.amazonaws.com/models.huggingface.co/bert" a : Any = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) a : Optional[int] = os.path.join(PATH, "config.yaml") a : Dict = os.path.join(PATH, "attributes.txt") a : Tuple = os.path.join(PATH, "objects.txt") a : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) a : Dict = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) a : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) a : Any = "pytorch_model.bin" a : int = "config.yaml" def lowerCamelCase__ ( __lowerCamelCase : str=OBJECTS , __lowerCamelCase : Union[str, Any]=ATTRIBUTES ): __UpperCAmelCase : Union[str, Any] = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) __UpperCAmelCase : Dict = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : List[str] = OrderedDict() with open(__lowerCamelCase , """rb""" ) as f: __UpperCAmelCase : int = pkl.load(__lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase : List[Any] = ckp.pop(__lowerCamelCase ) if isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase ) else: assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase ) __UpperCAmelCase : List[str] = v return r class a : """simple docstring""" a : Dict = {} def __init__( self : Dict , __lowercase : dict , __lowercase : str = "root" , __lowercase : Any=0 ) -> Dict: __UpperCAmelCase : List[str] = name __UpperCAmelCase : str = level __UpperCAmelCase : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase : List[str] = copy.deepcopy(__lowercase ) __UpperCAmelCase : Dict = copy.deepcopy(__lowercase ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Union[str, Any] = Config(__lowercase , name=__lowercase , level=level + 1 ) __UpperCAmelCase : Union[str, Any] = v setattr(self , __lowercase , __lowercase ) __UpperCAmelCase : Any = d def __repr__( self : Optional[Any] ) -> Optional[int]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : List[str] , __lowercase : List[str] , __lowercase : Tuple ) -> int: __UpperCAmelCase : int = val __UpperCAmelCase : List[str] = val __UpperCAmelCase : Union[str, Any] = key.split(""".""" ) __UpperCAmelCase : List[Any] = len(__lowercase ) - 1 __UpperCAmelCase : List[Any] = self._pointer if len(__lowercase ) > 1: for i, l in enumerate(__lowercase ): if hasattr(self , __lowercase ) and isinstance(getattr(self , __lowercase ) , __lowercase ): setattr(getattr(self , __lowercase ) , """.""".join(levels[i:] ) , __lowercase ) if l == last_level: __UpperCAmelCase : Union[str, Any] = val else: __UpperCAmelCase : Union[str, Any] = pointer[l] def UpperCAmelCase ( self : Tuple ) -> Optional[int]: return self._pointer def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: with open(f"""{file_name}""" , """w""" ) as stream: dump(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Any: with open(f"""{file_name}""" , """w""" ) as stream: json.dump(__lowercase , __lowercase ) @staticmethod def UpperCAmelCase ( __lowercase : List[Any] ) -> Optional[Any]: with open(__lowercase ) as stream: __UpperCAmelCase : Any = load(__lowercase , Loader=__lowercase ) return data def __str__( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = """ """ if self._name != "root": __UpperCAmelCase : Optional[Any] = f"""{t * (self._level-1)}{self._name}:\n""" else: __UpperCAmelCase : List[Any] = """""" __UpperCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowercase , __lowercase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__lowercase ).__name__})\n""" __UpperCAmelCase : int = level return r[:-1] @classmethod def UpperCAmelCase ( cls : List[str] , __lowercase : str , **__lowercase : Any ) -> Any: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) return cls(__lowercase ) @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : str , **__lowercase : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : int = kwargs.pop("""cache_dir""" , __lowercase ) __UpperCAmelCase : int = kwargs.pop("""force_download""" , __lowercase ) __UpperCAmelCase : str = kwargs.pop("""resume_download""" , __lowercase ) __UpperCAmelCase : Dict = kwargs.pop("""proxies""" , __lowercase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""local_files_only""" , __lowercase ) if os.path.isdir(__lowercase ): __UpperCAmelCase : List[Any] = os.path.join(__lowercase , __lowercase ) elif os.path.isfile(__lowercase ) or is_remote_url(__lowercase ): __UpperCAmelCase : Tuple = pretrained_model_name_or_path else: __UpperCAmelCase : Optional[int] = hf_bucket_url(__lowercase , filename=__lowercase , use_cdn=__lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase : Optional[int] = cached_path( __lowercase , cache_dir=__lowercase , force_download=__lowercase , proxies=__lowercase , resume_download=__lowercase , local_files_only=__lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase : Optional[int] = Config.load_yaml(__lowercase ) except EnvironmentError: __UpperCAmelCase : str = """Can't load config for""" raise EnvironmentError(__lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(__lowercase ), kwargs def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Optional[int] = torch.load("""dump.pt""" , map_location=in_tensor.device ) __UpperCAmelCase : Tuple = in_tensor.numpy() __UpperCAmelCase : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = urlparse(__lowerCamelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int=True ): __UpperCAmelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase : Optional[int] = """/""" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[int]=None , ): __UpperCAmelCase : Optional[int] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + user_agent __UpperCAmelCase : List[str] = {"""user-agent""": ua} if resume_size > 0: __UpperCAmelCase : Union[str, Any] = """bytes=%d-""" % (resume_size,) __UpperCAmelCase : Union[str, Any] = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase : List[str] = response.headers.get("""Content-Length""" ) __UpperCAmelCase : str = resume_size + int(__lowerCamelCase ) if content_length is not None else None __UpperCAmelCase : List[Any] = tqdm( unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCamelCase ) ) temp_file.write(__lowerCamelCase ) progress.close() def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=None , __lowerCamelCase : List[str]=False , ): if cache_dir is None: __UpperCAmelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = str(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[Any] = None if not local_files_only: try: __UpperCAmelCase : Optional[Any] = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase ) if response.status_code == 200: __UpperCAmelCase : Dict = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase : List[str] = url_to_filename(__lowerCamelCase , __lowerCamelCase ) # get cache path to put the file __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCamelCase ): return cache_path else: __UpperCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(__lowerCamelCase ) > 0: return os.path.join(__lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(__lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase : str = cache_path + """.lock""" with FileLock(__lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase : int = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(__lowerCamelCase , """a+b""" ) as f: yield f __UpperCAmelCase : str = _resumable_file_manager if os.path.exists(__lowerCamelCase ): __UpperCAmelCase : List[Any] = os.stat(__lowerCamelCase ).st_size else: __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : str = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , ) http_get( __lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , ) os.replace(temp_file.name , __lowerCamelCase ) __UpperCAmelCase : Any = {"""url""": url, """etag""": etag} __UpperCAmelCase : Union[str, Any] = cache_path + """.json""" with open(__lowerCamelCase , """w""" ) as meta_file: json.dump(__lowerCamelCase , __lowerCamelCase ) return cache_path def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any]=None ): __UpperCAmelCase : Tuple = url.encode("""utf-8""" ) __UpperCAmelCase : Optional[Any] = shaaaa(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = url_hash.hexdigest() if etag: __UpperCAmelCase : int = etag.encode("""utf-8""" ) __UpperCAmelCase : List[str] = shaaaa(__lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , ): if cache_dir is None: __UpperCAmelCase : List[str] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = str(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = str(__lowerCamelCase ) if is_remote_url(__lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase : Tuple = get_from_cache( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , ) elif os.path.exists(__lowerCamelCase ): # File, and it exists. __UpperCAmelCase : Tuple = url_or_filename elif urlparse(__lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase : int = os.path.split(__lowerCamelCase ) __UpperCAmelCase : Any = output_file.replace(""".""" , """-""" ) + """-extracted""" __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase : str = output_path + """.lock""" with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase ) os.makedirs(__lowerCamelCase ) if is_zipfile(__lowerCamelCase ): with ZipFile(__lowerCamelCase , """r""" ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCamelCase ): __UpperCAmelCase : Any = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) ) return output_path_extracted return output_path def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int="," ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase ) as f: __UpperCAmelCase : List[Any] = eval(f.read() ) else: __UpperCAmelCase : List[str] = requests.get(__lowerCamelCase ) try: __UpperCAmelCase : int = requests.json() except Exception: __UpperCAmelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase : str = eval(__lowerCamelCase ) except Exception: __UpperCAmelCase : List[Any] = data.split("""\n""" ) req.close() return data def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = requests.get(__lowerCamelCase ) __UpperCAmelCase : List[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : int = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as stream: __UpperCAmelCase : List[str] = pkl.load(__lowerCamelCase ) __UpperCAmelCase : Dict = weights.pop("""model""" ) __UpperCAmelCase : Union[str, Any] = {} for k, v in model.items(): __UpperCAmelCase : int = torch.from_numpy(__lowerCamelCase ) if "running_var" in k: __UpperCAmelCase : Optional[int] = torch.tensor([0] ) __UpperCAmelCase : Tuple = k.replace("""running_var""" , """num_batches_tracked""" ) __UpperCAmelCase : Any = zero return new def lowerCamelCase__ ( ): print(f"""{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]="RGB" ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): __UpperCAmelCase : List[str] = cva.imread(__lowerCamelCase ) else: __UpperCAmelCase : int = get_image_from_url(__lowerCamelCase ) assert img is not None, f"""could not connect to: {im}""" __UpperCAmelCase : Any = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase : Optional[int] = img[:, :, ::-1] return img def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int=1 ): return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
63
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase: Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase: List[Any] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase: Optional[int] = strtobool(snake_case_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value _snake_case : Dict = parse_flag_from_env('RUN_SLOW', default=False) _snake_case : int = parse_flag_from_env('RUN_REMOTE', default=False) _snake_case : List[Any] = parse_flag_from_env('RUN_LOCAL', default=True) _snake_case : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression _snake_case : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') _snake_case : str = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') _snake_case : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio _snake_case : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam _snake_case : Optional[int] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility _snake_case : int = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows _snake_case : Union[str, Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __UpperCAmelCase ( snake_case_ : List[Any] ): '''simple docstring''' try: import faiss # noqa except ImportError: UpperCAmelCase: Any = unittest.skip("test requires faiss" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' try: import regex # noqa except ImportError: UpperCAmelCase: Dict = unittest.skip("test requires regex" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: UpperCAmelCase: Tuple = unittest.skip("test requires elasticsearch" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : int ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: UpperCAmelCase: Optional[int] = unittest.skip("test requires sqlalchemy" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' if not config.TORCH_AVAILABLE: UpperCAmelCase: List[Any] = unittest.skip("test requires PyTorch" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Any ): '''simple docstring''' if not config.TF_AVAILABLE: UpperCAmelCase: int = unittest.skip("test requires TensorFlow" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' if not config.JAX_AVAILABLE: UpperCAmelCase: Union[str, Any] = unittest.skip("test requires JAX" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : str ): '''simple docstring''' if not config.PIL_AVAILABLE: UpperCAmelCase: int = unittest.skip("test requires Pillow" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Union[str, Any] ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(snake_case_ ) else: return test_case def __UpperCAmelCase ( snake_case_ : str ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(snake_case_ ) else: return test_case def __UpperCAmelCase ( snake_case_ : str ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(snake_case_ ) else: return test_case def __UpperCAmelCase ( snake_case_ : Tuple ): '''simple docstring''' def _require_spacy_model(snake_case_ : Tuple ): try: import spacy # noqa F401 spacy.load(snake_case_ ) except ImportError: return unittest.skip("test requires spacy" )(snake_case_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(snake_case_ ) )(snake_case_ ) else: return test_case return _require_spacy_model def __UpperCAmelCase ( snake_case_ : str ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(snake_case_ ) else: return test_case def __UpperCAmelCase ( snake_case_ : List[str] ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(snake_case_ ) else: return test_case def __UpperCAmelCase ( snake_case_ : Dict ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase: Union[str, Any] = unittest.skip("test is slow" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : List[Any] ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase: Dict = unittest.skip("test is local" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Union[str, Any] ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase: Optional[Any] = unittest.skip("test is packaged" )(snake_case_ ) return test_case def __UpperCAmelCase ( snake_case_ : Any ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase: Optional[Any] = unittest.skip("test requires remote" )(snake_case_ ) return test_case def __UpperCAmelCase ( *snake_case_ : List[str] ): '''simple docstring''' def decorate(cls : Optional[Any] ): for name, fn in cls.__dict__.items(): if callable(snake_case_ ) and name.startswith("test" ): for decorator in decorators: UpperCAmelCase: Optional[Any] = decorator(snake_case_ ) setattr(cls , snake_case_ , snake_case_ ) return cls return decorate class __lowerCamelCase ( lowercase ): pass class __lowerCamelCase ( lowercase ): lowerCamelCase__: str = 0 lowerCamelCase__: Dict = 1 lowerCamelCase__: List[str] = 2 @contextmanager def __UpperCAmelCase ( snake_case_ : Tuple=OfflineSimulationMode.CONNECTION_FAILS , snake_case_ : Tuple=1e-16 ): '''simple docstring''' UpperCAmelCase: Any = requests.Session().request def timeout_request(snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : int , **snake_case_ : Optional[Any] ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase: List[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCAmelCase: str = timeout try: return online_request(snake_case_ , snake_case_ , **snake_case_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase: Optional[int] = url UpperCAmelCase: str = e.args[0] UpperCAmelCase: Union[str, Any] = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),) UpperCAmelCase: Any = (max_retry_error,) raise def raise_connection_error(snake_case_ : Tuple , snake_case_ : Any , **snake_case_ : Tuple ): raise requests.ConnectionError("Offline mode is enabled." , request=snake_case_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , snake_case_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , snake_case_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , snake_case_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __UpperCAmelCase ( *snake_case_ : Optional[Any] , **snake_case_ : List[str] ): '''simple docstring''' UpperCAmelCase: Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*snake_case_ , **snake_case_ ) as tmp_dir: try: os.chdir(snake_case_ ) yield finally: os.chdir(snake_case_ ) @contextmanager def __UpperCAmelCase ( ): '''simple docstring''' import gc gc.collect() UpperCAmelCase: int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __UpperCAmelCase ( ): '''simple docstring''' import gc gc.collect() UpperCAmelCase: Union[str, Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : List[Any] ): '''simple docstring''' return deepcopy(snake_case_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(snake_case_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(snake_case_ : Any , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): try: return func(*snake_case_ , **snake_case_ ) except HTTPError as err: if str(snake_case_ ).startswith("500" ) or str(snake_case_ ).startswith("502" ): pytest.xfail(str(snake_case_ ) ) raise err return decorator.decorator(_wrapper , snake_case_ ) class __lowerCamelCase : def __init__( self , __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase: int = returncode UpperCAmelCase: Union[str, Any] = stdout UpperCAmelCase: int = stderr async def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : str ): '''simple docstring''' while True: UpperCAmelCase: Tuple = await stream.readline() if line: callback(snake_case_ ) else: break async def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : List[str]=None , snake_case_ : Any=None , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=False , snake_case_ : int=False ): '''simple docstring''' if echo: print("\nRunning: " , " ".join(snake_case_ ) ) UpperCAmelCase: Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase: int = [] UpperCAmelCase: str = [] def tee(snake_case_ : int , snake_case_ : str , snake_case_ : str , snake_case_ : int="" ): UpperCAmelCase: List[Any] = line.decode("utf-8" ).rstrip() sink.append(snake_case_ ) if not quiet: print(snake_case_ , snake_case_ , file=snake_case_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda snake_case_ : tee(snake_case_ , snake_case_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda snake_case_ : tee(snake_case_ , snake_case_ , sys.stderr , label="stderr:" ) ), ] , timeout=snake_case_ , ) return _RunOutput(await p.wait() , snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None , snake_case_ : Any=1_8_0 , snake_case_ : List[Any]=False , snake_case_ : List[str]=True ): '''simple docstring''' UpperCAmelCase: str = asyncio.get_event_loop() UpperCAmelCase: int = loop.run_until_complete( _stream_subprocess(snake_case_ , env=snake_case_ , stdin=snake_case_ , timeout=snake_case_ , quiet=snake_case_ , echo=snake_case_ ) ) UpperCAmelCase: int = " ".join(snake_case_ ) if result.returncode > 0: UpperCAmelCase: int = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def __UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase: Any = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) UpperCAmelCase: Dict = re.sub(r"^gw" , "" , snake_case_ , 0 , re.M ) return int(snake_case_ ) def __UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase: int = 2_9_5_0_0 UpperCAmelCase: Dict = pytest_xdist_worker_id() return port + uniq_delta
716
def __UpperCAmelCase ( snake_case_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): '''simple docstring''' try: UpperCAmelCase: Optional[int] = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) UpperCAmelCase: List[Any] = 2 UpperCAmelCase: Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase: Tuple = i while n % i == 0: UpperCAmelCase: Union[str, Any] = n // i i += 1 return int(snake_case_ ) if __name__ == "__main__": print(f"""{solution() = }""")
166
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : int = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = ["""GLPNFeatureExtractor"""] _A : List[str] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _A : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
100
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=30 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=10 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=0.6 , lowerCamelCase_=None , ) -> Dict: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = mask_ratio lowerCAmelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = TFViTMAEModel(config=lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = TFViTMAEForPreTraining(lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches lowerCAmelCase__ = (self.image_size // self.patch_size) ** 2 lowerCAmelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFViTMAEForPreTraining(lowerCamelCase_ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCamelCase_ , training=lowerCamelCase_ ) lowerCAmelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase__ : Any = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} lowercase__ : str = False lowercase__ : Union[str, Any] = False lowercase__ : int = False lowercase__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = TFViTMAEModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # make the mask reproducible np.random.seed(2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , noise=lowerCamelCase_ ) lowerCAmelCase__ = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) lowerCAmelCase__ = outputs_dict[0].numpy() lowerCAmelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # make the mask reproducible np.random.seed(2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ ): lowerCAmelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): lowerCAmelCase__ = v.numpy() else: lowerCAmelCase__ = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = prepare_numpy_arrays(lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , noise=lowerCamelCase_ ) lowerCAmelCase__ = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: # make masks reproducible np.random.seed(2 ) lowerCAmelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase__ = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase__ = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # make mask reproducible np.random.seed(2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , '''_keras_serializable''' , lowerCamelCase_ ) } lowerCAmelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase__ = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowerCAmelCase__ = main_layer_class(lowerCamelCase_ ) lowerCAmelCase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCAmelCase__ = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) lowerCAmelCase__ = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(lowerCamelCase_ , '''keras_model.h5''' ) model.save(lowerCamelCase_ ) lowerCAmelCase__ = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) lowerCAmelCase__ = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # make mask reproducible np.random.seed(2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase__ = outputs.last_hidden_state.numpy() lowerCAmelCase__ = 0 else: lowerCAmelCase__ = outputs.logits.numpy() lowerCAmelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) lowerCAmelCase__ = model_class.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase__ = after_outputs['''last_hidden_state'''].numpy() lowerCAmelCase__ = 0 else: lowerCAmelCase__ = after_outputs['''logits'''].numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1e-5 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # make mask reproducible np.random.seed(2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , noise=lowerCamelCase_ ) lowerCAmelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) lowerCAmelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCAmelCase__ = model_class.from_config(model.config ) lowerCAmelCase__ = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowerCAmelCase__ = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCamelCase_ ) def _snake_case ( ) -> Optional[int]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> str: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase__ = ViTMAEConfig() lowerCAmelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCAmelCase__ = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 )
98
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _snake_case ( ) -> Any: lowerCAmelCase__ = 10 lowerCAmelCase__ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowerCAmelCase__ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(A ) ), } , features=A , ) return dataset @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=A ) return filename # FILE_CONTENT + files __UpperCAmelCase = '''\ Text data. Second line of data.''' @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' lowerCAmelCase__ = FILE_CONTENT with open(A , '''w''' ) as f: f.write(A ) return filename @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Union[str, Any]: import bza lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' lowerCAmelCase__ = bytes(A , '''utf-8''' ) with bza.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Tuple: import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowerCAmelCase__ = bytes(A , '''utf-8''' ) with gzip.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> List[str]: if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' lowerCAmelCase__ = bytes(A , '''utf-8''' ) with lza.frame.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> int: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(A , '''w''' ) as archive: archive.write(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> str: import tarfile lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(A , '''w''' ) as f: f.add(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Optional[int]: import lzma lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' lowerCAmelCase__ = bytes(A , '''utf-8''' ) with lzma.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> List[str]: import zipfile lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' lowerCAmelCase__ = bytes(A , '''utf-8''' ) with zstd.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Any: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' lowerCAmelCase__ = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(A , '''w''' ) as f: f.write(A ) return filename __UpperCAmelCase = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __UpperCAmelCase = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __UpperCAmelCase = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __UpperCAmelCase = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='''session''' ) def _snake_case ( ) -> Union[str, Any]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Optional[Any]: lowerCAmelCase__ = datasets.Dataset.from_dict(A ) lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> str: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(A ) ) as con: lowerCAmelCase__ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Any: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(A , '''w''' , newline='''''' ) as f: lowerCAmelCase__ = csv.DictWriter(A , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(A , '''w''' , newline='''''' ) as f: lowerCAmelCase__ = csv.DictWriter(A , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> Optional[int]: import bza lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(A , '''rb''' ) as f: lowerCAmelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> List[str]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(A ) ) f.write(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> Dict: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(A , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> Optional[int]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> str: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowerCAmelCase__ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(A , '''wb''' ) as f: lowerCAmelCase__ = pq.ParquetWriter(A , schema=A ) lowerCAmelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(A ) )] for k in DATA[0]} , schema=A ) writer.write_table(A ) writer.close() return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> str: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCAmelCase__ = {'''data''': DATA} with open(A , '''w''' ) as f: json.dump(A , A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCAmelCase__ = {'''data''': DATA_DICT_OF_LISTS} with open(A , '''w''' ) as f: json.dump(A , A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> str: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(A , '''w''' ) as f: for item in DATA: f.write(json.dumps(A ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Optional[Any]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(A , '''w''' ) as f: for item in DATA: f.write(json.dumps(A ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> List[str]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(A , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(A ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> List[Any]: lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(A , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(A ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> List[str]: import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(A , '''rb''' ) as orig_file: with gzip.open(A , '''wb''' ) as zipped_file: zipped_file.writelines(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> Dict: import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(A , '''rb''' ) as orig_file: with gzip.open(A , '''wb''' ) as zipped_file: zipped_file.writelines(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> str: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(A ) ) f.write(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A , A ) -> Optional[Any]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.join('''nested''' , os.path.basename(A ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> List[Any]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> List[str]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(A , '''w''' ) as f: f.add(A , arcname=os.path.basename(A ) ) f.add(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A , A ) -> Optional[int]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(A , '''w''' ) as f: f.add(A , arcname=os.path.join('''nested''' , os.path.basename(A ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Any: lowerCAmelCase__ = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(A , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(A , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(A , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> List[Any]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(A ) ) f.write(A , arcname=os.path.basename(A ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) f.write(A , arcname=os.path.join('''main_dir''' , os.path.basename(A ) ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A , A , A ) -> Optional[int]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(A , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowerCAmelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(A ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( ) -> List[str]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _snake_case ( ) -> Any: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _snake_case ( A , A ) -> Union[str, Any]: lowerCAmelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(A , '''w''' ) as f: f.write(A , arcname=os.path.basename(A ) ) f.write(A , arcname=os.path.basename(A ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _snake_case ( A ) -> int: lowerCAmelCase__ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
98
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCAmelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> Any: lowerCAmelCase__ = None lowerCAmelCase__ = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCAmelCase__ = os.path.abspath('''examples''' ) for item in os.listdir(lowerCamelCase_ ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ) and ".py" in item_path: with self.subTest( tested_script=lowerCamelCase_ , feature_script=lowerCamelCase_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCAmelCase__ = compare_against_test( os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = '''\n'''.join(lowerCamelCase_ ) if special_strings is not None: for string in special_strings: lowerCAmelCase__ = diff.replace(lowerCamelCase_ , '''''' ) self.assertEqual(lowerCamelCase_ , '''''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.one_complete_example('''complete_nlp_example.py''' , lowerCamelCase_ ) self.one_complete_example('''complete_nlp_example.py''' , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCAmelCase__ = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.one_complete_example('''complete_cv_example.py''' , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = False @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Optional[Any]: super().setUpClass() lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> str: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase_ ) self.assertNotIn('''epoch 0:''' , lowerCamelCase_ ) self.assertIn('''epoch 1:''' , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase_ ) if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , lowerCamelCase_ ) self.assertIn('''epoch 1:''' , lowerCamelCase_ ) else: self.assertIn('''epoch 0:''' , lowerCamelCase_ ) self.assertIn('''epoch 1:''' , lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase_ ) lowerCAmelCase__ = re.findall('''({.+})''' , lowerCamelCase_ ) lowerCAmelCase__ = [r for r in results if '''accuracy''' in r][-1] lowerCAmelCase__ = ast.literal_eval(lowerCamelCase_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase__ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''tracking''' ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
90
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[List[float]] = None , __a : Optional[int] = None , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Tuple = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) else: return _interleave_iterable_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : int = 0 , ): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Dict = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__a , info=__a , split=__a , axis=__a ) else: return _concatenate_iterable_datasets(__a , info=__a , split=__a , axis=__a )
229
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = ['''image_processor''', '''feature_extractor'''] SCREAMING_SNAKE_CASE : Optional[int] = '''TvltImageProcessor''' SCREAMING_SNAKE_CASE : int = '''TvltFeatureExtractor''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor lowerCAmelCase = feature_extractor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) lowerCAmelCase = None if images is not None: lowerCAmelCase = self.image_processor(_SCREAMING_SNAKE_CASE , mask_pixel=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images_mixed is not None: lowerCAmelCase = self.image_processor(_SCREAMING_SNAKE_CASE , is_mixed=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if audio is not None: lowerCAmelCase = self.feature_extractor( _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , mask_audio=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} if audio is not None: output_dict.update(_SCREAMING_SNAKE_CASE ) if images is not None: output_dict.update(_SCREAMING_SNAKE_CASE ) if images_mixed_dict is not None: output_dict.update(_SCREAMING_SNAKE_CASE ) return output_dict @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.image_processor.model_input_names lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
514
'''simple docstring''' import torch def snake_case ( ) -> List[str]: """simple docstring""" if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
514
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup a : Tuple = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": a : Any = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') a : Optional[Any] = parser.parse_args() if args.check_lib: a : str = importlib.import_module('transformers') a : List[Any] = Path(transformers_module.__file__).parent else: a : Tuple = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
556
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Any = XLMRobertaTokenizer a_ : Tuple = XLMRobertaTokenizerFast a_ : Any = True a_ : Optional[int] = True def _UpperCamelCase ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = '<pad>' lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def _UpperCamelCase ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _UpperCamelCase ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def _UpperCamelCase ( self : Dict ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _UpperCamelCase ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) lowerCamelCase__ = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict ): if not self.test_rust_tokenizer: return lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = 'I was born in 92000, and this is falsé.' lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = 'Hello World!' lowerCamelCase__ = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def _UpperCamelCase ( self : str ): # fmt: off lowerCamelCase__ = {'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
510
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase ( __a , __a , unittest.TestCase ): a__ :Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) a__ :List[Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) a__ :int = False a__ :Any = False def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Union[str, Any]: UpperCamelCase_ : Optional[int] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): UpperCamelCase_ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCamelCase ( __a ): def __init__(self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> List[str]: UpperCamelCase_ : int = parent UpperCamelCase_ : List[str] = batch_size UpperCamelCase_ : Tuple = seq_length UpperCamelCase_ : Dict = is_training UpperCamelCase_ : Dict = use_input_mask UpperCamelCase_ : Tuple = use_token_type_ids UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : str = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : Dict = num_attention_heads UpperCamelCase_ : List[Any] = intermediate_size UpperCamelCase_ : Union[str, Any] = hidden_act UpperCamelCase_ : Union[str, Any] = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : Dict = max_position_embeddings UpperCamelCase_ : str = type_vocab_size UpperCamelCase_ : Optional[Any] = type_sequence_label_size UpperCamelCase_ : Union[str, Any] = initializer_range UpperCamelCase_ : Any = num_labels UpperCamelCase_ : List[Any] = num_choices UpperCamelCase_ : Dict = scope UpperCamelCase_ : Optional[int] = embedding_size def A_ (self ) -> Tuple: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Optional[Any] = None if self.use_input_mask: UpperCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : List[Any] = None UpperCamelCase_ : Any = None UpperCamelCase_ : Dict = None if self.use_labels: UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Tuple = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: UpperCamelCase_ : Union[str, Any] = TFMobileBertModel(config=__UpperCamelCase ) UpperCamelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : List[Any] = model(__UpperCamelCase ) UpperCamelCase_ : Tuple = [input_ids, input_mask] UpperCamelCase_ : List[Any] = model(__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: UpperCamelCase_ : int = TFMobileBertForMaskedLM(config=__UpperCamelCase ) UpperCamelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: UpperCamelCase_ : List[str] = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: UpperCamelCase_ : Any = TFMobileBertForPreTraining(config=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: UpperCamelCase_ : List[str] = self.num_labels UpperCamelCase_ : List[Any] = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) UpperCamelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: UpperCamelCase_ : List[Any] = self.num_choices UpperCamelCase_ : Optional[int] = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : str = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : List[str] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : List[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: UpperCamelCase_ : List[Any] = self.num_labels UpperCamelCase_ : Optional[Any] = TFMobileBertForTokenClassification(config=__UpperCamelCase ) UpperCamelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: UpperCamelCase_ : Tuple = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) UpperCamelCase_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ (self ) -> Dict: UpperCamelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ), ) : Tuple = config_and_inputs UpperCamelCase_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def A_ (self ) -> str: UpperCamelCase_ : Tuple = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase_ : str = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def A_ (self ) -> Optional[int]: self.config_tester.run_common_tests() def A_ (self ) -> Any: UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def A_ (self ) -> int: UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def A_ (self ) -> Dict: UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def A_ (self ) -> Tuple: UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def A_ (self ) -> List[str]: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def A_ (self ) -> List[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCamelCase_ : int = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[Any] = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) UpperCamelCase_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase_ : Union[str, Any] = model(__UpperCamelCase )[0] UpperCamelCase_ : Dict = [1, 6, 30_522] self.assertEqual(output.shape , __UpperCamelCase ) UpperCamelCase_ : Any = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
138
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] SCREAMING_SNAKE_CASE : List[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = s.rsplit(__UpperCamelCase , __UpperCamelCase ) return new.join(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( __UpperCamelCase ) -> List[str]: A__ = {} A__ = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A__ = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: A__ = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): A__ = rreplace(__UpperCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): A__ = rreplace(__UpperCamelCase , '.b' , '.bias' , 1 ) A__ = value.float() return upgrade @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True ) -> Optional[Any]: from dall_e import Encoder A__ = Encoder() if os.path.exists(__UpperCamelCase ): A__ = torch.load(__UpperCamelCase ) else: A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = ckpt.state_dict() encoder.load_state_dict(__UpperCamelCase ) if config_path is not None: A__ = FlavaImageCodebookConfig.from_pretrained(__UpperCamelCase ) else: A__ = FlavaImageCodebookConfig() A__ = FlavaImageCodebook(__UpperCamelCase ).eval() A__ = encoder.state_dict() A__ = upgrade_state_dict(__UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) A__ = hf_model.state_dict() A__ = count_parameters(__UpperCamelCase ) A__ = count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__UpperCamelCase ) else: return hf_state_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
from __future__ import annotations def __UpperCamelCase ( A , A ): UpperCamelCase__ = get_failure_array(A ) # 2) Step through text searching for pattern UpperCamelCase__ , UpperCamelCase__ = 0, 0 # index into text, pattern while i < len(A ): if pattern[j] == text[i]: if j == (len(A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ = failure[j - 1] continue i += 1 return False def __UpperCamelCase ( A ): UpperCamelCase__ = [0] UpperCamelCase__ = 0 UpperCamelCase__ = 1 while j < len(A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ = failure[i - 1] continue j += 1 failure.append(A ) return failure if __name__ == "__main__": # Test 1) __magic_name__ ='''abc1abc12''' __magic_name__ ='''alskfjaldsabc1abc1abc12k23adsfabcabc''' __magic_name__ ='''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __magic_name__ ='''ABABX''' __magic_name__ ='''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __magic_name__ ='''AAAB''' __magic_name__ ='''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __magic_name__ ='''abcdabcy''' __magic_name__ ='''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __magic_name__ ='''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
469
def __UpperCamelCase ( A = 600851475143 ): try: UpperCamelCase__ = int(A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) UpperCamelCase__ = 1 UpperCamelCase__ = 2 while i * i <= n: while n % i == 0: UpperCamelCase__ = i n //= i i += 1 if n > 1: UpperCamelCase__ = n return int(A ) if __name__ == "__main__": print(f"""{solution() = }""")
469
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase__ ( snake_case ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( __lowerCAmelCase: ArgumentParser ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self: str ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
221
def __lowerCAmelCase ( A_ : str ) -> str: __UpperCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __lowerCAmelCase ( A_ : str ) -> dict[str, str]: __UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __UpperCAmelCase = remove_duplicates(key.upper() ) __UpperCAmelCase = len(A_ ) # First fill cipher with key characters __UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(A_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A_ ) , 26 ): __UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __UpperCAmelCase = alphabet[i - offset] __UpperCAmelCase = char return cipher_alphabet def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: return "".join(cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: __UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( ) -> None: __UpperCAmelCase = input("Enter message to encode or decode: " ).strip() __UpperCAmelCase = input("Enter keyword: " ).strip() __UpperCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __UpperCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __UpperCAmelCase = create_cipher_map(A_ ) print(func(A_ , A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
221
1
from __future__ import annotations def lowerCamelCase_ ( A : float , A : float , A : float , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
413
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class UpperCamelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase=None , **_UpperCAmelCase): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''') lowerCAmelCase_ = model lowerCAmelCase_ = kwargs.get('''model_save_dir''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.get('''latest_model_name''' , _UpperCAmelCase) def __call__( self , **_UpperCAmelCase): lowerCAmelCase_ = {k: np.array(_UpperCAmelCase) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase) @staticmethod def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''') lowerCAmelCase_ = '''CPUExecutionProvider''' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase): lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase_ = self.model_save_dir.joinpath(self.latest_model_name) lowerCAmelCase_ = Path(_UpperCAmelCase).joinpath(_UpperCAmelCase) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase_ = self.model_save_dir.joinpath(_UpperCAmelCase) if src_path.exists(): lowerCAmelCase_ = Path(_UpperCAmelCase).joinpath(_UpperCAmelCase) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase) except shutil.SameFileError: pass def lowercase__ ( self , _UpperCAmelCase , **_UpperCAmelCase , ): if os.path.isfile(_UpperCAmelCase): logger.error(f'Provided path ({save_directory}) should be a directory, not a file') return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase) @classmethod def lowercase__ ( cls , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase): lowerCAmelCase_ = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase) lowerCAmelCase_ = Path(_UpperCAmelCase) # load model from hub else: # download model lowerCAmelCase_ = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) lowerCAmelCase_ = Path(_UpperCAmelCase).parent lowerCAmelCase_ = Path(_UpperCAmelCase).name lowerCAmelCase_ = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase) return cls(model=_UpperCAmelCase , **_UpperCAmelCase) @classmethod def lowercase__ ( cls , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowerCAmelCase_ = None if len(str(_UpperCAmelCase).split('''@''')) == 2: lowerCAmelCase_ , lowerCAmelCase_ = model_id.split('''@''') return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
413
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( __SCREAMING_SNAKE_CASE ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = Sql( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , sql=__SCREAMING_SNAKE_CASE , con=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , ) # Build dataset for splits lowerCAmelCase__ : List[str] = self.builder.as_dataset( split='''train''' , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) lowerCAmelCase__ : Dict = dataset lowerCAmelCase__ : Any = name lowerCAmelCase__ : Tuple = con lowerCAmelCase__ : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCAmelCase__ : Optional[int] = num_proc lowerCAmelCase__ : str = to_sql_kwargs def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = self.to_sql_kwargs.pop('''sql''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = self.to_sql_kwargs.pop('''con''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = self.to_sql_kwargs.pop('''index''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self._write(index=__SCREAMING_SNAKE_CASE , **self.to_sql_kwargs ) return written def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : List[Any] = args lowerCAmelCase__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs lowerCAmelCase__ : List[str] = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCAmelCase__ : int = batch.to_pandas() lowerCAmelCase__ : Optional[Any] = df.to_sql(self.name , self.con , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return num_rows or len(__SCREAMING_SNAKE_CASE ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCAmelCase__ : int = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
233
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 100_0000 ): A__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCAmelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
702
"""simple docstring""" import math import sys def _snake_case ( UpperCAmelCase_ : int ): if number != int(UpperCAmelCase_ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A__ = [-1] * (number + 1) A__ = 0 for i in range(1 , number + 1 ): A__ = sys.maxsize A__ = int(math.sqrt(UpperCAmelCase_ ) ) for j in range(1 , root + 1 ): A__ = 1 + answers[i - (j**2)] A__ = min(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
500
0
import re def _UpperCamelCase (a__ :str ): """simple docstring""" UpperCamelCase__ = re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(a__ , a__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
619
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCamelCase__ = VideoClassificationPipeline(model=__lowerCAmelCase , image_processor=__lowerCAmelCase , top_k=2 ) UpperCamelCase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): for example in examples: UpperCamelCase__ = video_classifier(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" UpperCamelCase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) UpperCamelCase__ = pipeline( """video-classification""" , model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , frame_sampling_rate=4 ) UpperCamelCase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCamelCase__ = video_classifier(__lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) UpperCamelCase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def _lowerCamelCase ( self ): pass
619
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) UpperCAmelCase__ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__snake_case ) , torch_builtin(__snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(__snake_case ) , gelu_new(__snake_case ) ) ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) UpperCAmelCase__ = get_activation("gelu" ) UpperCAmelCase__ = get_activation("gelu_10" ) UpperCAmelCase__ = torch_builtin(__snake_case ) UpperCAmelCase__ = geluaa(__snake_case ) UpperCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__snake_case ): get_activation("bogus" ) with self.assertRaises(__snake_case ): get_activation(__snake_case ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = get_activation("gelu" ) UpperCAmelCase__ = 1 UpperCAmelCase__ = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__snake_case ): UpperCAmelCase__ = acta.a
705
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to SortishSamler or not.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'whether to use adafactor'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) A__= field( default='linear' , metadata={'help': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
277
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = ['''input_features''', '''attention_mask'''] def __init__( self : Optional[int] , _UpperCAmelCase : Any=80 , _UpperCAmelCase : int=16_000 , _UpperCAmelCase : Optional[int]=80 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) _A = num_mel_bins _A = do_ceptral_normalize _A = normalize_means _A = normalize_vars _A = True def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Any , ): _A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _A = torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) _A = ta_kaldi.fbank(__SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str = True , _UpperCAmelCase : List[Any] = True , _UpperCAmelCase : List[Any] = 0.0 , ): if normalize_means: _A = x[:input_length].mean(axis=0 ) _A = np.subtract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if normalize_vars: _A = x[:input_length].std(axis=0 ) _A = np.divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: _A = padding_value # make sure array is in float32 _A = x.astype(np.floataa ) return x def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple = None ): _A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] def __call__( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] = False , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : List[str] = False , _UpperCAmelCase : int = None , _UpperCAmelCase : Any = None , _UpperCAmelCase : Tuple = None , _UpperCAmelCase : Tuple = None , **_UpperCAmelCase : Any , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _A = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): _A = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [raw_speech] # extract fbank features _A = [self._extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding _A = BatchFeature({'input_features': features} ) _A = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # make sure list is in array format _A = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): _A = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _A = ( np.array(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.normalize( padded_inputs['input_features'] , attention_mask=__SCREAMING_SNAKE_CASE ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
7
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Dict: '''simple docstring''' __snake_case = [] __snake_case = [] __snake_case = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __snake_case = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(_lowerCamelCase ) , '''Postfix'''.center(_lowerCamelCase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''''''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''''''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=''' | ''' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''''''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=''' | ''' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' __snake_case = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": __snake_case = ''')''' # change "(" to ")" elif infix[i] == ")": __snake_case = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase_ : Dict = input('''\nEnter an Infix Equation = ''') # Input an Infix equation UpperCAmelCase_ : Optional[Any] = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
24
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> int: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : List[Any] = 0 for chara, chara in zip(lowerCAmelCase , lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
467
import logging import os from .state import PartialState class a ( logging.LoggerAdapter ): @staticmethod def _UpperCAmelCase ( A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _UpperCAmelCase ( self , A_ , A_ , *A_ , **A_ ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) _UpperCAmelCase : Tuple = kwargs.pop("main_process_only" , A_ ) _UpperCAmelCase : int = kwargs.pop("in_order" , A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) elif in_order: _UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str = None ) -> List[Any]: if log_level is None: _UpperCAmelCase : List[str] = os.environ.get("ACCELERATE_LOG_LEVEL" , lowerCAmelCase ) _UpperCAmelCase : str = logging.getLogger(lowerCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCAmelCase , {} )
467
1
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowercase__ : Union[str, Any] , lowercase__ : int=2 , lowercase__ : Dict=5_6 , lowercase__ : Dict=True , lowercase__ : Optional[Any]=True , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : List[str]=9_9 , lowercase__ : Optional[Any]=3_2 , lowercase__ : List[str]=2 , lowercase__ : Any=2 , lowercase__ : Any=7 , lowercase__ : Tuple="gelu_new" , lowercase__ : List[Any]=0.1 , lowercase__ : Optional[int]=0.1 , lowercase__ : Union[str, Any]=5_1_2 , lowercase__ : Optional[int]=1_6 , lowercase__ : str=2 , lowercase__ : Dict=0.0_2 , lowercase__ : str=4 , lowercase__ : Optional[Any]="block_sparse" , lowercase__ : Any=True , lowercase__ : Dict=False , lowercase__ : List[Any]=2 , lowercase__ : int=3 , ): __lowercase : int = parent __lowercase : str = batch_size __lowercase : List[Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : str = use_attention_mask __lowercase : Any = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Any = vocab_size __lowercase : List[str] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Optional[int] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : List[Any] = initializer_range __lowercase : Optional[int] = num_choices __lowercase : List[str] = rescale_embeddings __lowercase : Any = attention_type __lowercase : Optional[Any] = use_bias __lowercase : int = block_size __lowercase : Optional[int] = num_random_blocks def snake_case ( self : int ): __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_attention_mask: __lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Dict = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self : List[str] ): __lowercase : Any = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase ,__lowercase : Dict = config_and_inputs __lowercase : Any = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False def snake_case ( self : List[str] ): __lowercase : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self : Optional[int] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self : Tuple ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self : str ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self : int ): super().test_hidden_states_output() @slow def snake_case ( self : Tuple ): for model_class_name in self.all_model_classes: __lowercase : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase__ ) def snake_case ( self : Union[str, Any] ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self : str ): __lowercase ,__lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Optional[Any] = self._prepare_for_class(lowercase__ , lowercase__ ) __lowercase : Union[str, Any] = model_class(lowercase__ ) @jax.jit def model_jitted(lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=None , **lowercase__ : Optional[int] ): return model(input_ids=lowercase__ , attention_mask=lowercase__ , **lowercase__ ) with self.subTest("JIT Enabled" ): __lowercase : int = model_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase : Union[str, Any] = model_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self : Any , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=1e-5 , lowercase__ : Union[str, Any]="outputs" , lowercase__ : Union[str, Any]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
575
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Dict = 1_6 __A : str = 3_2 def snake_case__ ( _lowerCamelCase, _lowerCamelCase = 16 ) ->Dict: """simple docstring""" __lowercase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowercase : str = load_dataset("glue", "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase : Any = tokenizer(examples["sentence1"], examples["sentence2"], truncation=_lowerCamelCase, max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : Optional[Any] = datasets.map( _lowerCamelCase, batched=_lowerCamelCase, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : Tuple = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : str = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : Optional[int] = 16 elif accelerator.mixed_precision != "no": __lowercase : Tuple = 8 else: __lowercase : Dict = None return tokenizer.pad( _lowerCamelCase, padding="longest", max_length=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_tensors="pt", ) # Instantiate dataloaders. __lowercase : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=_lowerCamelCase, collate_fn=_lowerCamelCase, batch_size=_lowerCamelCase ) __lowercase : List[Any] = DataLoader( tokenized_datasets["validation"], shuffle=_lowerCamelCase, collate_fn=_lowerCamelCase, batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : int = mocked_dataloaders # noqa: F811 def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS", _lowerCamelCase ) == "1": __lowercase : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowercase : Dict = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: __lowercase : List[str] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Optional[Any] = config["lr"] __lowercase : Optional[int] = int(config["num_epochs"] ) __lowercase : Union[str, Any] = int(config["seed"] ) __lowercase : str = int(config["batch_size"] ) set_seed(_lowerCamelCase ) __lowercase ,__lowercase : Optional[int] = get_dataloaders(_lowerCamelCase, _lowerCamelCase ) __lowercase : Optional[Any] = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation __lowercase : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase : Dict = batch_size // MAX_GPU_BATCH_SIZE __lowercase : Dict = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __lowercase : Optional[Any] = AdamW(params=model.parameters(), lr=_lowerCamelCase ) # Instantiate scheduler __lowercase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase, num_warmup_steps=1_00, num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase : List[str] = accelerator.prepare( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowercase : Union[str, Any] = os.path.split(_lowerCamelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCamelCase, _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowercase : Any = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase : Dict = model(**_lowerCamelCase ) __lowercase : Union[str, Any] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowercase : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowercase : Dict = model(**_lowerCamelCase ) __lowercase : Tuple = outputs.logits.argmax(dim=-1 ) __lowercase ,__lowercase : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase, references=_lowerCamelCase, ) __lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', _lowerCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCamelCase ), "epoch": epoch, }, step=_lowerCamelCase, ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def snake_case__ ( ) ->List[Any]: """simple docstring""" __lowercase : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=_lowerCamelCase, default=_lowerCamelCase, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=_lowerCamelCase, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) __lowercase : Tuple = parser.parse_args() __lowercase : List[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase, _lowerCamelCase ) if __name__ == "__main__": main()
575
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowercase : List[Any] = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowercase : Dict = '</w>' lowercase : Tuple = '@@ ' def __a ( A__ ) -> int: lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char return pairs # Speech2Text2 has no max input length lowercase : List[str] = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str="<s>" , SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE : Optional[int]="</s>" , SCREAMING_SNAKE_CASE : Any="<unk>" , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=None , **SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__( unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowerCAmelCase = do_lower_case with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: lowerCAmelCase = json.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) lowerCAmelCase = None lowerCAmelCase = None else: with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: lowerCAmelCase = merges_handle.read().split("\n" )[:-1] lowerCAmelCase = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase = {} @property def __A ( self : Tuple ) -> int: """simple docstring""" return len(self.decoder ) def __A ( self : List[str] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : int , SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" lowerCAmelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase = get_pairs(SCREAMING_SNAKE_CASE ) if not pairs: return token while True: lowerCAmelCase = min(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : self.bpe_ranks.get(SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(SCREAMING_SNAKE_CASE ): try: lowerCAmelCase = word.index(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(SCREAMING_SNAKE_CASE ) lowerCAmelCase = new_word if len(SCREAMING_SNAKE_CASE ) == 1: break else: lowerCAmelCase = get_pairs(SCREAMING_SNAKE_CASE ) lowerCAmelCase = " ".join(SCREAMING_SNAKE_CASE ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase = "\n" + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase = word.replace(SCREAMING_SNAKE_CASE , "" ) lowerCAmelCase = word.replace(" " , SCREAMING_SNAKE_CASE ) lowerCAmelCase = word return word def __A ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: lowerCAmelCase = text.lower() lowerCAmelCase = text.split() lowerCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" lowerCAmelCase = self.decoder.get(SCREAMING_SNAKE_CASE , self.unk_token ) return result def __A ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" lowerCAmelCase = " ".join(SCREAMING_SNAKE_CASE ) # make sure @@ tokens are concatenated lowerCAmelCase = "".join(string.split(SCREAMING_SNAKE_CASE ) ) return string def __A ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE , ensure_ascii=SCREAMING_SNAKE_CASE ) + "\n" ) lowerCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return (vocab_file, merges_file)
159
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase : Union[str, Any] = TypeVar('T') class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : list[T] , SCREAMING_SNAKE_CASE : Callable[[T, T], T] ) -> None: """simple docstring""" lowerCAmelCase = None lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = [any_type for _ in range(self.N )] + arr lowerCAmelCase = fnc self.build() def __A ( self : Dict ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): lowerCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" p += self.N lowerCAmelCase = v while p > 1: lowerCAmelCase = p // 2 lowerCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> T | None: # noqa: E741 """simple docstring""" lowerCAmelCase , lowerCAmelCase = l + self.N, r + self.N lowerCAmelCase = None while l <= r: if l % 2 == 1: lowerCAmelCase = self.st[l] if res is None else self.fn(SCREAMING_SNAKE_CASE , self.st[l] ) if r % 2 == 0: lowerCAmelCase = self.st[r] if res is None else self.fn(SCREAMING_SNAKE_CASE , self.st[r] ) lowerCAmelCase , lowerCAmelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase : List[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase : Dict = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase : Optional[Any] = SegmentTree(test_array, min) lowercase : Union[str, Any] = SegmentTree(test_array, max) lowercase : Tuple = SegmentTree(test_array, lambda a, b: a + b) def __a ( ) -> None: for i in range(len(A__ ) ): for j in range(A__ , len(A__ ) ): lowerCAmelCase = reduce(A__ , test_array[i : j + 1] ) lowerCAmelCase = reduce(A__ , test_array[i : j + 1] ) lowerCAmelCase = reduce(lambda A__ , A__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(A__ , A__ ) assert max_range == max_segment_tree.query(A__ , A__ ) assert sum_range == sum_segment_tree.query(A__ , A__ ) test_all_segments() for index, value in test_updates.items(): lowercase : List[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
159
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a ( a , a="shi-labs/oneformer_demo" ) ->List[Any]: '''simple docstring''' with open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE = json.load(a ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): SCREAMING_SNAKE_CASE = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(a ) ) SCREAMING_SNAKE_CASE = thing_ids SCREAMING_SNAKE_CASE = class_names return metadata class lowerCamelCase ( unittest.TestCase ): def __init__( self :Optional[int] , lowercase :Optional[Any] , lowercase :Tuple=7 , lowercase :Tuple=3 , lowercase :Optional[Any]=3_0 , lowercase :Optional[Any]=4_0_0 , lowercase :Any=None , lowercase :Union[str, Any]=True , lowercase :Optional[int]=True , lowercase :str=[0.5, 0.5, 0.5] , lowercase :Optional[Any]=[0.5, 0.5, 0.5] , lowercase :Union[str, Any]=1_0 , lowercase :Optional[Any]=False , lowercase :Any=2_5_5 , lowercase :List[str]="shi-labs/oneformer_demo" , lowercase :str="ade20k_panoptic.json" , lowercase :str=1_0 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = class_info_file SCREAMING_SNAKE_CASE = prepare_metadata(lowercase , lowercase ) SCREAMING_SNAKE_CASE = num_text SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1_0 SCREAMING_SNAKE_CASE = 1_0 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = do_reduce_labels SCREAMING_SNAKE_CASE = ignore_index def snake_case__ ( self :Dict ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def snake_case__ ( self :List[Any] , lowercase :List[str] , lowercase :List[str]=False ) -> Optional[Any]: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowercase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(lowercase , key=lambda lowercase : item[0] )[0] SCREAMING_SNAKE_CASE = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width def snake_case__ ( self :str ) -> List[str]: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase ( __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase_ : Any = image_processing_class def snake_case__ ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def snake_case__ ( self :int ) -> List[str]: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def snake_case__ ( self :Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase , '''image_std''' ) ) self.assertTrue(hasattr(lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase , '''size''' ) ) self.assertTrue(hasattr(lowercase , '''ignore_index''' ) ) self.assertTrue(hasattr(lowercase , '''class_info_file''' ) ) self.assertTrue(hasattr(lowercase , '''num_text''' ) ) self.assertTrue(hasattr(lowercase , '''repo_path''' ) ) self.assertTrue(hasattr(lowercase , '''metadata''' ) ) self.assertTrue(hasattr(lowercase , '''do_reduce_labels''' ) ) def snake_case__ ( self :Dict ) -> List[Any]: """simple docstring""" pass def snake_case__ ( self :Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase , batched=lowercase ) SCREAMING_SNAKE_CASE = image_processor( lowercase , ['''semantic'''] * len(lowercase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self :Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase , batched=lowercase ) SCREAMING_SNAKE_CASE = image_processor( lowercase , ['''semantic'''] * len(lowercase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowercase , batched=lowercase ) SCREAMING_SNAKE_CASE = image_processor( lowercase , ['''semantic'''] * len(lowercase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self :Any , lowercase :List[str]=False , lowercase :Any=False , lowercase :List[Any]="np" ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase ) if with_segmentation_maps: SCREAMING_SNAKE_CASE = num_labels if is_instance_map: SCREAMING_SNAKE_CASE = list(range(lowercase ) ) * 2 SCREAMING_SNAKE_CASE = dict(enumerate(lowercase ) ) SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": SCREAMING_SNAKE_CASE = [Image.fromarray(lowercase ) for annotation in annotations] SCREAMING_SNAKE_CASE = image_processor( lowercase , ['''semantic'''] * len(lowercase ) , lowercase , return_tensors='''pt''' , instance_id_to_semantic_id=lowercase , pad_and_return_pixel_mask=lowercase , ) return inputs def snake_case__ ( self :Dict ) -> Union[str, Any]: """simple docstring""" pass def snake_case__ ( self :List[str] ) -> str: """simple docstring""" def common(lowercase :Optional[int]=False , lowercase :int=None ): SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=lowercase , is_instance_map=lowercase , segmentation_type=lowercase ) SCREAMING_SNAKE_CASE = inputs['''mask_labels'''] SCREAMING_SNAKE_CASE = inputs['''class_labels'''] SCREAMING_SNAKE_CASE = inputs['''pixel_values'''] SCREAMING_SNAKE_CASE = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(lowercase , lowercase , lowercase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowercase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowercase ) common(is_instance_map=lowercase , segmentation_type='''pil''' ) common(is_instance_map=lowercase , segmentation_type='''pil''' ) def snake_case__ ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = np.zeros((2_0, 5_0) ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = binary_mask_to_rle(lowercase ) self.assertEqual(len(lowercase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def snake_case__ ( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(lowercase ) self.assertEqual(len(lowercase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(lowercase , target_sizes=lowercase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def snake_case__ ( self :List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(lowercase , threshold=0 ) self.assertTrue(len(lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , lowercase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def snake_case__ ( self :Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(lowercase , threshold=0 ) self.assertTrue(len(lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , lowercase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
201
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
201
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Union[str, Any] = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class __lowerCamelCase ( lowercase ): lowerCamelCase__: Optional[Any] = '''align_text_model''' def __init__( self , __snake_case=3_0_5_2_2 , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-1_2 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , **__snake_case , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__A ) UpperCAmelCase: Optional[Any] = vocab_size UpperCAmelCase: Tuple = hidden_size UpperCAmelCase: str = num_hidden_layers UpperCAmelCase: str = num_attention_heads UpperCAmelCase: Optional[Any] = hidden_act UpperCAmelCase: List[Any] = intermediate_size UpperCAmelCase: int = hidden_dropout_prob UpperCAmelCase: Any = attention_probs_dropout_prob UpperCAmelCase: List[str] = max_position_embeddings UpperCAmelCase: Any = type_vocab_size UpperCAmelCase: List[Any] = initializer_range UpperCAmelCase: List[Any] = layer_norm_eps UpperCAmelCase: int = position_embedding_type UpperCAmelCase: int = use_cache UpperCAmelCase: Union[str, Any] = pad_token_id @classmethod def A__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase: str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A , **__A ) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Optional[Any] = '''align_vision_model''' def __init__( self , __snake_case = 3 , __snake_case = 6_0_0 , __snake_case = 2.0 , __snake_case = 3.1 , __snake_case = 8 , __snake_case = [3, 3, 5, 3, 5, 5, 3] , __snake_case = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case = [] , __snake_case = [1, 2, 2, 2, 1, 2, 1] , __snake_case = [1, 2, 2, 3, 3, 4, 1] , __snake_case = [1, 6, 6, 6, 6, 6, 6] , __snake_case = 0.25 , __snake_case = "swish" , __snake_case = 2_5_6_0 , __snake_case = "mean" , __snake_case = 0.02 , __snake_case = 0.0_01 , __snake_case = 0.99 , __snake_case = 0.2 , **__snake_case , ) -> str: """simple docstring""" super().__init__(**__A ) UpperCAmelCase: Optional[Any] = num_channels UpperCAmelCase: str = image_size UpperCAmelCase: str = width_coefficient UpperCAmelCase: Any = depth_coefficient UpperCAmelCase: List[str] = depth_divisor UpperCAmelCase: Optional[int] = kernel_sizes UpperCAmelCase: Union[str, Any] = in_channels UpperCAmelCase: Optional[Any] = out_channels UpperCAmelCase: Union[str, Any] = depthwise_padding UpperCAmelCase: Optional[int] = strides UpperCAmelCase: List[Any] = num_block_repeats UpperCAmelCase: List[Any] = expand_ratios UpperCAmelCase: Dict = squeeze_expansion_ratio UpperCAmelCase: int = hidden_act UpperCAmelCase: List[str] = hidden_dim UpperCAmelCase: Union[str, Any] = pooling_type UpperCAmelCase: Union[str, Any] = initializer_range UpperCAmelCase: Optional[int] = batch_norm_eps UpperCAmelCase: str = batch_norm_momentum UpperCAmelCase: List[str] = drop_connect_rate UpperCAmelCase: Dict = sum(__A ) * 4 @classmethod def A__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) UpperCAmelCase , UpperCAmelCase: str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase: Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A , **__A ) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Optional[int] = '''align''' lowerCamelCase__: Union[str, Any] = True def __init__( self , __snake_case=None , __snake_case=None , __snake_case=6_4_0 , __snake_case=1.0 , __snake_case=0.02 , **__snake_case , ) -> str: """simple docstring""" super().__init__(**__A ) if text_config is None: UpperCAmelCase: Optional[int] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: UpperCAmelCase: List[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) UpperCAmelCase: str = AlignTextConfig(**__A ) UpperCAmelCase: Optional[Any] = AlignVisionConfig(**__A ) UpperCAmelCase: Tuple = projection_dim UpperCAmelCase: List[Any] = temperature_init_value UpperCAmelCase: Any = initializer_range @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case ) -> Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def A__ ( self ) -> str: """simple docstring""" UpperCAmelCase: Any = copy.deepcopy(self.__dict__ ) UpperCAmelCase: Union[str, Any] = self.text_config.to_dict() UpperCAmelCase: str = self.vision_config.to_dict() UpperCAmelCase: Dict = self.__class__.model_type return output
718
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( lowercase ): lowerCamelCase__: Any = '''new-model''' if is_tf_available(): class __lowerCamelCase ( lowercase ): lowerCamelCase__: int = NewModelConfig @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: int = "bert-base-cased" UpperCAmelCase: Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = TFAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase: Optional[int] = "bert-base-cased" UpperCAmelCase: Any = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Tuple = TFAutoModelForPreTraining.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[str] = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: List[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Any = TFAutoModelForMaskedLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: str = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Dict = TFAutoModelForSequenceClassification.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase: Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow @require_tensorflow_probability def A__ ( self ) -> Any: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase: Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Any = TFAutoModelForTableQuestionAnswering.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Optional[Any] = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4_4_1_0 ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Any = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4_4_1_0 ) def A__ ( self ) -> Dict: """simple docstring""" UpperCAmelCase: int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = copy.deepcopy(model.config ) UpperCAmelCase: int = ["FunnelBaseModel"] UpperCAmelCase: Optional[Any] = TFAutoModel.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) UpperCAmelCase: Dict = TFAutoModel.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def A__ ( self ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("new-model" , __snake_case ) UpperCAmelCase: Tuple = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) auto_class.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase: Dict = BertModelTester(self ).get_config() UpperCAmelCase: str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase: Tuple = auto_class.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) UpperCAmelCase: Dict = auto_class.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A__ ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( __snake_case , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase: Union[str, Any] = TFAutoModel.from_pretrained("bert-base" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( __snake_case , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase: int = TFAutoModel.from_pretrained(__snake_case , revision="aaaaaa" ) def A__ ( self ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( __snake_case , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): UpperCAmelCase: Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(__snake_case , "Use `from_pt=True` to load this model" ): UpperCAmelCase: Any = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: str = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCAmelCase: List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase: str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: UpperCAmelCase: int = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
166
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Any = ShapEPipeline _lowercase : int = ['''prompt'''] _lowercase : List[str] = ['''prompt'''] _lowercase : Union[str, Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Optional[Any] = False @property def lowerCAmelCase_ ( self : List[str] ): return 32 @property def lowerCAmelCase_ ( self : Optional[int] ): return 32 @property def lowerCAmelCase_ ( self : Dict ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : str ): return 8 @property def lowerCAmelCase_ ( self : Optional[int] ): __A : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def lowerCAmelCase_ ( self : List[Any] ): torch.manual_seed(0 ) __A : Optional[int] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __A : List[str] = PriorTransformer(**__A ) return model @property def lowerCAmelCase_ ( self : Dict ): torch.manual_seed(0 ) __A : Any = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __A : Tuple = ShapERenderer(**__A ) return model def lowerCAmelCase_ ( self : Optional[int] ): __A : Union[str, Any] = self.dummy_prior __A : List[Any] = self.dummy_text_encoder __A : Union[str, Any] = self.dummy_tokenizer __A : Tuple = self.dummy_renderer __A : Any = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , ) __A : Tuple = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase_ ( self : List[Any] , __A : str , __A : Any=0 ): if str(__A ).startswith("""mps""" ): __A : int = torch.manual_seed(__A ) else: __A : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) __A : Optional[int] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): __A : str = """cpu""" __A : Tuple = self.get_dummy_components() __A : Optional[Any] = self.pipeline_class(**__A ) __A : List[str] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : Tuple = pipe(**self.get_dummy_inputs(__A ) ) __A : Tuple = output.images[0] __A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __A : List[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self : Dict ): __A : List[str] = torch_device == """cpu""" __A : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__A , relax_max_difference=__A , ) def lowerCAmelCase_ ( self : Dict ): __A : List[Any] = self.get_dummy_components() __A : List[str] = self.pipeline_class(**__A ) __A : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : List[Any] = 1 __A : int = 2 __A : int = self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: __A : Optional[Any] = batch_size * [inputs[key]] __A : Tuple = pipe(**__A , num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): __A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __A : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __A : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : int = torch.Generator(device=__A ).manual_seed(0 ) __A : str = pipe( """a shark""" , generator=__A , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__A , __A )
17
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'Salesforce/blip-image-captioning-base' _snake_case : Union[str, Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) _snake_case : List[Any] = 'image_captioner' _snake_case : Union[str, Any] = AutoModelForVisionaSeq _snake_case : Dict = ['image'] _snake_case : Optional[int] = ['text'] def __init__( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : "Image" ) -> Optional[int]: '''simple docstring''' return self.pre_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.model.generate(**lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0].strip()
98
0
'''simple docstring''' def A__ ( _a : int , _a : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case__ : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def A__ ( _a : int , _a : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case__ : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" snake_case__ : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def A__ ( _a : int , _a : int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number snake_case__ : str ='''0''' + str(bin(__A ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case__ : Dict =len(bin(__A )[3:] ) # Find 2's complement of number snake_case__ : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] snake_case__ : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
708
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( _A , unittest.TestCase ): _a : Optional[Any] = UnCLIPImageVariationPipeline _a : Optional[int] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} _a : Optional[Any] = IMAGE_VARIATION_BATCH_PARAMS _a : str = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] _a : Any = False @property def lowercase__ ( self ): return 3_2 @property def lowercase__ ( self ): return 3_2 @property def lowercase__ ( self ): return self.time_input_dim @property def lowercase__ ( self ): return self.time_input_dim * 4 @property def lowercase__ ( self ): return 1_0_0 @property def lowercase__ ( self ): snake_case__ : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowercase__ ( self ): torch.manual_seed(0 ) snake_case__ : int =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowercase__ ( self ): torch.manual_seed(0 ) snake_case__ : Optional[int] =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def lowercase__ ( self ): torch.manual_seed(0 ) snake_case__ : int ={ """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } snake_case__ : Optional[int] =UnCLIPTextProjModel(**a ) return model @property def lowercase__ ( self ): torch.manual_seed(0 ) snake_case__ : List[str] ={ """sample_size""": 3_2, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } snake_case__ : List[str] =UNetaDConditionModel(**a ) return model @property def lowercase__ ( self ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowercase__ ( self ): torch.manual_seed(0 ) snake_case__ : Union[str, Any] =UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowercase__ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case__ : int =UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowercase__ ( self ): snake_case__ : Union[str, Any] =self.dummy_decoder snake_case__ : Any =self.dummy_text_proj snake_case__ : Optional[int] =self.dummy_text_encoder snake_case__ : Optional[Any] =self.dummy_tokenizer snake_case__ : List[str] =self.dummy_super_res_first snake_case__ : str =self.dummy_super_res_last snake_case__ : List[Any] =UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , ) snake_case__ : Any =UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1_0_0_0 , ) snake_case__ : str =CLIPImageProcessor(crop_size=3_2 , size=3_2 ) snake_case__ : List[Any] =self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowercase__ ( self , a , a=0 , a=True ): snake_case__ : str =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(a ) ).to(a ) if str(a ).startswith("""mps""" ): snake_case__ : str =torch.manual_seed(a ) else: snake_case__ : List[Any] =torch.Generator(device=a ).manual_seed(a ) if pil_image: snake_case__ : Optional[int] =input_image * 0.5 + 0.5 snake_case__ : Tuple =input_image.clamp(0 , 1 ) snake_case__ : Union[str, Any] =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case__ : Tuple =DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowercase__ ( self ): snake_case__ : Union[str, Any] ="""cpu""" snake_case__ : Dict =self.get_dummy_components() snake_case__ : Tuple =self.pipeline_class(**a ) snake_case__ : Optional[Any] =pipe.to(a ) pipe.set_progress_bar_config(disable=a ) snake_case__ : Optional[int] =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : List[str] =pipe(**a ) snake_case__ : List[str] =output.images snake_case__ : Any =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : List[Any] =pipe( **a , return_dict=a , )[0] snake_case__ : Union[str, Any] =image[0, -3:, -3:, -1] snake_case__ : Optional[int] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Optional[Any] =np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): snake_case__ : Dict ="""cpu""" snake_case__ : int =self.get_dummy_components() snake_case__ : Any =self.pipeline_class(**a ) snake_case__ : Tuple =pipe.to(a ) pipe.set_progress_bar_config(disable=a ) snake_case__ : int =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : Any =pipe(**a ) snake_case__ : Optional[int] =output.images snake_case__ : int =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : List[str] =pipe( **a , return_dict=a , )[0] snake_case__ : List[str] =image[0, -3:, -3:, -1] snake_case__ : List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : str =np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): snake_case__ : List[str] ="""cpu""" snake_case__ : Dict =self.get_dummy_components() snake_case__ : Tuple =self.pipeline_class(**a ) snake_case__ : List[Any] =pipe.to(a ) pipe.set_progress_bar_config(disable=a ) snake_case__ : Tuple =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : Any =[ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] snake_case__ : Tuple =pipe(**a ) snake_case__ : str =output.images snake_case__ : Tuple =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : str =[ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] snake_case__ : Union[str, Any] =pipe( **a , return_dict=a , )[0] snake_case__ : List[Any] =image[0, -3:, -3:, -1] snake_case__ : Tuple =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) snake_case__ : int =np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): snake_case__ : Optional[int] =torch.device("""cpu""" ) class _lowercase : _a : Tuple = 1 snake_case__ : Optional[Any] =self.get_dummy_components() snake_case__ : List[str] =self.pipeline_class(**a ) snake_case__ : int =pipe.to(a ) pipe.set_progress_bar_config(disable=a ) snake_case__ : List[Any] =torch.Generator(device=a ).manual_seed(0 ) snake_case__ : List[Any] =pipe.decoder.dtype snake_case__ : str =1 snake_case__ : Dict =( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case__ : List[Any] =pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) snake_case__ : Optional[int] =( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case__ : Dict =pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) snake_case__ : Union[str, Any] =self.get_dummy_inputs(a , pil_image=a ) snake_case__ : List[str] =pipe( **a , decoder_latents=a , super_res_latents=a ).images snake_case__ : Any =self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding snake_case__ : Optional[Any] =pipeline_inputs.pop("""image""" ) snake_case__ : Optional[int] =pipe.image_encoder(a ).image_embeds snake_case__ : Dict =pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def lowercase__ ( self ): snake_case__ : List[str] =torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case__ : Tuple =1e-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def lowercase__ ( self ): snake_case__ : List[Any] =torch_device == """cpu""" snake_case__ : List[Any] =True snake_case__ : List[Any] =[ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def lowercase__ ( self ): snake_case__ : Dict =[ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case__ : List[Any] =[2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def lowercase__ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase__ ( self ): return super().test_save_load_local() @skip_mps def lowercase__ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowercase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): snake_case__ : str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) snake_case__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) snake_case__ : List[Any] =UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) snake_case__ : Optional[int] =pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) snake_case__ : Optional[Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : Tuple =pipeline( a , generator=a , output_type="""np""" , ) snake_case__ : Union[str, Any] =output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(a , a , 1_5 )
448
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) _lowerCAmelCase :str = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowerCAmelCase :int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =field( default=__lowercase ,metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } ,) a__ =field( default=__lowercase ,metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowercase )} ,) a__ =field( default=__lowercase ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a__ =field( default=__lowercase ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a__ =field( default=__lowercase ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =field( default=__lowercase ,metadata={'''help''': '''The input training data file (a text file).'''} ) a__ =field( default=__lowercase ,metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } ,) a__ =field( default=__lowercase ,metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} ,) a__ =field( default=__lowercase ,metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} ,) a__ =field( default=__lowercase ,metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} ,) a__ =field( default=__lowercase ,metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} ,) a__ =field( default=__lowercase ,metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) a__ =field(default=__lowercase ,metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) a__ =field( default=0.15 ,metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) a__ =field( default=1 / 6 ,metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } ,) a__ =field( default=5 ,metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) a__ =field( default=-1 ,metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } ,) a__ =field( default=__lowercase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase_ (UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , ): def _dataset(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCamelCase_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCAmelCase : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: _UpperCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) _UpperCAmelCase : Dict = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: _UpperCAmelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCAmelCase : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCAmelCase : Tuple = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCAmelCase : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCAmelCase : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCAmelCase : int = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _UpperCAmelCase : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _UpperCAmelCase : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Any = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCAmelCase : Dict = trainer.evaluate() _UpperCAmelCase : List[Any] = math.exp(eval_output['''eval_loss'''] ) _UpperCAmelCase : Any = {"""perplexity""": perplexity} _UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , UpperCamelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
506
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCamelCase :Union[str, Any] = logging.getLogger(__name__) __lowerCamelCase :str = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __lowerCamelCase :int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowercase)} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''}) snake_case__ : bool =field(default=__lowercase , metadata={'''help''': '''Whether ot not to use whole word mask.'''}) snake_case__ : float =field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''}) snake_case__ : float =field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) snake_case__ : int =field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''}) snake_case__ : int =field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) def snake_case ( UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , ) -> Optional[int]: def _dataset(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCamelCase : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCamelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCamelCase : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase : Dict = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCamelCase : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCamelCase : Tuple = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCamelCase : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCamelCase : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCamelCase : int = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: lowerCamelCase : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase : List[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase : Dict = trainer.evaluate() lowerCamelCase : List[Any] = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase : Any = {"""perplexity""": perplexity} lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def snake_case ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
222
0
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [] create_all_state(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , [] , SCREAMING_SNAKE_CASE ) return result def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE , level - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_list.pop() def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in total_list: print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = 4 __lowercase = 2 __lowercase = generate_all_combinations(n, k) print_all_state(total_list)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowercase = { """yjernite/retribert-base-uncased""": 512, } __lowercase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = RetriBertTokenizer _lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]="[UNK]" , lowerCamelCase__ : Optional[Any]="[SEP]" , lowerCamelCase__ : List[Any]="[PAD]" , lowerCamelCase__ : Tuple="[CLS]" , lowerCamelCase__ : List[Any]="[MASK]" , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str=None , **lowerCamelCase__ : List[Any] , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): A_ = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**lowerCamelCase__ ) A_ = do_lower_case def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=None ) -> Union[str, Any]: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A_ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
563
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging A_: List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( _A ): """simple docstring""" _lowercase = r"""\w+[.]\d+""" _lowercase = re.findall(_A ,_A ) for pat in pats: _lowercase = key.replace(_A ,"""_""".join(pat.split(""".""" ) ) ) return key def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" _lowercase = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowercase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowercase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowercase = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer _lowercase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowercase = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowercase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": _lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowercase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowercase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( _A ,_A ,_A=42 ): """simple docstring""" _lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowercase = flax_model.init_weights(PRNGKey(_A ) ) _lowercase = flatten_dict(_A ) _lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowercase = rename_key(_A ) _lowercase = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters _lowercase , _lowercase = rename_key_and_reshape_tensor(_A ,_A ,_A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _lowercase = jnp.asarray(_A ) return unflatten_dict(_A )
398
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self :Tuple , *, lowercase :int = 4 , lowercase :int = 7_6_8 , lowercase :int , lowercase :Any , ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(lowercase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE = clip_extra_context_tokens SCREAMING_SNAKE_CASE = nn.Linear( lowercase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) SCREAMING_SNAKE_CASE = nn.LayerNorm(lowercase ) def snake_case__ ( self :Union[str, Any] , *, lowercase :Optional[int] , lowercase :Union[str, Any] , lowercase :Union[str, Any] , lowercase :Optional[Any] ) -> Union[str, Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE = image_embeddings.shape[0] SCREAMING_SNAKE_CASE = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE = classifier_free_guidance_embeddings.expand( lowercase , -1 ) SCREAMING_SNAKE_CASE = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE = self.embedding_proj(lowercase ) SCREAMING_SNAKE_CASE = self.clip_image_embeddings_project_to_time_embeddings(lowercase ) SCREAMING_SNAKE_CASE = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE = self.clip_extra_context_tokens_proj(lowercase ) SCREAMING_SNAKE_CASE = clip_extra_context_tokens.reshape(lowercase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE = clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(lowercase ) SCREAMING_SNAKE_CASE = self.text_encoder_hidden_states_norm(lowercase ) SCREAMING_SNAKE_CASE = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
201
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __snake_case :Tuple = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __snake_case :Tuple = 10 __snake_case :str = 256 def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) < MIN_NUM_TOKENS: return None __a = MinHash(num_perm=_UpperCAmelCase ) for token in set(_UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def __snake_case ( _UpperCAmelCase ): return {t for t in NON_ALPHA.split(_UpperCAmelCase ) if len(t.strip() ) > 0} class _A : def __init__( self : Optional[Any] , *, __SCREAMING_SNAKE_CASE : float = 0.85 , ): '''simple docstring''' __a = duplication_jaccard_threshold __a = NUM_PERM __a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) __a = defaultdict(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : MinHash): '''simple docstring''' __a = self._index.query(__SCREAMING_SNAKE_CASE) if code_key in self._index.keys: print(F'Duplicate key {code_key}') return self._index.insert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if len(__SCREAMING_SNAKE_CASE) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__SCREAMING_SNAKE_CASE) break else: self._duplicate_clusters[close_duplicates[0]].add(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = [] for base, duplicates in self._duplicate_clusters.items(): __a = [base] + list(__SCREAMING_SNAKE_CASE) # reformat the cluster to be a list of dict __a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__SCREAMING_SNAKE_CASE) return duplicate_clusters def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = self.get_duplicate_clusters() with open(__SCREAMING_SNAKE_CASE , '''w''') as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def __snake_case ( _UpperCAmelCase ): __a , __a = element __a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __snake_case ( _UpperCAmelCase ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCAmelCase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = DuplicationIndex(duplication_jaccard_threshold=_UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCAmelCase ) ) , max_queue_size=100 ) ): di.add(_UpperCAmelCase , _UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = get_tokens(_UpperCAmelCase ) __a = get_tokens(_UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __snake_case :List[Any] = None def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] for elementa in cluster: __a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_UpperCAmelCase , _UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a = 1 extremes.append(_UpperCAmelCase ) return extremes def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): global _shared_dataset __a = dataset __a = [] __a = partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCAmelCase , _UpperCAmelCase , ) , total=len(_UpperCAmelCase ) , ): extremes_list.append(_UpperCAmelCase ) return extremes_list def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = 0.85 ): __a = make_duplicate_clusters(_UpperCAmelCase , _UpperCAmelCase ) __a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __a = {} __a = find_extremes(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: __a = element __a = duplicate_indices - set(extreme_dict.keys() ) __a = dataset.filter(lambda _UpperCAmelCase , _UpperCAmelCase : idx not in remove_indices , with_indices=_UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a = element['''base_index'''] in extreme_dict if element["is_extreme"]: __a = extreme_dict[element['''base_index''']]['''copies'''] print(f'Original dataset size: {len(_UpperCAmelCase )}' ) print(f'Number of duplicate clusters: {len(_UpperCAmelCase )}' ) print(f'Files in duplicate cluster: {len(_UpperCAmelCase )}' ) print(f'Unique files in duplicate cluster: {len(_UpperCAmelCase )}' ) print(f'Filtered dataset size: {len(_UpperCAmelCase )}' ) return ds_filter, duplicate_clusters
60
from __future__ import annotations from random import random from typing import Generic, TypeVar __snake_case :Any = TypeVar('''KT''') __snake_case :List[str] = TypeVar('''VT''') class _A ( Generic[KT, VT] ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : KT | str = "root" , __SCREAMING_SNAKE_CASE : VT | None = None): '''simple docstring''' __a = key __a = value __a = [] def __repr__( self : Dict): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return len(self.forward) class _A ( Generic[KT, VT] ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : float = 0.5 , __SCREAMING_SNAKE_CASE : int = 16): '''simple docstring''' __a = Node[KT, VT]() __a = 0 __a = p __a = max_level def __str__( self : Union[str, Any]): '''simple docstring''' __a = list(self) if len(__SCREAMING_SNAKE_CASE) == 0: return F'SkipList(level={self.level})' __a = max((len(str(__SCREAMING_SNAKE_CASE)) for item in items) , default=4) __a = max(__SCREAMING_SNAKE_CASE , 4) + 4 __a = self.head __a = [] __a = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + '''* ''' * len(__SCREAMING_SNAKE_CASE)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) while len(node.forward) != 0: __a = node.forward[0] lines.append( F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + ''' '''.join(str(n.key) if n.key == node.key else '''|''' for n in forwards)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) __a = node.forward lines.append('''None'''.ljust(__SCREAMING_SNAKE_CASE) + '''* ''' * len(__SCREAMING_SNAKE_CASE)) return F'SkipList(level={self.level})\n' + "\n".join(__SCREAMING_SNAKE_CASE) def __iter__( self : int): '''simple docstring''' __a = self.head while len(node.forward) != 0: yield node.forward[0].key __a = node.forward[0] def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] __a = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __a = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__SCREAMING_SNAKE_CASE) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : KT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: for i, update_node in enumerate(__SCREAMING_SNAKE_CASE): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __a = node.forward[i] else: __a = update_node.forward[:i] def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : KT , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: __a = value else: __a = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __SCREAMING_SNAKE_CASE): update_vector.append(self.head) __a = level __a = Node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(__SCREAMING_SNAKE_CASE) else: __a = new_node def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: return node.value return None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __snake_case ( ): __a = SkipList() assert skip_list.find('''Some key''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def __snake_case ( ): __a = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(_UpperCAmelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __snake_case ( ): def is_sorted(_UpperCAmelCase ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) __a = SkipList() for i in range(10 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCAmelCase ) ) def __snake_case ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __snake_case ( ): __a = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ = do_convert_rgb def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name="size" , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name="crop_size" , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
61
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case ( _lowerCAmelCase : Optional[int] ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case ( _lowerCAmelCase : Tuple ) -> Optional[Any]: A_ : Optional[Any] = create_tensor(_lowerCAmelCase ) A_ : Dict = gather(_lowerCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case ( _lowerCAmelCase : List[Any] ) -> Any: A_ : int = [state.process_index] A_ : Union[str, Any] = gather_object(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == state.num_processes, f"{gathered_obj}, {len(_lowerCAmelCase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def __snake_case ( _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: A_ : List[str] = create_tensor(_lowerCAmelCase ) A_ : Optional[Any] = broadcast(_lowerCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case ( _lowerCAmelCase : Dict ) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: A_ : Tuple = torch.arange(state.num_processes + 1 ).to(state.device ) else: A_ : List[str] = torch.arange(state.num_processes ).to(state.device ) A_ : Any = pad_across_processes(_lowerCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case ( _lowerCAmelCase : List[Any] ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return A_ : str = create_tensor(_lowerCAmelCase ) A_ : int = reduce(_lowerCAmelCase , "sum" ) A_ : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def __snake_case ( _lowerCAmelCase : Union[str, Any] ) -> Dict: # For now runs on only two processes if state.num_processes != 2: return A_ : List[str] = create_tensor(_lowerCAmelCase ) A_ : Tuple = reduce(_lowerCAmelCase , "mean" ) A_ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def __snake_case ( _lowerCAmelCase : List[str] ) -> Dict: # For xla_spawn (TPUs) main() def __snake_case ( ) -> List[str]: A_ : Tuple = PartialState() state.print(f"State: {state}" ) state.print("testing gather" ) test_gather(_lowerCAmelCase ) state.print("testing gather_object" ) test_gather_object(_lowerCAmelCase ) state.print("testing broadcast" ) test_broadcast(_lowerCAmelCase ) state.print("testing pad_across_processes" ) test_pad_across_processes(_lowerCAmelCase ) state.print("testing reduce_sum" ) test_reduce_sum(_lowerCAmelCase ) state.print("testing reduce_mean" ) test_reduce_mean(_lowerCAmelCase ) if __name__ == "__main__": main()
454
0
def _lowercase ( lowercase__ ): __lowerCAmelCase : str = len(lowercase__ ) for i in range(1 , lowercase__ ): __lowerCAmelCase : Optional[Any] = collection[i] __lowerCAmelCase : Any = 0 __lowerCAmelCase : int = i - 1 while low <= high: __lowerCAmelCase : Union[str, Any] = (low + high) // 2 if val < collection[mid]: __lowerCAmelCase : int = mid - 1 else: __lowerCAmelCase : List[str] = mid + 1 for j in range(lowercase__ , lowercase__ , -1 ): __lowerCAmelCase : int = collection[j - 1] __lowerCAmelCase : int = val return collection if __name__ == "__main__": _UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
583
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
1
lowerCAmelCase = [0, 2, 4, 6, 8] lowerCAmelCase = [1, 3, 5, 7, 9] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ = 0 for digit in range(10 ): lowercase__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result lowercase__ = 0 for digita in range(10 ): lowercase__ = digita if (remainder + digita) % 2 == 0: lowercase__ = ODD_DIGITS else: lowercase__ = EVEN_DIGITS for digita in other_parity_digits: lowercase__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def _a ( SCREAMING_SNAKE_CASE = 9 ): """simple docstring""" lowercase__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(f"""{solution() = }""")
43
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise TypeError("Input value must be an 'int' type" ) lowercase__ : str = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
397
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : str = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } lowercase : Any = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['input_ids', 'attention_mask'] lowerCAmelCase = CodeGenTokenizer def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Dict="<|endoftext|>" , SCREAMING_SNAKE_CASE : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE : Tuple=False , **SCREAMING_SNAKE_CASE : Dict , ) -> Any: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if kwargs.pop("add_bos_token" , SCREAMING_SNAKE_CASE ): lowerCAmelCase = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = add_prefix_space def __A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Tuple ) -> BatchEncoding: """simple docstring""" lowerCAmelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : List[str] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowerCAmelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __A ( self : int , SCREAMING_SNAKE_CASE : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> str: """simple docstring""" lowerCAmelCase = super().decode( token_ids=SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = self.truncate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return decoded_text def __A ( self : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" def find_re(SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowerCAmelCase = pattern.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return m.start() if m else -1 lowerCAmelCase = [re.compile(SCREAMING_SNAKE_CASE , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCAmelCase = list(re.finditer("^print" , SCREAMING_SNAKE_CASE , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase = completion[: prints[1].start()] lowerCAmelCase = list(re.finditer("^def" , SCREAMING_SNAKE_CASE , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase = completion[: defs[1].start()] lowerCAmelCase = 0 lowerCAmelCase = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE ) > 0: return completion[: min(SCREAMING_SNAKE_CASE )] else: return completion
159
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline lowerCAmelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase = False @property def __A ( self : Dict ) -> Optional[Any]: """simple docstring""" return 3_2 @property def __A ( self : Any ) -> List[str]: """simple docstring""" return 3_2 @property def __A ( self : Optional[Any] ) -> List[str]: """simple docstring""" return self.time_input_dim @property def __A ( self : Optional[int] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def __A ( self : int ) -> List[Any]: """simple docstring""" return 1_0_0 @property def __A ( self : str ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE ) return model @property def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __A ( self : Any ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase = DDIMScheduler(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str=0 ) -> Optional[int]: """simple docstring""" lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE ) # create init_image lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create hint lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): lowerCAmelCase = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) lowerCAmelCase = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __A ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase = "cpu" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) , return_dict=SCREAMING_SNAKE_CASE , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __A ( self : Tuple ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase = init_image.resize((5_1_2, 5_1_2) ) lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCAmelCase = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE ) ).float() / 2_5_5.0 lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase = "A robot, 4k photo" lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.8_5 , generator=SCREAMING_SNAKE_CASE , negative_prompt="" , ).to_tuple() lowerCAmelCase = pipeline( image=SCREAMING_SNAKE_CASE , image_embeds=SCREAMING_SNAKE_CASE , negative_image_embeds=SCREAMING_SNAKE_CASE , hint=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
159
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> Tuple: __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a = test_metrics @require_cpu def UpperCamelCase__ ( self ) -> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase__ ( self ) -> str: debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase__ ( self ) -> Dict: self.test_metrics.main() @require_multi_gpu def UpperCamelCase__ ( self ) -> int: print(f"Found {torch.cuda.device_count()} devices." ) __a = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
539
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowercase ( __lowerCAmelCase ): '''simple docstring''' _A : List[Any] = "pegasus" _A : int = ["past_key_values"] _A : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , _a : Dict=50_265 , _a : Tuple=1_024 , _a : str=12 , _a : Dict=4_096 , _a : Optional[Any]=16 , _a : Union[str, Any]=12 , _a : str=4_096 , _a : str=16 , _a : Dict=0.0 , _a : Any=0.0 , _a : Dict=True , _a : Union[str, Any]=True , _a : Dict="gelu" , _a : int=1_024 , _a : Dict=0.1 , _a : Any=0.0 , _a : int=0.0 , _a : Optional[int]=0.02 , _a : List[str]=0 , _a : Tuple=False , _a : List[Any]=0 , _a : List[str]=1 , _a : Tuple=1 , **_a : List[Any] , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = encoder_layers UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) @property def A_ ( self : Optional[int] ): return self.encoder_attention_heads @property def A_ ( self : Any ): return self.d_model
718
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase = get_logger() lowercase = None class __lowercase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : List[str] , _a : Optional[Any]=None , _a : Any=None , **_a : List[Any] ): super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase__ = str(jax.devices()[0] ) UpperCamelCase__ = jnp_array_kwargs @staticmethod def A_ ( ): import jax return {str(_a ): device for device in jax.devices()} def A_ ( self : Optional[int] , _a : Tuple ): import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def A_ ( self : Optional[int] , _a : List[Any] ): import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ = {'''dtype''': jnp.intaa} else: UpperCamelCase__ = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): UpperCamelCase__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def A_ ( self : Optional[Any] , _a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ): UpperCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def A_ ( self : int , _a : dict ): return map_nested(self._recursive_tensorize , _a , map_list=_a ) def A_ ( self : List[Any] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_row(_a ) UpperCamelCase__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def A_ ( self : Optional[int] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_column(_a ) UpperCamelCase__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) UpperCamelCase__ = self.recursive_tensorize(_a ) UpperCamelCase__ = self._consolidate(_a ) return column def A_ ( self : int , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_batch(_a ) UpperCamelCase__ = self.python_features_decoder.decode_batch(_a ) UpperCamelCase__ = self.recursive_tensorize(_a ) for column_name in batch: UpperCamelCase__ = self._consolidate(batch[column_name] ) return batch
591
0
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : str = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' _a = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) _a = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _a = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase_ : Optional[Any] = self.task_name.lower() class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "train" _a = "dev" _a = "test" class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = 42 _a = 42 _a = 42 def __init__( self : Any , __a : GlueDataTrainingArguments , __a : PreTrainedTokenizerBase , __a : Optional[int] = None , __a : Union[str, Split] = Split.train , __a : Optional[str] = None , ) ->Optional[int]: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , __a , ) lowerCamelCase_ : Optional[int] = args lowerCamelCase_ : Tuple = glue_processors[args.task_name]() lowerCamelCase_ : Optional[Any] = glue_output_modes[args.task_name] if isinstance(__a , __a ): try: lowerCamelCase_ : List[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCamelCase_ : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowerCamelCase_ : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_, lowerCamelCase_ : int = label_list[2], label_list[1] lowerCamelCase_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ : List[Any] = cached_features_file + """.lock""" with FileLock(__a ): if os.path.exists(__a ) and not args.overwrite_cache: lowerCamelCase_ : str = time.time() lowerCamelCase_ : int = torch.load(__a ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowerCamelCase_ : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase_ : Tuple = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase_ : List[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase_ : Dict = examples[:limit_length] lowerCamelCase_ : Union[str, Any] = glue_convert_examples_to_features( __a , __a , max_length=args.max_seq_length , label_list=__a , output_mode=self.output_mode , ) lowerCamelCase_ : Optional[Any] = time.time() torch.save(self.features , __a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Any ) ->Any: return len(self.features ) def __getitem__( self : List[Any] , __a : Optional[int] ) ->InputFeatures: return self.features[i] def _lowerCAmelCase ( self : int ) ->Optional[int]: return self.label_list
278
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( A__ ): A = 'unispeech-sat' def __init__( self : int,_A : Dict=32,_A : Tuple=768,_A : Optional[Any]=12,_A : Any=12,_A : List[Any]=3072,_A : Optional[Any]="gelu",_A : Dict=0.1,_A : List[str]=0.1,_A : List[Any]=0.1,_A : Dict=0.0,_A : str=0.0,_A : Union[str, Any]=0.1,_A : List[str]=0.1,_A : Optional[int]=0.02,_A : int=1E-5,_A : Any="group",_A : Tuple="gelu",_A : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512),_A : str=(5, 2, 2, 2, 2, 2, 2),_A : Optional[Any]=(10, 3, 3, 3, 3, 2, 2),_A : Tuple=False,_A : int=128,_A : Tuple=16,_A : Tuple=False,_A : Tuple=True,_A : Dict=0.05,_A : Tuple=10,_A : str=2,_A : List[str]=0.0,_A : Union[str, Any]=10,_A : Dict=0,_A : Union[str, Any]=320,_A : str=2,_A : int=0.1,_A : Optional[Any]=100,_A : Dict=256,_A : Optional[int]=256,_A : Tuple=0.1,_A : List[Any]="mean",_A : Tuple=False,_A : List[Any]=False,_A : Tuple=256,_A : Union[str, Any]=(512, 512, 512, 512, 1500),_A : List[str]=(5, 3, 3, 1, 1),_A : int=(1, 2, 3, 1, 1),_A : List[str]=512,_A : Dict=0,_A : Tuple=1,_A : int=2,_A : Optional[int]=504,**_A : int,): """simple docstring""" super().__init__(**_A,pad_token_id=_A,bos_token_id=_A,eos_token_id=_A ) SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_norm SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_activation SCREAMING_SNAKE_CASE_ : List[Any] = list(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = list(_A ) SCREAMING_SNAKE_CASE_ : str = list(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = conv_bias SCREAMING_SNAKE_CASE_ : List[Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ : Tuple = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = hidden_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Tuple = activation_dropout SCREAMING_SNAKE_CASE_ : Any = feat_proj_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = final_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = layerdrop SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = num_clusters SCREAMING_SNAKE_CASE_ : List[str] = do_stable_layer_norm SCREAMING_SNAKE_CASE_ : List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : Optional[int] = apply_spec_augment SCREAMING_SNAKE_CASE_ : Any = mask_time_prob SCREAMING_SNAKE_CASE_ : Dict = mask_time_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_ : int = mask_feature_length SCREAMING_SNAKE_CASE_ : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ : Any = num_codevectors_per_group SCREAMING_SNAKE_CASE_ : Optional[int] = num_codevector_groups SCREAMING_SNAKE_CASE_ : Tuple = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ : Optional[Any] = feat_quantizer_dropout SCREAMING_SNAKE_CASE_ : Any = num_negatives SCREAMING_SNAKE_CASE_ : str = codevector_dim SCREAMING_SNAKE_CASE_ : str = proj_codevector_dim SCREAMING_SNAKE_CASE_ : Union[str, Any] = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ : str = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Optional[Any] = list(_A ) SCREAMING_SNAKE_CASE_ : Dict = list(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(_A ) SCREAMING_SNAKE_CASE_ : Any = xvector_output_dim @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return functools.reduce(operator.mul,self.conv_stride,1 )
316
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCamelCase : Dict = HUGGINGFACE_HUB_CACHE __lowerCamelCase : Union[str, Any] = '''config.json''' __lowerCamelCase : Tuple = '''diffusion_pytorch_model.bin''' __lowerCamelCase : Tuple = '''diffusion_flax_model.msgpack''' __lowerCamelCase : Dict = '''model.onnx''' __lowerCamelCase : Optional[Any] = '''diffusion_pytorch_model.safetensors''' __lowerCamelCase : Tuple = '''weights.pb''' __lowerCamelCase : int = '''https://huggingface.co''' __lowerCamelCase : Tuple = default_cache_path __lowerCamelCase : Optional[int] = '''diffusers_modules''' __lowerCamelCase : Tuple = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) __lowerCamelCase : Dict = ['''fp16''', '''non-ema'''] __lowerCamelCase : Optional[int] = '''.self_attn'''
316
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = torch.nn.Linear(10 , 10 ) a :Dict = torch.optim.SGD(model.parameters() , 0.1 ) a :Any = Accelerator() a :List[Any] = accelerator.prepare(lowerCamelCase_ ) try: pickle.loads(pickle.dumps(lowerCamelCase_ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
445
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) UpperCamelCase__ : Dict = 50 # max width of layer names UpperCamelCase__ : Any = 70 # max width of quantizer names def __UpperCamelCase( _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_A , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_A , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_A , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_A , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_A , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_A , type=_A , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_A , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def __UpperCamelCase( _A : Tuple ): '''simple docstring''' if args.calibrator == "max": UpperCAmelCase__ : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase__ : Dict = '''histogram''' elif args.calibrator == "mse": UpperCAmelCase__ : Any = '''histogram''' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) UpperCAmelCase__ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) UpperCAmelCase__ : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def __UpperCamelCase( _A : Any , _A : Any , _A : Any=False , _A : Optional[Any]=False ): '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ['''embeddings'''] , which='''weight''' , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [''''''] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def __UpperCamelCase( _A : str ): '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __UpperCamelCase( _A : Tuple , _A : Any ): '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def __UpperCamelCase( _A : Dict , _A : Optional[int] ): '''simple docstring''' def fusea(_A : Optional[Any] , _A : Optional[Any] , _A : Dict ): for mod in [qq, qk, qv]: if not hasattr(_A , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase__ : Dict = qq._amax.detach().item() UpperCAmelCase__ : List[Any] = qk._amax.detach().item() UpperCAmelCase__ : Optional[int] = qv._amax.detach().item() UpperCAmelCase__ : Dict = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCamelCase( _A : Dict , _A : Any ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) UpperCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __UpperCamelCase( _A : str ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase__ : int = mod.weight.shape[0] UpperCAmelCase__ : Tuple = mod._weight_quantizer._amax.detach() UpperCAmelCase__ : Optional[int] = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __UpperCamelCase( _A : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase__ : Optional[Any] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase__ : int = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCAmelCase__ : str = amax def __UpperCamelCase( _A : Dict , _A : Tuple=25 , _A : Any=1_80 , _A : Optional[int]=None ): '''simple docstring''' if ignore is None: UpperCAmelCase__ : Dict = [] elif not isinstance(_A , _A ): UpperCAmelCase__ : int = [ignore] UpperCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(_A , '''weight''' ): continue UpperCAmelCase__ : Dict = max(_A , len(_A ) ) for name, mod in model.named_modules(): UpperCAmelCase__ : str = getattr(_A , '''_input_quantizer''' , _A ) UpperCAmelCase__ : int = getattr(_A , '''_weight_quantizer''' , _A ) if not hasattr(_A , '''weight''' ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue UpperCAmelCase__ : Dict = F'''Act:{input_q.extra_repr()}''' UpperCAmelCase__ : int = F'''Wgt:{weight_q.extra_repr()}''' UpperCAmelCase__ : Dict = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __UpperCamelCase( _A : Dict , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __UpperCamelCase( _A : str , _A : Any , _A : Optional[int]="both" , **_A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_A , _A , '''_input_quantizer''' , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , '''_weight_quantizer''' , _A , _A ) logger.info(_A ) def __UpperCamelCase( _A : Tuple , _A : List[str] , **_A : Optional[Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_input_quantizer''' ) or hasattr(_A , '''_weight_quantizer''' ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_A , _A ): UpperCAmelCase__ : str = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_A , _A , _A ) logger.info(_A )
614
0
from __future__ import annotations from collections.abc import MutableSequence class __magic_name__ : """simple docstring""" def __init__( self , a__ , a__ ): if len(a__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) _lowerCamelCase = list(a__ ) _lowerCamelCase = degree def __add__( self , a__ ): if self.degree > polynomial_a.degree: _lowerCamelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , a__ ) else: _lowerCamelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , a__ ) def __sub__( self , a__ ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , a__ ): _lowerCamelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): _lowerCamelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(a__ ) return polynomial def __repr__( self ): return self.__str__() def _UpperCAmelCase ( self ): _lowerCamelCase = [0] * self.degree for i in range(self.degree ): _lowerCamelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , a__ ) def _UpperCAmelCase ( self , a__ = 0 ): _lowerCamelCase = [0] * (self.degree + 2) _lowerCamelCase = constant for i in range(self.degree + 1 ): _lowerCamelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , a__ ) def __eq__( self , a__ ): if not isinstance(a__ , a__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , a__ ): return not self.__eq__(a__ )
297
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=2 , a__=56 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=2 , a__=7 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=4 , a__="block_sparse" , a__=True , a__=False , a__=2 , a__=3 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_choices _lowerCamelCase = rescale_embeddings _lowerCamelCase = attention_type _lowerCamelCase = use_bias _lowerCamelCase = block_size _lowerCamelCase = num_random_blocks def _UpperCAmelCase ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _UpperCamelCase = False _UpperCamelCase = False def _UpperCAmelCase ( self ): _lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_hidden_states_output() @slow def _UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(a__ , a__ ) _lowerCamelCase = model_class(a__ ) @jax.jit def model_jitted(a__ , a__=None , **a__ ): return model(input_ids=a__ , attention_mask=a__ , **a__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**a__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__=1E-5 , a__="outputs" , a__=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(a__ , a__ , a__ , a__ , a__ , a__ )
297
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _a = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _a = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _a = """▁""" class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> str: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCamelCase = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a) if isinstance(__a , __a) else mask_token ) super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(__a): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file , __a) return (out_vocab_file,)
19
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case_ = datasets.load_iris() snake_case_ = np.array(data["""data"""]) snake_case_ = np.array(data["""target"""]) snake_case_ = data["""target_names"""] snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split(X, y) def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :Tuple ): return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :List[str]=5 ): SCREAMING_SNAKE_CASE : Union[str, Any] = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE : Tuple = [] for data_point in data: SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE : Dict = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE : Tuple = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
507
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[int] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "altclip_text_model" def __init__( self, lowerCamelCase__=25_0002, lowerCamelCase__=1024, lowerCamelCase__=24, lowerCamelCase__=16, lowerCamelCase__=4096, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=514, lowerCamelCase__=1, lowerCamelCase__=0.02, lowerCamelCase__=0.02, lowerCamelCase__=1e-05, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=768, **lowerCamelCase__, ): super().__init__(pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, **__A ) A : Any = vocab_size A : Optional[Any] = hidden_size A : Union[str, Any] = num_hidden_layers A : Optional[Any] = num_attention_heads A : int = hidden_act A : int = intermediate_size A : int = hidden_dropout_prob A : str = attention_probs_dropout_prob A : List[str] = max_position_embeddings A : Optional[int] = type_vocab_size A : List[str] = initializer_range A : Optional[int] = initializer_factor A : str = layer_norm_eps A : List[str] = position_embedding_type A : int = use_cache A : str = project_dim class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = "altclip_vision_model" def __init__( self, lowerCamelCase__=768, lowerCamelCase__=3072, lowerCamelCase__=512, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3, lowerCamelCase__=224, lowerCamelCase__=32, lowerCamelCase__="quick_gelu", lowerCamelCase__=1e-5, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, **lowerCamelCase__, ): super().__init__(**__A ) A : Union[str, Any] = hidden_size A : int = intermediate_size A : List[Any] = projection_dim A : Optional[int] = num_hidden_layers A : Optional[int] = num_attention_heads A : List[str] = num_channels A : Tuple = patch_size A : str = image_size A : int = initializer_range A : str = initializer_factor A : Tuple = attention_dropout A : Union[str, Any] = layer_norm_eps A : Any = hidden_act @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, **lowerCamelCase__ ): cls._set_token_in_kwargs(__A ) A , A : List[Any] = cls.get_config_dict(__A, **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": A : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A, **__A ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "altclip" __lowerCamelCase : Optional[int] = True def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=768, lowerCamelCase__=2.6592, **lowerCamelCase__ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). A : Tuple = kwargs.pop("""text_config_dict""", __A ) A : Optional[int] = kwargs.pop("""vision_config_dict""", __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A : Optional[Any] = {} # This is the complete result when using `text_config_dict`. A : Tuple = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A : Dict = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict[\"{key}\"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : List[Any] = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config[\"{key}\"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A : List[Any] = {} # This is the complete result when using `vision_config_dict`. A : Optional[int] = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A : str = { str(__A ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A : Optional[Any] = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict[\"{key}\"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : List[str] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config[\"{key}\"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A : str = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: A : List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) A : Union[str, Any] = AltCLIPTextConfig(**__A ) A : Dict = AltCLIPVisionConfig(**__A ) A : List[Any] = projection_dim A : Optional[int] = logit_scale_init_value A : str = 1.0 @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ): return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **__A ) def _lowerCAmelCase ( self ): A : List[Any] = copy.deepcopy(self.__dict__ ) A : int = self.text_config.to_dict() A : Tuple = self.vision_config.to_dict() A : List[Any] = self.__class__.model_type return output
718
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["pixel_values"] def __init__( self, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = PILImageResampling.BILINEAR, lowerCamelCase__ = True, lowerCamelCase__ = 1 / 255, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : str = size if size is not None else {"""shortest_edge""": 384} A : List[Any] = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : str = do_resize A : Union[str, Any] = size # Default value set here for backwards compatibility where the value in config is None A : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Any = resample A : List[Any] = do_rescale A : Union[str, Any] = rescale_factor A : Tuple = do_normalize A : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = PILImageResampling.BICUBIC, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Tuple = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) A : int = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : Optional[int] = get_resize_output_image_size(lowerCamelCase__, size=lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Optional[Any] = resize(image=lowerCamelCase__, size=lowerCamelCase__, resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase__, **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__, size=(shortest_edge, shortest_edge), resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return rescale(lowerCamelCase__, scale=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return normalize(lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = ChannelDimension.FIRST, **lowerCamelCase__, ): A : List[str] = do_resize if do_resize is not None else self.do_resize A : str = crop_pct if crop_pct is not None else self.crop_pct A : List[str] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Optional[int] = image_mean if image_mean is not None else self.image_mean A : Optional[int] = image_std if image_std is not None else self.image_std A : Dict = size if size is not None else self.size A : Dict = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Tuple = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A : Dict = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: A : Any = [self.resize(image=lowerCamelCase__, size=lowerCamelCase__, crop_pct=lowerCamelCase__, resample=lowerCamelCase__ ) for image in images] if do_rescale: A : Dict = [self.rescale(image=lowerCamelCase__, scale=lowerCamelCase__ ) for image in images] if do_normalize: A : List[str] = [self.normalize(image=lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__ ) for image in images] A : Any = [to_channel_dimension_format(lowerCamelCase__, lowerCamelCase__ ) for image in images] A : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__, tensor_type=lowerCamelCase__ )
520
0
"""simple docstring""" def A_ ( snake_case_ : int ,snake_case_ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def A_ ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f'| 0 | 0 | {nor_gate(0 ,0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 ,1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 ,0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 ,1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
499
"""simple docstring""" def A_ ( snake_case_ : int = 1_0_0_0_0_0_0 ): '''simple docstring''' UpperCamelCase : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,snake_case_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
499
1
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : List[Any] = 2_5_6 class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = ["melgan"] def __init__( self , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() # From MELGAN _SCREAMING_SNAKE_CASE =math.log(1E-5 ) # Matches MelGAN training. _SCREAMING_SNAKE_CASE =4.0 # Largest value for most examples _SCREAMING_SNAKE_CASE =1_2_8 self.register_modules( notes_encoder=_A , continuous_encoder=_A , decoder=_A , scheduler=_A , melgan=_A , ) def UpperCamelCase_ ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output_range if clip: _SCREAMING_SNAKE_CASE =torch.clip(_A , self.min_value , self.max_value ) # Scale to [0, 1]. _SCREAMING_SNAKE_CASE =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase_ ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =input_range _SCREAMING_SNAKE_CASE =torch.clip(_A , _A , _A ) if clip else outputs # Scale to [0, 1]. _SCREAMING_SNAKE_CASE =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =input_tokens > 0 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.notes_encoder( encoder_input_tokens=_A , encoder_inputs_mask=_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.continuous_encoder( encoder_inputs=_A , encoder_inputs_mask=_A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =noise_time if not torch.is_tensor(_A ): _SCREAMING_SNAKE_CASE =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _SCREAMING_SNAKE_CASE =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _SCREAMING_SNAKE_CASE =self.decoder( encodings_and_masks=_A , decoder_input_tokens=_A , decoder_noise_time=_A ) return logits @torch.no_grad() def __call__( self , _A , _A = None , _A = 1_0_0 , _A = True , _A = "numpy" , _A = None , _A = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) _SCREAMING_SNAKE_CASE =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =np.zeros([1, 0, self.n_dims] , np.floataa ) _SCREAMING_SNAKE_CASE =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_A , device=self.device ) for i, encoder_input_tokens in enumerate(_A ): if i == 0: _SCREAMING_SNAKE_CASE =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _SCREAMING_SNAKE_CASE =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _SCREAMING_SNAKE_CASE =ones _SCREAMING_SNAKE_CASE =self.scale_features( _A , output_range=[-1.0, 1.0] , clip=_A ) _SCREAMING_SNAKE_CASE =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_A , continuous_mask=_A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _SCREAMING_SNAKE_CASE =randn_tensor( shape=encoder_continuous_inputs.shape , generator=_A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _SCREAMING_SNAKE_CASE =self.decode( encodings_and_masks=_A , input_tokens=_A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _SCREAMING_SNAKE_CASE =self.scheduler.step(_A , _A , _A , generator=_A ).prev_sample _SCREAMING_SNAKE_CASE =self.scale_to_features(_A , input_range=[-1.0, 1.0] ) _SCREAMING_SNAKE_CASE =mel[:1] _SCREAMING_SNAKE_CASE =mel.cpu().float().numpy() _SCREAMING_SNAKE_CASE =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A ) logger.info('''Generated segment''' , _A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": _SCREAMING_SNAKE_CASE =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _SCREAMING_SNAKE_CASE =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_A )
165
"""simple docstring""" def _lowerCAmelCase(a : int ) -> bool: if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =(1 << p) - 1 for _ in range(p - 2 ): _SCREAMING_SNAKE_CASE =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
165
1
import numpy as np def UpperCamelCase ( __lowerCamelCase : np.ndarray ): return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( __lowerCamelCase : np.ndarray ): return vector * sigmoid(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
204
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( __lowerCamelCase : Namespace ): return TrainCommand(__lowerCamelCase ) class UpperCAmelCase ( A_ ): @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> int: '''simple docstring''' snake_case : Any = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=snake_case__ , required=snake_case__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=snake_case__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=snake_case__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=snake_case__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=snake_case__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=snake_case__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=snake_case__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=snake_case__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=snake_case__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=snake_case__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=snake_case__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=snake_case__ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=snake_case__ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=snake_case__ ) def __init__(self : List[Any] , snake_case__ : Namespace ) -> Tuple: '''simple docstring''' snake_case : Any = logging.get_logger("transformers-cli/training" ) snake_case : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=snake_case__ ) snake_case : Any = args.output snake_case : List[Any] = args.column_label snake_case : Tuple = args.column_text snake_case : str = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": snake_case : Optional[int] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) snake_case : Tuple = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case : Optional[Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case : Union[str, Any] = args.validation_split snake_case : Optional[Any] = args.train_batch_size snake_case : List[str] = args.valid_batch_size snake_case : List[Any] = args.learning_rate snake_case : List[Any] = args.adam_epsilon def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
204
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = StableDiffusionPanoramaPipeline _snake_case : Union[str, Any] = TEXT_TO_IMAGE_PARAMS _snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : List[Any] )-> int: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __UpperCamelCase = DDIMScheduler() torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : Dict , A_ : str , A_ : Tuple=0 )-> Tuple: __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : str )-> List[Any]: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionPanoramaPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = sd_pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Dict )-> List[str]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Dict )-> Union[str, Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def A ( self : Optional[int] )-> Dict: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionPanoramaPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = "french fries" __UpperCamelCase = sd_pipe(**A_ , negative_prompt=A_ ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : str )-> int: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionPanoramaPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = sd_pipe(**A_ , view_batch_size=2 ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[Any] )-> List[str]: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" ) __UpperCamelCase = StableDiffusionPanoramaPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = sd_pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Optional[int] )-> Optional[int]: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=A_ ) __UpperCamelCase = StableDiffusionPanoramaPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = sd_pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : int )-> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[str] , A_ : Tuple=0 )-> List[Any]: __UpperCamelCase = torch.manual_seed(A_ ) __UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def A ( self : str )-> Union[str, Any]: __UpperCamelCase = "stabilityai/stable-diffusion-2-base" __UpperCamelCase = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) __UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __UpperCamelCase = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def A ( self : int )-> Optional[int]: __UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=A_ ) __UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Union[str, Any] )-> Union[str, Any]: __UpperCamelCase = 0 def callback_fn(A_ : int , A_ : int , A_ : torch.FloatTensor ) -> None: __UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __UpperCamelCase = latents[0, -3:, -3:, -1] __UpperCamelCase = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __UpperCamelCase = latents[0, -3:, -3:, -1] __UpperCamelCase = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCamelCase = False __UpperCamelCase = "stabilityai/stable-diffusion-2-base" __UpperCamelCase = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) __UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() pipe(**A_ , callback=A_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : int )-> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase = "stabilityai/stable-diffusion-2-base" __UpperCamelCase = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) __UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**A_ ) __UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
712
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : torch.FloatTensor class __UpperCAmelCase ( snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 7_68 , A_ : Dict=77 , A_ : Union[str, Any]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , )-> Optional[int]: super().__init__() __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = num_attention_heads * attention_head_dim __UpperCamelCase = additional_embeddings __UpperCamelCase = time_embed_dim or inner_dim __UpperCamelCase = embedding_proj_dim or embedding_dim __UpperCamelCase = clip_embed_dim or embedding_dim __UpperCamelCase = Timesteps(A_ , A_ , 0 ) __UpperCamelCase = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) __UpperCamelCase = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: __UpperCamelCase = None elif embedding_proj_norm_type == "layer": __UpperCamelCase = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCamelCase = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: __UpperCamelCase = None elif encoder_hid_proj_type == "linear": __UpperCamelCase = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": __UpperCamelCase = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: __UpperCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn="gelu" , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": __UpperCamelCase = nn.LayerNorm(A_ ) elif norm_in_type is None: __UpperCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCamelCase = nn.LayerNorm(A_ ) __UpperCamelCase = nn.Linear(A_ , A_ ) __UpperCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCamelCase = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , A_ , persistent=A_ ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A ( self : Tuple )-> Dict[str, AttentionProcessor]: __UpperCamelCase = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , "set_processor" ): __UpperCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def A ( self : Tuple , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] )-> Optional[int]: __UpperCamelCase = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Any ): if hasattr(A_ , "set_processor" ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def A ( self : List[str] )-> List[str]: self.set_attn_processor(AttnProcessor() ) def A ( self : Dict , A_ : str , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , )-> Any: __UpperCamelCase = hidden_states.shape[0] __UpperCamelCase = timestep if not torch.is_tensor(A_ ): __UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: __UpperCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) __UpperCamelCase = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCamelCase = timesteps_projected.to(dtype=self.dtype ) __UpperCamelCase = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: __UpperCamelCase = self.embedding_proj_norm(A_ ) __UpperCamelCase = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCamelCase = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) __UpperCamelCase = self.proj_in(A_ ) __UpperCamelCase = self.positional_embedding.to(hidden_states.dtype ) __UpperCamelCase = [] __UpperCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCamelCase = hidden_states[:, None, :] __UpperCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) __UpperCamelCase = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCamelCase = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __UpperCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCamelCase = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) __UpperCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCamelCase = self.norm_in(A_ ) for block in self.transformer_blocks: __UpperCamelCase = block(A_ , attention_mask=A_ ) __UpperCamelCase = self.norm_out(A_ ) if self.prd_embedding is not None: __UpperCamelCase = hidden_states[:, -1] else: __UpperCamelCase = hidden_states[:, additional_embeddings_len:] __UpperCamelCase = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def A ( self : Dict , A_ : Tuple )-> Dict: __UpperCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
228
0
import operator def A ( _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = operator.lt if reverse else operator.gt _lowerCAmelCase : int = solution or [] if not arr: return solution _lowerCAmelCase : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(_lowerCamelCase ): if _operator(_lowerCamelCase , sublist[-1] ): sublist.append(_lowerCamelCase ) arr.pop(_lowerCamelCase ) # merging sublist into solution list if not solution: solution.extend(_lowerCamelCase ) else: while sublist: _lowerCAmelCase : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(_lowerCamelCase ): if not _operator(_lowerCamelCase , _lowerCamelCase ): solution.insert(_lowerCamelCase , _lowerCamelCase ) break else: solution.append(_lowerCamelCase ) strand_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
500
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'gptj' lowerCamelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=5_0400, __a=2048, __a=4096, __a=28, __a=16, __a=64, __a=None, __a="gelu_new", __a=0.0, __a=0.0, __a=0.0, __a=1E-5, __a=0.02, __a=True, __a=5_0256, __a=5_0256, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Dict = n_positions _lowerCAmelCase : Any = n_embd _lowerCAmelCase : Optional[Any] = n_layer _lowerCAmelCase : List[str] = n_head _lowerCAmelCase : Tuple = n_inner _lowerCAmelCase : Union[str, Any] = rotary_dim _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : List[str] = resid_pdrop _lowerCAmelCase : int = embd_pdrop _lowerCAmelCase : int = attn_pdrop _lowerCAmelCase : Tuple = layer_norm_epsilon _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Any = use_cache _lowerCAmelCase : str = bos_token_id _lowerCAmelCase : List[Any] = eos_token_id super().__init__( bos_token_id=__a, eos_token_id=__a, tie_word_embeddings=__a, **__a) class UpperCAmelCase_ ( a): def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__a, task=__a, patching_specs=__a, use_past=__a) if not getattr(self._config, "pad_token_id", __a): # TODO: how to do that better? _lowerCAmelCase : Optional[int] = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__a, direction="inputs") _lowerCAmelCase : Tuple = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : str = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : List[str] = super(__a, self).generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Any = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase , _lowerCAmelCase : Tuple = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Optional[int] = seqlen + 2 _lowerCAmelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : Optional[int] = [ (torch.zeros(__a), torch.zeros(__a)) for _ in range(self.num_layers) ] _lowerCAmelCase : Any = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : Tuple = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a, __a, dtype=__a)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
500
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__(self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Dict: UpperCamelCase_ : List[str] = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : str = seq_length UpperCamelCase_ : int = is_training UpperCamelCase_ : List[Any] = use_input_mask UpperCamelCase_ : Any = use_token_type_ids UpperCamelCase_ : str = use_labels UpperCamelCase_ : Optional[Any] = vocab_size UpperCamelCase_ : int = hidden_size UpperCamelCase_ : Dict = num_hidden_layers UpperCamelCase_ : Optional[Any] = num_attention_heads UpperCamelCase_ : Optional[int] = intermediate_size UpperCamelCase_ : int = hidden_act UpperCamelCase_ : Tuple = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : Any = max_position_embeddings UpperCamelCase_ : List[str] = type_vocab_size UpperCamelCase_ : Tuple = type_sequence_label_size UpperCamelCase_ : List[Any] = initializer_range UpperCamelCase_ : str = num_labels UpperCamelCase_ : str = num_choices UpperCamelCase_ : List[str] = scope def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : str = None if self.use_input_mask: UpperCamelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Any = None UpperCamelCase_ : List[str] = None UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ (self ) -> Optional[int]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: UpperCamelCase_ : Optional[int] = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCamelCase_ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Tuple: UpperCamelCase_ : List[str] = BioGptForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ) -> Tuple: UpperCamelCase_ : List[str] = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # create attention mask UpperCamelCase_ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) UpperCamelCase_ : List[str] = self.seq_length // 2 UpperCamelCase_ : List[Any] = 0 # first forward pass UpperCamelCase_,UpperCamelCase_ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase_ : Optional[int] = ids_tensor((1,) , __UpperCamelCase ).item() + 1 UpperCamelCase_ : str = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase_ : Optional[Any] = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__UpperCamelCase )] , dim=1 , ) # get two different outputs UpperCamelCase_ : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase )["""last_hidden_state"""] UpperCamelCase_ : List[str] = model(__UpperCamelCase , past_key_values=__UpperCamelCase , attention_mask=__UpperCamelCase )["""last_hidden_state"""] # select random slice UpperCamelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ) -> List[str]: UpperCamelCase_ : Any = BioGptModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() UpperCamelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) # first forward pass UpperCamelCase_ : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase )["""last_hidden_state"""] UpperCamelCase_ : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ """last_hidden_state""" ] # select random slice UpperCamelCase_ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , __UpperCamelCase=False ) -> Tuple: UpperCamelCase_ : int = BioGptForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase_ : Dict = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def A_ (self , __UpperCamelCase , *__UpperCamelCase ) -> Optional[int]: UpperCamelCase_ : str = BioGptModel(__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ) -> str: UpperCamelCase_ : Tuple = self.num_labels UpperCamelCase_ : Any = BioGptForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ (self ) -> int: UpperCamelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ),( UpperCamelCase_ ), ) : List[str] = config_and_inputs UpperCamelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __a , __a , __a , unittest.TestCase ): a__ :List[str] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a__ :Tuple = (BioGptForCausalLM,) if is_torch_available() else () a__ :Dict = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) a__ :Dict = False def A_ (self ) -> Optional[Any]: UpperCamelCase_ : List[Any] = BioGptModelTester(self ) UpperCamelCase_ : Tuple = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def A_ (self ) -> str: self.config_tester.run_common_tests() def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def A_ (self ) -> Dict: UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ : str = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__UpperCamelCase ) def A_ (self ) -> List[Any]: UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__UpperCamelCase , gradient_checkpointing=__UpperCamelCase ) def A_ (self ) -> Optional[int]: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__UpperCamelCase ) def A_ (self ) -> Any: UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__UpperCamelCase ) def A_ (self ) -> Tuple: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__UpperCamelCase ) @slow def A_ (self ) -> Tuple: UpperCamelCase_ : str = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase_ : int = """left""" # Define PAD Token = EOS Token = 50256 UpperCamelCase_ : Any = tokenizer.eos_token UpperCamelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase_ : str = [ """Hello, my dog is a little""", """Today, I""", ] UpperCamelCase_ : List[str] = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = inputs["""input_ids"""].to(__UpperCamelCase ) UpperCamelCase_ : List[Any] = model.generate( input_ids=__UpperCamelCase , attention_mask=inputs["""attention_mask"""].to(__UpperCamelCase ) , ) UpperCamelCase_ : Tuple = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) UpperCamelCase_ : int = model.generate(input_ids=__UpperCamelCase ) UpperCamelCase_ : Any = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() UpperCamelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = model.generate(input_ids=__UpperCamelCase , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ : Union[str, Any] = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) UpperCamelCase_ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) UpperCamelCase_ : int = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def A_ (self ) -> Tuple: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : str = BioGptModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A_ (self ) -> Optional[Any]: UpperCamelCase_,UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : int = 3 UpperCamelCase_ : str = input_dict["""input_ids"""] UpperCamelCase_ : int = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ : Dict = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ (self ) -> Optional[Any]: UpperCamelCase_,UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Dict = 3 UpperCamelCase_ : Dict = """multi_label_classification""" UpperCamelCase_ : Optional[Any] = input_dict["""input_ids"""] UpperCamelCase_ : int = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ : Dict = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def A_ (self ) -> Any: UpperCamelCase_ : int = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase_ : Dict = torch.tensor([[2, 4_805, 9, 656, 21]] ) UpperCamelCase_ : List[str] = model(__UpperCamelCase )[0] UpperCamelCase_ : Union[str, Any] = 42_384 UpperCamelCase_ : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) UpperCamelCase_ : Tuple = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def A_ (self ) -> Optional[int]: UpperCamelCase_ : Any = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCamelCase_ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(__UpperCamelCase ) torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(__UpperCamelCase ) UpperCamelCase_ : List[Any] = model.generate( **__UpperCamelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=__UpperCamelCase , ) UpperCamelCase_ : Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) UpperCamelCase_ : int = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
138
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): # Initialise PyTorch model UpperCamelCase_ : List[Any] = TaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ : Tuple = TaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
138
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase )-> Optional[int]: UpperCamelCase_ = parent def UpperCAmelCase_ ( self )-> Tuple: return {} def lowerCAmelCase( )-> List[str]: """simple docstring""" UpperCamelCase_ = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" UpperCamelCase_ = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = MarkupLMFeatureExtractionTester(self ) @property def UpperCAmelCase_ ( self )-> List[str]: return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase_ ( self )-> str: # Initialize feature_extractor UpperCamelCase_ = self.feature_extraction_class() # Test not batched input UpperCamelCase_ = get_html_strings()[0] UpperCamelCase_ = feature_extractor(_lowercase ) # fmt: off UpperCamelCase_ = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] UpperCamelCase_ = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , _lowercase ) self.assertEqual(encoding.xpaths , _lowercase ) # Test batched UpperCamelCase_ = get_html_strings() UpperCamelCase_ = feature_extractor(_lowercase ) # fmt: off UpperCamelCase_ = expected_nodes + [["My First Heading", "My first paragraph."]] UpperCamelCase_ = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _lowercase ) self.assertEqual(encoding.xpaths , _lowercase )
628
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , )-> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCamelCase_ = [] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = i / num_diffusion_timesteps UpperCamelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class __magic_name__ ( snake_case , snake_case ): UpperCamelCase_ :str = [e.name for e in KarrasDiffusionSchedulers] UpperCamelCase_ :Tuple = 2 @register_to_config def __init__( self , _lowercase = 1_000 , _lowercase = 0.00_085 , _lowercase = 0.012 , _lowercase = "linear" , _lowercase = None , _lowercase = "epsilon" , _lowercase = "linspace" , _lowercase = 0 , )-> List[Any]: if trained_betas is not None: UpperCamelCase_ = torch.tensor(_lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase_ = torch.linspace(_lowercase , _lowercase , _lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase_ = betas_for_alpha_bar(_lowercase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) UpperCamelCase_ = 1.0 - self.betas UpperCamelCase_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase=None )-> Union[str, Any]: if schedule_timesteps is None: UpperCamelCase_ = self.timesteps UpperCamelCase_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase_ = 1 if len(_lowercase ) > 1 else 0 else: UpperCamelCase_ = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep UpperCamelCase_ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase_ ( self )-> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase_ ( self , _lowercase , _lowercase , )-> torch.FloatTensor: UpperCamelCase_ = self.index_for_timestep(_lowercase ) if self.state_in_first_order: UpperCamelCase_ = self.sigmas[step_index] else: UpperCamelCase_ = self.sigmas_interpol[step_index] UpperCamelCase_ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase_ ( self , _lowercase , _lowercase = None , _lowercase = None , )-> Tuple: UpperCamelCase_ = num_inference_steps UpperCamelCase_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase_ = np.linspace(0 , num_train_timesteps - 1 , _lowercase , dtype=_lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase_ = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(_lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase_ = (np.arange(_lowercase , 0 , -step_ratio )).round().copy().astype(_lowercase ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) UpperCamelCase_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase_ = torch.from_numpy(np.log(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = np.interp(_lowercase , np.arange(0 , len(_lowercase ) ) , _lowercase ) UpperCamelCase_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase_ = torch.from_numpy(_lowercase ).to(device=_lowercase ) # interpolate sigmas UpperCamelCase_ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() UpperCamelCase_ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase_ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_lowercase ).startswith("mps" ): # mps does not support float64 UpperCamelCase_ = torch.from_numpy(_lowercase ).to(_lowercase , dtype=torch.floataa ) else: UpperCamelCase_ = torch.from_numpy(_lowercase ).to(_lowercase ) # interpolate timesteps UpperCamelCase_ = self.sigma_to_t(_lowercase ).to(_lowercase , dtype=timesteps.dtype ) UpperCamelCase_ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() UpperCamelCase_ = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase_ = defaultdict(_lowercase ) def UpperCAmelCase_ ( self , _lowercase )-> Any: # get log sigma UpperCamelCase_ = sigma.log() # get distribution UpperCamelCase_ = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase_ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase_ = low_idx + 1 UpperCamelCase_ = self.log_sigmas[low_idx] UpperCamelCase_ = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase_ = (low - log_sigma) / (low - high) UpperCamelCase_ = w.clamp(0 , 1 ) # transform interpolation to time range UpperCamelCase_ = (1 - w) * low_idx + w * high_idx UpperCamelCase_ = t.view(sigma.shape ) return t @property def UpperCAmelCase_ ( self )-> Any: return self.sample is None def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase = True , )-> Union[SchedulerOutput, Tuple]: UpperCamelCase_ = self.index_for_timestep(_lowercase ) # advance index counter by 1 UpperCamelCase_ = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase_ = self.sigmas[step_index] UpperCamelCase_ = self.sigmas_interpol[step_index + 1] UpperCamelCase_ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase_ = self.sigmas[step_index - 1] UpperCamelCase_ = self.sigmas_interpol[step_index] UpperCamelCase_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase_ = 0 UpperCamelCase_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase_ = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase_ = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase_ = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase_ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase_ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase_ = sigma_next - sigma_hat UpperCamelCase_ = self.sample UpperCamelCase_ = None UpperCamelCase_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , )-> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowercase ): # mps does not support float64 UpperCamelCase_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCamelCase_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCamelCase_ = self.timesteps.to(original_samples.device ) UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = [self.index_for_timestep(_lowercase , _lowercase ) for t in timesteps] UpperCamelCase_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase_ = sigma.unsqueeze(-1 ) UpperCamelCase_ = original_samples + noise * sigma return noisy_samples def __len__( self )-> Dict: return self.config.num_train_timesteps
628
1
import numpy as np def A__ ( __lowerCamelCase ): return 1 / (1 + np.exp(-vector )) def A__ ( __lowerCamelCase ): return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
597
def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1 ): SCREAMING_SNAKE_CASE_ = False for i in range(1, arr_len + 1 ): for j in range(1, required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
1
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING a__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __magic_name__ ( __UpperCamelCase ): def __init__( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , 'decord' ) self.check_model_type(__UpperCAmelCase ) def _lowerCamelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None ): """simple docstring""" _lowerCAmelCase = {} if frame_sampling_rate is not None: _lowerCAmelCase = frame_sampling_rate if num_frames is not None: _lowerCAmelCase = num_frames _lowerCAmelCase = {} if top_k is not None: _lowerCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , __magic_name__ , **__magic_name__ ): """simple docstring""" return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__=None , __magic_name__=1 ): """simple docstring""" if num_frames is None: _lowerCAmelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): _lowerCAmelCase = BytesIO(requests.get(__UpperCAmelCase ).content ) _lowerCAmelCase = VideoReader(__UpperCAmelCase ) videoreader.seek(0 ) _lowerCAmelCase = 0 _lowerCAmelCase = num_frames * frame_sampling_rate - 1 _lowerCAmelCase = np.linspace(__UpperCAmelCase , __UpperCAmelCase , num=__UpperCAmelCase , dtype=np.intaa ) _lowerCAmelCase = videoreader.get_batch(__UpperCAmelCase ).asnumpy() _lowerCAmelCase = list(__UpperCAmelCase ) _lowerCAmelCase = self.image_processor(__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.model(**__UpperCAmelCase ) return model_outputs def _lowerCamelCase ( self , __magic_name__ , __magic_name__=5 ): """simple docstring""" if top_k > self.model.config.num_labels: _lowerCAmelCase = self.model.config.num_labels if self.framework == "pt": _lowerCAmelCase = model_outputs.logits.softmax(-1 )[0] _lowerCAmelCase = probs.topk(__UpperCAmelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowerCAmelCase = scores.tolist() _lowerCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase , __UpperCAmelCase )]
589
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase__ = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off UpperCAmelCase__ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case_ ( __UpperCamelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = ["""input_ids""", """attention_mask"""] snake_case__ = NllbTokenizer snake_case__ = [] snake_case__ = [] def __init__(self: Optional[Any] , __UpperCAmelCase: Union[str, Any]=None , __UpperCAmelCase: List[Any]=None , __UpperCAmelCase: Union[str, Any]="<s>" , __UpperCAmelCase: Tuple="</s>" , __UpperCAmelCase: Optional[Any]="</s>" , __UpperCAmelCase: Tuple="<s>" , __UpperCAmelCase: Optional[Any]="<unk>" , __UpperCAmelCase: Dict="<pad>" , __UpperCAmelCase: Any="<mask>" , __UpperCAmelCase: Dict=None , __UpperCAmelCase: Optional[Any]=None , __UpperCAmelCase: List[str]=None , __UpperCAmelCase: List[str]=False , **__UpperCAmelCase: Tuple , ) -> Tuple: '''simple docstring''' __a : Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token __a : List[str] = legacy_behaviour super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) __a : Union[str, Any] = vocab_file __a : str = False if not self.vocab_file else True __a : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) __a : Optional[Any] = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a : Dict = src_lang if src_lang is not None else "eng_Latn" __a : str = self.convert_tokens_to_ids(self._src_lang ) __a : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase__ (self: List[str] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: str ) -> None: '''simple docstring''' __a : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ (self: Any , __UpperCAmelCase: List[int] , __UpperCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: List[int] , __UpperCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __a : int = [self.sep_token_id] __a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ (self: str , __UpperCAmelCase: Dict , __UpperCAmelCase: str , __UpperCAmelCase: Optional[str] , __UpperCAmelCase: Optional[str] , **__UpperCAmelCase: Optional[int] ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __a : Tuple = src_lang __a : Optional[Any] = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) __a : List[Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) __a : List[Any] = tgt_lang_id return inputs def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: List[str] , __UpperCAmelCase: str = "eng_Latn" , __UpperCAmelCase: Optional[List[str]] = None , __UpperCAmelCase: str = "fra_Latn" , **__UpperCAmelCase: Dict , ) -> BatchEncoding: '''simple docstring''' __a : Optional[int] = src_lang __a : List[str] = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase__ (self: List[Any] ) -> int: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: Union[str, Any] ) -> None: '''simple docstring''' __a : Optional[Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) if self.legacy_behaviour: __a : Dict = [] __a : str = [self.eos_token_id, self.cur_lang_code] else: __a : Optional[Any] = [self.cur_lang_code] __a : Optional[int] = [self.eos_token_id] __a : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) __a : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __a : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ (self: str , __UpperCAmelCase: str ) -> None: '''simple docstring''' __a : List[Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) if self.legacy_behaviour: __a : Any = [] __a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: __a : Union[str, Any] = [self.cur_lang_code] __a : List[str] = [self.eos_token_id] __a : str = self.convert_ids_to_tokens(self.prefix_tokens ) __a : str = self.convert_ids_to_tokens(self.suffix_tokens ) __a : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ (self: str , __UpperCAmelCase: str , __UpperCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return __a : Tuple = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
351
0
from __future__ import annotations def __UpperCamelCase ( a, a = None) ->List[str]: lowerCamelCase__ = word_bank or [] # create a table lowerCamelCase__ = len(snake_case_) + 1 lowerCamelCase__ = [] for _ in range(snake_case_): table.append([]) # seed value lowerCamelCase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_)] == word: lowerCamelCase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_)] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_)]: combination.reverse() return table[len(snake_case_)] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
710
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ = logging.get_logger(__name__) A_ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = "longformer" def __init__( self , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0522 , _lowerCAmelCase = 768 , _lowerCAmelCase = 12 , _lowerCAmelCase = 12 , _lowerCAmelCase = 3072 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase__ = attention_window lowerCamelCase__ = sep_token_id lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = onnx_export class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = True @property def __magic_name__ ( self ): if self.task == "multiple-choice": lowerCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def __magic_name__ ( self ): lowerCamelCase__ = super().outputs if self.task == "default": lowerCamelCase__ = {0: "batch"} return outputs @property def __magic_name__ ( self ): return 1E-4 @property def __magic_name__ ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): lowerCamelCase__ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ = torch.zeros_like(inputs["input_ids"] ) # make every second token global lowerCamelCase__ = 1 return inputs
360
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Dict = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'vit_mae' def __init__( self : str , lowerCAmelCase__ : Optional[int]=768 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : List[Any]=12 , lowerCAmelCase__ : Dict=3072 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : List[str]=1e-1_2 , lowerCAmelCase__ : Union[str, Any]=224 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=16 , lowerCAmelCase__ : Union[str, Any]=512 , lowerCAmelCase__ : Optional[Any]=8 , lowerCAmelCase__ : Optional[Any]=2048 , lowerCAmelCase__ : Optional[int]=0.75 , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : int , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = qkv_bias _UpperCamelCase = decoder_num_attention_heads _UpperCamelCase = decoder_hidden_size _UpperCamelCase = decoder_num_hidden_layers _UpperCamelCase = decoder_intermediate_size _UpperCamelCase = mask_ratio _UpperCamelCase = norm_pix_loss
98
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''distilbert''' UpperCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , A=3_0522 , A=512 , A=False , A=6 , A=12 , A=768 , A=4 * 768 , A=0.1 , A=0.1 , A="gelu" , A=0.02 , A=0.1 , A=0.2 , A=0 , **A , ) -> Dict: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = sinusoidal_pos_embds _SCREAMING_SNAKE_CASE = n_layers _SCREAMING_SNAKE_CASE = n_heads _SCREAMING_SNAKE_CASE = dim _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = qa_dropout _SCREAMING_SNAKE_CASE = seq_classif_dropout super().__init__(**A , pad_token_id=A ) class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
314
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _snake_case = logging.getLogger(__name__) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) _snake_case = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: _snake_case = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _snake_case = Counter() for tk_ids in data: counter.update(tk_ids) _snake_case = [0] * args.vocab_size for k, v in counter.items(): _snake_case = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
715
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Tuple=None , ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def __lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = MPNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = MPNetForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = MPNetForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = MPNetForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = MPNetForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_: int = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: Dict = True def __lowerCamelCase ( self : str ) -> List[Any]: """simple docstring""" _lowerCAmelCase = MPNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_ ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = model(UpperCAmelCase_ )[0] _lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _lowerCAmelCase = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
491
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
import math def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = len(_A ) __magic_name__ : Tuple = int(math.floor(math.sqrt(_A ) ) ) __magic_name__ : Optional[int] = 0 while arr[min(_A, _A ) - 1] < x: __magic_name__ : Tuple = step step += int(math.floor(math.sqrt(_A ) ) ) if prev >= n: return -1 while arr[prev] < x: __magic_name__ : Union[str, Any] = prev + 1 if prev == min(_A, _A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __magic_name__: List[Any] = input("Enter numbers separated by a comma:\n").strip() __magic_name__: List[str] = [int(item) for item in user_input.split(",")] __magic_name__: Optional[int] = int(input("Enter the number to be searched:\n")) __magic_name__: str = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F"""Number {x} is at index {res}""")
324
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : Tuple = '''AutoImageProcessor''' __UpperCAmelCase : Optional[Any] = '''AutoTokenizer''' def __init__( self : Dict ,_a : Any=None ,_a : Union[str, Any]=None ,**_a : int ): '''simple docstring''' _a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,_a ,) _a : List[Any] = kwargs.pop('feature_extractor' ) _a : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_a ,_a ) _a : Tuple = self.image_processor _a : int = False def __call__( self : Union[str, Any] ,*_a : Any ,**_a : str ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a ,**_a ) _a : Optional[Any] = kwargs.pop('images' ,_a ) _a : List[str] = kwargs.pop('text' ,_a ) if len(_a ) > 0: _a : Dict = args[0] _a : Optional[int] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _a : Any = self.image_processor(_a ,*_a ,**_a ) if text is not None: _a : Optional[Any] = self.tokenizer(_a ,**_a ) if text is None: return inputs elif images is None: return encodings else: _a : Optional[int] = encodings['input_ids'] return inputs def __lowercase ( self : Optional[Any] ,*_a : Dict ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def __lowercase ( self : Optional[Any] ,*_a : Tuple ,**_a : Dict ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @contextmanager def __lowercase ( self : List[str] ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) _a : Union[str, Any] = True _a : int = self.tokenizer yield _a : Union[str, Any] = self.image_processor _a : Tuple = False def __lowercase ( self : Optional[Any] ,_a : Dict ,_a : Optional[Any]=False ,_a : List[Any]=None ): '''simple docstring''' if added_vocab is None: _a : Dict = self.tokenizer.get_added_vocab() _a : Union[str, Any] = {} while tokens: _a : Tuple = re.search(R'<s_(.*?)>' ,_a ,re.IGNORECASE ) if start_token is None: break _a : int = start_token.group(1 ) _a : int = re.search(RF"""</s_{key}>""" ,_a ,re.IGNORECASE ) _a : Union[str, Any] = start_token.group() if end_token is None: _a : Union[str, Any] = tokens.replace(_a ,'' ) else: _a : List[str] = end_token.group() _a : Any = re.escape(_a ) _a : Optional[int] = re.escape(_a ) _a : Any = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" ,_a ,re.IGNORECASE ) if content is not None: _a : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _a : int = self.tokenajson(_a ,is_inner_value=_a ,added_vocab=_a ) if value: if len(_a ) == 1: _a : Tuple = value[0] _a : List[Any] = value else: # leaf nodes _a : int = [] for leaf in content.split(R'<sep/>' ): _a : Any = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _a : List[str] = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: _a : Optional[int] = output[key][0] _a : Dict = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=_a ,added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __lowercase ( self : List[str] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,_a ,) return self.image_processor_class @property def __lowercase ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,_a ,) return self.image_processor
715
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = 1 @register_to_config def __init__( self : Tuple ,_a : Dict=2000 ,_a : Union[str, Any]=0.1 ,_a : Dict=20 ,_a : List[Any]=1E-3 ): '''simple docstring''' _a : Dict = None _a : int = None _a : Union[str, Any] = None def __lowercase ( self : Any ,_a : Dict ,_a : Union[str, torch.device] = None ): '''simple docstring''' _a : List[Any] = torch.linspace(1 ,self.config.sampling_eps ,_a ,device=_a ) def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[int] ,_a : Any ,_a : Union[str, Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a : int = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _a : Any = std.unsqueeze(-1 ) _a : int = -score / std # compute _a : List[Any] = -1.0 / len(self.timesteps ) _a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a : Union[str, Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a : List[str] = beta_t.unsqueeze(-1 ) _a : Any = -0.5 * beta_t * x _a : Any = torch.sqrt(_a ) _a : Optional[Any] = drift - diffusion**2 * score _a : List[Any] = x + drift * dt # add noise _a : int = randn_tensor(x.shape ,layout=x.layout ,generator=_a ,device=x.device ,dtype=x.dtype ) _a : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
319
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( A__ ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowercase = model_type_to_module_name(A__ ) __lowercase = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(A__ , '''__name__''' , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowercase = importlib.import_module('''transformers''' ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def _A ( A__ , A__ = None , A__ = False , A__ = False , A__ = None , A__ = None , A__ = None , A__ = False , **A__ , ): """simple docstring""" __lowercase = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(A__ , encoding='''utf-8''' ) as reader: return json.load(A__ ) class lowercase_ : """simple docstring""" def __init__( self : int ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowercase__ ) def SCREAMING_SNAKE_CASE ( cls : str ,lowercase__ : str ,**lowercase__ : int ): __lowercase = kwargs.pop('''config''' ,lowercase__ ) __lowercase = kwargs.pop('''trust_remote_code''' ,lowercase__ ) __lowercase = True __lowercase , __lowercase = ImageProcessingMixin.get_image_processor_dict(lowercase__ ,**lowercase__ ) __lowercase = config_dict.get('''image_processor_type''' ,lowercase__ ) __lowercase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' ,{} ): __lowercase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowercase = config_dict.pop('''feature_extractor_type''' ,lowercase__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __lowercase = feature_extractor_class.replace('''FeatureExtractor''' ,'''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' ,{} ): __lowercase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __lowercase = feature_extractor_auto_map.replace('''FeatureExtractor''' ,'''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase__ ,lowercase__ ): __lowercase = AutoConfig.from_pretrained(lowercase__ ,**lowercase__ ) # It could be in `config.image_processor_type`` __lowercase = getattr(lowercase__ ,'''image_processor_type''' ,lowercase__ ) if hasattr(lowercase__ ,'''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __lowercase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __lowercase = image_processor_class_from_name(lowercase__ ) __lowercase = image_processor_auto_map is not None __lowercase = image_processor_class is not None or type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING __lowercase = resolve_trust_remote_code( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if has_remote_code and trust_remote_code: __lowercase = get_class_from_dynamic_module( lowercase__ ,lowercase__ ,**lowercase__ ) __lowercase = kwargs.pop('''code_revision''' ,lowercase__ ) if os.path.isdir(lowercase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING: __lowercase = IMAGE_PROCESSOR_MAPPING[type(lowercase__ )] return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Tuple ,lowercase__ : Any ): IMAGE_PROCESSOR_MAPPING.register(lowercase__ ,lowercase__ )
41
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowercase_ ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0.9 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" a_ = size if size is not None else {"""shortest_edge""": 30} a_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} a_ = parent a_ = batch_size a_ = num_channels a_ = min_resolution a_ = max_resolution a_ = do_resize_and_center_crop a_ = size a_ = crop_pct a_ = crop_size a_ = do_normalize a_ = image_mean a_ = image_std def lowercase__ ( self ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ ( UpperCamelCase__ ,unittest.TestCase): """simple docstring""" snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" a_ = PoolFormerImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """crop_pct""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
483
0
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __A = TypeVar('''T''') class _snake_case ( Generic[T] ): def __init__( self : Union[str, Any] , UpperCAmelCase : Any = True ): __lowerCamelCase : List[str] = {} # dictionary of lists __lowerCamelCase : str = directed def lowerCamelCase__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : int ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) self.adj_list[destination_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) __lowerCamelCase : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase_ ) __lowerCamelCase : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __lowerCamelCase : Tuple = [destination_vertex] __lowerCamelCase : List[str] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) __lowerCamelCase : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __lowerCamelCase : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __lowerCamelCase : Optional[int] = [destination_vertex] __lowerCamelCase : str = [] return self def __repr__( self : Optional[Any] ): return pformat(self.adj_list )
719
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : str=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , ): __lowerCamelCase : Any = size if size is not None else {"shortest_edge": 18} __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCamelCase : List[str] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : List[Any] = max_resolution __lowerCamelCase : List[str] = do_resize __lowerCamelCase : str = size __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : List[Any] = image_std def lowerCamelCase__ ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : List[str] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
0